NEW HAMPSHIRE ALTERATION OF TERRAIN PERMIT APPLICATION FOR THE ANTRIM WIND PARK PROJECT IN ANTRIM, NEW HAMPSHIRE

Submitted to:

NEW HAMPSHIRE SITE EVALUATION COMMITTEE

Submitted by:

Antrim Wind Energy 155 Fleet St. Portsmouth, NH 03801-0065

Prepared by:

TRC

10 Maxwell Drive

Clifton Park, NY 12065

January 2012

Application Elements

(From Item #7 of the Application Form)

• Copy of the signed application form

Exhibit 1

• Copy of the check

Exhibit 2

• Copy of the USGS map with the property boundaries outlined (1" = 2000' scale)

Exhibit 3

• Copy of the proof of delivery to the municipality

The Town of Antrim Board of Selectmen will be provided with a copy of the entire SEC application at the time it is filed. The Applicant will file a copy of the return receipt or other documentation of receipt by the Town with the SEC and has reserved Appendix 8 of the SEC application for this purpose.

• Application checklist

Exhibit 4

• Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points

See Stormwater Management Narrative (Exhibit 5)

- Web GIS printout with the "Surface Water Impairments" layer turned on Exhibit 3
- Web GIS printouts with the AoT screening layers turned on

Exhibit 3

• NHB letter

Exhibit 6

• The Web Soil Survey Map with the project's watershed outlined

See Civil Design Drawings (Exhibit 7A of the SEC Application) Sheet WS-3

• Aerial Photograph (1" = 2000' scale with the site boundaries outlined)

Exhibit 3

• Photographs representative of the site

Exhibit 7

Groundwater Recharge Volume calculations

See Stormwater Management Narrative (Exhibit 5) Section 4.1.2

• BMP worksheets

- See Stormwater Management Narrative (Exhibit 5) Appendix B
- Drainage analysis

See Stormwater Management Narrative (Exhibit 5) Appendix A

• Riprap apron or other energy dissipation or stability calculations

See Stormwater Management Narrative (Exhibit 5) Appendix C

• Site Specific Soil Survey report

Not applicable—waiver requested. See Exhibit 8 for Waiver Request

• Infiltration Feasibility Report

Not applicable—See Stormwater Management Narrative (Exhibit 5) Section 4.1.3

- Registration and Notification Form for Storm Water Infiltration to Groundwater Not applicable— See Stormwater Management Narrative (Exhibit 5) Section 4.1.3
- Inspection and maintenance manual with long term maintenance agreements

See Post-Construction Stormwater Management, Inspection, & Maintenance Plan (Exhibit 9).

• Source control plan

Not applicable, per NH DES Environmental Fact Sheet WDDWGB225: The project will use best management practices (BMPs) so that there will be no contact between regulated substances and precipitation/ runoff from any portion of the site.

• One set of design plans on 24" x 36" white paper

See Civil Design Drawings (Exhibit 7A of the SEC Application)

• Pre- & post-development color coded soil plans

See Civil Design Drawings (Exhibit 7A of the SEC Application) Sheet WS-3

- Pre- & post-development drainage area plans on 24" x 36" white paper See Civil Design Drawings (Exhibit 7A of the SEC Application) Sheets WS1 & WS2
- 100-year Floodplain Report

Not applicable. The project is not within a 100-year floodplain.

Exhibit 1

Application Form

ALTERATION OF TERRAIN APPLICATION		
R.S.A. 485-A:17		
Department of Environmenta	ll Services - Water Division	
29 Hazen Driv	e, PO Box 95	
Concord, New Ham	pshire 03302-0095	
Application Date: <u>1/31/12</u>	File Number (DES use):	
ANTRIM WINDPARK	212-27, 30, & 34; 235-14; 236-1; 236-2; 239-1	
Name of Project	Map & Lot Number	
ANTRIM, NH	HILLSBOROUGH	
Location of Project (town)	County	
Check Project Type:		
	Agricultural Candfill	
	Land Conversion Other <u>specify</u>	
1. Applicant Information (the desired permit holder)		
ANTRIM WIND ENERGY, LLC	generate@eolian-energy.com	
Name of Applicant	Email address (optional)	
JOHN B. KENWORTHY	603-570-4842	
Contact Name	Telephone Number	
155 FLEET ST.	603-457-0065	
Mailing Address	Fax Number	
PORTSMOUTH City/Town	$\frac{\text{NH}}{\text{State}} = \frac{03801 - 4050}{7 \text{in Code}}$	
2. Property Owner Information	State Zip Code	
SEE EXHIBIT 11 Name of Property Owner (if different from applicant) 11	Email address (antional)	
Name of Property Owner (if different from applicant)	Email address (optional)	
Contact Name	Telephone Number	
Mailing Address	Fax Number	
<u></u>		
City/Town 3. Agent Information	State Zip Code	
TRC	JSBROWN@TRCSOLUTIONS.COM	
Agent Company JOSHUA BROWN	Email address 518-688-3146	
Contact Name	Telephone Number	
10 MAXWELL DR.	518-348-1194	
Mailing Address	Fax Number	
CLIFTON PARK	NY 12065	
City/Town	State Zip Code	
4. Provide a <i>short</i> description of the project below (d	o not reply "see attached"):	
Construct 10 wind turbines and associated infrastructure, include	ling access roads, a collection system, an operations and	
maintenance building, and a substation in Antrim, NH.		
5. If any work was done prior to receiving a permit,	describe it below:	
Installation of metorological tower (2009).		

6.	Please answer the questions below – <u>no field should be left blank, if not applicable, state "NA":</u>
A.	Date a copy of the <i>complete</i> application was sent to the municipality ¹ : $\frac{1/31/12}{1}$
B.	Total area of disturbance: 2,522,124 square feet
C.	Additional impervious cover as a result of the project: <u>5</u> 00,940 square feet (use "-" sign for a reduced amount) Total impervious cover for project: <u>500,940</u> square feet
D.	Total Undisturbed cover: <u>566,280</u> square feet
E.	Number of lots proposed: <u>0</u>
F.	Total length of roadway: <u>21,120</u> feet
G.	Select plan type submitted: Land Conversion Excavation, grading, and reclamation Steep Slope Detailed Development Plan
H.	Name of receiving waters: <u>NORTH BRANCH RIVER</u> ; <u>WILLARD POND</u> , <u>GREGG LAKE</u> , <u>UNNAMED STREAM</u> Using NHDES's Web GIS OneStop program (<u>www2.des.state.nh.us/gis/onestop/</u>), with the Surface Water Impairment layer turned on, list the impairments identified: <u>Gregg Lake: Chlorophyll-a; Phosphorus (total)</u> (enter "NA" if no pollutants are listed). For more guidance see: <u>http://des.nh.gov/organization/divisions/water/wmb/tmdl/documents/onestop_gis_wgc_ref_guide.pdf</u>
	Name of designated river: <u>NA</u> (enter "NA" if not within a designated river corridor) Date a copy of the <i>complete</i> application was sent to the Local Advisory Committee (LAC) ¹ : <u>N</u> A
	Name of species identified by the Natural Heritage Bureau as threatened or endangered or of concern: See attached NHB letter of 8/3/11.
K.	Cut volume <u>N</u> /A cubic feet and fill volume N/A cubic feet within the 100-year floodplain (enter "NA" if not within the floodplain)
	Is the project within a Water Supply Intake Protection Area (WSIPA)? YES NO KIER NO KI
	Guidance document titled " <i>Using DES's OneStop WebGIS to Locate Protection Areas</i> " is available online. For more details on the restrictions in these areas, read Chapter 3.1 in Volume 2 of the NH Stormwater Manual.
M.	Is the project a High Load area, in accordance with Env-Wq 1502.26? YES NO
N.	Other State Permits/Approvals
	Total wetland impact <u>8,349</u> square feet. Enter "NA" if no wetland permit required. Status of filing or if permitted, state permit number: <u>pending</u> (e.g., NA, not yet applied, pending, 2010-0001)
	Status of shoreland application or if permitted, state permit number: \underline{NA} (e.g., NA, not yet applied, pending, 2010-0002). If project is in protected shoreland but exempt, state "exempt" and state why exempt.
	Status of large or small community well approval or if approved, state date of the Well Siting Approval letter: <u>NA</u> (e.g., NA, not yet applied, pending, 12/1/2010).
	Status of large groundwater withdrawal application or if approved, state permit number: <u>NA</u> (e.g., NA, not yet applied, pending, LGWP-2010-0001).
	List other DES permits required and state their status? Pending: SEC Permit; 401 Water Quality; Dredge and Fill
0.	If you have had a pre-application meeting with AoT staff, state his or her name(s): <u>CRAIG RENNIE</u> Attach a copy of the meeting minutes
the	A copy of the application, <u>including all items in #7</u> , must be sent to the applicable municipality and, if applicable, to local rivers management advisory committee (LAC) at the same time (or before) filing this AoT permit application. vide proof of delivery is required, in accordance with Env-Wq 1503.05(c)(4).

