Summer and Fall 2011 Radar and Acoustic Bat Survey Report

for the Antrim Wind Energy Project In Antrim, New Hampshire

Prepared for

Antrim Wind Energy, LLC 155 Fleet Street Portsmouth, NH 03801

Prepared by

Stantec Consulting Services Inc. 30 Park Drive Topsham, ME 04086

December 2011

Executive Summary

Antrim Wind Energy, LLC is considering development of the Antrim Wind Energy Project (Project) located in Antrim, New Hampshire. The proposed Project would include wind turbines located on a series of ridgelines associated with Tuttle Hill (Figure 1). Stantec Consulting Services Inc. performed nocturnal radar surveys and acoustic bat surveys at the Project to characterize seasonal nocturnal migration and bat activity patterns at the Project. This report discusses the methods and results of the fall 2011 radar and acoustic bat surveys. Results of the spring 2011 radar and acoustic bat surveys are included in a separate report.

Nocturnal Radar Survey

To characterize fall nocturnal migration activity over the Project area, radar surveys were conducted on 30 nights between August 17 and October 8, 2011. Surveys were conducted from sunset to sunrise using X-band radar. Each hour of sampling included the recording of radar video files during horizontal and vertical operation. The radar was placed within a clearing for the meteorological (met) tower, Met Tower 1, located at the northeastern end of Tuttle Hill. This site provided adequate visibility of the surrounding airspace.

The overall mean passage rate for the entire fall survey period was 138 ± 9 targets per kilometer per hour (t/km/hr), and nightly passage rates varied from 4 ± 2 t/km/hr on October 1 to 538 ± 71 t/km/hr on August 26. The seasonal mean flight height of targets was 203 ± 1 meters (m; 666 ft [']) above the radar site, and nightly flight heights ranged from 147 ± 23 m to 266 ± 45 m. Mean flight direction through the Project area for the season was southwesterly at $217^{\circ} \pm 56^{\circ}$. Flight heights, when analyzed for the anticipated 150 m (492') height of the proposed turbines, indicate that the percentage of targets flying below turbine height ranged from 25 to 56 percent with a seasonal average of 40 percent.

In summary, results at the Project provide a sample of baseline migration activity over the Project area during fall 2011.

Acoustic Bat Survey

Stantec conducted summer/fall acoustic bat surveys between June 1 and October 23, 2011 to sample bat activity patterns and species composition within the Project area. Six Anabat® detectors were deployed during this period, collecting data for a total of 677 detector-nights over a period of 849 available calendar nights. Two detectors were deployed in the guy wires of an existing 60 m meteorological tower and the remaining four detectors were suspended from trees along forested corridors and adjacent to wetlands where bats would likely travel or forage.

The six detectors recorded a total of 35,450 bat call sequences yielding an overall detection rate of 52.4 bat call sequences per detector-night. Among sampling locations, detection rates

ranged from 2.6 to 126.2 bat call sequences per detector-night. Typical of this type of survey, activity levels varied considerably among nights within the survey period and among detectors.

Bats within the big brown bat/silver-haired bat (BBSH) guild comprised the greatest overall percentage of detected call sequences (48%, n=17,006). The North Met Low detector recorded the majority of BBSH calls (47%). Other species such as hoary bats (*Lasiurus cinereus*) were detected at five of the six detectors, and species belonging to the *Myotis* guild and the eastern red bat/tri-colored bat guild were recorded by all six detectors. Summer/fall 2011 acoustic bat surveys documented variable activity levels within the Project area, although results suggest that activity was highest in July and August.

Table of Contents

EXI	ECUTIVE SUMMARY	E.1
-	PROJECT BACKGROUND	
1.2	PROJECT AREA DESCRIPTION	1
2.0	NOCTURNAL RADAR SURVEY	3
2.1		
2.2	DATA COLLECTION METHODS	3
	2.2.1 Radar Data	4
	2.2.2 Weather Data	6
2.3	DATA ANALYSIS METHODS	7
	2.3.1 Radar Data	7
	2.3.2 Weather Data	7
2.4	RESULTS	7
	2.4.1 Passage Rates	7
	2.4.2 Flight Direction	9
	2.4.3 Flight Altitude	
	2.4.4 Weather Data	11
2.5	DISCUSSION	
3.0	ACOUSTIC BAT SURVEY	
3.1	INTRODUCTION	14
	DATA COLLECTION METHODS	
0	3.2.1 Acoustic Detector Site Selection	
3.3	DATA ANALYSIS METHODS	
0.0	3.3.1 Weather Data	
3.4	RESULTS	
0	3.4.1 Timing of Activity	
	3.4.2 Species Composition	
	3.4.3 Activity and Weather	
3.5	DISCUSSION	
4.0	LITERATURE CITED	

Figures

Figure 1-1	2011 Survey Location Map
Figure 2-1	Photo of the radar on the ridgeline of Tuttle Hill.
Figure 2-2	Screenshots from actual radar files for the Antrim Wind Project showing ground clutter in horizontal mode and vertical mode
Figure 2-3	An example of ground clutter "hiding" a section of the radar beam, allowing adequate detection of targets
Figure 2-4	Detection Range of the radar in vertical mode
Figure 2-5	Nightly passage rates observed during fall 2011 at the Antrim Wind Project.
Figure 2-6	Hourly passage rates for entire season during fall 2011 at the Antrim Wind Project.
Figure 2-7	Mean flight direction for the entire season during fall 2011 at the Antrim Wind Project.
Figure 2-8	Mean nightly flight height of targets during fall 2011 at the Antrim Wind Project.
Figure 2-9	Percent of targets observed flying below a height of 150 m (492') during fall 2011 at the Antrim Wind Project.
Figure 2-10	Flight height whisker plot depicting the vertical distribution of targets for each survey night during fall 2011 at the Antrim Wind Project.
Figure 2-11	Hourly target flight height distribution during fall 2011 at the Antrim Wind Project.
Figure 2-12	Nightly mean wind speed during fall 2011 at the Antrim Wind Project.
Figure 2-13	Nightly mean temperature during fall 2011 at the Antrim Wind Project.
Figure 3-1	Photos of the Willard Tree and Willard Trail bat detectors.
Figure 3-2	Photos of the Access Tree and Wetland bat detectors.
Figure 3-3	Photos of the North Met High and Low bat detectors.
Figure 3-4	Species specific percent of nights occupied by month (left) and monthly detection rate of individual bat species (right).
Figure 3-4	Hourly bat call sequence detections during summer/fall 2011 surveys at the Antrim Wind Project.
Figure 3-5	Histograms showing species composition of recorded bat call sequences during summer/fall 2011 surveys at the Antrim Wind Project.
Figure 3-6	Nightly mean wind speed and combined bat call detections during summer/fall 2011 surveys at the Antrim Wind Project.
Figure 3-7	Nightly mean temperatures and combined bat call detections during summer/fall 2011 surveys at the Antrim Wind Project.
Figure 3-8	Nightly mean wind speed and mean temperature versus combined bat detections during summer/fall 2011 surveys at the Antrim Wind Project.
Tables	
Table 3-1	Habitat descriptions of locations sampled during acoustic bat surveys, Antrim Wind Project, summer/fall 2011.
Table 3-2	Summary of bat detector field survey effort and results, Antrim Wind Project, summer/fall 2011.
Table 3-3	Percent of nights with acoustic activity by month and overall, Antrim Wind Project, summer/fall 2011.
Table 3-4	Distribution of detections by guild for detectors, Antrim Wind Project, Summer/Fall 2011.

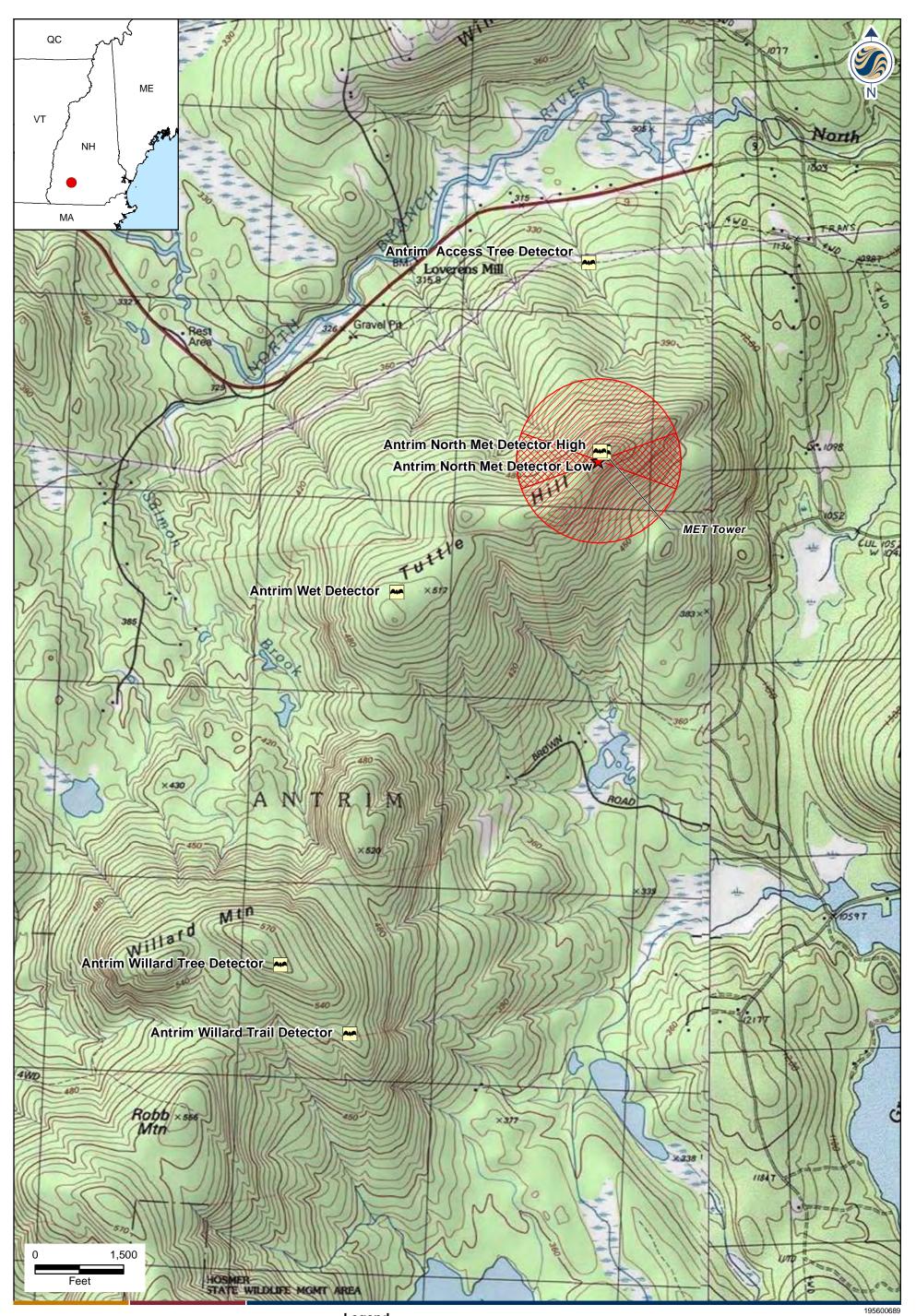
Appendices

Appendix A	Radar Survey Data Tables
Appendix B	Bat Data Tables

PN195600689*

^{*} This report was prepared by Stantec Consulting Services Inc. for TRC and Antrim Wind Energy, LLC. The material in it reflects Stantec's judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. Stantec accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.

1.0 Introduction


1.1 PROJECT BACKGROUND

Antrim Wind Energy, LLC (AWE) is considering development of the Antrim Wind Energy Project (Project) located in Antrim, New Hampshire (Project; Figure 1-1). The Project is in the preliminary stages of design and the layout of Project infrastructure, including turbines and access roads, has not been determined at this time. The proposed turbines are expected to have a maximum height of 150 meters (m) (492 feet [']).

As part of Project planning, AWE contracted Stantec Consulting Services Inc. (Stantec) to conduct fall 2011 nocturnal radar surveys, and acoustic bat surveys. Stantec developed a work plan for the Project that described survey scopes and methodologies and presented it to the New Hampshire Department of Fish and Game and the U.S. Fish and Wildlife Service at an introductory project meeting on June 21, 2011. The scope and methodology of these surveys are consistent with several other studies conducted recently at proposed wind projects in New Hampshire and the Northeast U.S. Results of the spring 2011 radar and acoustic bat surveys are included in a separate report. Mist nest surveys for bats also were conducted for the Project, and the results of these surveys are presented in a separate report.

1.2 PROJECT AREA DESCRIPTION

The Project is located along the edge of the Sunapee Uplands and Worcester/Monadnock Plateau ecogregions of New England (Griffith et al. 2009). The Sunapee Uplands is a transition zone from the Worcester/Monadnock Plateau and the typically cooler ecoregions to the north. The mountains within the Sunapee Uplands are generally of lower elevations than those mountains to the north, but higher in elevation than those found in the Worcester/Monadnock Plateau (Griffith et al. 2009). The mountains and hills of the Sunapee Uplands are mostly between 305 to 610 m (1000 to 2000') in elevation, but range from 152 m (500') to more than 914 m (3000'). This ecoregion includes many streams and small lakes. Northern hardwood forests dominated by sugar maple (Acer saccharum), American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis) are common. Also present, but less common are eastern hemlock dominated (Tsuga canadensis) forests, oak (Quercus spp.) dominated forests, and forests dominated by spruce (Picea sp.) and balsam fir (Abies balsamea) (Griffith et al. 2009). The Worcester/Monadnock Plateau includes the north-central portion of Massachusetts and the south-central portion of New Hampshire. In many basic characteristics including elevation and climate this ecoregion is similar to colder and more mountainous ecoregions to the north. Elevations within this ecoregion range from 152 to 427 m (500 to 1400') with some peaks exceeding 610 m (2000'). Forested uplands include transition hardwoods such as maplebeech-birch-oak-hickory forests and northern hardwoods such as the maple-beech-birch forests (Griffith et al. 2009). Forested wetlands are common within the Worcester/Monadnock Plateau.

Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

00689_1-1_SurveyLocation.mxd

Legend

- ★ Radar Survey Location
- Mat Detector Location
- Alignment Vertical Radar Sweep
- Horizontal Radar Detection Range

Client/Project TRC Companies, Inc. Antrim Wind Energy Project Antrim, New Hampshire Figure No.

1-1

Title 2011 Survey Location Map 11/22/2011

The Project area is associated with Tuttle Hill, which has an elevation of approximately 423 m (1,390'). The Project area is dominated by mixed forests with coniferous species more common along the ridge tops and deciduous species dominant along the slopes. Common tree species present include paper birch (*Betula papyrifera*), red spruce (*Picea rubens*), eastern hemlock (*Tsuga canadensis*), northern red oak (*Quercus rubra*), American beech (*Fagus grandifolia*), maple (*Acer* spp.), and eastern white pine (*Pinus strobus*). Forest management activities have occurred throughout the area in the recent past and are still ongoing. Evidence of these activities includes numerous skidder trails and stumps throughout the Project area.

2.0 Nocturnal Radar Survey

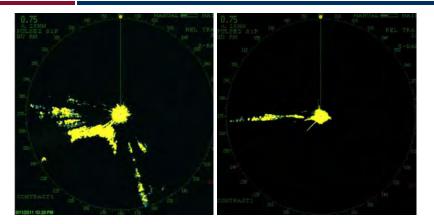
2.1 INTRODUCTION

Nocturnal radar surveys were conducted in the Project area to sample and characterize nocturnal migration patterns in fall 2011. The majority of North American passerines (songbirds) migrate at night. This migratory strategy may have evolved to take advantage of more stable atmospheric conditions for flapping flight (Kerlinger 1995); additionally, cooler nighttime temperatures may help regulate body temperature during more active, flapping flight and reduce predation risk while in flight (Alerstam 1990, Kerlinger 1995). Documenting the patterns of nocturnal migrants requires the use of radar or other non-visual technologies. The goal of the surveys was to sample and characterize nocturnal migration at the Project area including passage rate, flight direction, and flight altitude.

2.2 DATA COLLECTION METHODS

Fall radar surveys were conducted from sunset to sunrise on 30 nights between August 17 and October 8, 2011. The radar location in fall 2011 was the same as in spring 2011; the radar was placed within the clearing for the meteorological (met) tower, Met Tower 1, located at the northeastern end of Tuttle Hill (Figures 1-1, 2-1). This site has an elevation of approximately 423 m (1,390').

Efforts were made to maximize the airspace sampled by elevating the radar antenna approximately 6 m (20') above ground level. Elevating the antenna helps to reduce the amount of the radar beam reflected back by surrounding vegetation and topography, which can cause ground clutter interference on the radar screen. The elevated radar limited ground clutter obstructions and resulted in an adequate view of the surrounding airspace.


Figure 2-1. Photo of the radar on the ridgeline of Tuttle Hill.

2.2.1 Radar Data

Marine surveillance radar, similar to that described by Cooper *et al.* (1991), was used during field data collection. The radar has a peak power output of 12 kilowatts (kW) and has the ability to track small animals, including birds, bats, and insects, based on settings selected for the radar functions. It cannot, however, readily distinguish between different types of animals. Consequently, all animals, excluding insects, observed on the radar screen were identified as "targets." The radar has an "echo trail" function that captures past echoes of flight trails, enabling determination of flight direction. During all operations, the radar's echo trail was set to 30 seconds. The radar was equipped with a 2 m (6.5') waveguide antenna. The antenna has a vertical beam height of 20° (10° above and below horizontal).

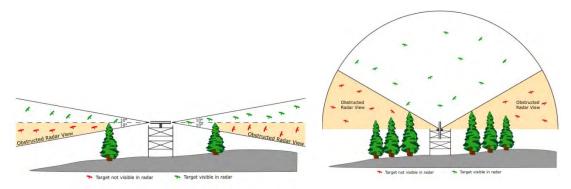

Objects on the ground detected by the radar cause returns on the radar screen (echoes) that appear as blotches called ground clutter. Large amounts of ground clutter reduce the ability of the radar to track targets flying over (Figure 2-2).