7. In the order listed, please include the following as part of your application, if applicable:		
CHECK ALL THAT APPLY		
Loose:		
Bind in a report in the following order:		
 Plans: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details) Pre & post-development drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) 		
100-year Floodplain Report – submitted as a separate report: All information required in Env-Wq 1503.09		
8. Signature Required:		
Signature of applicant of applicant's agent 126/12 Date John TS. Kenworthy Name of applicant or applicant's agent		
Signature of owner or owner's agent, if different from applicant Date Name of owner or owner's agent, if different from applicant		

Note: In accordance with Env-Wq 1503.20(e), within one week after permit approval, the applicant shall submit a copy of all approved documents to the department in PDF format on a CD.

Last revised: December 2010

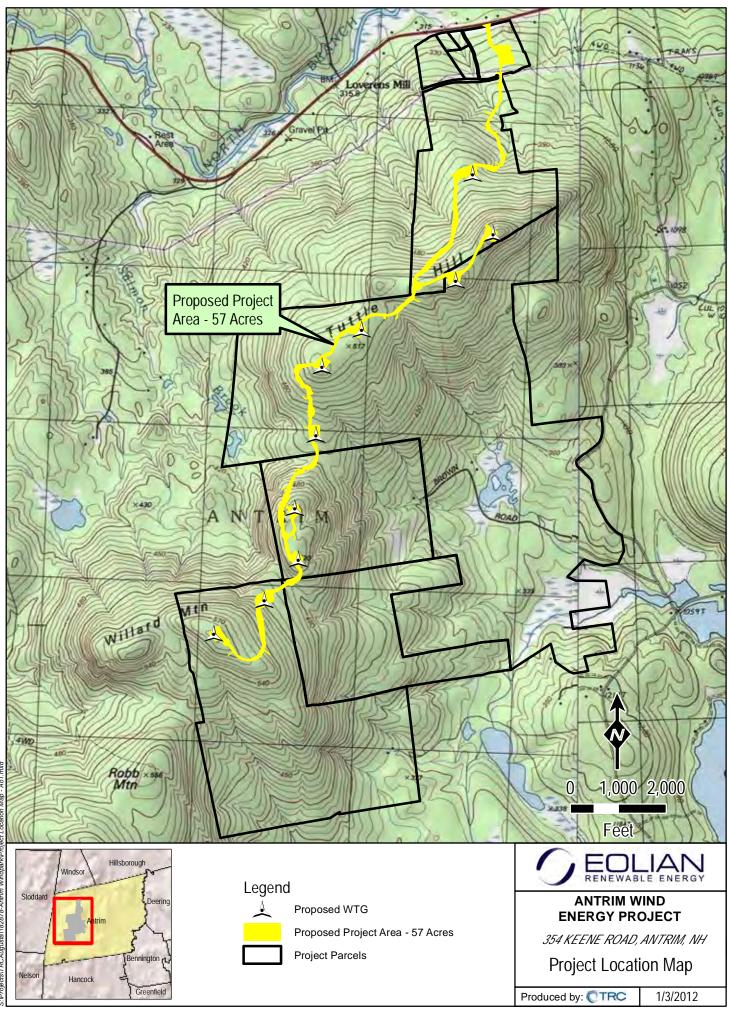
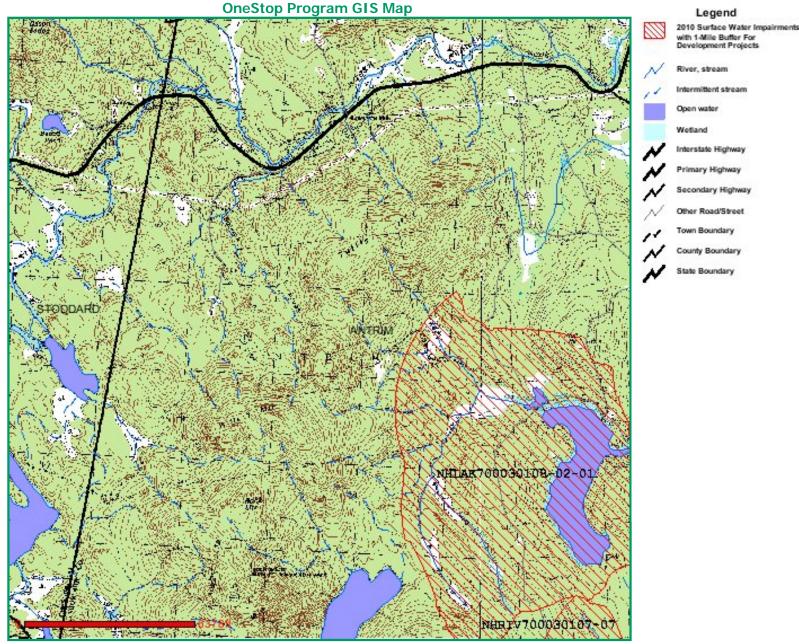

Page 3 of 3

Exhibit 2

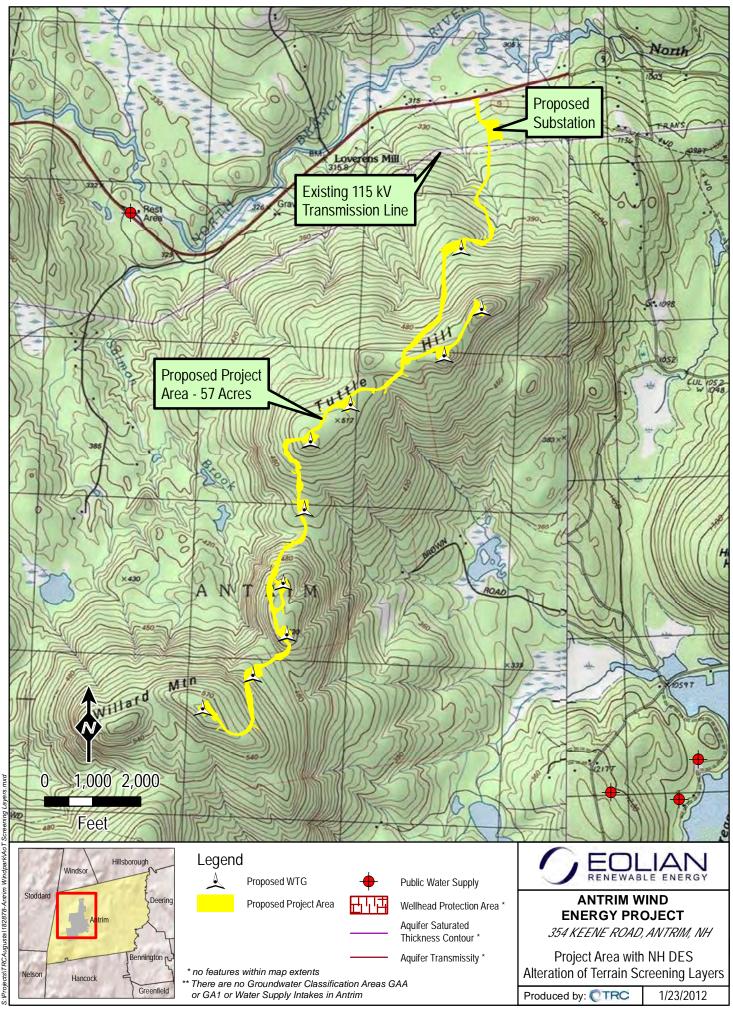
Copy of the Application Check


Exhibit 3

Project Mapping

Projects\TRCAugusta\182878-Antrim Windpark\Project Location Map -.

New Hampshire Department of Environmental Services OneStop Program GIS



Map Scale = 1 : 60951 (1" = 1 miles or 5079 feet)

The information contained in the OneStop Program GIS is the best available according to the procedures and standards of each of the contributing programs and of the GIS. The different programs are regularly maintaining the information in their databases. As a result, the GIS may not always provide access to all existing information, and it may occasionally contain unintentional inaccuracies. The Department can not be responsible for the misuse or misinterpretation of the information presented by this system.

Map prepared 1/3/2012 9:56:30 AM

Source: NH Department of Environmental Services Drinking Water and Groundwater Bureau

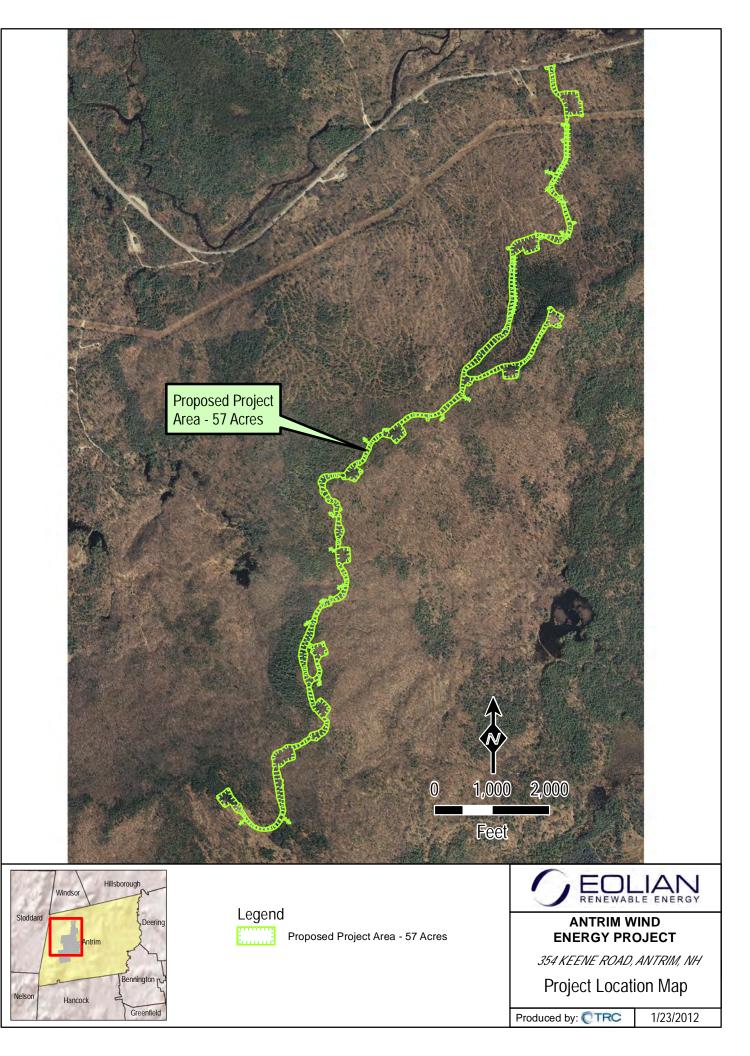


Exhibit 4

Application Checklist

ALTERATION OF TERRAIN APPLICATION CHECKLIST

R.S.A. 485-A:17 Department of Environmental Services - Water Division 29 Hazen Drive, PO Box 95 Concord, New Hampshire 03302-0095

CHECK the box if the item has been provided and please be sure to review your application, prior to submitting. If an item does not apply, please state why. Don't forget to review section 7 on the application form as well.

Checks for the design plans:

checks for the design plans.
Plans printed on 34 - 36" by 22 - 24" on white paper
PE stamp
Wetland delineation
Temporary erosion control measures
Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways),
parking areas, and non-residential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
Pre-existing 2-foot contours
Proposed 2-foot contours
Drainage easements protecting the drainage/treatment structures
Compliance with the Wetlands Bureau, RSA 482- A
http://des.nh.gov/organization/divisions/water/wetlands/index.htm
Note that artificial detention in wetlands is not allowed.
Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B
http://des.nh.gov/organization/divisions/water/wetlands/cspa
Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope. <i>N/A per ENV-WQ 1508.19(a)</i>
Check to see if any proposed ponds need state Dam permits. For more information see:
http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf N/A; no ponds proposed.
Provide the following details on the plans, as applicable:
Typical roadway x-section
Detention basin with inverts noted on the outlet structure N/A ; no ponds proposed.
Stone berm level spreader
Outlet protection – riprap aprons
\square A general installation detail for an erosion control blanket
Silt fences or mulch berm
Storm drain inlet protection – note that since hay bales must be embedded 4 inches into the ground, they are not to
be used on hard surfaces such as pavement. N/A ; no storm drain inlets utilized.
Hay bale barriers
Stone check dams
Gravel construction exit
The treatment BMPs proposed
Any innovative BMPs proposed None proposed .
Construction Secure control Notes
Construction Sequence/Erosion Control Notes Note that perimeter controls shall be installed prior to earth moving operations.
\square Note that permeter controls shall be installed early on in the construction sequence (before rough grading the site).
\square Note that all ditches and swales shall be stabilized prior to directing runoff to them.
\boxtimes Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
\boxtimes Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade.
\boxtimes Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.

Checks for the design plans (continued):

Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information. Example note: *The smallest practical area shall be disturbed during construction, but in no case shall exceed 5*

acres at any one time before disturbed areas are stabilized. Note the definition of the word "stable."