Figure 2-2. Screenshots from actual radar files showing ground clutter in horizontal mode (left) and vertical mode (right). Although the radar records three-dimensional space, it is translated by the radar screen as a two dimensional representation, which can cause targets to be obscured from view.

However, vegetation and hilltops near the radar can be used to reduce or eliminate ground clutter by "hiding" clutter-causing objects from the radar (Figure 2-3). These nearby features also cause ground clutter, but their proximity to the radar antenna generally limits the ground clutter to the center of the radar screen. Targets traveling into and out of the ground clutter areas can be tracked. The presence or reduction of potential clutter producing objects was carefully considered during site selection and radar station configuration.

Figure 2-3. An example of a tree of a specific height that causes ground clutter, but "masks" a section of the radar beam, allowing adequate detection of targets beyond it (left). The effect of ground clutter on target detection in vertical mode is also shown (right).

The anti-rain function of the radar must be turned down to detect small songbirds and bats. Since radar surveys cannot be conducted during active rainfall, survey nights targeted nights without steady rain. To characterize migration patterns during nights without optimal conditions, some nights with weather forecasts including occasional showers, mist, or fog were sampled.

The radar was operated in two modes throughout the course of each night and both modes of operation were used during each hour of sampling. In surveillance mode, the antenna spins horizontally to survey the airspace around the radar and detects the number of targets and their

flight direction as they pass through the project site (Figure 2-3). By analyzing the echo trail, the flight direction and flight speed of targets can be determined.

In vertical mode, the radar unit is tilted 90° to survey the airspace above the radar (Harmata *et al.* 1999). In vertical mode, target echoes do not provide directional data, but do provide information on the altitude of targets passing through the vertical, 20° radar beam (Figure 2-4).

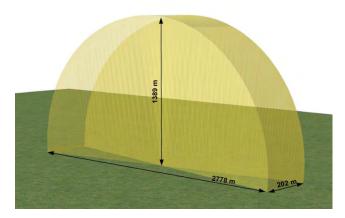


Figure 2-4. Detection range of the radar in vertical mode.

The radar was operated at a range of 1.4 km (0.75 nautical miles) to ensure detection of small targets. When radar is operated at ranges greater than 1.4 km, the echoes of small birds are reduced in size and restricted to a smaller portion of the radar screen, which limits the detection and observable movement pattern of individual targets. Consequently, 1.4 km is the appropriate detection range for this type of study.

The radar display was connected to a computer with video recording software enabling digital archiving of the radar data for subsequent analysis. This software recorded and archived video samples continuously every hour from sunset to sunrise of each survey night. By alternating the radar antenna every ten minutes from vertical mode to horizontal mode, a total of 30 minutes of vertical samples and 30 minutes of horizontal samples were collected within each hour. A stratified random sample set was developed for analysis by randomly selecting 6 horizontal samples and 6 vertical samples per hour of survey. This sampling schedule allowed for randomization of sample selection and prevented double-counting of targets due to the 30-second echo trail used to determine the flight path vector.

2.2.2 Weather Data

Temperature, wind speed and direction were recorded by the on-site met tower². Additionally, to consider the atmospheric influences on migration, regional surface weather map images were interpreted to determine the dates that pressure systems (high, low, or none) moved through the region. Surface weather maps, prepared by the National Centers for Environmental Prediction,

² Weather data for October 7 and October 8 were compiled from wunderground.com (Weather Underground 2011).

the Hydro-meteorological Prediction Center, and the National Weather Service, were downloaded daily during the survey window.

2.3 DATA ANALYSIS METHODS

2.3.1 Radar Data

Video samples were analyzed using a digital analysis software tool developed by Stantec. For horizontal samples, targets (either birds or bats) were differentiated from insects based on their flight speed. Following adjustment for wind speed and direction, targets traveling faster than approximately 6 m (20') per second were identified as a bird or bat target (Larkin 1991, Bruderer and Boldt 2001). The software tool recorded the time, location, and flight vector for each target traveling fast enough to be a bird or bat within each horizontal sample, and these results were output to a spreadsheet. For vertical samples, the software tool recorded the entry point of targets passing through the vertical radar beam, the time, and flight altitude above the radar location, and then subsequently outputs the data to a spreadsheet. These datasets were then used to calculate passage rate (reported as targets per kilometer of migratory front per hour), flight direction, and flight altitude of targets.

Mean target flight directions (\pm 1 circular standard deviation) were summarized using software designed specifically to analyze directional data (Oriana2[©] Kovach Computing Services). The statistics used for this analysis are based on those used by Batschelet (1965) which take into account the circular nature of the data.

Flight altitude data were summarized using linear statistics. Mean flight altitudes (\pm 1 standard error [SE]) were calculated by hour, night, and overall season. The percent of targets flying below 150 m (492'), the approximate maximum height of the proposed wind turbines with blades, was also calculated nightly and for the entire survey period.

2.3.2 Weather Data

The mean nightly temperature, wind speed, and wind direction were calculated from the onsite met tower for each night of survey.

2.4 RESULTS

Radar surveys were conducted during 30 nights between August 17 and October 8, 2011 (Appendix A Table 1) resulting in 327 total hours surveyed.

2.4.1 Passage Rates

Nightly passage rates varied from 4 ± 2 targets per kilometer per hour (t/km/hr) on October 1 to 538 \pm 71 t/km/h on August 26, and the overall passage rate for the entire survey period was 138 \pm 9 t/km/hr (Figure 2-5; also Appendix A Table 1). Individual hourly passage rates varied between nights and throughout the season, and ranged from 0 t/km/hr during various hours of various nights to 839 t/km/hr during the 2nd hour of August 26 (Appendix A Table 2). For the

entire season, mean passage rates increased rapidly between the 1st and 3rd hours after sunset, then gradually declined until sunrise (Figure 2-6).

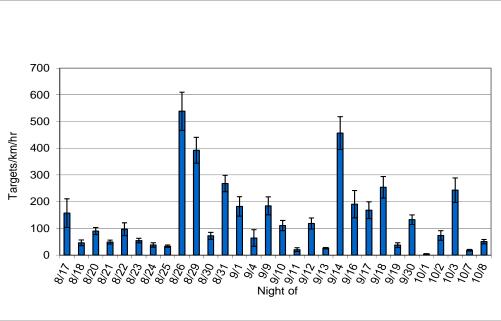


Figure 2-5. Nightly passage rates observed during fall 2011 at the Antrim Wind Project (error bars ± 1 SE).

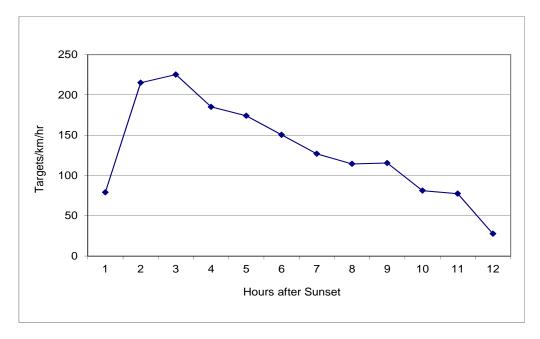


Figure 2-6. Hourly passage rates for entire season during fall 2011 at the Antrim Wind Project.

2.4.2 Flight Direction

Mean flight direction through the Project area was $217^{\circ} \pm 56^{\circ}$ (Figure 2-7). Overall, the mean flight direction was southwest, but varied between nights (Appendix A Table 3).

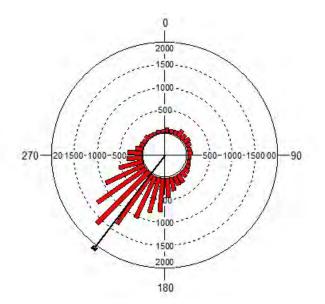


Figure 2-7. Mean flight direction for the entire season during fall 2011 at the Antrim Wind Project (the bracket along the margin of the histogram is the 95% confidence interval).

2.4.3 Flight Altitude

The seasonal mean flight height of targets was $203 \pm 1 \text{ m} (666')$ above the radar site. The average nightly flight height ranged from $147 \pm 23 \text{ m}$ on August 24 to $266 \pm 45 \text{ m}$ on September 9 (Figure 2-8; Appendix A Table 4). The percent of targets observed flying below 150 m was 40 percent for the season and varied nightly from 25 percent (169 targets) on September 9 to 56 percent (74 targets) on August 18 (Figure 2-9). Figure 2-10 below shows the distribution of individual nightly flight heights of all targets recorded relative to the proposed turbine height. The yellow boxes seen in Figure 2-10 depict the middle 50 percent of targets. The error bars depict the statistical outliers, or 25 percent of targets above and below the middle 50 percent of targets. The horizontal line within each box represents the median flight height value for that night. For the entire season, the mean hourly flight heights were lowest during 1st and 10th hour after sunset (Figure 2-11).

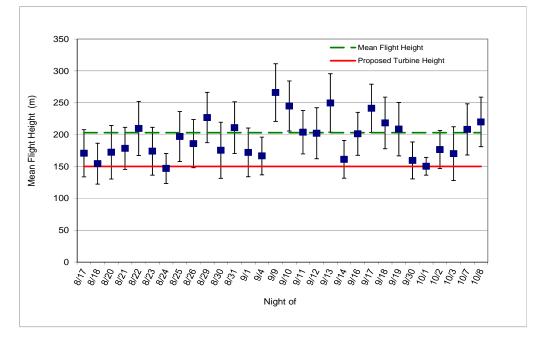
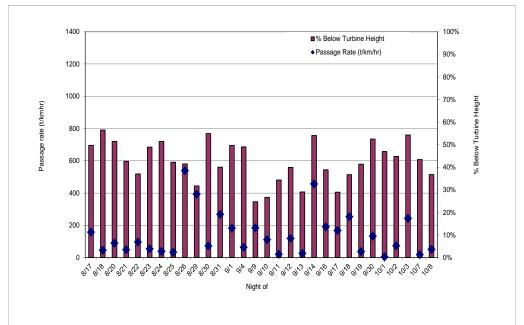



Figure 2-8. Mean nightly flight height of targets during fall 2011 at the Antrim Wind Project ($error bars \pm 1 SE$).

Figure 2-9. Percent of targets observed flying below a height of 150 m (492') during fall 2011 at the Antrim Wind Project.

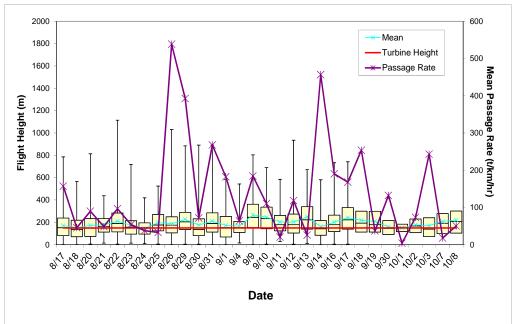


Figure 2-10. Flight height whisker plot depicting the vertical distribution of targets for each survey night during fall 2011 at the Antrim Wind Project.

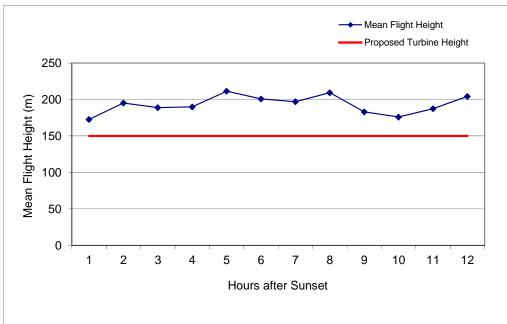
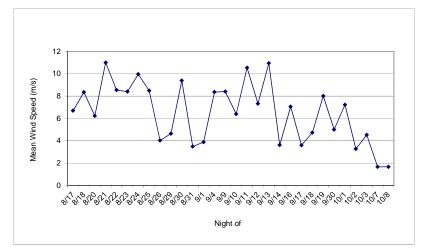



Figure 2-11. Hourly target flight height distribution during fall 2011 at the Antrim Wind Project.

2.4.4 Weather Data

During the nights surveyed from August 17 to October 8, average nightly wind speed varied between 2 and 11 meters per second (m/s), with an overall mean of 7 m/s (Figure 2-12). Mean nightly temperatures gradually decreased throughout the survey period, and varied between 5 °C and 20 °C, with an overall mean of 14 °C (Figure 2-13).

Figure 2-12. Nightly mean wind speed (m/s) during fall 2011 at the Antrim Wind Project. (nightly maximum and minimum temperatures not available)

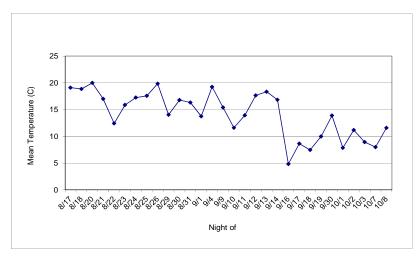


Figure 2-13. Nightly mean temperature (Celsius) during fall 2011 at the Antrim Wind Project.

2.5 DISCUSSION

Radar surveys are designed and implemented to sample migration activity over a specific location in the Project area to provide baseline pre-construction site data. The results of this nocturnal radar survey provide a snapshot of avian migration in space and time; in this case, over the Project area during dates typical for fall migration in New Hampshire. Fall radar surveys in the Project area documented patterns in nocturnal migration similar to those documented at recent radar surveys conducted at other locations in New Hampshire and the Eastern US (Appendix A Table 5). These include highly variable passage rates between nights, a generally southward flight direction, and flight heights typically averaging over 200 m.

The radar had somewhat limited visibility of the airspace west and south of the radar site, but was still capable of detecting targets within the majority of its range. Nightly mean passage rates were highly variable, ranging from 4 ± 2 to 538 ± 71 t/km/hr. As in spring 2011, average nightly passage rates were below 200 t/km/hr on most nights of the survey period (Figure 2-5). This indicates that nocturnal migration was pulsed, presumably related to seasonal timing and regional weather conditions. The average passage rate at the Project (138 ± 9 t/km/hr) is at the low end of the range of results of other radar studies conducted in the East (91 t/km/hr to 811 t/km/hr; Appendix A Table 5). Comparing the Project's passage rates to similar surveys conducted at other sites must be done with caution, as differences in passage rates are due in large part to differences in radar view among sites and varying weather patterns between years. Even at the same location in the same year, the radar's view may change between seasons depending on changes in the landscape (i.e. leaf off versus leaf out conditions).

The emerging body of studies characterizing nocturnal migrant movements shows a relatively consistent pattern in flight altitude, with most targets appearing to fly at altitudes of several hundred meters or more above the ground (Figure 2-8; Appendix A Table 5). The average flight height ($203 \pm 1 \text{ m}$) is the lowest average flight height recorded at other radar studies conducted in the East (287 m to 583 m), however is above the proposed turbine height (150 m). Comparison of flight height between survey sites as measured by radar is generally less influenced by site characteristics as the main portion of the radar beam is directed skyward, and the potential effects of surrounding vegetation on the radar's view can be more easily controlled. The nightly average flight height was below the proposed turbine height on one night (August 24) and at the proposed turbine height on one night (October 1). Passage rates on these nights were relatively low: 38 t/km/hr on August 24 and 4 t/km/hr on October 1.

Nightly variation in the magnitude and flight characteristics of nocturnal migrants is not uncommon and is often attributed to weather patterns, such as cold fronts and winds aloft (Hassler *et al.* 1963, Gauthreaux and Able 1970, Richardson 1972, Able 1973, Bingman *et al.* 1982, Gauthreaux 1991). A low pressure system bringing some rain occurred on the night with the lowest average passage rate (4 t/km/hr on October 1); this night also had a relatively low average temperature of 8°C. On the night with the highest passage rate (538 t/km/hr on August), a high pressure systems was present, average temperature was relatively high (20°C respectively), and average wind speed was relatively low (4 m/s).

In summary, average passage rates at the Project are within the range of results recorded at other radar studies conducted in New Hampshire and the East, and average flight height was at the low end of the range of flight heights. These radar results provide a sample of baseline migration activity over the Project area during fall 2011.

3.0 Acoustic Bat Survey

3.1 INTRODUCTION

Acoustic sampling of bat activity has become a standard pre-construction survey for proposed wind-energy development (Kunz *et al.* 2007). Although acoustic surveys are associated with several major assumptions (Hayes 2000) and results cannot be used to determine the number of bats inhabiting an area or determine the number of bats which will be killed post-construction, acoustic surveys can provide insight into seasonal patterns in activity levels and examine how weather conditions influence bat activity. While these data may be useful in predicting trends in post-construction mortality rates, the current lack of data on this topic precludes quantitative prediction of risk. The object of summer/fall acoustic surveys at the Project were (1) to document bat activity patterns from June 1 through October 20 in airspace near the rotor zone of the proposed turbines, at an intermediate height, and near the ground; and (2) to document bat activity patterns in relation to weather factors including wind speed, temperature, and relative humidity.

Eight species of bats occur in New Hampshire, based upon their normal geographical range. These are the little brown bat (*Myotis lucifugus*), northern long-eared bat, (*M. septentrionalis*), eastern small-footed bat (*M. leibii*), silver-haired bat (*Lasionycteris noctivagans*), tri-colored bat (*Perimyotis subflavus*), big brown bat (*Eptesicus fuscus*), eastern red bat (*Lasiurus borealis*), and hoary bat (*L. cinereus*) (BCI 2001). Of these eight species, the eastern small-footed bat is state-listed as endangered with a rank of S1 ("Critically Imperiled"³), and five species (tri-colored bat, eastern red bat, silver-haired bat, hoary bat, and northern long-eared bat) are state-listed as Species of Special Concern. All six state-listed species are also listed as Species of Greatest Conservation Need under New Hampshire's Wildlife Action Plan (New Hampshire Fish and Game Department 2005).