For example: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- \boxtimes Note the limit of time an area may be exposed.

For example: All areas shall be stabilized within 45 days of initial disturbance.

- Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book;
- however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified).
- \boxtimes Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After November 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.
- Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable". This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit. <u>N/A; no lots proposed.</u>

Checks for the drainage analyses: Please double-side your $8\frac{1}{2}$ " x 11" sheets where possible. However, please do not reduce the text such that more than one page fits on one side.

 \square PE stamp

Drainage analyses, *in the following order:*

- Pre-development analysis: Drainage diagram
- Pre-development analysis: Area Listing and Soil Listing
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year
- Pre-development analysis: Full summary of the 10-year storm
- Post-development analysis: Drainage diagram
- Post-development analysis: Area Listing and Soil Listing
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year
- Post-development analysis: Full summary of the 10-year storm

Review the Area Listing and Soil Listing reports.

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis, does this number make sense? For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Does this number make sense?

Checks for the drainage analyses (continued):
 Check the storage input used to model the ponds. Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.
 Check the outlet structure proposed and make sure it matches that modeled <u>N/A; none proposed.</u> Check to see if the total areas in the pre and post analyses are same Check to make sure the correct rainfall amount and NRCS storm type was modeled (Coos, Carroll, and Grafton counties are Type II, all others Type III).
Checks for the pre and post-development drainage area plans:
Plans printed on 34 - 36" by 22 - 24" on white paper
Submit these plans separate from the soil plans
\square A north arrow
A scale Labeled subcatchments, reaches and ponds
\boxtimes Labeled subcatchments, reaches and poinds \boxtimes Tc lines
\square A clear delineation of the sub-catchment boundaries
Roadway station numbers
Culverts and other conveyance structures
Checks for the pre and post-development color-coded soil plans:
11" x 17" sheets suitable, as long as it is readable
\boxtimes Submit these plans separate from the drainage area plans \boxtimes A north arrow
Name of the soil scientist who performed the survey and date the soil survey took place <i>done,waiver requested</i> .
2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features
Delineation of the soil boundaries and wetland boundaries
Delineation of the subcatchment boundaries
Soil series symbols (e.g., 26)
 A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor) The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray)
Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the
following are common exceptions/additions: N/A ; project is not an extraction project.
Drainage report is not needed if site does not have off-site flow.
5 foot contours allowed rather than 2 foot.
No PE stamp needed on the plans
Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the
Alteration of Terrain permit.
Add reclamation notes.
See NRCS publication titled: Vegetating New Hampshire Sand and Gravel Pits for a good resource, it is posted
online at: http://des.nh.gov/organization/divisions/water/aot/categories/publications.htm

Exhibit 5

Stormwater Management Narrative

ANTRIM WINDPARK PROJECT

Alteration of Terrain Permit Application

Stormwater Management Narrative

Submitted to:

New Hampshire Department of Environmental Services

prepared by

TRC 249 Western Avenue Augusta, ME 04330 (207) 621-7000 Project # 186317

January 2011

TABLE OF CONTENTS

1.0	ANT	RIM WI	NDPARK PROJECT	1
2.0	EXIS	STING C	ONDITIONS	1
	2.1	LAND	OVER	1
	2.2	SOILS	5	1
	2.3	SITE	ГОРОGRAPHY/HYDROLOGY	2
	2.4	DOW	NSTREAM WATERBODIES	2
3.0	PRO	POSED I	DEVELOPMENT DESCRIPTION	3
	3.1	ALTE	RATIONS TO LAND COVER	3
	3.2	ALTE	RATIONS TO NATURAL DRAINAGE WAYS	4
4.0	REG	ULATO	RY REQUIREMENTS	5
	4.1	RUNC	OFF QUANTITY CONTROL	5
		4.1.1	Watershed Analysis: Pre- v. Post-development	5
		4.1.2	Groundwater Recharge Volume	6
		4.1.3	Infiltration Feasibility Report	6
		4.1.4	Channel Protection	6
		4.1.5	Peak Control	6
	4.2	RUNC	OFF QUALITY CONTROL	
		4.2.1	Water Quality Volume	7
		4.2.2	Water Quality Flow	7
		4.2.3	Roadway Buffers	8
		4.2.4	Ditch Turnout Buffers	8
		4.2.5	Small Pervious Area Buffers	8
		4.2.6	Treatment Swales	9
		4.2.7	Bioretention Basins	9
	4.3	CONV	YEYANCE AND STABILIZATION	9
		4.3.1	Culvert Sizing	10
		4.3.2	Permeable Road Base	10
		4.3.3	Outlet Protection	10
		4.3.4	Ditch protection	11
		4.3.5	Slope Stabilization	11

5.0	RUNOFF ANALYSIS		11	
	5.1	METH	IODOLOGY	12
		5.1.1	Rainfall Data	12
		5.1.2	Curve Number Computations	12
		5.1.3	Time of Concentration Calculations	12
		5.1.4	Travel Time Calculations	12
		5.1.5	Reservoir Routing Calculations	12
		5.1.6	Peak Discharge Calculations	12
6.0	CONC	CLUSIO	NS	12

APPENDICES

Watershed Analysis Calculations
Water Quality Calculations
Conveyance and Stabilization Calculations
Runoff Analysis Calculations and Report

1.0 ANTRIM WINDPARK PROJECT

The proposed Antrim Windpark Project is a wind energy generation facility to be located in Antrim, New Hampshire. The project will include construction of ten (10) wind turbine generators, a substation, and associated access roads, crane pads, and stormwater management facilities. The proposed site is generally linear, running approximately north to south along the ridge top of Tuttle Hill and Willard Mountain and spanning several individually owned parcels. The site will be accessed from State Route 9 (Keene Road). Approximately 4.0 miles of gravel road will be constructed.

Within the project area, approximately 57.9 acres will be disturbed during construction. Following construction, approximately 46.4 acres will be restored and revegetated including roadway shoulders and side slopes, and much of the construction pad area at the tower locations. Approximately 11.5 acres will remain as permanently developed area including the access road, substation yards, crane pads, and tower foundations.

2.0 EXISTING CONDITIONS

2.1 Land Cover

The project site is predominantly unimproved and heavily wooded. The ridge can be accessed in several places by rough trails or 4WD roads. Evidence of past logging activities is clear in some areas. Public Service of New Hampshire (PSNH) maintains a right-of-way that crosses the northerly part of the site.

2.2 Soils

Soil information used in stormwater analysis was obtained from the Natural Resources Conservation Service (NRCS) medium intensity soil survey of Hillsborough County, New Hampshire. The information was downloaded from the NRCS Web Soil Survey website. See Appendix D for copies of this information. The Hydrologic Soil Groups (HSG) of the soils are classified by Technical Release TR-55 of the Natural Resources Conservation Service (formerly the Soil Conservation Service). Table 1 below summarizes the soils identified on or adjacent to the site.

Symbol	Soil Type	HSG
77C, 77D	Marlow stony loam	C
160B, 160C	Tunbridge-Lyman-Monadnock complex, stony	С
161C, 161D	Lyman-Tunbridge rock outcrop complex	С
399	Rock outcrop	D

2.3 Site Topography/Hydrology

The proposed project generally follows the ridge top from Tuttle Hill to Willard Mountain, with the land sloping primarily northwesterly and southeasterly. Slopes range from approximately 2 percent at the ridge top and saddles to approximately 50 percent along the steeper natural slopes. Elevations across the area that would be developed for the windpark range from approximately 1,050 to 1,900 feet above mean sea level. The project will run along the divide between four (4) watersheds. Currently runoff flows overland northwesterly to North Branch River, northeasterly to an unnamed watershed, southeasterly to Gregg Lake, and southerly to Willard Pond.