3.2 DATA COLLECTION METHODS

3.2.1 Acoustic Detector Site Selection

Anabat SDI and SD2 detectors (Titley Electronics Pty Ltd.) were used for the duration of the summer/fall 2011 acoustic bat survey. Anabat detectors were selected based upon their widespread use for this type of survey, their ability to be deployed for long periods of time, and their ability to detect a broad frequency range, which allows detection of all species of bats that could occur in the Project area. Anabat detectors were programmed to turn on and off on a

³ A state ranking of S1 is assigned to species characterized as critically imperiled because of extreme rarity (generally one to five occurrences) or because some factor of its biology makes it particularly vulnerable to extinction.

daily basis to sample at least the period between sunset and sunrise, and stored recorded bat call sequences on removable 1 gigabyte (GB) compact flash cards. Anabat detectors are frequency division detectors, dividing the frequency of echolocation sounds made by bats by a factor of 16, then recording these sounds for subsequent analysis. The audio sensitivity setting of each Anabat system was set between six and seven (on a logarithmic scale of one to ten) to maximize sensitivity while limiting ambient background noise and interference. The sensitivity of individual detectors was then tested using an ultrasonic Bat Chirp (Reno, NV) to ensure that the detectors would be able to detect bats up to a distance of at least 10 m (33').

Each Anabat detector was powered by a 12-volt gel battery charged by a solar panel. Each solar-powered Anabat system was deployed in waterproof housing enabling the detector to record while unattended for the duration of the survey. The housing suspends the Anabat microphone downward to give maximum protection from precipitation. To compensate for the downward position, the microphone was positioned within a 90 degree PVC elbow on the bottom of the waterproof enclosure, allowing the microphone to record the airspace horizontally surrounding the detector while minimizing acoustic signal loss.

The six Anabat detectors were deployed in the Project area between April 7 and April 16, and collected data through October 20 (the Access Tree detector recorded data until October 23 due to the demobilization schedule). Results from the spring migration season were presented in the Spring 2011 Radar and Acoustic Bat Survey Report dated October 2011. Two detectors were deployed in the guy wires of the existing 60 m (197') met tower at heights of approximately 15 and 30 m (49 and 98') above ground level, and the remaining four detectors were deployed in trees throughout the Project area at heights of approximately 5 to 10 m (16 and 33') above ground level (agl) (Figures 3-1 to 3-3). Table 3-1 provides information on location and placement of detectors as well as surrounding habitat. Maintenance visits were conducted approximately every two weeks to check the condition of the detectors and to download data to a computer for archiving and subsequent analysis.

Detector Name	Elevation (m)	Height (m agl)	Habitat Notes
Willard Tree	563	5	Detector located 10 m from the edge of a 50 n diameter opening in an even-aged spruce/rec maple forest with open understory, 15 m surrounding canopy height. Herbaceous vegetation and scattered trees in opening.
Willard Trail	522	5	Detector located 15 m from the edge of a 50 r clearing in an even-aged oak/maple forest wit open understory.
Acces Tree	355	10	Detector suspended above intersection of forested trails 30 m from a transmission line corridor. Surrounding canopy (beech, birch, maple) 20 m tall with dense shrub understory
Wetland	525	5	Detector located within a small wetland opening surrounded by uneven aged red maple/conifer forest.
N Met High	536	30	Detector deployed as high as possible in the guy wires of the met tower. Tower clearing surrounded by conifer-dominated forest.
N Met Low	536	15	Detector deployed in the guy wires of the met tower. Tower clearing surrounded by conifer dominated forest.

Figure 3-1. Photos of the Willard Tree (left) and Willard Trail (right) bat detectors.

Figure 3-2. Photos of the Access Tree (left) and Wetland (right) bat detectors.

Figure 3-3. Photos of the North Met High (left) and Low (right) bat detectors.

3.3 DATA ANALYSIS METHODS

Ultrasound recordings of bat echolocation may be broken into recordings of a single bat call or recordings of bat call sequences. A call is a single pulse of sound produced by a bat, while a call sequence is a combination of two or more pulses recorded in an Anabat file. Recordings containing less than two calls were eliminated from analysis as has been done in similar studies (Arnett *et al.* 2006). Call sequences typically include a series of calls characteristic of normal flight or prey location ("search phase") and capture periods (feeding "buzzes").

Potential call files were extracted from data files using CFCread[®] software. The default settings for CFCread[®] were used during this file extraction process, as these settings are recommended

for the calls that are characteristic of bats in New Hampshire. This software screens all data recorded by the bat detector and extracts call files using a filter. Using the default settings for this initial screening also ensures comparability between data sets. Settings used by the filter include a maximum TBC (time between calls) of 5 seconds, a minimum line length of 5 milliseconds, and a smoothing factor of 50. The smoothing factor refers to whether or not adjacent pixels can be connected with a smooth line. The higher the smoothing factor, the less restrictive the filter is and the more non-bat noise files and poor quality call sequences are retained within the data set.

Following extraction of call files, each file was visually inspected for species identification and to check that only bat calls were included in the data set. Insect activity, wind, and other sources of ultrasonic noise can also produce Anabat files that pass through the initial filter and need to be visually inspected and removed from the data set. Call sequences are easily differentiated from other recordings, which typically form a diffuse band of dots at either a constant frequency or widely varying frequency.

Because bat activity levels are highly variable among individual nights and individual hours (Hayes 1997, Arnett *et al.* 2006), detection rates are summarized on both of these temporal scales. Nightly detection rates were summarized by month as well as for the entire sampling period. Hourly detection rates were summarized by hour after sunset, as recommended by Kunz *et al.* (2007). Quantitative comparisons among these temporal periods were not attempted because the high amount of variability associated with bat detection would require much larger sample sizes (Arnett *et al.* 2006, Hayes 1997).

Bat call sequences were individually marked and categorized by species group, or "guild" based on visual comparison to reference calls. Relatively accurate identification of bat species can be attained by visually comparing recorded call sequences of sufficient length to bat call reference libraries (O'Farrell *et al.* 1999, O'Farrell and Gannon 1999). Call sequences were classified to species whenever possible, based on criteria developed from review of reference calls collected by Chris Corben, the developer of the Anabat system, as well as other bat researchers. However, due to the similar call signatures of several species, classified calls were categorized into five guilds⁴ that reflect the bat community in the region of the Project area:

- Unknown (UNKN) All call sequences with less than five calls, or poor quality sequences (those with indistinct call characteristics or background static). These sequences were further identified as either "high frequency unknown" (HFUN) for sequences with a minimum frequency above 30 to 35 kHz, or "low frequency unknown" (LFUN) for sequences with a minimum frequency below 30 to 35 kHz.
- Myotis (MYSP) All bats of the genus *Myotis*. While there are some general characteristics believed to be distinctive for the three species in this genus that occur in New Hampshire, these characteristics are not sufficiently consistent to be relied upon for species identification at all times when using Anabat recordings.

⁴ Gannon *et al.* 2003 categorized bats into guilds based upon similar minimum frequency and call shape. These guilds were: Unidentified, Myotis, LABO-PISU and EPFU-LANO-LACI. To report the activity of the migratory hoary bat, it was placed into a separate guild.

- Eastern red bat/tri-colored bat⁵ (RBTB) Eastern red bats and tri-colored bats. These two species can produce distinctive calls; however, significant overlap in the call pulse shape, frequency range, and slope can also occur.
- Big brown/silver-haired bat (BBSH) Big brown and silver-haired bats. The call
 signatures of these species commonly overlap and are included as one guild in this
 report.
- Hoary bat (HB) Hoary bats. Calls of hoary bats can usually be distinguished from those of big brown and silver-haired bats by minimum frequency extending below 20 kHz or by calls varying widely in minimum frequency across a sequence.

This method of guild identification represents a conservative approach to bat call identification. Since some species sometimes produce calls unique only to that species, all calls were identified to the lowest possible taxonomic level before being grouped into the listed guilds. Tables and figures in the body of this report will reflect those guilds. In addition, since speciesspecific identification did occur in some cases, each guild will also be briefly discussed with respect to potential species composition of recorded call sequences.

Once all of the call files were identified and categorized in appropriate guilds, nightly tallies of detected calls were compiled. Mean detection rates (number of recordings/detector-night) for the entire sampling period were calculated for each detector and for all detectors combined.

3.3.1 Weather Data

Temperature, and wind speed data were recorded by the on-site met tower at 10-minute intervals. For this report, met tower data was available for the survey period between June 1 and October 5, 2011. Daily wind speed and temperature data from October 6 through October 20 were compiled from the weather station in Hillsborough, New Hampshire approximately nine miles northeast of the Project (The Weather UnderGround, Inc. [c2008], accessed December 1, 2011). Weather data from the met tower was summarized on a nightly basis and weather data from the Hillsborough weather station was summarized on a daily basis. Weather data was compared to nightly bat activity levels using a scatterplot and linear correlation analysis.

3.4 RESULTS

3.4.1 Timing of Activity

During the 67-night survey period (June 1 through October 23), detectors surveyed a total of 677 detector-nights out of 849 available calendar-nights (80%; Table 3-2). All detectors suffered relatively short periods of equipment malfunction. The Wetland detector suffered the highest amount of data loss and operated for 85 of the 141 calendar nights (60%). The breaks in recording occurred from June 1 to July 12, and October 6 to October 20. The loss of data was a result of multiple equipment failures in conjunction with an improperly formatted memory

⁵ The scientific and common name of the eastern pipistrelle (*Pipistrellus subflavus*) has been changed to the tricolored bat (*Perimyotis subflavus*).

card. The initial problem was corrected during a July 13 maintenance check, and the second failure was discovered during detector retrieval at the end of the fall survey.

Combined, detectors recorded a total of 35,450 bat call sequences during the summer/fall survey period (Table 3-2). Individual detectors recorded between 224 sequences (Wet Tree) and 11,989 sequences (North Met Low [N Met Low]) during the summer/fall survey period; detection rates ranged from 2.6 sequences per detector-night at the Wet Tree detector to 126.2 sequences per detector-night at the N Met Low detector. The overall detection rate of all detectors combined was 52.4 sequences per detector-night during the summer/fall 2011 survey period (Table 3-2).

Location	nary of bat detector t	Calendar Nights	Detector- Nights*	Recorded Sequences	Detection Rate **	Maximum Sequences recorded ***
Access Tree	June 1 - Oct 23	144	134	7039	52.5	304
N Met High	June 1 - Oct 20	141	127	585	4.6	132
N Met Low	June 1 - Oct 20	141	95	11989	126.2	749
Wet Tree	June 1 - Oct 20	141	85	224	2.6	25
Willard Trail	June 1 - Oct 20	141	113	7143	63.2	449
Willard Tree	June 1 - Oct 20	141	123	8470	68.9	415
Overall Results		849	677	35450	52.4	
* One detector-night is e	equal to a one detecto	or successfully	/ operating thre	oughout the nigh	t.	
** Number of bat echolo	ocation sequences re	corded per d	etector-night.			
*** Maximum number of	bat passes recorded	d from any sir	gle detector fo	or a detector-night	nt.	

Acoustic bat activity was sporadic throughout the survey period, but the number of nights with recorded bat activity peaked between July and August (Table 3-3). By detector, acoustic activity was detected on the greatest percentage of detector nights (percent of nights surveyed) at the Willard Tree detector (92%), followed by the Willard Trail detector (90%). The Access Tree detector recorded acoustic bat activity on the lowest percentage of nights (50%) sampled during the survey period. Nightly timing of acoustic activity varied among nights and detectors, although overall timing peaked during the first hour past sunset and declined steadily until sunrise (Figure 3-4).

Detector	June	July	August	September	October	Detector Overal
Access Tree	97% (29/30)	100% (20/20)	100% (31/31)	87% (26/30)	35% (8/23)	50% (58/116)
N Met High	33% (9/27)	74% (14/19)	74% (23/31)	70% (21/30)	25% (5/20)	57% (72/127)
N Met Low	77% (23/30)	100% (31/31)	95% (20/21)	0% (0/0)	38% (5/13)	83% (79/95)
Wetland Tree	0% (0/0)	95% (18/19)	90% (28/31)	7% (2/30)	20% (1/5)	58% (49/85)
Willard Trail	67% (20/30)	100% (21/21)	100% (31/31)	100% (30/30)	0% (0/1)	90% (102/113)
Willard Tree	73% (22/30)	100% (31/31)	100% (31/31)	93% (28/30)	100% (1/1)	92% (113/123)
Monthly Overall	70% (103/147)	96% (135/141)	93% (164/176)	71% (107/150)	32% (20/63)	

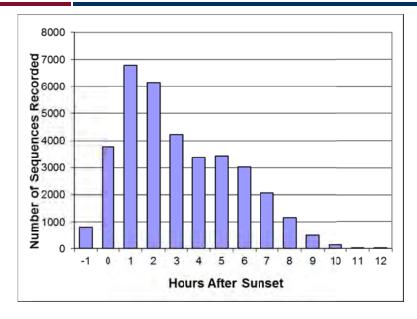
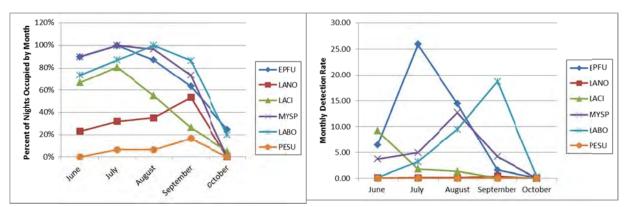
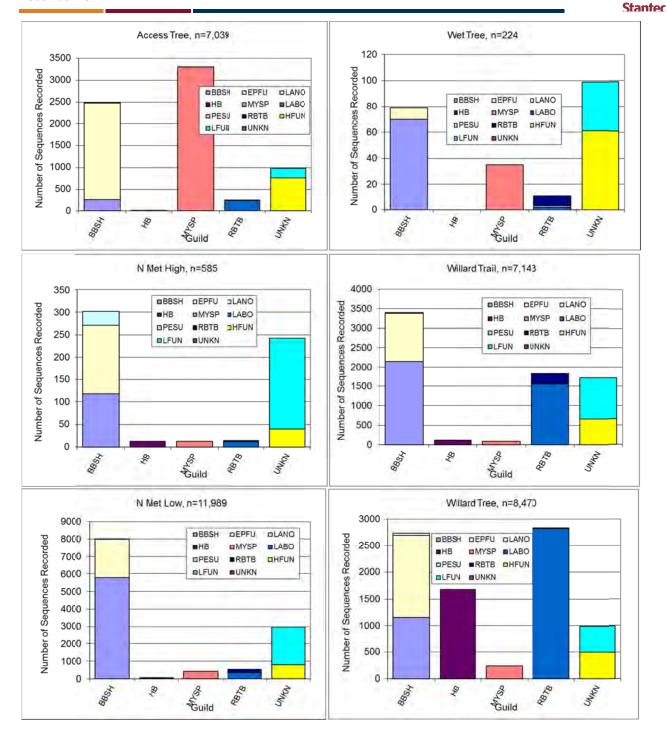



Figure 3-4. Hourly bat call sequence detections during summer/fall 2011 surveys at the Antrim Wind Project.

The two graphs in Figure 3-4 compare the percentage of nights each month with species occurrence, and species detection rates by month. Monthly detection rates varied between species, and peaks in activity may indicate periods of migration through the Project area (Figure 3-4, right). Big brown bats (EPFU), *Myotis* species (MYSP) and red bats (LABO) were detected most consistently throughout the survey period, and the timing of peak detection rates for these species varied by month. Hoary bats (LACI), silver-haired bats (LANO), and tri-colored bats (PESU) did not show the same consistent presence (Figure 3-4, left). Although not discernible at the inclusive scale used in Figure 3-4 (left), the highest monthly detection rate for both silver haired bats occurred in June. To highlight species-specific trends, calls identified to guild were not included in these figures.

Figure 3-4. Species specific percent of nights occupied by month (left) and monthly detection rate of individual bat species (right) during summer/fall 2011 surveys at the Antrim Wind Project.


3.4.2 Species Composition

Bats within each of the defined guilds were identified during analysis. Calls of species in the big brown bat/silver-haired bat (BBSH) guild were the most common, comprising 48 percent of the total calls recorded (Table 3-4). Most call sequences within the BBSH guild were identified as big brown bats (43%) or big brown/silver-haired bats (56%), and only a small fraction were classified as silver-haired bats (1%). Twenty percent of call sequences were classified as "unknown" due to their relatively short length or quality. Within the Unknown guild, the majority of calls were classified as low-frequency calls (60%), with high-frequency unknown calls not as frequently identified (40%). The eastern red bat/tri-colored bat (RBTB) guild was the next most commonly identified guild, comprising 15.4 percent of the total calls recorded. Within the RBTB guild, eastern red bats were the most common call identified to species (91%), and a small fraction of the calls in this guild were identified as tri-colored bat calls (0.1%). Hoary bats comprised five percent of the total bat call sequences recorded and were detected at all detectors except the Wetlands Tree detector (Table 3-4).

Detector	Guild					
Detector	BBSH	HB	MYSP	RBTB	UNKN	Total
Access Tree	2,499	5	3,302	245	988	7,039
N Met High	302	13	13	14	243	585
N Met Low	7,997	44	429	533	2,986	11,989
Wet Tree	79	0	35	11	99	224
Willard Trail	3,394	118	87	1,825	1,719	7,143
Willard Tree	2,735	1,671	238	2,834	992	8,470
Total	17,006	1,851	4,104	5,462	7,027	35,450
Guild Composition %	48.0%	5.2%	11.6%	15.4%	19.8%	

Species composition differed among detectors. *Myotis* species were most common at the Access Tree detector where they comprised the 47 percent of bats detected. Although the *Myotis* species were the most commonly recorded guild and represented a majority of calls at the Access Tree detector, they represented 16 percent of all calls recorded at the Wet Tree detector and less than five percent of calls at the remaining detectors. Unknown bats comprised between 12 and 44 percent of recorded call sequences by detector. The highest percentage of unknown call sequences was recorded at the Wetland Tree detector (44%), where many sequences lacked a sufficient number of pulses to be classified. Hoary bats were detected most frequently at the Willard Tree detector, where they represented 20 percent of calls recorded by that detector (Figure 3-5).