The two-foot contour information shown on the plans is based on an aerial survey performed by James W. Sewell Co. in 2011.

2.4 Downstream Waterbodies

As shown on the Watershed Plan, the project site straddles four (4) watersheds. Runoff from Watershed 1W flows northwesterly, under Route 9, to the North Branch River. Runoff from Watershed 2W flows northeasterly to an unnamed stream, which continues to its confluence with North Branch River at Steels Pond, and then on to Franklin Pierce Lake. Runoff from Watershed 3W flows southeasterly to Gregg Lake. And finally, runoff from Watershed 4W flows southerly to Willard Pond. In addition, several wetlands, vernal pools, and intermittent streams were identified on site during a natural resources survey performed by TRC in 2011.

3.0 PROPOSED DEVELOPMENT DESCRIPTION

This project involves the construction of a 10-turbine wind energy generation facility, including a 1.64 acre crushed stone yard area (PSNH substation, collector substation, and Operation & Maintenance building parking area), a 4.0 mile crushed stone access road, 10 graveled wind turbine generator construction areas, a 34kV collector system, and an associated stormwater management system.

3.1 Alterations to Land Cover

The substation yards are located approximately at STA. 8+00. They are located adjacent to the existing PSNH transmission corridor to minimize the amount of clearing required for the new lines. Both yards will be constructed to PSNH standards, with an open-graded crushed stone surface, two (2) control houses, an Operations & Maintenance building, and associated parking area and stormwater management facilities. The entire yard will be surrounded with a security fence.

An access road, with two (2) spur roads, will be constructed from the project entrance at Route 9 to its termination at WTG-10. The total length will be approximately 4.0 miles. The first 900 feet of the road will be paved, per PSNH standards, and the remainder will be constructed of crushed stone. From STA. 0+00 to STA. 37+12, the road will be constructed with a width of 16 feet. The remainder of the road will have a construction width of 34 feet to accommodate the crane. The road will have a maximum slope of 12%, with the exception of two short lengths where it reaches 13%. It will be graded with a mono-pitched cross slope of 2%. Side slopes will be constructed at a slope of 2H:1V to minimize the footprint. Upon completion of construction, the road width will be reduced to 16 feet along its entire length by revegetating a 9-foot shoulder on both sides. The side slopes will also be permanently stabilized and revegetated.

A gravel wind turbine construction area will be built at each WTG location. These areas will be approximately 0.9 acres, and will provide room for a 6000 square foot crane pad, a 20-foot diameter concrete tower foundation, and a turbine assembly area. These locations will also be used as staging and laydown areas during construction. After construction, a significant portion of each of these areas will be revegetated, leaving the 6,000 square foot crane pad as impervious area. See Sheet C-20 for a reclamation detail.

A 34.5 kV collector system will be constructed from the turbines to the collector sub-station. Beginning at WTG-10, the collector system will be constructed underground, under the roadway. It will remain underground to STA. 64+50. From STA. 64+50 to STA. 42+00 the collector system will run overhead, roughly parallel to the road. At STA. 42+00 it goes back underground to STA. 36+30, while in the vicinity of WTG-1. It then returns to overhead to STA. 11+15. From STA. 11+15, it will run underground to the substation.

3.2 Alterations to Natural Drainage Ways

The stormwater management system has been designed to minimize impacts to the existing natural drainage ways. Because much of the road will be constructed on the crest of the ridge, overall drainage patterns and directions of flow will remain generally the same. A permeable road base (rock sandwich) will be provided at appropriate locations to maintain sheet flow conditions and provide hydraulic connectivity between wetlands. Where steep roadway/ditch slopes will impede the effectiveness of a permeable road base, culverts have been spaced every 100 feet in order to minimize channelization of runoff. In addition, oversized culverts will be installed in locations where animals are likely to want to cross under the roadway.

The roadway will cross two (2) identified streams. The first stream crossing is located near STA. 2+25. In this area, the road is in approximately 10 feet of cut. This is necessary in order to meet the maximum slope requirement of 12% for construction and delivery vehicles. As such, impacts to the stream cannot be avoided. The second crossing is located near STA. 18+75. For this crossing, culvert SD-4 will be a 3-sided concrete box culvert designed to comply with NHDES stream crossing guidelines. A culvert cross section detail is provided on Sheet C-24.

The project has been laid out to minimize wetland impacts to the greatest extent practicable. However, construction will result in approximately 0.189 acres of wetland impacts.

4.0 **REGULATORY REQUIREMENTS**

This Stormwater Management Narrative has been prepared as part of an NHDES Alteration of Terrain Permit application. As such, the project has been designed to meet the standards set forth in the "New Hampshire Code of Administrative Rules, Chapter Env-Wq 1500 Alteration of Terrain", as well as the "New Hampshire Stormwater Manual (Volumes 1, 2, and 3) –December 2008".

4.1 Runoff Quantity Control

Design requirements for runoff quantity control are included in Chapter 2 of the New Hampshire Stormwater Manual (SWM).

4.1.1 Watershed Analysis: Pre- v. Post-development

Because this project will result in a relatively small amount of new impervious area distributed between four (4) expansive, largely undeveloped watersheds, it is unlikely that the development will result in a significant increase in runoff compared to the pre-development condition. When this issue was discussed during the pre-application meeting held with NHDES, it was concluded that a curve number (CN) comparison between the pre- and post-development conditions would be an acceptable substitute for a formal stormwater runoff analysis. The study demonstrated that neither the composite CNs nor the times of concentration (Tc) will change as a result of this project, in any of the four (4) watersheds. Therefore, it is reasonable to conclude that construction of the windpark will not result in an increase in peak rates of runoff from the site.

See Appendix A for CN and Tc calculations. Minutes from the preapplication meeting are included in this application.

4.1.2 Groundwater Recharge Volume

The Groundwater Recharge Volume (GRV) criterion is a standard implemented to protect groundwater resources. The volume is calculated by the equation:

$$GRV = A_i * R_d$$

Where A_i represents the Effective Impervious Area created by the development. Because this project will create no effective impervious area, the GRV is also zero, and no infiltration is required.

4.1.3 Infiltration Feasibility Report

No infiltration is proposed for this project. Therefore an Infiltration Feasibility report has not been prepared.

4.1.4 Channel Protection

The Channel Protection criterion is intended to prevent erosion and sedimentation of streams, downstream receiving waters, and wetlands. Based on the Watershed Analysis described in section 4.1.1 above, the 2-year, 24-hour post-development peak flow rates and runoff volumes will not increase significantly from the pre-development condition as a result of the project. Therefore, no runoff quantity controls are required.

4.1.5 Peak Control

The Peak Control criterion is intended to prevent off-site impacts due to an increase in the peak rate of runoff resulting from a development. Based on the Watershed Analysis described in section 4.1.1 above, the 10-year and 50-year, 24-hour post-development peak flow rates are not anticipated to

increase significantly as a result of the project. Therefore, no runoff detention facilities are required.