SUMMER AND FALL 2011 SURVEY REPORT ANTRIM WIND PROJECT December 2011

Figure 3-5. Histograms showing species composition of recorded bat call sequences during summer/fall 2011 surveys at the Antrim Wind Project. Note the differing scales on the y-axes. BBSH = big brown/silver-haired, HB = hoary bat, MYSP = Myotis species, RBTB = red bat/tri-colored bat, UNKN = unknown, LFUN = low frequency unknown, HFUN = high frequency unknown, PESU = tri-colored bat, LABO = red bat, LANO = silver-haired bat, EPFU = big brown bat.

Appendix B provides a series of tables with more specific information on the nightly timing, number, and species composition of recorded bat call sequences. Specifically, Appendix B Tables 1 through 6 provide information on the number of call sequences by guild and suspected species recorded at each detector and the weather conditions for that night. An electronic copy of all acoustic data files can be provided upon request.

3.4.3 Activity and Weather

Mean nightly wind speeds in the Project area from June 1 through October 23 varied between 0 and 15 m/s, with an overall mean of 6.4 m/s (Figure 3-6). Mean nightly temperatures varied between 3.4°C and 25.7°C, with an overall mean of 15.2°C (Figure 3-7). Figure 3-8 displays scatterplots of overall acoustic activity versus nightly temperature and wind speed. Combined bat activity levels showed a weak positive correlation with both increasing nightly wind speed, and increasing nightly temperature.

SUMMER AND FALL 2011 SURVEY REPORT ANTRIM WIND PROJECT December 2011

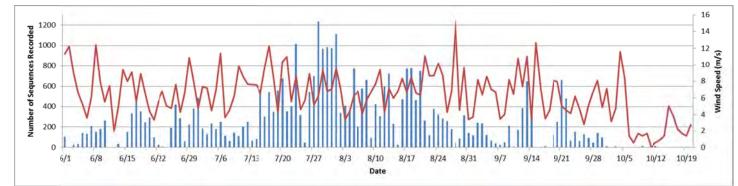


Figure 3-6. Nightly mean wind speed (m/s) (red line) and combined bat call detections during summer/fall 2011 surveys at the Antrim Wind Project.

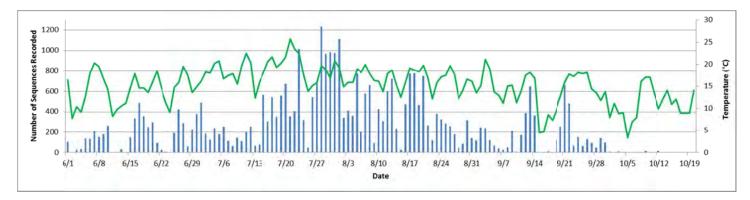


Figure 3-7. Nightly mean temperature (Celsius) (green line) and combined bat detections during summer/fall 2011 surveys at the Antrim Wind Project.

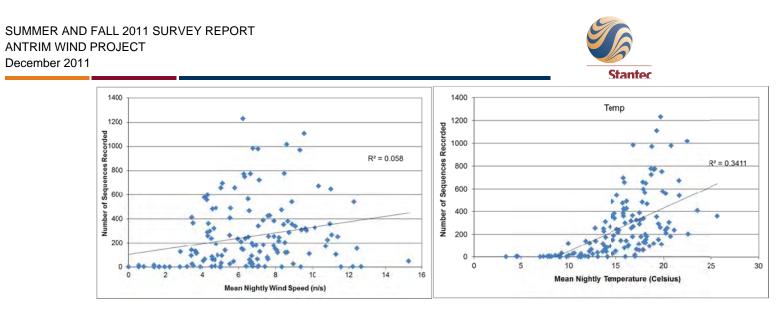


Figure 3-8. Nightly mean wind speed (left), and mean temperature (right) versus combined bat detections during summer/fall 2011 surveys at the Antrim Wind Project

3.5 DISCUSSION

Summer/fall 2011 acoustic surveys at the Antrim Wind Project documented variable levels of bat activity between the six detectors deployed in the Project area. Activity levels were also highly variable between nights during the June 1 to October 23 study period. However, some general trends also were observed, including more consistent acoustic activity in July and August (as indicated by the percentage of nights with detected activity), and overall increases in the number of call files in late July through early August as temperatures increased.

Inter-night and inter-detector variability is common in acoustic bat surveys, where microhabitat surrounding detectors can influence the number of calls recorded as well as the quality of call files. Although detectors were deployed in similar configurations (along habitat edges and corridors that may concentrate bat activity), slight differences in deployment and the surrounding vegetation likely lead to differences in detection rates.

Bat call sequences were identified to guild, although calls were provisionally categorized by species when possible during analysis. Certain species, such as the eastern red and hoary bat, have easily identifiable calls, whereas other species, such as the big brown bat and silver-haired bat, are difficult to distinguish acoustically. Similarly, species within the *Myotis* genus have very similar calls and Stantec did not make an attempt to differentiate call sequences within this genus. Myotis call sequences represented 11 percent of calls recorded by Project area detectors during the summer/fall 2011 surveys. Eighty percent of *Myotis* calls were recorded by the Access Tree detector, which was located approximately 30 m from a transmission line corridor that likely provided high quality foraging conditions. At the other detectors, the percent composition of Myotis species ranged from 1.2 percent at the Willard Trail detector, to 16 percent of all bats recorded by the Wetland Tree detector. Myotis species have been particularly affected by the white-nose syndrome (WNS) that has become widespread in the Northeast (Brooks 2011, Watrous et al. in prep). Myotis are more commonly detected beneath canopy level (Arnett et al. 2006), and prior to WNS, Myotis call sequences often tended to dominate acoustic data collected from detectors deployed in trees (Brooks 2011, Watrous et al. in prep). No pre-WNS acoustic data exists for the Project, making it difficult to determine whether these results represent a significant decline in Myotis activity levels from pre-WNS conditions. A similar acoustic survey was conducted near Rutland, Vermont, approximately 100 km to the northwest, and documented significant reduction in Myotis species detection rates between pre and post-WNS outbreak (Watrous et al. in prep).

Comparison of acoustic bat activity documented at the North Met High and North Met Low detectors with the remaining tree detectors may help clarify activity patterns of bats in the air space above tree canopy and near the rotor zone of proposed wind turbines. The North Met High detector was located approximately 30 m above the ground, and recorded substantially less acoustic activity than any other detector. This detector had one of the lowest percentage of *Myotis* calls (2%) of all detectors. Since bats from the genus *Myotis* are more commonly detected beneath canopy level (Arnett *et al.* 2006), the low level of *Myotis* species activity at this detector is not unusual and corresponds to results from similar surveys in the Northeast. Other

research conducted using Anabat detectors has shown that larger species such as big brown and hoary bats are more frequently detected at greater heights (Arnett *et al.* 2006), which is not reflected in the results of this survey. The North Met Low detector was deployed at only 15 m above the ground, and recorded the highest proportion of BBSH calls of any detector. The higher portion of BBSH calls at this lower height suggests that some other influence such as prey availability or surrounding habitat characteristic may be influencing foraging of bats at this location. Since habitats closer to the ground are generally more structurally complex, larger bats such as those in the BBSH guild are thought to be less able to maneuver in this habitat and therefore tend to forage at greater heights (Arnett *et al.* 2006). In the instance of the met tower clearing where essentially all woody vegetation is removed, these larger bats may easily forage at these lower heights, which may explain the high number of call sequences recorded at the North Met Low detector.

Recent studies have found that bat activity patterns are influenced by weather conditions (Arnett *et al.* 2006, Arnett *et al.* 2008, Reynolds 2006). Acoustic surveys have documented a decrease in bat activity rates as wind speed increase and temperatures decrease, and bat activity has been shown to correlate negatively to low nightly mean temperatures (Hayes 1997, Reynolds 2006). These patterns suggest that bats are more likely to migrate on nights with low wind speeds (less than 4 to 6 m/s) and generally warm temperatures. Thus, several weather variables can individually affect bat activity, as does the interaction among variables (*i.e.*, warm nights with low wind speeds). Summer/fall 2011 acoustic sampling at the Project documented weak correlations between acoustic activity and wind speed and temperature.

When considering the level of activity documented at the Project during the summer/fall 2011 acoustic survey, it is important to acknowledge that numbers of recorded bat call sequences cannot be correlated with the number of bats in an area because acoustic detectors do not allow for differentiation between individuals. The survey sampled activity over the time period when bats are known to be active and identified general species groups that occur in the Project area.

4.0 Literature Cited

- Able, K.P. 1973. The role of weather variables and flight direction in determining the magnitude of nocturnal migration. Ecology 54(5):1031–1041.
- Alerstam, T. 1990. Bird Migration. Cambridge University Press, Cambridge, United Kingdom.
- Arnett, E.B., technical editor. 2005. Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of bat fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA.
- Arnett, E. B., J. P. Hayes, and M. M. P. Huso. 2006. An evaluation of the use of acoustic monitoring to predict bat fatality at a proposed wind facility in southcentral Pennsylvania. An annual report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA.
- Arnett, E.B., W.K. Brown, W.P. Erickson, J.K. Fiedler, B.L. Hamilton, T.H. Henry, A. Jain, G.D. Johnson, J. Kerns, R.R. Koford, C.P. Nicholson, T.J. O'Connell, M.D. Piorkowski, and R.D. Takersley Jr. 2008. Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management 72:61-78.
- (BCI) Bat Conservation International. 2001. Bats in Eastern Woodlands. http://www.batcon.org/nabcp/newsite/forrep.pdf. Accessed on November 2007.
- Batschelet, E. 1965. Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. AIBS Monograph. American Institute of Biological Sciences. Washington, DC.
- Bingman, V.P., K.P. Able, and P. Kerlinger. 1982. Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Animal Behavior 30:49–53.
- Brooks, R.T. 2011. Declines in summer bat activity in central New England 4 years following the initial detection of white-nose syndrome. Biodiversity Conservation 20:2537-2541.
- Drennan, S. R. 1981. Where to find birds in New York State The Top 500 Sites. Part II: Hawk Migration pp. 459-480. Syracuse University Press, New York.
- Bruderer, B. and A. Boldt. 2001. Flight characteristics of birds: I. Radar measurements of speeds. Ibis. 143:178-204.
- Cooper, B.A., R.H. Day, R.J. Ritchie, and C.L. Cranor. 1991. An improved marine radar system for studies of bird migration. Journal of Field Ornithology 62:367–377.

- Gannon, W.L., R.E. Sherwin, and S. Haywood. 2003. On the importance of articulating assumptions when conducting acoustic studies of habitat use by bats. Wild. Soc. Bull. 31 (1):45–61.
- Gauthreaux, S.A., Jr. 1991. The flight behavior of migrating birds in changing wind fields: radar and visual analyses. American Zoologist 31:187–204.
- Gauthreaux, S.A., Jr., and K.P. Able. 1970. Wind and the direction of nocturnal songbird migration. Nature 228:476–477.
- Griffith, G.E., Omernik, J.M., Bryce, S.A., Royte, J., Hoar, W.D., Homer, J.W., Keirstead, D., Metzler, K.J., and Hellyer, G., 2009, Ecoregions of New England (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,325,000).
- Harmata, A., K. Podruzny, J. Zelenak, and M. Morrison. 1999. Using marine surveillance radar to study bird movements and impact assessment. Wildlife Society Bulletin 27(1):44–52.
- Hassler, S.S., R.R. Graber, and F.C. Bellrose. 1963. Fall migration and weather, a radar study. The Wilson Bulletin 75(1):56–77.
- Hayes J. P. 1997. Temporal variation in activity of bats and the design of echolocationmonitoring studies. Journal of Mammalogy 78:514–24.
- Hayes, J.P. 2000. Assumptions and practical considerations in the design and interpretation of echolocation-monitoring studies. Acta Chiropterologica 2(2):225-236.
- Kerlinger, P. 1995. How Birds Migrate. Stackpole Books. Mechanicsburg, PA.
- Kunz, T.H., E.B. Arnett, B.P. Cooper, W.P. Erickson, R.P. Larkin, T. Mabee, M.L. Morrison, M.D. Strickland, and J.M. Szewczak. 2007. Assessing impacts of wind-energy development on nocturnally active birds and bats: A guidance document. Journal of Wildlife Management 71:2449-2486.
- Larkin, R.P. 1991. Flight speeds observed with radar, a correction; slow "birds" are insects. Behavioral Ecology and Sociobiology. 29:221-224.
- New Hampshire Fish and Game Department. 2005. New Hampshire Wildlife Action Plan. Concord, NH.
- O'Farrell, M.J., and W.L. Gannon. 1999. A comparison of acoustic versus capture techniques for the inventory of bats. Journal of Mammalogy 80(1):24–30.
- O'Farrell, M.J., B.W. Miller, and W.L. Gannon. 1999. Qualitative identification of free-flying bats using the anabat detector. Journal of Mammalogy 80(1):11–23.

- Reynolds, D. S. 2006. Monitoring the potential impacts of a wind development site on bats in the Northeast. Journal of Wildlife Management 70(5):1219 1227.
- Richardson, W.J. 1972. Autumn migration and weather in eastern Canada: a radar study. American Birds 26(1):10–16.
- Weather Underground. 2011. http://www.wunderground.com/. Last Accessed December 1, 2011.
- Watrous, K. S., E. Britzke, S. Darling, R. Smith, S. Boyden, and S. von Oettingen. In prep. Evaluating changes in bat activity and species composition from White Nose Syndrome at fixed acoustic monitoring locations in Vermont.

Appendix A

Radar survey results

Date	Sunset	Sunrise	# of Hours Analyzed	1. Survey date Passage rate	Flight Direction	Flight Height (m)	% below 150 m	Temperature (C)	Wind Speed (m/s)	Wind Directior (degrees
8/17	19:49	5:56	10	157	201	171	50%	19	7	256
8/18	19:48	5:57	10	46	47	154	56%	19	8	246
8/20	19:44	5:59	10	90	182	172	51%	20	6	249
8/21	19:43	6:00	9	48	29	178	43%	17	11	236
8/22	19:41	6:02	10	96	186	210	37%	12	9	297
8/23	19:40	6:03	10	54	42	174	49%	16	8	245
8/24	19:38	6:04	11	38	325	147	51%	17	10	197
8/25	19:36	6:05	11	33	133	197	42%	18	8	262
8/26	19:35	6:06	9	538	225	186	41%	20	4	231
8/29	19:30	6:09	11	393	215	227	32%	14	5	314
8/30	19:28	6:10	11	72	144	175	55%	17	9	280
8/31	19:26	6:11	11	268	230	211	40%	16	3	90
9/1	19:25	6:12	11	182	230	172	50%	14	4	123
9/4	19:20	6:16	10	64	158	166	49%	19	8	232
9/9	19:11	6:21	11	184	200	266	25%	15	8	308
9/10	19:09	6:22	11	110	259	245	27%	12	6	158
9/11	19:07	6:23	11	20	69	204	34%	14	11	241
9/12	19:05	6:24	11	118	173	202	40%	18	7	254
9/13	19:04	6:26	11	26	28	250	29%	18	11	239
9/14	19:02	6:27	12	457	222	161	54%	17	4	204
9/16	18:58	6:29	12	190	218	201	39%	5	7	330
9/17	18:56	6:30	12	168	227	241	29%	9	4	80
9/18	18:55	6:31	12	254	228	218	37%	7	5	68
9/19	18:53	6:32	12	37	264	209	41%	10	8	203
9/30	18:33	6:44	9	132	208	159	52%	14	5	349
10/1	18:31	6:45	12	4	150	150	47%	8	7	19
10/2	18:29	6:47	12	73	209	176	45%	11	3	88
10/3	18:28	6:48	11	243	215	170	54%	9	5	65
10/7 ¹	18:21	6:52	12	18	93	208	43%	8	2	170
10/8	18:19	6:53	12	50	123	220	37%	12	2	158
ntire Season			327	138	217	203	40%	14	7	206