4.2 Runoff Quality Control

Design requirements for runoff quality control are included in Chapters 2 and 4 of the New Hampshire Stormwater Manual (SWM). However, since the New Hampshire stormwater regulations do not address the atypical nature of a linear project such as this, the Maine Stormwater Management (Chapter 500) rules were used as a secondary reference. Under Chapter 500 rules for a linear project, a stormwater management system is required to capture and treat the water quality volume of runoff from at least 75% of the impervious area and 50% of the total developed area. For this project, the impervious area and developed area are equal because all revegetated areas will return to a natural condition (no landscaping).

To address the applicable water quality treatment standards for this project, the stormwater management system incorporates a combination of roadway buffers, ditch turnout buffers, treatment swales, and bioretention basins. The proposed stormwater management system provides treatment for the water quality volume of runoff from 81% of the new impervious area.

4.2.1 Water Quality Volume

The Water Quality Volume (WQV) is the amount of runoff from a rainfall event that is required to be captured and treated by a pollutant removal device. The volume is based on the first one (1) inch of rainfall. For this project, WQV calculations are required for the water quality swales and bioretention basins. Refer to Appendix B for all WQV calculations.

4.2.2 Water Quality Flow

The Water Quality Flow (WQF) is the flow rate used for sizing flowthrough water quality treatment devices. Calculation of the WQF is based on the WQV. For this project, WQF calculations are required for the water quality swales. Refer to Appendix B for all WQF calculations.

4.2.3 Roadway Buffers

Roadway buffers are the preferred method of water quality treatment for this project. Since the access roads are the predominant design feature, roadway buffers are well-suited to the site. They are especially suitable because of their low-impact, low maintenance characteristics. The design criteria for roadway buffers include; 1) a length of 50 feet for a single lane of traffic, and 2) a maximum slope of 20%. The buffers delineated on the design plans incorporate 9 feet of revegetated shoulder and 20 feet of embankment slope (roughly 60% of the total length). Due to the challenging topography and remoteness of the site, the criteria are not always strictly adhered to. For example, in some cases the crane pad area must drain across the road or the buffer slope somewhat exceeds 20%. In these situations the buffer length has been increased to 75 feet.

4.2.4 Ditch Turnout Buffers

Ditch turnout buffers are proposed for areas where the roadway is not approximately parallel to the contours, but the slopes are suitable for buffers. These are reasonably low impact and low maintenance devices. The design criteria for this method are vague and difficult to interpret, so engineering judgment was used in the design. The buffer length is determined by the size of the contributing area, with a slope no greater than 15%. The level spreader length must be from 20 to 50 feet in length. Refer to Appendix B for ditch turnout buffer calculations.

4.2.5 Small Pervious Area Buffers

Small pervious area buffers are proposed for wind turbine locations where the revegetated construction area can be graded to act as a buffer for the permanent impervious areas. These locations include WTG-2, 5, 9, and 10. The design criteria in the NHSWM were followed.

4.2.6 Treatment Swales

Treatment swales are proposed in areas that are too steep for buffers. Design of these swales is a multi-step procedure. First, the WQV and WQF were calculated using the methodologies described in the guidance documents. Second, a worksheet was created using *FlowMaster V8i* software. For this analysis, swale parameters and discharge (WQF) were used as input. The software applies the Manning's formula to calculate the normal depth and velocity. Finally an appropriate length was used with the velocity such that the minimum residence time of 10 minutes was achieved. The swales were then checked for adequate capacity and stability. A HydroCAD model was created for this step using the design parameters determined in the first part of the process, and the 10-year, 24-hour storm. Because the contributing subcatchments (designated with an SW-_) are relatively small, a minimum Tc of 6 minutes was assumed. Refer to Appendix B for treatment swale calculations.

4.2.7 Bioretention Basins

Two (2) bioretention basins are proposed for the substation yard area. The WQV was calculated using the methodology described in the guidance documents, and an appropriately sized basin was designed. Both basins will be underdrained to avoid any potential infiltration difficulties. Refer to Appendix B for bioretention basin calculations.

4.3 Conveyance and Stabilization

Conveyance features utilized in this project include culverts, permeable road base, and open roadside ditches. All conveyance features were designed in accordance with the appropriate criteria described in the guidance documents. Subcatchments delineated for conveyance analysis are designated with a number such as 1.3, which indicates that it is the 3rd subcatchment delineated in watershed WS-1.

4.3.1 Culvert Sizing

HydroCAD software (see section 5.1 below) was used to determine appropriate culvert sizes. Contributing subcatchments were delineated on the Stormwater Management Plan and modeled with the analysis software. The 25-year, 24-hour storm event was used as the basis for culvert sizing. A minimum diameter of 15 inches was used in most cases, in order to minimize the blockage potential between inspection and maintenance visits. However, 12 inch culverts are proposed for the steeper areas where they are placed every 100 feet. See Appendix D for the *HydroCAD* reports.

4.3.2 Permeable Road Base

Permeable road base is a specialized road based constructed of coarse rock that allows runoff to pass freely under the road. The runoff is discharged as sheet flow, minimizing or eliminating the need for culverts. Permeable road base is proposed for: 1) reasonably flat lengths of roadway where bypass is less likely, 2) areas where the road is in a fill condition to minimize channelization of runoff, and 3) areas where the roadway crosses wetlands and maintaining hydrologic/hydraulic connectivity is desirable. Refer to Sheet C-24 for details.

4.3.3 Outlet Protection

Plunge pools are the predominant means of outlet protection proposed for this project. They have been designed based on the guidance in Section 4-6.6 of the NHSWM. While the level spreaders are intended as part of a water quality device, they also perform as outlet protection. In addition, permanent check dams are provided for certain channel outlets where anticipated design flows are small. Refer to Sheet C-24 for details.

4.3.4 Ditch protection

Armoring for the roadside channels is proposed where steep slopes will lead to erosive velocities under vegetated conditions. As a general rule, any channel steeper than 8% will not be capable of supporting vegetation. The 10-year, 24-hour storm event was used as the basis for stabilization design. After the steep slopes were identified, contributing subcatchments were modeled in *HydroCAD* to determine the design flow. Then, a worksheet was created using *FlowMaster V8i* software. The input parameters included the ditch cross-section, longitudinal and side slopes, design flow, and a roughness coefficient. The roughness coefficient of the riprap was calculated using guidance found in the Maine DEP "Erosion and Sediment Control BMPs - March, 2003", Section E-6 - Riprap Waterways. The software then calculated the normal depth and velocity of the flow. The roughness coefficient (based on the D_{50}) was selected based on the flow depth, and the velocity was calculated. Refer to Appendix D for the HydroCAD reports and Appendix C for riprap sizing calculations.

4.3.5 Slope Stabilization

An embankment slope of 2H:1V was used during site design in order to minimize the footprint and impacts of the project. These slopes will be stabilized with erosion control blankets, loam, and seed. See Sheet C-22 for details.

5.0 RUNOFF ANALYSIS

As described in section 4.1.1 above, runoff analysis for this project does not include a standard comparison of pre-development v. post-development conditions. However, a Stormwater Management Plan (post-development) has been prepared in order to illustrate the design assumptions applied when developing the water quality treatment and conveyance features described above.

The Stormwater Management Plan for the proposed project includes 2-foot contours, cover types, soil groups, watershed boundaries, time of concentration flow lines, existing

features, and drainage way as well as the locations of proposed buildings, roads, other above ground structures and the stormwater management system.

Stormwater analysis calculations are provided in Appendix D. The analyses include computations for determining the times of concentration and travel times for the subcatchments, as well as the HydroCAD output which includes composite CN calculations, peak discharge calculations for the design storms, and routing calculations.

5.1 Methodology

Stormwater runoff was estimated using HydroCAD, Version 9.0. HydroCAD is based on methodologies developed by the United States Department of Agriculture Soil Conservation Service (USDA-SCS), namely *Urban Hydrology for Small Watersheds*, Technical Release 55 and Technical Release 20 (TR-55 and TR-20), in conjunction with other hydrologic and hydraulic calculations. Based on site specific information, including land cover, slopes, soils, and rainfall data, the program estimates inflow and outflow hydrographs for a watershed. The USDA-SCS is now called the Natural Resources Conservation Service (USDA-NRCS).

5.1.1 Rainfall Data

Storm events modeled for the runoff analyses assumed precipitation events with a 24-hour duration having a Type III rainfall distribution, with return frequencies of 2, 10, 25, and 50 years. The corresponding precipitation depths for these storm events are 2.8, 4.2, 5.0, and 5.6 inches, respectively. The rainfall distribution type is based on Figure B-2 of the NRCS TR-55 manual (1986). Rainfall amounts are based on Appendix A of the NHSWM, Volume 2 (2008).

5.1.2 Curve Number Computations

Runoff curve numbers are based on the land cover and soils of the project site. Cover types for the site were determined from aerial photography and site visits, and are indicated on the Watershed and Stormwater Management Plans.

The soil classifications and hydrologic soil groups within the area to be developed were obtained from the Natural Resources Conservation Service (NRCS) medium intensity soil survey of Hillsborough County, New Hampshire. The information was downloaded from the NRCS Web Soil Survey website. See Appendix D for copies off this information. The Hydrologic Soil Groups (HSG) of the soils are classified by Technical Release TR-55 of the NRCS (formerly the Soil Conservation Service).

The runoff curve numbers are taken from a look-up table within the *HydroCAD* program. According to software documentation, this table is based on Table 2-2 of the SCS/NRCS TR-55 publication. The only curve number that is not referenced directly from TR55 is the one used for the substation yard. An engineering study was conducted by TRC Environmental Corporation (TRC), detailing the "typical" cross section and surface materials of a substation yard covered with gravel and crushed stone to calculate its permeability rate. The study was reviewed by John Simon, a USDA-NRCS engineer in Maine. The conclusions of this report were used as the basis of an agreement between CMP and MDEP that a CN value of 55 may be used for substations constructed on soils mapped as HSG "A", "B", "C", and a CN value of 60 must be used when the area is mapped as HSG "D". A copy of the letter agreement is included at the back of the stormwater calculations (Appendix D).

5.1.3 Time of Concentration Calculations

Time of concentration was calculated using USDA-SCS TR-55 methodologies for each sub-catchment considering the hydrologic flow lengths, slope, vegetative cover, surface roughness, and each stage-storage relationship. The type and length of each hydrologic flow line for determining time of concentration and travel times in the area to be developed are indicated on the Stormwater Management Plans. The maximum sheet flow length used for this analysis was 100 feet. Shallow concentrated flow lengths varied for each sub-watershed and were extended until they reached the end of the sub-watershed or until it reached a concentrated flow channel. A summary of the input data used to estimate the time of concentration for each subcatchment is provided in the runoff analysis calculations in Appendix D.

5.1.4 Travel Time Calculations

The travel time for each sub-catchment was calculated using a spreadsheet based on equations prepared by the USDA-NRCS. These times were then input directly into *HydroCAD*. The spreadsheets are included with the runoff analysis calculations in Appendix D.

5.1.5 Reservoir Routing Calculations

Reservoir routing calculations are included in the HydroCAD output. The "dynamic storage-indication" method was used in the peak runoff analysis to model the reaches and ponds more accurately.

5.1.6 Peak Discharge Calculations

Peak discharge calculations are included in the *HydroCAD* output. The Alteration of Terrain Permit application requires analysis of 2, 10, and 50-year storm events. The 25-year event is also included for culvert sizing.

6.0 CONCLUSIONS

The information in this report demonstrates that as proposed, the Antrim Windpark Project will meet the stormwater management requirements of Chapter Env-Wq 1500 Alteration of Terrain. It has been shown that groundwater recharge and quantity control of runoff from the project will not be required because no significant increase in runoff is anticipated. It has also been shown that the proposed water quality treatment measures provide adequate treatment of runoff from the site, and that nearby natural resources are protected.

APPENDIX A

Watershed Analysis Calculations

PROJECT: Eolian Renewable Energy LLC Antrim Wind Project Proj. No.: 186317.0000.0000

Calculated By: Checked By: Date:

PMM PGT

PC

Time of Concentration Summary

Time of Concentration Equations:

1. Where $T_t := \frac{0.007 \cdot (N \cdot L)^{0.8}}{P_2^{0.5} \cdot S^{0.4}}$	from SCS TR-55.	For Sheet Flow (300 feet or less)
2. Where $V := 20.3282 \cdot \sqrt{s}$ from the s	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Paved surfaces)
3. Where T $t := \frac{L}{3600 \cdot V}$ from the S	CS Upland Method Channel Flow Chart	Travel time equation
4. Where $v := 16.1345 \cdot \sqrt{s}$ from the SC	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Unpaved surfaces)
5. Where: $v = 7 \sqrt{S}$ from the SC	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Short Grass Pasture)
6. Where: $v = 5 \sqrt{S}$ from the SC	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Woodland)
7. Where $\mathbf{v} := 12 \cdot \sqrt{s}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Waterways and Swamps, No Channels
8. Where $v := 15 \cdot \sqrt{s}$ from the SCS	S Upland Method Channel Flow Chart	For Channel Flow - Grassed Waterways and Roadside Ditches
9. Where $v := 21 \cdot \sqrt{s}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Small Tributary & Swamp w/Channels
10. Where $V := 35 \cdot \sqrt{S}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Large Tributary
11. Where $\mathbf{v} := 60 \cdot \sqrt{\mathbf{s}}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Main River
12. Where $V := \frac{1.49 \cdot R^{-667} \cdot \sqrt{S}}{N}$		For Channel Flow - Culvert Flow

13. Where $P_2 = 2$ -Year, 24 Hour Rainfall (in) (Antrim, NH: P2= 2.8 inches)

Mannings Roughness Coefficients Table

Surface Description	n - value
Smooth surfaces	0.011
Crush Stone/Substation Yards	0.025
Fallow	0.050
Cultivated: Residue<=20%	0.060
Cultivated: Residue>=20%	0.170
Grass: Short	0.150
Grass: Dense	0.240
Grass: Bermuda	0.410
Range	0.130
Woods: Light underbrush	0.400
Woods: Dense underbrush	0.800