		Appe	ndix A	Table 2	. Sumn	nary of	passag	je rates	s by ho	ur, nigł	nt, and	for ent	ire seaso	on.		
Night of			Pass	sage Ra	ate (tar	gets/kn	n/hr) by	/ hour a	after su	Inset				Entire	Night	
Night O	1	2	3	4	5	6	7	8	9	10	11	12	Mean	Median	Stdev	SE
8/17	321	525	304	111	99	50	60	50	25	25	N/A	N/A	157	79	169	53
8/18	111	77	79	64	29	26	14	18	14	25	N/A	N/A	46	27	34	11
8/20	64	96	93	161	121	118	75	111	25	32	N/A	N/A	90	95	42	13
8/21	82	rain	75	64	43	39	43	36	43	11	N/A	N/A	48	43	22	7
8/22	57	221	229	150	82	68	54	43	39	21	N/A	N/A	96	63	76	24
8/23	39	82	64	50	82	86	36	71	11	18	N/A	N/A	54	57	27	9
8/24	36	39	93	54	54	61	43	14	14	7	0	N/A	38	39	27	8
8/25	46	36	11	25	32	29	39	46	57	36	4	N/A	33	36	16	5
8/26	239	839	779	743	586	486	493	304	379	N/A ¹	N/A ¹	N/A	538	493	214	71
8/29	204	407	650	575	536	475	407	346	325	264	129	N/A	393	407	160	48
8/30	50	71	68	129	121	146	64	61	39	32	7	N/A	72	64	43	13
8/31	207	325	229	254	229	275	381	436	339	211	60	N/A	268	254	101	31
9/1	32	186	382	314	357	196	150	136	114	93	43	N/A	182	150	121	36
9/4	54	rain	321	118	64	18	4	11	0	7	39	N/A	64	29	98	31
9/9	82	189	354	296	364	236	107	89	121	121	64	N/A	184	121	111	34
9/10	43	193	204	146	132	111	93	161	79	32	21	N/A	110	111	63	19
9/11	39	75	39	18	21	7	0	14	4	4	0	N/A	20	14	23	7
9/12	29	89	139	139	246	200	175	54	86	79	64	N/A	118	89	68	20
9/13	7	36	32	18	21	18	25	32	29	29	36	N/A	26	29	9	3
9/14	57	646	618	532	646	550	482	421	450	518	557	0	457	525	212	61
9/16	125	439	400	439	339	282	118	82	25	25	7	0	190	121	177	51
9/17	14	279	282	139	68	75	161	111	246	346	243	50	168	150	108	31
9/18	68	404	471	361	368	336	250	271	189	171	132	21	254	261	140	40
9/19	54	96	68	86	32	36	25	7	18	7	14	0	37	29	32	9
9/30	rain	182	211	rain	rain	75	111	121	121	182	143	43	132	121	54	18
10/1	11	14	0	0	7	11	4	0	0	0	0	0	4	0	5	2
10/2	68	125	143	21	29	32	11	0	179	25	132	114	73	50	62	18
10/3	64	200	311	325	271	389	318	354	425	0	14	rain	243	311	152	46
10/7	18	32	32	11	11	21	7	7	7	14	32	21	18	16	10	3
10/8	68	114	75	25	54	61	54	21	57	14	36	25	50	54	28	8
Entire Season	79	215	225	185	174	150	127	114	115	81	77	28	138	68	162	9
	0 indica	ites no t	targets	counted	l for tha	t hour			N/A i	ndicates	s no or	only pa	tial data	for that hou	ır	
					N/A ¹ i	ndicate	s equim	ent failu	ure duri	ng that	hour					

Appendix A Tab	le 3. Mean Nightly Fligl	nt Direction
Night of	Mean Flight Direction	
8/17	201	67
8/18	47	55
8/20	182	77
8/21	29	60
8/22	186	49
8/23	42	119
8/24	325	70
8/25	133	57
8/26	225	44
8/29	215	31
8/30	144	73
8/31	230	33
9/1	230	32
9/4	158	79
9/9	200	56
9/10	259	57
9/11	69	132
9/12	173	74
9/13	28	98
9/14	222	45
9/16	218	42
9/17	227	49
9/18	228	33
9/19	264	70
9/30	208	53
10/1	150	65
10/2	209	39
10/3	215	40
10/7	93	74
10/8	123	60
Entire Season	217	56

				Ар	pendix	A Table	e 4. Sun	nmary o	of mear	n flight l	heights	by hou	ır, night,	and for er	ntire sea	son.		
				Mean Fl	ight He	ight (m) by ho	ur aftei	r sunse	t				Entire	Night		# of targets	% of targets
Night of																	below 150	below 150
	1	2	3	4	5	6	7	8	9	10	11	12	Mean	Median	STDV	SE	meters	meters
8/17	174	158	170	228	171	156	286	112	137	68	N/A	N/A	171	152	117	37	159	50%
8/18	134	144	144	169	209	162	174	170	122	86	N/A	N/A	154	138	101	32	74	56%
8/20	217	183	179	173	172	128	96	123	209	215	N/A	N/A	172	148	133	42	127	51%
8/21	151	rain	rain	137	192	190	180	393	181	132	N/A	N/A	178	162	94	33	29	43%
8/22	179	206	213	207	239	257	248	185	176	189	N/A	N/A	210	190	134	42	170	37%
8/23	246	218	181	154	149	139	127	118	212	139	N/A	N/A	174	157	119	38	65	49%
8/24	130	145	165	129	133	173	160	138	145	134	N/A	N/A	147	148	74	23	55	51%
8/25	119	142	127	175	267	255	196	278	161	145	N/A	N/A	197	176	124	39	49	42%
8/26	186	177	182	215	181	190	157	193	176	N/A ¹	N/A	N/A	186	175	114	38	326	41%
8/29	305	250	197	229	212	208	242	201	192	238	278	N/A	227	205	131	40	238	32%
8/30	147	179	131	121	217	163	248	336	128	128		N/A	175	137	140	44	45	55%
8/31	191	209	238	245	279	236	192	162	139	133	164	N/A	211	190	135	41	476	40%
9/1	164	169	151	143	206	185	177	193	111	195	234	N/A	172	153	127	38	215	50%
9/4	160	rain	144	205	257	190	173	311	109	170	152	N/A	166	153	94	30	71	49%
9/9	248	247	247	243	226	253	216	320	346	276	247	N/A	266	245	150	45	169	25%
9/10	207	227	256	283	268	269	248	201	164	145	134	N/A	245	234	130	39	213	27%
9/11	58	253	197	163	238	189	239	189	168	184	141	N/A	204	179	113	34	45	34%
9/12	233	245	224	198	205	194	168	176	211	128	178	N/A	202	179	133	40	212	40%
9/13	105	224	255	273	302	274	307	222	210	217	190	N/A	250	223	152	46	27	29%
9/14	196	190	155	163	163	156	157	144	125	150	132	26	161	143	103	30	587	54%
9/16	145	222	184	185	203	193	194	246	306	253	306		201	179	112	34	264	39%
9/17	240	211	202	220	278	280	293	270	216	240	243	274	241	223	131	38	241	29%
9/18	200	228	193	198	238	218	223	223	249	236	216	317	218	193	140	40	377	37%
9/19	212	223	233	155	199	273	156	213	232	136	111		209	179	139	42	50	41%
9/30	181	126	73	rain	rain	148	155	138	163	186	197	184	159	146	92	29	117	52%
10/1	111	114	116	169	146	160	145	149	120	219	162	173	150	157	48	14	23	47%
10/2	139	153	162	167	185	198	168	187	188	200	184	204	176	168	103	30	137	45%
10/3	160	203	168	182	92	79	131	237	201	rain	rain	rain	170	139	126	42	386	54%
10/7	110	207	415	189	222	234	187	207	213	200	78	164	208	192	139	40	59	43%
10/8	132	211	176	187	278	275	267	245	179	186	214	292	220	207	135	39	61	37%
Entire Night	173	195	189	190	211	201	197	209	183	176	187	204	203	179	130	1	5067	40%
				- indicat	es no ta	argets c	ounted f	or that I	hour		N	A indica	ates no or	only parti	al data fo	r that hour	•	·
							N	∦A ¹ indi	cates e	quiment	failure	during t	hat hour					

SUMMER AND FALL 2011 SURVEY REPORT ANTRIM WIND PROJECT December 2011

	Apper	ndix A Table	5. Summary of available avian fa	all radar survey	results conduc	ted at propose	ed (pre-const	ruction) US wind p	ower facilities on forested ridges in the eastern US, using X-band mobile radar systems (2004-present)
Project Site	Number of Survey Nights	Number of Survey Hours	Landscape	Average Passage Rate (t/km/hr)	Range in Nightly Passage Rates	Average Flight Direction	Average Flight Height (m)	(Turbine Ht) % Targets Below Turbine Height Fall 2004	Reference
Sheffield, Caledonia Cty, VT	18	176	Forested ridge	91	19-320	200	566	(125 m) 1%	Woodlot Aternatives, Inc. 2006. Avian and Bat Information Summary and Risk Assessment for the Proposed Sheffield Wind Power Project in Sheffield, Vermont. Prepared for UPC Wind Management, LLC.
Casselman, Somerset	30	n/a	Forested ridge	174	n/a	n/a	436	(125 m) 7%	New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for Proposed Wind Sites in New York.
Cty, PA Dans Mountain, Allegany	34	318	Forested ridge	188	2-633	193	542	(125 m) 11%	Albany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdl/radarwindsum.pdf Woodlot Atematives, Inc. 2004. A Fail 2004 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed Dan's Number Microsoft Decision Factors Machine Machine Machine Microsoft Decision Factors (Survey of Bird and Bat Migration at the Proposed Dan's
Cty, MD Franklin, Pendleton Cty, WV	34	349	Forested ridge	229	7-926	175	583	(125 m) 8%	Mourtain Wind Project in Frosburg, Maryland, Prepared for US Wind Force. Wooddr Atternatives, Inc. 2006. A Fall 2006 Reader and Acoustic Survey of Bird and Bat Migration at the Proposed Liberty Gap Wind Project in Franklin, West Virginia. Prepared for US Wind Force, LLC.
Swallow Farm, PA	58	n/a	Forested ridge	166	n/a	n/a	402	(125 m) 5%	New York Department of Conservation [Internet], c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Abary, NY, NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf
Kibby, Franklin Cty, ME (Range 1)	12	101	Forested ridge	201	12-783	196	352	(125 m) 12%	Woodlot Alternatives, Inc. 2006. A Fall 2005 Survey of Bird and Bat Migration at the Proposed Kibby Wind Power Project in Kibby and Skinner Townships, Maine. Prepared for TransCanada Maine.
Fayette Cty, PA	26	n/a	Forested ridge	297	n/a	n/a	426	(125 m) 5%	New York Department of Conservation [Internet], c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Abany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdl/radarwindsum.pdf
Stamford, Delaware Cty, NY	48	418	Forested ridge	315	22-784	251	494	(110 m) 3%	Woodlot Alternatives, Inc. 2007. A Spring and Fall 2005 Radar and Acoustic Survey of Bird Migration at the Proposed Moresville Energy Center in Stamford and Roxbury, New York. Prepared for Invenergy, LLC. Rockville, MD.
Preston Cty, WV	26	n/a	Forested ridge	379	n/a	n/a	420	(125 m) 10%	Plissner, J.H., T.J. Mabee, and B.A. Cooper. 2006 A radar and visual study of nocturnal bird and bat migration at the proposed Preston Wind Development project, Virginia, Fall 2005. Report to Highland New Wind Development, LLC.
Highland, VA	58	n/a	Forested ridge	385	n/a	n/a	442	(125 m) 12%	Plissner, J.H., T.J. Mabee, and B.A. Cooper. 2006 A radar and visual study of nocturnal bird and bat migration at the proposed Highland New Wind Development project, Virginia, Fall 2005. Report to Highland New Wind Development, LLC.
Kibby, Franklin Cty, ME (Valley)	5	13	Forested ridge	452	52-995	193	391	(125 m) 16%	Woodlot Alternatives, Inc. 2006. A Fall 2005 Survey of Bird and Bat Migration at the Proposed Kibby Wind Power Project in Kibby and Skinner Townships, Maine. Prepared for TransCanada Maine.
Mars Hill, Aroostook Cty, ME	18	117	Forested ridge	512	60-1092	228	424	(120 m) 8%	Woodlot Alternatives, Inc. 2006. A Fall 2005 Radar, Visual, and Acoustic Survey of Bird Migration at the Mars Hill Wind Farm in Mars
Deerfield, Bennington	32	324	Forested ridge	559	3-1736	221	395	(100 m) 13%	Hill, Maine. Prepared for Evergreen Windpower, LLC. Woodlort Aternatives, Inc. 2006. Fall 2005 Bird and Bat Migration Surveys at the Proposed Deerfield Wind Project in Searsburg and Purchase. Neuron Purcent (PDPU Fourth Control of the PDU Fourth Control of the Proposed Deerfield Wind Project in Searsburg and Purchase. Neuron Purcent (PDPU Fourth Control of the PDU Fourth Control
Cty, VT Kibby, Franklin Cty, ME	12	115	Forested ridge	565	109-1107	167	370	(125 m) 16%	Readsboro, Vermont. Prepared for PPM Energy, Inc. Woodlot Atternatives, Inc. 2006. A Fall 2005 Survey of Bird and Bat Migration at the Proposed Kibby Wind Power Project in Kibby
(Mountain)						-		Fall 2006	and Skinner Townships, Maine. Prepared for TransCanada Maine.
Somerset Cty, PA	29	n/a	Forested ridge	316	n/a	n/a	374	(125 m) 8%	New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdl/radarwindsum.pdf
Bedford Cty, PA	29	n/a	Forested ridge	438	n/a	n/a	379	(125 m) 10%	New York Department of Conservation [Internet], c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Abany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdl/radarwindsum.pdf
Stetson, Washington Cty, ME	12	77	Forested ridge	476	131-1192	227	378	(125 m) 13%	Woodlot Alternatives, Inc. 2007. A Fall 2006 Survey of Bird and Bat Migration at the Stetson Wind Project, Washington County, Maine. Prepared for Evergreen Wind V, LLC.
Lempster, Sullivan Cty, NH	32	290	Forested ridge	620	133-1609	206	387	(125 m) 8%	Woodlot Aternatives, Inc. 2007. A Fall 2007 Survey of Nocturnal Bird Migration, Breeding Birds, and Bicknell's Thrush at the Proposed Lempster Mountain Wind Power Project Lempster, New Hampshire. Prepared for Lempster Wind, LLC.
Laurel Mountain, Barbour	20	212	Forested ridge	321	76-513	209	533	Fall 2007 (130 m) 6%	Stantec Consulting Services Inc. 2007. A Fall 2007 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed
Cty, WV Errol, Coos County, NH	29	232	Forested ridge	366	54 to 1234	223	343	(125 m) 15%	Laurel Mountain Wind Energy Project near Elkins, West Virginia. Prepared for AES Laurel Mountain, LLC. Stantec Consulting Inc. 2007. Fall 2007 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed Windpark in
Rollins, Lincoln,	22	231	Forested ridge	368	82-953	284	343	(120 m) 13%	Coos County, New Hampshire by Granite Refable Power, LLC. Prepared for Granite Reliable Power, LLC. Woodlot Aternatives, Inc. 2008. A Fall 2007 Survey of Bird and Bat Migration at the Rollins Wind Project, Washington County, Maine.
Penobscot Cty, ME Roxbury, Oxford Cty, ME	20	220	Forested ridge	420	88-1006	201	365	(130 m) 14%	Prepared for Evergreen Wind, LLC. Woodlot Alternatives, Inc. 2007. A Fall 2007 Survey of Bird and Bat Migration at the Record Hill Wind Project, Roxbury, Maine.
Allegany, Cattaraugus Cty, NY	46	220 n/a	Forested ridge	420	n/a	230	382	(150 m) 14%	Prepared for Roabury HI Wind LLC. New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Abarry, MY: NTPC: [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlie_pdf/radarwindsum.pdf
New Creek, Grant Cty, WV	20	n/a	Forested ridge	811	263-1683	231	360	(130 m) 17%	Stanles Consuling Services Inc. 2008. A Fail 2007 Survey of Bird and Bat Migration at the New Creek Wind Project, West Virginia. Prepared for AES New Creek, LLC.
Coordia Meuntain 1/7	21	n/a	Enropted sides	326	56-700	230	371	Fall 2008	Stantec Consulting Services Inc. 2008. A Fall 2008 Survey of Bird Migration at the Georgia Mountain Wind Project, Vermont.
Georgia Mountain, VT Oakfield, Penobscot Cty,	21	n/a n/a	Forested ridge	501	116-945	230	3/1	(120 m) 7%	Prepared for Georgia Mountain Community Wind. Woodlot Atternatives, Inc. 2008. A Fall 2008 Survey of Bird and Bat Migration at the Oakfield Wind Project, Washington County,
ME			Forested ridge					(125 m) 18%	Maine. Prepared for Evergreen Wind, LLC. Stantec Consulting Services Inc. 2008. Fall 2008 Radar Survey Report for the Groton Wind Project. Prepared for Groton Wind,
Tenney, Grafton Cty, NH Highland, Somerset Cty,	45	509	Forested ridge	470	94-1174	260	342	(125m) 13%	LLC. Stantec Consulting, 2009. Fall 2008 Bird and Bat Migration Survey Report: Radar and Acoustic Avian and Bat Surveys for the Highland
ME	20	216	Forested ridge	549	68-1201	227	348	(130.5m) 17% Fall 2009	Wind Project Highland Plantation, Maine. Prepared for Highland Wind LLC
Sisk (Kibby Expansion) Franklin Cty, ME	20	210	Forested ridge	458	44-1067	206	287	(125m) 23%	Stantec Consulting Services. 2009. Fall 2009 Nocturnal Migration Survey Report. Prepared for TRC Engineers LLC.
Vermont Community Wind Farm, Orleans Cty, VT	20	227	Forested ridge	443	110-1029	215	330	(130m) 15%	Stante: Consuling Services. 2009. Fail 2009 Bird and Bat Survey Report. Nocturnal Redar, Acoustic, and Diurnal Report Surveys performed for the Vermont Community Wind Farm Project in Rutland County, Vermont. Prepared for Vermont Community Wind Farm, LLC.
Stetson, Washington Cty, ME	18	201	Forested ridge	457	106-1746	227	420	(119m) 2%	Stantec Consulting Services. 2010. Stetson I Mountain Wind Project Year 1 Post-Construction Monitoring Report, 2009. Prepared for First Wind Management, LLC.
Bull Hill, Hancock Cty, ME	20	232	Forested ridge	614	188-1500	260	357	(145m) 20%	Stantec Consulting Services. 2010. Summer and Fall 2009 Avian and Bat Survey Report for the Bull Hill Project. Prepared for Blue Sky East Wind, LLC.
Bowers, Washington Cty, ME	22	249	Forested ridge	344	95-844	231	453	(119m) 14% Fall 2010	Stantec Consulting Services Inc. 2010. 2010 Spring Avian and Spring/Summer Bat Surveys for the Bowers Wind Project. Prepared for Champlain Wind Energy, LLC.
Bingham, Somerset Cty,	20	232	Forested ridge	803	194-2463	234	377	(150m) 20%	Stantec Consulting Services Inc. 2010. 2010 Spring Avian and Spring/Summer Bat Surveys for the Bowers Wind Project. Prepared for
ME								Fall 2011	Champlain Wind Energy, LLC.
Antrim, Hillsborough Cty, NH	30	327	Forested ridge	138	4-538	217	203	(150m) 40%	this report

Appendix B

Bat survey results

ppenaix e	B Tabl	e 1.	Summary	of acoustic BBSH	bat data an	d weather of HB	during each MYSP	survey nig	ht at the Ac RBTB	cess Tree o	letector – A	ntrim Wind	Project, Su	ummer/Fall 2	2011.			
it of	Operational?		ж	brown	Silver-haired			Eastern red	Tri-colored	μ	Z		z	Total	Wind Speed (m/s)	Temperature (celsius)	Barometric Pressure	Relative Humidity (%)
tigin 6/01/11	40 1		BBSH	2 2	Silv	Hoary	3 MYSP	Eas	ŢŢ	RBTB	HEUN 1	C LFUN	UNKN	9	11.3	Б 16.4	1014	79
6/02/11 6/03/11	1 1			1 2			1				1	1		3 5	12.2 9.0	7.8 10.4	1011 1016	61 54
5/04/11 5/05/11	1			3			1				7	1		4	6.6 5.3	9.2 12.8	1019 1019	57 73
6/06/11 6/07/11 6/08/11	1 1 1		1	12 7 8			4 30				1 3 3	1 3 1		18 44	3.6 6.1 12.4	17.9 20.3 19.5	1016 1013 1012	81 62 65
5/08/11 5/09/11 5/10/11	1		1	9 13			1 1 4				3	1		13 11 19	7.9	19.5 16.8 14.4	1012 1012 1014	88 83
5/11/11 5/12/11	1			1			1				1			2	7.4	8.2 9.7	1014 1020 1015	94 94
5/13/11 5/14/11	1			6 1			9				4	1		20 1	5.1 9.4	10.6 11.2	1012 1013	85 88
6/15/11 6/16/11	1		1	5 3			20 8				3	3 1		31 15	8.0 9.1	14.7 17.9	1011 1013	78 78
5/17/11 5/18/11	1 1		1 3	1			6 1				4	3		15 9	5.6 8.9	14.6 14.6	1013 1010	90 80
5/19/11 5/20/11	1 1		1 1	2			4 10				1	1		8 13	6.5 4.4	13.6 16.0	1011 1013	61 67
5/21/11 5/22/11	1 1 1		4	9			43 22				3	2		61 24	3.4 5.5	18.5 14.7	1014 1014	66 96 98
5/23/11 5/24/11 5/25/11	1			2			6				2			6 0 10	6.8 5.1 4.8	11.7 9.1 14.8	1012 1011 1011	98 97 94
6/26/11 6/27/11	1		4	5			5	2			5	3		24 23	7.6	15.9	1014 1017	82 72
5/28/11 5/29/11	1			7 13		1	13				9	11 3		18 39	6.6 10.9	17.5 13.6	1014 1011	77 81
/30/11 //01/11	1		1	2 6			15 29	1			5 11	4		27 49	7.9 4.8	14.9 16.1	1013 1016	63 71
7/02/11 7/03/11	1			16 17			14 6			1	1 4	4		36 29	7.4 7.1	18.2 18.1	1018 1012	72 86
7/04/11 7/05/11	1			13 15			3 5				4	4		24 21	4.5 6.9	20.2	1010 1013	80 82
7/06/11	1			6	1						1	2		10 0	11.4 3.7	16.6 17.4	1013 1014	73
7/08/11	0													0	4.6 6.3	17.8 15.5 19.8	1013 1010 1018	87 84 66
/10/11 /11/11 /12/11	0													0 0 0	9.8 8.5 7.6	19.8 22.5 20.4	1018 1014 1005	66 72 71
/12/11 //13/11 //14/11	1		1 1	2			9 12				2	1		0 15 19	7.6 7.5	12.3 15.9	1005 1008 1016	74 69
/15/11 /15/11	1		11 4	62 19			1 92	2 1			28 4	7		111 120	6.5 9.7	18.0 20.6	1010 1019 1021	63 65
/17/11 /18/11	1 1		3 6	42 57			18 7	1 2		1	19 11	4 4		87 88	12.3 8.4	21.6 19.3	1019 1013	63 78
/19/11 /20/11	1		2	17 1			5				1	1		26 1	4.2 10.4	20.2 21.6	1011 1012	69 72
/21/11	0													0	11.0 5.5	25.7 23.5	1008 1010	78 60
/23/11 /24/11 /25/11	0													0	8.6 4.6	22.4 17.5	1013 1014	71 68
/25/11 /26/11 /27/11	0		9	109 30		1	21 15	1			12 6	5		0 158 54	5.7 8.9 5.1	13.9 15.1 15.8	1014 1008 1012	85 84 69
/27/11 /28/11 /29/11	1 1 1		3 5 22	30 79 243			15 33 15	3			20 8	9 15		54 149 303	5.1 6.2 9.3	15.8 19.7 18.8	1012 1018 1013	69 71 90
/30/11 /31/11	1		7	121 182	1		10 10	2			0 1 11	5		144 236	6.8 7.1	16.8	1013 1012 1017	90 76 70
/01/11 /02/11	1		11 4	142 44			74	1			13 3	4		244 80	9.5 7.1	19.3 14.9	1011 1007	80 66
/03/11 /04/11	1		10 6	123 107			23 50	6 2			30 15	11 8		203 188	3.4 4.3	15.9 15.8	1008 1014	74 81
/05/11 /06/11	1 1		11 1	102 3			52 33	1			36 12	15 3		216 53	6.3 6.7	19.0 18.1	1019 1016	77 81
/07/11 /08/11	1 1		13 29	142 66			105 15				27 1	6 3		293 114	4.1 5.8	19.9 17.8	1008 1001	91 90
/09/11 /10/11	1 1		1 11	14 179			16 99	22		1	19 14	3 1		76 304	6.7 7.7	16.3 16.1	1004 1002	89 88
/11/11 /12/11	1		2	4			21 192	1			4	2		34 206	9.4 4.3	13.8 17.9	1010 1016	65 74
/13/11 /14/11 /15/11	1 1 1		3	29 2			92 117 2	2 10 4			20 12 3	5 1		151 142	7.1 6.0 6.8	18.7 15.3 12.5	1019 1015 1010	74 92 98
/16/11 /17/11	1		2	8			221 223	4 10 2	1	1	29 5	3		9 275 235	8.3 6.6	15.7 19.1	1010 1010 1020	98 92 78
/18/11 /19/11	1		2	44 12		1	14 112	6			8 14	6		81 145	8.5 6.6	18.7 18.3	1020 1016 1014	80 80
/20/11 /21/11	1		1	3 1			48 37	3 4			8 16	1 1		64 59	6.3 11.1	19.8 16.8	1015 1012	81 89
/22/11 /23/11	1 1						11 70				1 11			12 81	8.6 8.7	12.2 15.8	1009 1016	74 77
/24/11 /25/11	1		1	1 4			22 38	7			20 9	1		50 55	10.1 8.7	17.2 17.5	1017 1012	75 89
/26/11 /27/11	1		2	4			149 153	2			10 13			167 170	4.3 6.8	19.7 17.6	1016 1013	82 91
/28/11 /29/11	1						53	7			23 5			30 59	15.2 4.5	12.1 14.0	992 1012	96 73
/30/11 /31/11 /01/11	1 1 1		1	1	2		54 36 1	1			3 6	1		61 44	9.6 3.4	16.6 16.1	1020 1023	84 77
/01/11 /02/11 /03/11	1		2	2	3		1 48 35	4 5 2	1	1	6 10 7	1		12 70 51	3.7 8.2 6.4	13.5 15.1 21.1	1024 1021 1014	84 76 85
/03/11 /04/11 /05/11	1		1	<u> </u>	1		35 4 20	1	1		7 1 3	1		51 10 23	6.4 8.5 7.0	21.1 19.0 13.7	1014 1012 1011	91 86
/06/11 /07/11	1 1		1 1		1		24	2 4			6 11	1		33 18	6.7 3.4	13.0 11.2	1017 1024	93 98
/08/11 /09/11	1 1		1	1			15 148	2			4 14	1		23 163	4.0 8.2	15.0 15.2	1019 1012	96 83
'10/11 '11/11	1 1		1				60				3			0 64	6.4 10.8	11.4 13.8	1015 1020	75 80
12/11	1			3		1 1	18 52	10 10			9 2	2		43 68	7.3	17.5 18.1	1016 1013	84 86
14/11 15/11	1		1 2				46	2			9	1		59 2	3.5 12.7 7.0	16.8 4.5	1014 1013 1023	83 91 67
'16/11 '17/11 '18/11	1 1 1													0 0 0	7.0 3.5 4.5	4.7 8.6 7.4	1023 1032 1032	67 77 76
/18/11 /19/11 /20/11	1						1 28	6			6			0 1 40	4.5 8.1 7.9	7.4 9.9 12.7	1032 1026 1020	76 77 93
/21/11 /22/11	1		2	1	2		75	8			14 2	1		40 100 11	5.1 4.6	15.9 17.8	1020 1025 1021	93 84 93
/23/11 /24/11	1 1		1				1 2	7 1			9 1			17 5	4.1 6.2	17.2 18.1	1020 1017	95 95
/25/11 /26/11	1 1		1	11			22	3			2	1		14 28	4.7 2.8	17.9 18.1	1019 1017	90 92
27/11	1		3 2	1	2		2	7 4			6 9	1 2		21 26	5.1 6.7	14.4 13.5	1017 1019	88 80
29/11	1		1 3	1	1			21 8			3	1		25 17	8.1 4.9 7.1	11.7 13.7	1008 1006	97 88
01/11	1			1				1			3	1		4 2 0	7.1 3.2 4.7	8.0 11.2 8.9	1005 1011 1017	98 99 91
/03/11 /04/11 /05/11	1													0 0 0	4.7 11.6 8.3	8.9 9.0 3.4	1017 1015 1017	91 97 76
/05/11 /06/11 /07/11	1			1										0 0 1	8.3 1.4 0.6	3.4 7.0 8.0	1017 1026 1031	76 61 69
/07/11 /08/11 /09/11	1			1				8			2	1		1 0 12	0.6 1.7 1.4	8.0 16.0 17.0	1031 1030 1028	71 71
/10/11 /11/11	1										1 1			1	1.4 1.7 0.0	17.0	1028 1023 1024	71 79
/12/11 /13/11	1		1								1			0	0.6	10.0 12.0	1024 1023 1013	87 99
/14/11 /15/11	1 1													0	1.4 5.0	14.0 11.0	1000 999	96 77
/16/11 /17/11	1 1			1										1 0	3.9 2.2	12.0 9.0	1006 1005	55 67
/18/11 /19/11	1													0	1.7	9.0 9.0	1011 1011	70 94
/20/11 /21/11	1													0	2.8 2.0	14.0 9.0	1001 1010	91 73
/22/11 /23/11	1		05.5	000-		-	0000		^	-	705		^	0				
By Sp	ecles		254	2227 2499	18	5 5	3302 3302	237	3 245	5	763	225 988	0	7039				

-			of acoustic BBSH		HB	MYSP	loan toy hig	RBTB	la mot rig.	delector	UNKN	na i rojooq					
b Night of 6/01/11	Uperational?	BBSH	Big brown	Silver-haired	Hoary	MYSP	Eastern red	Tri-colored	RBTB	HFUN	LFUN	NKN	o Total	1 Wind Speed (m/s)	Di Temperature (celsius)	Barometric Pressure	62 Relative Humidity (%)
6/02/11 6/03/11	1 1 1	1		1									0 0 2 0	12 9 7	16 8 10 9	1011 1016	61 54
5/04/11 5/05/11 5/06/11	1 1	1		1							2		1 4	5 4	13 18	1019 1019 1016	57 73 81
/07/11 /08/11 /09/11	1 1 1	12 13	20		3						11 4 1		43 7 16	6 12 8	20 19 17	1013 1012 1012	62 65 88
/10/11 /11/11 /12/11	1 1 1	28	27								60		115 0 0	6 7 2	14 8 10	1014 1020 1015	83 94 94
/13/11 /14/11 /15/11	1 1 1		2										2 0 0	5 9 8	11 11 15	1012 1013 1011	85 88 78
/16/11 /17/11 /18/11	1 1 1										5		0 5 0	9 6 9	18 15 15	1013 1013 1010	78 90 80
/19/11 /20/11 /21/11	1 1 1												0 0 0	7 4 3	14 16 19	1011 1013 1014	61 67 66
/22/11 /23/11 /24/11	1 1 1												0	6 7 5	15 12 9	1014 1012 1011	96 98 97
/25/11 /26/11 /27/11	1 1 1 1												0 0 0	5 8 4	15 16 19	1011 1014 1017	94 82 72
/28/11 /29/11	0												0	7 11	17 14	1014 1011	77 81
/30/11 /01/11 /02/11	0												0 0 0	8 5 7	15 16 18	1013 1016 1018	63 71 72
/03/11 /04/11 /05/11	0 0 0												0 0 0	7 4 7	18 20 21	1012 1010 1013	86 80 82
/06/11 /07/11 /08/11	0												0 0 0	11 4 5	17 17 18	1013 1014 1013	73 74 87
/09/11 /10/11 /11/11	0 0 0												0 0 0	6 10 8	16 20 23	1010 1018 1014	84 66 72
/12/11 /13/11 /14/11	0 1 1	1	5		1						2		0 8 1	8 8	20 20 12 16	1014 1005 1008 1016	71 74 69
14/11 15/11 16/11	1 1 1	1	1								2		0 4 0	8 7 10 12	18 21 22	1018 1019 1021 1019	63 65 63
'18/11 '19/11	1 1												0	8	19 20	1013 1011	78 69
/20/11 /21/11 /22/11	1 1 1	3	2		1		1			1	2		6 1 8	10 11 6	22 26 23	1012 1008 1010	72 78 60
23/11 24/11 25/11	1 1 1	5 16 1	5 65 2	5	2	7		1		2	15 36 3		27 132 8	9 5 6	22 18 14	1013 1014 1014	71 68 85
26/11 27/11 28/11	1 1 1		1			1				1	2		0 3 3	9 5 6	15 16 20	1008 1012 1018	84 69 71
29/11 30/11 31/11	1 1 1		2		1						2 1		3 1 3	9 7 7	19 17 21	1013 1012 1017	90 76 70
01/11 02/11 03/11	1 1 1	1 4	5	2		3	1			3	3		1 1 20	10 7 3	19 15 16	1011 1007 1008	80 66 74
/04/11 /05/11	1 1 1 1	5 1	2	3		5	1			1	7 1		19 2 1	4 6 7	16 19	1014 1019	81 77
/06/11 /07/11 /08/11	1 1		1							1	2		1 3	4	18 20 18	1016 1008 1001	81 91 90
/09/11 /10/11 /11/11	1 1 1									2	1 2		1 4 0	7 8 9	16 16 14	1004 1002 1010	89 88 65
'12/11 '13/11 '14/11	1 1 1	2								1	1 1 1		4 2 3	4 7 6	18 19 15	1016 1019 1015	74 74 92
'15/11 '16/11 '17/11	1 1 1						1						0 0 1	7 8 7	12 16 19	1010 1010 1020	98 92 78
/18/11 /19/11 /20/11	1 1 1	1					1			2	1		1 1 3	8 7 6	19 18 20	1016 1014 1015	80 80 81
/21/11 /22/11 /23/11	1 1 1									1			1 0 0	11 9 9	17 12 16	1012 1009 1016	89 74 77
/24/11 /25/11 /26/11	1 1 1 1	1									3		1 0 3	10 9 4	17 17 20	1010 1017 1012 1016	75 89 82
27/11 28/11	1 1										3		0	7 15	18 12	1013 992	91 96
29/11 30/11 31/11	1 1 1	3	2	1 3	1	2				1 2 4	3		2 3 17	5 10 3	14 17 16	1012 1020 1023	73 84 77
01/11 02/11 03/11	1 1 1	2		2							1		3 0 5	4 8 6	14 15 21	1024 1021 1014	84 76 85
04/11 05/11 06/11	1 1 1	1	2										1 0 2	9 7 7	19 14 13	1012 1011 1017	91 86 93
07/11 08/11 09/11	1 1 1	2		2							2 1		2 4 1	3 4 8	11 15 15	1024 1019 1012	98 96 83
'10/11 '11/11 '12/11	1 1 1	1		1							1		2 1 0	6 11 7	11 14 17	1012 1015 1020 1016	75 80 84
12/11 13/11 14/11 15/11	1 1 1 1			4	1						1 2 1		2 6 1	11 3 13	18 17 5	1010 1013 1014 1013	86 83 91
15/11 16/11 17/11 18/11	1 1	1		1							1		2 2	7 4 5	5 9	1023 1032	91 67 77 76
/19/11 /20/11	1 1 1												0 0 0 0 0	8 8	7 10 13	1032 1026 1020	77 93
21/11 22/11 23/11	1 1 1									2	1		3 0 0	5 5 4	16 18 17	1025 1021 1020	84 93 95
/24/11 /25/11 /26/11	1 1 1	1		1 1			2		1	1	1 1 1		3 1 6	6 5 3	18 18 18	1017 1019 1017	95 90 92
27/11 28/11 29/11	1 1 1	2 3	4	3						1 1	4		14 5 0	5 7 8	14 14 12	1017 1019 1008	88 80 97
'30/11 '01/11 '02/11	1 1 1	1	1				2			1 1	1		5 1 2	5 7 3	14 8 11	1006 1005 1011	88 98 99
/03/11 /03/11 /04/11 /05/11	1 1 1 1						3			5			8 0	5 12 8	9 9 3	1017 1015 1017	99 91 97 76
/06/11 /07/11	1 1												0 0 1	1	7 8	1026 1031	61 69
/08/11 /09/11 /10/11	1 1 1									1			1 0 0	2 1 2	16 17 17	1030 1028 1023	71 71 71
/11/11 /12/11 /13/11	1 1 1				2						2		0 4 0	0 1 1	13 10 12	1024 1023 1013	79 87 99
/14/11 /15/11 /16/11	1 1 1												0	1 5 4	14 11 12	1000 999 1006	96 77 55
'17/11 '18/11 '19/11	1 1 1												0	2 2 1	9 9 9	1005 1011 1011	67 70 94
20/11	1	118	153 302	31	13 13	13	12	1	1	40	203	0	0	3	14	1001	94

			BBSH		НВ	MYSP		RBTB			UNKN		_	/s)	celsius)	assure	dity (%)
Night of	Operational?	BBSH	Big brown	Silver-haired	Hoary	MYSP	Eastern red	Tri-colored	RBTB	HFUN	LFUN	UNKN	Total	Wind Speed (m/s)	Temperature (celsius)	Barometric Pressure	Relative Humidity
/01/11 /02/11 /03/11 /04/11	1 1 1 1	2	2							1	4		9 0 2 0	11 12 9 7	16 8 10 9	1014 1011 1016 1019	79 61 54 57
/05/11 /06/11 /07/11	1 1 1	9 26 12	3 14 9		1						2 7 5		15 47 26	5 4 6	13 18 20	1019 1016 1013	73 81 62
/08/11 /09/11 /10/11	1 1 1	8 16 8	8 21 7		8	1				3	44 47 8		68 85 27	12 8 6	19 17 14	1012 1012 1014	65 88 83
/11/11 /12/11 /13/11	1 1 1		4		1						1		0 0 6	7 2 5	8 10 11	1020 1015 1012	94 94 85
/14/11 /15/11 /16/11	1 1 1	9	75			12				2	11 2		0 27 23	9 8 9	11 15 18	1013 1011 1013	88 78 78
/17/11 /18/11 /19/11	1 1 1	2 51 27	1 44 119			1 10 3	4		4	2 23 5	1 20 9		7 152 167	6 9 7	15 15 14	1013 1013 1010 1011	90 80 61
/20/11 /21/11 /22/11	1 1 1	51	110 6	1		26 1 1	1 2		4 14 1	15 5	15 4		233 23 1	4 3 6	14 16 19 15	1011 1013 1014 1014	67 66 96
/23/11 /24/11	1 1 1	58	32			10			7	10	7		0 0 124	7 5	13 12 9 15	1014 1012 1011 1011	98 97
/25/11 /26/11 /27/11	1 1	94 26	10 4			7 12			1	38 26	21 8		171 76	5 8 4	16 19	1014 1017	94 82 72
/28/11 /29/11 /30/11	1 1 1	1	1 8			6 2 37			1	2 8 31	1 1 23		12 11 111	7 11 8	17 14 15	1014 1011 1013	77 81 63
/01/11 /02/11 /03/11	1 1 1	111 41 3	109 37 1			96 1 2	1			64 13	30 5 3		410 84 23	5 7 7	16 18 18	1016 1018 1012	71 72 86
/04/11 /05/11 /06/11	1 1 1	63 61 64	9 17 7	1		13 19 3	1		3	43 4 2	13 27 17		145 129 93	4 7 11	20 21 17	1010 1013 1013	80 82 73
/07/11 /08/11 /09/11	1 1 1	26 10 18	38 11 18			1 14 26	9		16	3 6 13	19 4 5		87 45 105	4 5 6	17 18 16	1014 1013 1010	74 87 84
/10/11 /11/11 /12/11	1 1 1	28 4 164	9 5 27		1	1			1 5	1 1 6	13 1 5		52 13 210	10 8 8	20 23 20	1018 1014 1005	66 72 71
/13/11 /14/11 /15/11	1 1 1	6 10	15 6 1		1	8	7		3	2 6 1	8 3 1		32 43 9	8 8 7	12 16 18	1008 1016 1019	74 69 63
/16/11 /17/11 /18/11	1 1 1	17 234 73	10 23 19		3	1	53		3	18	13 55 50		43 312 217	10 12 8	21 22 19	1021 1019 1013	65 63 78
/19/11 /20/11 /21/11	1 1 1	207 44 181	103 19 6	1	1	1 1	12 35 10		36 13 21	45 11 13	87 138 21		492 261 253	4 10 11	20 22 26	1011 1012 1008	69 72 78
/22/11 /23/11 /24/11	1 1 1 1	128 402 46	31 50 31	1	2 3	1 11	20 22 1		13 20	44 27 4	82 204 14		320 730 107	6 9 5	23 22 18	1010 1013 1014	60 71 68
25/11 25/11 26/11	1 1 1	40 4 136 338	3 41		1 4	3 34 4	1 3 5		1 6 7	4 5 28 6	14 14 65		17 263	6 9 5	16 14 15 16	1014 1014 1008 1012	85 84 69
28/11	1 1	173 233	155 39 87		6 1	2 25	43		1 10	5 66	34 40		584 260 505	6 9	20 19	1018 1013	71 90
30/11 31/11 01/11	1 1 1	414 230 520	158 73 86	1	1	4	3 4 8		1 1 1	10 7 18	158 89 112		749 406 746	7 7 10	17 21 19	1012 1017 1011	76 70 80
/02/11 /03/11 /04/11	1 1 1	115 45 27	72 22 10			1 2	7 1 4		3 2 1	9 12 14	29 36 48		235 119 106	7 3 4	15 16 16	1007 1008 1014	66 74 81
/05/11 /06/11 /07/11	1 1 1	65 26 137	29 21 44	1	1	1	1 12		2	1 1 9	54 9 31		151 59 236	6 7 4	19 18 20	1019 1016 1008	77 81 91
/08/11 /09/11 /10/11	1 1 1	364	108 6		1	2	1	1		2 5 10	44 2		518 6 39	6 7 8	18 16 16	1001 1004 1002	90 89 88
/11/11 /12/11 /13/11	1 1 1	46 124 28	67 33 8		1	1 1 1	6 7 1		4	23 21 1	8 87 19		155 274 59	9 4 7	14 18 19	1010 1016 1019	65 74 74
/14/11 /15/11 /16/11	1 1 1	6	19			1	3		2	7	1		20 0 120	6 7 8	15 12 16	1015 1010 1010	92 98 92
/17/11 /18/11 /19/11	1 1 1	114 32 16	44 11 5		1 2	1 2	3 3 3		1	8	44 15 21		215 66 48	7 8 7	19 19 19 18	1010 1020 1016 1014	78 80 80
/20/11 /21/11 /22/11	1 1 0	182	45		1	2	2		-	1	147 1		378 1 0	6 11 9	20 17 12	1014 1015 1012 1009	81 89 74
23/11 24/11	0												0	9 10 9	12 16 17 17	1016 1017	77 75
/25/11 /26/11 /27/11	0 0 0												0 0 0	4 7	20 18	1012 1016 1013	89 82 91
28/11 29/11 30/11	0 0 0												0 0 0	15 5 10	12 14 17	992 1012 1020	96 73 84
31/11 01/11 02/11	0												0 0 0	3 4 8	16 14 15	1023 1024 1021	77 84 76
03/11 04/11 05/11	0 0 0												0 0 0	6 9 7	21 19 14	1014 1012 1011	85 91 86
06/11 07/11 08/11	0 0 0												0 0 0	7 3 4	13 11 15	1017 1024 1019	93 98 96
'09/11 '10/11 '11/11	0 0 0												0 0 0	8 6 11	15 11 14	1012 1015 1020	83 75 80
12/11 13/11 14/11	0 0 0												0 0 0	7 11 3	17 18 17	1016 1013 1014	84 86 83
'15/11 '16/11 '17/11	0 0 0												0 0 0	13 7 4	5 5 9	1013 1023 1032	91 67 77
'18/11 '19/11 '20/11	0 0 0												0 0 0	5 8 8	7 10 13	1032 1026 1020	76 77 93
21/11 22/11 23/11	0 0 0												0 0 0	5 5 4	16 18 17	1025 1021 1020	84 93 95
24/11 25/11 26/11	0												0 0 0 0	6 5 3	18 18 18	1017 1019 1017	95 90 92
220/11 27/11 28/11 29/11	0 0 0 0												0	5 7 8	10 14 14 12	1017 1019 1008	88 80 97
/30/11 /01/11 /02/11	0						1			1			0 2 0	5 7 3	12 14 8 11	1008 1006 1005 1011	97 88 98 99
/03/11 /03/11 /04/11 /05/11	0												0	5 12 8	9 9 3	1017 1015 1017	99 91 97 76
/06/11 /07/11	0												0	1 1	7 8	1026 1031	61 69
/08/11 /09/11 /10/11	0 1 1 1		1							3			0 3 1	2 1 2	16 17 17	1030 1028 1023	71 71 71
/11/11 /12/11 /13/11	1 1 1				1		2			3	3		0 9 0	0 1 1	13 10 12	1024 1023 1013	79 87 99
/14/11 /15/11 /16/11	1 1 1									1			1 0 0	1 5 4	14 11 12	1000 999 1006	96 77 55
/17/11 /18/11 /19/11	1 1 1												0 0 0	2 2 1	9 9 9	1005 1011 1011	67 70 94
20/11 By Sp	1	5786	2204	7	44	429	324	1	208	794	2192	0	0	3	14	1001	91

ppendix	B Tab	ole 4.	Summary	of acoustic BBSH	bat data ar	nd weather of HB	during each	survey nig	ht at the We	etland Tree	detector -	Antrim Win UNKN	d Project, S	Summer/Fall	2011.			
Night of	Onerational?		BBSH	Big brown	Silver-haired	Hoary	ASYM	Eastern red	Tri-colored	RBTB	HFUN	LFUN	UNKN	Total	Wind Speed (m/s)	Temperature (celsius)	Barometric Pressure	Relative Humidity (%)
06/01/11 06/02/11 06/03/11	()												0 0 0	11 12 9	16 8 10	1014 1011 1016	79 61 54
6/04/11 6/05/11 6/06/11	()))												0	7 5 4	9 13 18	1019 1019 1016	57 73 81
6/07/11 6/08/11 6/09/11 6/10/11	())												0	6 12 8 6	20 19 17 14	1013 1012 1012 1014	62 65 88
6/10/11 6/11/11 6/12/11 6/13/11))												0 0 0	7 2 5	14 8 10 11	1014 1020 1015 1012	83 94 94 85
6/14/11 6/15/11 6/16/11	()))												0 0 0	9 8 9	11 11 15 18	1012 1013 1011 1013	88 78 78
6/17/11 6/18/11 6/19/11)												0 0 0	9 6 9 7	15 15 15 14	1013 1013 1010 1011	90 80 61
5/20/11 5/21/11 5/22/11	()))												0 0 0	4 3 6	14 16 19 15	1011 1013 1014 1014	67 66 96
6/23/11 6/24/11 6/25/11	(0 0 0	7 5 5	12 9 15	1012 1011 1011	98 97 94
6/26/11 6/27/11 6/28/11	())												0 0 0	8 4 7	16 19 17	1014 1017 1014	82 72 77
6/29/11 6/30/11 7/01/11	(0 0 0	11 8 5	14 15 16	1011 1013 1016	81 63 71
7/02/11 7/03/11 7/04/11	())												0 0 0	7 7 4	18 18 20	1018 1012 1010	72 86 80
7/05/11 7/06/11 7/07/11	()))												0 0 0	7 11 4	21 17 17	1013 1013 1014	82 73 74
7/08/11 7/09/11 7/10/11	()))												0 0 0	5 6 10	18 16 20	1013 1010 1018	87 84 66
7/11/11 7/12/11 7/13/11	(()) 												0 0 0	8 8 8	23 20 12	1014 1005 1008	72 71 74
7/14/11 7/15/11 7/16/11	1		1				2 1 1				1 1 1	1		3 3 3	8 7 10	16 18 21	1016 1019 1021	69 63 65
7/17/11 7/18/11 7/19/11	1		4 2 1	2 1			2 2 1		1		1 1 1	1		11 6 3	12 8 4	22 19 20	1019 1013 1011	63 78 69
7/20/11 7/21/11 7/22/11	1		3 2 1	1							1 1 2	2		6 6 3	10 11 6	22 26 23	1012 1008 1010	72 78 60
7/23/11 7/24/11 7/25/11			5 4				2			1	1 2	2 2 3		9 8 5	9 5 6	22 18 14	1013 1014 1014	71 68 85
7/26/11 7/27/11 7/28/11	1		2 15				2			1	1	1 2		3 4 25	9 5 6	15 16 20	1008 1012 1018	84 69 71
7/29/11 7/30/11 7/31/11	1		1 2 4				2 1 1			1	4 3 3	2		7 9 8	9 7 7	19 17 21	1013 1012 1017	90 76 70
01/11 02/11 03/11	1		1 1 1				1				4	1		7 4 1	10 7 3	19 15 16	1011 1007 1008	80 66 74
3/04/11 3/05/11 3/06/11	1		1							1	1	3		2 5 1	4 6 7	16 19 18	1014 1019 1016	81 77 81
3/07/11 3/08/11 3/09/11	1		1				1				2 1 1	1		4 2 1	4 6 7	20 18 16	1008 1001 1004	91 90 89
B/10/11 B/11/11 B/12/11	1		2 1				2 1			1	3	1		7 2 3	8 9 4	16 14 18	1002 1010 1016	88 65 74
B/13/11 B/14/11 B/15/11			7	2							1	3		12 1 0	7 6 7	19 15 12	1019 1015 1010	74 92 98
3/16/11 3/17/11 3/18/11	1		2	1 1			2	2		1	2 3 2	2 1		4 11 6	8 7 8	16 19 19	1010 1020 1016	92 78 80
3/19/11 3/20/11 3/21/11	1		1	1			1				2	1		4 3 3	7 6 11	18 20 17	1014 1015 1012	80 81 89
B/22/11 B/23/11 B/24/11	1 1 1										3	1		4 1 1	9 9 10	12 16 17	1009 1016 1017	74 77 75
B/25/11 B/26/11 B/27/11	1									1	1	1		1 2 1	9 4 7	17 20 18	1012 1016 1013	89 82 91
8/28/11 8/29/11 8/30/11	1		2				1				1	1		0 2 3	15 5 10	12 14 17	992 1012 1020	96 73 84
3/31/11 3/01/11 3/02/11	1	1												0 0 0	3 4 8	16 14 15	1023 1024 1021	77 84 76
03/11 0/04/11 0/05/11	1													0 0 0	6 9 7	21 19 14	1014 1012 1011	85 91 86
/06/11 /07/11 /08/11	1													0 0 0 0 2	7 3 4	13 11 15	1017 1024 1019	93 98 96
9/09/11 9/10/11 9/11/11	1		1								1	1		2 1 0 0	8 6 11 7	15 11 14 17	1012 1015 1020	83 75 80 84
9/12/11 9/13/11 9/14/11 9/15/11	1													0 0 0 0 0	7 11 3 13	17 18 17 5	1016 1013 1014 1013	84 86 83 91
0/16/11 0/16/11 0/17/11 0/18/11	1													0 0 0	13 7 4 5	5 5 9 7	1013 1023 1032 1032	91 67 77 76
9/19/11 9/19/11 9/20/11 9/21/11														0	5 8 8 5	7 10 13 16	1032 1026 1020 1025	76 77 93 84
9/22/11 9/22/11 9/23/11 9/24/11	1													0	5 5 4 6	18 17 18	1025 1021 1020 1017	93 95 95
/25/11 /25/11 /26/11	1													0	5 3 5	18 18 18 14	1017 1019 1017 1017	95 90 92 88
/28/11 /28/11 /29/11	1													0	7 8 5	14 14 12 14	1017 1019 1008 1006	80 97 88
//01/11 //02/11 //03/11	1											1		0 0 1	7 3 5	8 11 9	1005 1011 1017	98 99 91
/04/11 /05/11 /05/11														0	12 8 1	9 9 3 7	1017 1015 1017 1026	97 97 76 61
0/08/11 0/07/11 0/08/11 0/09/11	(0	1 1 2 1	8 16 17	1026 1031 1030 1028	69 71 71
D/10/11 D/10/11 D/11/11 D/12/11	()												0	2 0 1	17 17 13 10	1028 1023 1024 1023	71 71 79 87
0/12/11 0/13/11 0/14/11 0/15/11	()))												0	1 1 1 5	10 12 14 11	1023 1013 1000 999	99 96 77
)/15/11)/16/11)/17/11)/18/11)												0 0 0	5 4 2 2	11 12 9 9	999 1006 1005 1011	55 67 70
//18/11 //19/11 //20/11 By Sp	())	70		0		25	2	4	0	64	20	0	0	2 1 3	9 9 14	1011 1011 1001	94 91
	Suild		70	9 79 BBSH	U	0 0 HB	35 35 MYSP		1 11 RBTB	8	61	38 99 UNKN	. U	224 Total				

Annendix	R Table 5	Summary	of acoustic	hat data an	d weather o	turing each	survey pig	ht at the Wi	llard Tree d	etector – A	ntrim Wind	Project Su	mmer/Fall 2	2011			
Appenaix i	B Table 5.	Summary	BBSH	bat data an	HB	MYSP	survey nig	RBTB	llard Tree d	etector – Al	UNKN	Project, Su	mmer/Fall 2	2011.	s)		(%
Night of	Operational?	BBSH	Big brown	Silver-haired	Hoary	MYSP	Eastern red	Tri-colored	RBTB	HFUN	LFUN	UNKN	Total	Wind Speed (m/s)	Temperature (celsius)	Barometric Pressure	Relative Humidity (%)
06/01/11 06/02/11 06/03/11	1 1 1	1	7		18					1	17		43 0 17	11 12 9	16 8 10	1014 1011 1016	79 61 54
06/04/11 06/05/11	1	4 27	4 30	1	9 3						11 10		29 70	7 5	9 13	1019 1019	57 73
06/06/11 06/07/11 06/08/11	1 1 1	11 23 9	9 12 7		2 5					2	12 9 17		36 49 33	4 6 12	18 20 19	1016 1013 1012	81 62 65
06/09/11 06/10/11	1	10 14	4 6	4	5 7	1 1	1			1	7 11		28 44	8 6	17 14	1012 1014	88 83
06/11/11 06/12/11 06/13/11	1 1 1		1										0 0 1	7 2 5	8 10 11	1020 1015 1012	94 94 85
06/14/11 06/15/11 06/16/11	1 1 1	7 21	1		4					1	3		0 16 34	9 8 9	11 15 18	1013 1011 1013	88 78 78
06/17/11 06/18/11	1 1	123 18	30 8		16 10					1	61 6		231 42	6 9	15 15	1013 1010	90 80
06/19/11 06/20/11 06/21/11	1 1 1	3	1								2		6 0 0	7 4 3	14 16 19	1011 1013 1014	61 67 66
06/22/11 06/23/11	1												0	6 7	15 12	1014 1012	96 98
06/24/11 06/25/11 06/26/11	1 1 1	32 22	1 2	1	3	2					7 10		0 43 37	5 5 8	9 15 16	1011 1011 1014	97 94 82
06/27/11 06/28/11 06/29/11	1 1 1	2	3		1		3			7	1		0 15 4	4 7 11	19 17 14	1017 1014 1011	72 77 81
06/30/11 07/01/11	1	5	8				2			2	7		15 9	8 5	15 16	1013 1016	63 71
07/02/11 07/03/11 07/04/11	0 0 0												0 0 0	7 7 4	18 18 20	1018 1012 1010	72 86 80
07/05/11 07/06/11 07/07/11	0 0 0												0 0 0 0	7 11 4	21 17 17	1013 1013 1014	82 73 74
07/08/11 07/09/11	0												0 0	5 6	18 16	1013 1010	87 84
07/10/11 07/11/11 07/12/11	0 0 1	2			1	4					1		0 0 8	10 8 8	20 23 20	1018 1014 1005	66 72 71
)7/13/11)7/14/11	1 1	1	4			2				1	2		6 6	8 8	12 16	1008 1016	74 69
07/15/11 07/16/11 07/17/11	1 1 1	22 11 40	5 4 18			4				1 1 1	36 3 20		68 19 79	7 10 12	18 21 22	1019 1021 1019	63 65 63
07/18/11 07/19/11 07/20/11	1 1 1	14 6 134	4 5 33	1	1	1 1 3	1		1	1 5 3	7 2 91		28 20 267	8 4 10	19 20 22	1013 1011 1012	78 69 72
)7/21/11)7/22/11	1	14 16	10 8	1		5 2	3 3		1	3 4	11 6		47 40	11 6	26 23	1008 1010	78 60
07/23/11 07/24/11 07/25/11	1 1 1	127 21 1	53 22 1			1 4	5		1	5 1 5	39 8 1		231 56 11	9 5 6	22 18 14	1013 1014 1014	71 68 85
)7/26/11)7/27/11	1	50 15	27 18	1		4	3		1	4 1	13 3		98 42	9 5	15 16	1008 1012	84 69
07/28/11 07/29/11 07/30/11	1 1 1	216 64 13	149 24 15		4	6 3	1 1 1		2	9 7 2	62 20 5		449 116 39	6 9 7	20 19 17	1018 1013 1012	71 90 76
07/31/11 08/01/11 08/02/11	1 1 1	91 20 2	140 27 1			4 1 1	4		1	1 3 2	14 8 1		254 60 8	7 10 7	21 19 15	1017 1011 1007	70 80 66
08/03/11 08/04/11	1	12 2	4 6	1		1 3	1 4		1	7 2	3 6		30 23	3 4	16 16	1008 1014	74 81
08/05/11 08/06/11 08/07/11	1 1 1	118 32 9	102 20 11		6	1	5 1 4			4 4 5	44 6 4		280 63 34	6 7 4	19 18 20	1019 1016 1008	77 81 91
08/08/11 08/09/11 08/10/11	1	5	2				2 1			1	3 1 4		13 4	6 7	18 16	1001 1004	90 89
)8/11/11)8/11/11)8/12/11	1 1 1	1	3 2		1	3	8 9 16		3	11 28 30	4		31 42 49	8 9 4	16 14 18	1002 1010 1016	88 65 74
08/13/11 08/14/11 08/15/11	1 1 1	97 2	30 2		1	1	9 4 7		2	6 2 4	123 1		269 11 14	7 6 7	19 15 12	1019 1015 1010	74 92 98
08/16/11 08/17/11	1 1	3 50	1 39		4	1	6 45		9 3	3 19	1 22		23 183	8 7	16 19	1010 1020	92 78
08/18/11 08/19/11 08/20/11	1 1 1	120 39 68	35 46 58	1	3	2 5 1	86 25 45		30 4 6	17 9 12	55 35 16		349 163 207	8 7 6	19 18 20	1016 1014 1015	80 80 81
08/21/11 08/22/11 08/23/11	1 1 1	2	3	1	1	1 3	43 19 136		75 25 30	22 37 89	1 1		148 89 255	11 9 9	17 12 16	1012 1009 1016	89 74 77
08/24/11 08/25/11	1	1 7	5		1	1	164 120		4 36	14 26	14 18		203 210	10 9	17 17	1017 1012	75 89
08/26/11 08/27/11 08/28/11	1 1 1	12	3				6 7		9	6 2	6		42 2 15	4 7 15	20 18 12	1016 1013 992	82 91 96
08/29/11 08/30/11 08/31/11	1 1 1	1 44 18	59 3		2		4 71 16		1	7 13 4	15 12		13 204 53	5 10 3	14 17 16	1012 1020 1023	73 84 77
9/01/11	1	37	4 21			1 2 2	6 28	1		11 7	1 11		23 107	4 8	14 15	1024 1021	84 76
9/03/11 9/04/11 9/05/11	1 1 1	3 4 1	1		1	2 1 1	16 4 4			9 3 7	6 8		37 21 13	6 9 7	21 19 14	1014 1012 1011	85 91 86
9/06/11 9/07/11 9/08/11	1 1 1	1 6	1	1	1	1	2			1 1 1	2		1 5 14	7 3 4	13 11 15	1017 1024 1019	93 98 96
9/09/11 9/10/11	1	10 1	7			1	6			4 1	3		31 2	8 6	15 11	1012 1015	83 75
9/11/11 9/12/11 9/13/11	1 1 1	1 56 68	1 4 10		1		49 13 31	1	1	18 5 13	9 39		69 88 163	11 7 11	14 17 18	1020 1016 1013	80 84 86
9/14/11 9/15/11 9/16/11	1 1 1	3 1 1	1			1	16			8	1		30 1 1	3 13 7	17 5 5	1014 1013 1023	83 91 67
)9/17/11)9/18/11	1		1				1						1	4 5	9 7	1032 1032	77 76
9/19/11 9/20/11 9/21/11	1 1 1	1 54	31			1	83 60 112		2	4 6 22	1 26		91 67 246	8 8 5	10 13 16	1026 1020 1025	77 93 84
9/22/11 9/23/11 9/24/11	1	2			1		97 17 77			24 8			123 26	5 4	18 17	1021 1020	93 95
)9/25/11)9/26/11	1 1 1	1	1	1			10 12			10 7 9	1 2		88 18 35	6 5 3	18 18 18	1017 1019 1017	95 90 92
9/27/11 9/28/11 9/29/11	1 1 1	5 1					4 2 13		1	4 2 12			14 5 25	5 7 8	14 14 12	1017 1019 1008	88 80 97
09/30/11 0/01/11	1 1 0	10					3			6	2		21 0	5 7	14 14 8 11	1006 1005	88 98
0/02/11 0/03/11 0/04/11	0												0 0 0	3 5 12	9 9	1011 1017 1015	99 91 97
0/05/11 0/06/11 0/07/11	0 0 0												0 0 0 0	8 1 1	3 7 8	1017 1026 1031	76 61 69
0/08/11 0/09/11	0												0	2	16 17	1030 1028	71 71
0/10/11 0/11/11 0/12/11	0 0 0												0 0 0	2 0 1	17 13 10	1023 1024 1023	71 79 87
0/13/11 0/14/11	0												0	1 1	12 14	1013 1000	99 96
0/15/11 0/16/11 0/17/11	0 0 0												0 0 0	5 4 2	11 12 9	999 1006 1005	77 55 67
0/18/11	0												0	2 1 3	9 9 14	1011 1011 1001	70 94 91
0/20/11		2144	1234	16	118	87	1563	2	260	664	1055	0	7143	5	1.44	1001	U 1

ppendix	B Table	6. Summary	of acoustic	bat data ar	nd weather o	during each	survey nig	ht at the Wi	llard Tree d	etector – A	ntrim Wind	Project, Su	immer/Fall 2	2011.			
Night of	■ Operational?	H H H H H H H H H H	BBSH umoo g Big 21	ω Silver-haired	HB Aroary 1	MYSP ds X	Eastern red	RBTB Lui-colored	RBTB	HFUN	UNKN	NKN	Total T	1 Wind Speed (m/s)	Demperature (celsius)	Barometric Pressure	64 Relative Humidity (%)
6/02/11 6/03/11 6/04/11	1 1 1												0	12 9 7	8 10 9	1011 1016 1019	61 54 57
6/05/11 6/06/11	1 1	23 13	11 2		1						6		35 26	5 4	13 18	1019 1016	73 81
6/07/11 6/08/11 6/09/11	1 1 1	17 15 8	20 13 5		2	2	4			1	5 4 3		49 32 38	6 12 8	20 19 17	1013 1012 1012	62 65 88
06/10/11 06/11/11 06/12/11	1 1 1	3	27		19						10		59 0 0	6 7 2	14 8 10	1014 1020 1015	83 94 94
06/12/11 06/13/11 06/14/11	1	1	1		1								3 0	5 9	11 11	1013 1012 1013	85 88
06/15/11 06/16/11 06/17/11	1 1 1	7	16 25		72 46 178	1 157 5				34 1	3 6 12		76 266 230	8 9 6	15 18 15	1011 1013 1013	78 78 90
6/18/11 6/19/11	1	1 7	9 4		132 45	3 2				1	7 10		153 68	9 7	15 14	1010 1011	80 61
06/20/11 06/21/11 06/22/11	1 1 1	9	11 7 1		25					1 2	6 2		52 11 1	4 3 6	16 19 15	1013 1014 1014	67 66 96
06/23/11 06/24/11 06/25/11	1 1 1	2	8		1	1					1		0 0 13	7 5 5	12 9 15	1012 1011 1011	98 97 94
06/26/11 06/27/11	1 1	1 22	1 27		183 133	4 1				1	2 7		192 191	8 4	16 19	1014 1017	82 72
06/28/11 06/29/11 06/30/11	1 1 1	2	4		166 224	4	2			2 1 1	5 3		14 172 229	7 11 8	17 14 15	1014 1011 1013	77 81 63
)7/01/11)7/02/11	1 1	10 21	10 28		1	5	4				1		21 62	5 7	16 18	1016 1018	71 72
07/03/11 07/04/11 07/05/11	1 1 1	5 13	5 4 7		54 4	1	62 5 2			2	4		74 68 30	7 4 7	18 20 21	1012 1010 1013	86 80 82
7/06/11 7/07/11 7/08/11	1 1 1	12 3 4	26 12 7		93 2 2	1 1					18 8 4		150 26 17	11 4 5	17 17 18	1013 1014 1013	73 74 87
7/09/11 7/10/11	1 1	5 17	4 25		2 23 6	2	1 3			1	6 4		39 58	6 10	16 20	1010 1018	84 66
)7/11/11)7/12/11)7/13/11	1 1 1	35	93 9 3		6	6 1	24 5			27 3	5 4		190 37 4	8 8 8	23 20 12	1014 1005 1008	72 71 74
7/14/11 7/15/11	1 1	1 38	5 323			2	1			3	1 6		7 373	8 7	16 18	1016 1019	69 63
07/16/11 07/17/11 07/18/11	1 1 1	40 14 5	63 28 4		1	2	2 1 2		1	2	6 6 2		115 51 15	10 12 8	21 22 19	1021 1019 1013	65 63 78
7/19/11 7/20/11 7/21/11	1	5 24 13	4 75 25		4	3 2 1	2 2 3			2 2 3	23 6		16 132 51	4 10 11	20 22 26	1011 1012 1008	69 72 78
)7/22/11)7/23/11	1 1	11 8	2		1 3		17 2			3	3		37 20	6 9	23 22	1010 1013	60 71
7/24/11 7/25/11 7/26/11	1 1 1	10 2 1	4 1 2			2	1			1 1 4	1		18 5 19	5 6 9	18 14 15	1014 1014 1008	68 85 84
)7/27/11)7/28/11	1 1	4 176			1	1	1			2 21	1 149		10 346	5 6	16 20	1012 1018	69 71
7/29/11 7/30/11 7/31/11	1 1 1	1 15 18	3 14 33		7	1	19 2 5			11 4 2	1 7 5		36 42 72	9 7 7	19 17 21	1013 1012 1017	90 76 70
08/01/11 08/02/11 08/03/11	1 1 1	12 3 6	22 4 5		3	1	3 4 19			1 1 4	14		53 12 40	10 7 3	19 15 16	1011 1007 1008	80 66 74
08/04/11 08/05/11	1 1	1 24	54		7	3	15 10			3 2	22		22 119	4	16 19	1014 1019	81 77
08/06/11 08/07/11 08/08/11	1 1 1	1	7				16			6 1 2	1		22 9 10	7 4 6	18 20 18	1016 1008 1001	81 91 90
08/09/11 08/10/11 08/11/11	1	1			2 3 8	1 2 4	29 47			6 16	1		3 42	7 8 9	16 16 14	1004 1002 1010	89 88
)8/12/11)8/13/11	1	9 55	4 99		9	2	27 51		1 2	19 7	1 6		75 61 231	9 4 7	18 19	1016 1019	65 74 74
08/14/11 08/15/11 08/16/11	1 1 1	1	4				43 2 40			14 8			58 2 52	6 7 8	15 12 16	1015 1010 1010	92 98 92
)8/17/11)8/18/11	1 1	18 20	7 18		158		97 50		1	6 12	2 16		130 275	7 8	19 19	1020 1016	78 80
08/19/11 08/20/11 08/21/11	1 1 1	47 32 5	33 27 4		8	1	12 28 34		1	3 3 7	2 3 4		106 95 54	7 6 11	18 20 17	1014 1015 1012	80 81 89
8/22/11 8/23/11 8/24/11	1 1 1	21	41	1		1	11 36 2			4 5 2	2		16 44 71	9 9 10	12 16 17	1009 1016 1017	74 77 75
08/25/11 08/26/11	1 1	19	14 16	1	2		5 3		1	1 5			21 46	9 4	17 20	1012 1016	89 82
08/27/11 08/28/11 08/29/11	1 1 1	2	1	1			2			1 2 1	1		6 2 8	7 15 5	18 12 14	1013 992 1012	91 96 73
8/30/11 8/31/11 9/01/11	1 1 1	3	6 10 51	2	2		31 1 3			5 3	3 8 4		47 27 77	10 3 4	17 16 14	1020 1023 1024	84 77 84
9/02/11 9/03/11	1 1	32 53	9 10	2	1		16 57			7 16	1 8		68 144	8 6	15 21	1021 1014	76 85
9/04/11 9/05/11 9/06/11	1 1 1	25	6				42 16			8 12 1	6		87 28 1	9 7 7	19 14 13	1012 1011 1017	91 86 93
9/07/11 9/08/11	1 1	1	6		4		1	1		1	1		1 10	3 4	11 15	1024 1019	98 96
9/09/11 9/10/11 9/11/11	1 1 1	2	6	1	1		29			7	1		19 1 39	8 6 11	15 11 14	1012 1015 1020	83 75 80
9/12/11 9/13/11 9/14/11	1 1 1	11 10 1	4 9 4	2	1	1	224 376 249		2 1 1	13 17 13	1		256 415 270	7 11 3	17 18 17	1016 1013 1014	84 86 83
9/15/11 9/16/11	1 1												0	13 7	5 5	1013 1023	91 67
9/17/11 9/18/11 9/19/11	1 1 1	1		5	1	1	19			1 7			7 1 27	4 5 8	9 7 10	1032 1032 1026	77 76 77
9/20/11 9/21/11 9/22/11	1 1 1	16	11	5			145 249 320			3 26 27	2		148 309 348	8 5 5	13 16 18	1020 1025 1021	93 84 93
9/23/11 9/24/11	1	2	2	6			19 42			3 4			22 56	4	17 18	1020 1017	95 95
9/25/11 9/26/11 9/27/11	1 1 1	4 9 2	2 3	3			20 33 30			1 9 11	1		27 58 45	5 3 5	18 18 14	1019 1017 1017	90 92 88
9/28/11 9/29/11 9/30/11	1	3		4		1	3 83 40			6 6 5			9 89 53	7 8 5	14 12 14	1019 1008 1006	80 97 88
0/01/11 0/02/11	1 0	3		4			40			ა ე	1		1 0	7 3	8 11	1005 1011	98 99
0/03/11 0/04/11 0/05/11	0 0 0												0 0 0	5 12 8	9 9 3	1017 1015 1017	91 97 76
0/06/11 0/07/11	0												0	1 1	7 8	1026 1031	61 69
0/08/11 0/09/11 0/10/11	0												0 0 0	2 1 2	16 17 17	1030 1028 1023	71 71 71
0/11/11 0/12/11	0												0	0	13 10	1024 1023	79 87
0/13/11 0/14/11 0/15/11	0 0 0												0 0 0	1 1 5	12 14 11	1013 1000 999	99 96 77
0/16/11 0/17/11 0/18/11	0 0 0												0 0 0	4 2 2	12 9 9	1006 1005 1011	55 67 70
0/19/11 0/20/11	0	4.77	4844		4071	007	0000			10-	40-	^	0	1 3	9 14	1011 1001	94 91
By Sp	Build	1158	1539 2735	38	1671 1671	238 238 MYSP	2822	1 2834 RBTB	11	497	495 992 UNKN	0	8470 Total				