Mannings No. 0.4 Length, ft 150 P2, in 2.8 Shop, ft 0.005 SHALLOW CONCENTRATED FLOW Paved Length, ft Sispe, ft 1 Vecolog ¹ , filese Length, ft Sispe, ft 1 Vecolog ¹ , filese T ² , hr Shor, ft 1 Shor, ft 1	PMM PGT November 10, 2011	
Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 5 Seg 7 Seg 1 Manning's No. 0.4 150		
SHEET FLOW Image No. 0.4 Length, ft 150 150 P2, in 2.8 358 Skpe, frit 0.058 1 Vecolog ² , fritee 1 1 T ² hr 1 1 1 Skpe, frit 1 1 1 Vecolog ² , fritee 1 1 1 Krit 1 1 1 1 Vecolog ² , fritee 2 2 2 1 Vecolog ² , fritee 1 1 1 1 1 Vecolog ² , fritee 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2<		
Wannings No. 0.4 energh. ft 150 energh. ft 150		
Lengh, ft. 150 P2, h 2, h 3500, ft/ft 0, 0, 53 Shou, ft/ft 0, 0		
P2. in 2.8 2.8		
Shop. ftnt 0.033 0.04		
Ti, Im 0.388 0		
SHALLOW CONCENTRATED FLOW Paved argth. ft Stope, ft/ft Vecolory ⁶ , ft/see Cargth. ft Stope, ft/ft Vecolor Carght. ft Vecolor Ca	0.0504	
Paved	0.3584	
ength, ft Image: ft Image: ft Image: ft Image: ft Jurpaved		
Slope, fifth		
Vecodity", fitsec tr", hr Unpaved un		
Unpaved		
Unpaved	0.0000	
engin, ft Skope, ft/ft records/, ft/sec rt ² , ht Skope, ft/ft veckotly ⁴ , ft/sec rt ⁴ , ht Skope, ft/ft		
Shope, fift Image: Control of Control		
valoady?, fitsec		
Ti, hr Image: Control of the second sec		
Short Grass Pasture Image: Control of the second seco	0.0000	
Length, ft Image: State of the		
Shope, fifth Velocity ¹ , fifsec Image: Constraint of the second se		
Valocity ² , ft/sec T ₁ ² , ft/ Woodland Length, ft Slope, ft/ft Velocity ² , ft/sec T ₁ ² , ft/ Uetocity ² , ft/sec T ₁ ² , ft/ Uetocity ² , ft/sec T ₁ ² , ft/ Slope, ft/ft Velocity ² , ft/sec T ₁ ² , ft/ Crassed Waterways/Roadside Ditches Length, ft Slope, ft/ft Velocity ² , ft/sec T ₁ , ft/ Slope, ft/ft Velocity ² , ft/sec Slope, ft/ft Slope, ft/ft Slop		
Ti, hr Image: Constraint of the second		
Woodland Image: Constraint of the second secon	0.0000	
Length, ft 1550 0.230 Slope, ft/ft 0.230 Z.6926 0.160 CHANNEL FLOW Waterways & Swamps, No Channels Length, ft Slope, ft/ft Visee T, ² hr Carssed Waterways/Roadside Ditches Length, ft Slope, ft/ft Visee T, ² hr Carssed Waterways/Roadside Ditches Length, ft Slope, ft/ft Visee T, hr Slope, ft/ft 0.036 0.072 Velocity ² , ft/see T, hr 0.136 0.061 Large Tributary Length, ft 0.036 0.072 Velocity ² , ft/see T, hr 0.136 0.061 Large Tributary Length, ft 0.036 0.072 Velocity ² , ft/see T, hr 0.136 0.061 Large Tributary Length, ft 0.036 5.634 T, hr 0.136 0.061 Large Tributary Length, ft 0.026 Velocity ² , ft/sec T, hr 0.136 0.061 Large Tributary Length, ft 0.026 Slope, ft/ft 0.026 Velocity ² , ft/sec T, hr 0.136 0.061 Large Tributary Length, ft 0.026 Velocity ² , ft/sec Large T, ft/rsec Large T, ft/rse		
Shope, fuff. 0.290 2.6926		
Velocity ⁵ , ft/sec 2.6926 0.160		
Jin 1 0.160 Image: Channels in the second s		
CHANNEL FLOW Waterways & Swamps, No Channels	0.1599	
Waterways & Swamps, No Channels Length, ft Length, ft Slope, ft/ft Slope, ft/ft Velocity ⁶ , ft/sec T _i ³ , hr Grassed Waterways/Roadside Ditches Grassed Waterways/Roadside Ditches Image: Constraint of the state of the s		
Length, ft Slope, ft/ft Velocity ⁶ , ft/sec T ₁ ⁸ , hr Grassed Waterways/Roadside Ditches Length, ft Slope, ft/ft Velocity ⁷ , ft/sec T ₁ , hr Small Tributary & Swamp w/Channels Length, ft Slope, ft/ft Velocity ⁸ , ft/sec T ₁ , hr Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. Velocity ⁸ , ft/sec Length, L, ft T ₁ , hr		
Slope, ft/ft Velocity ⁶ , ft/sec T _i ³ , hr Image: state in the stat		
Velocity ⁶ , ft/sec T ₁ ¹ , hr Image: Constraint of the second sec		
Grassed Waterways/Roadside Ditches Image: Constraint of the state of		
Length, ft Slope, ft/ft Velocity ⁷ , ft/sec T ₁ , hr Small Tributary & Swamp w/Channels Length, ft Slope, ft/ft Velocity ⁸ , ft/sec T ₁ , hr Length, ft Slope, ft/ft Velocity ⁸ , ft/sec T ₁ , hr Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. Velocity ¹ , ft/sec Length, L, ft T ₁ , hr	0.0000	
Length, ft Slope, ft/ft Velocity ⁷ , ft/sec T ₁ , hr Small Tributary & Swamp w/Channels Length, ft Slope, ft/ft Velocity ⁸ , ft/sec T ₁ , hr Length, ft Slope, ft/ft Velocity ⁸ , ft/sec T ₁ , hr Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. Velocity ¹ , ft/sec Length, L, ft T ₁ , hr		
Velocity ⁷ , ft/sec T ₁ , hr Image: sec		
T _h , hr Image: Constraint of the system of th		
Small Tributary & Swamp w/Channels 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950 1245 1950		
$ \begin{array}{ c c c c c } Length, ft & 1950 & 1245 \\ Slope, ft/ft & 0.036 & 0.072 \\ Velocity^{9}, ft/sec & 3.984 & 5.635 \\ \hline D_{1}, hr & 0.016 & 0.061 \\ \hline $	0.0000	
$\begin{array}{ c c c c c } Length, ft & 1950 & 1245 \\ Slope, ft/ft & 0.036 & 0.072 \\ 3.984 & 5.635 \\ 0.136 & 0.061 \\ \hline \\ \begin{tabular}{ c c c } Large Tributary & & & & & & & & & & & & & & & & & & &$		
$ \begin{array}{ c c c c c c } Slope, ft/ft & 0.036 & 0.072 & & & & & \\ \hline \end{tabular} Slope, ft/ft & 0.136 & 0.061 & & & & \\ \hline \end{tabular} Large Tributary & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & & & & & & & & \\ \hline \end{tabular} Large Tributary & & & & & & & & & & & & & & & & & & &$		
T _h hr 0.136 0.061 Image: constraint of the system of		
Large Tributary 8425 Length, ft 0.026 Slope, ft/ft 0.026 Velocity ⁸ , ft/sec 5.644 T,. hr 0.415 Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. Velocity ¹¹ , ft/sec Length, L, ft		
Length, ft 8425 Slope, ft/ft 0.026 Velocity ⁸ , ft/sec 5.644 T, hr 0.415 Culvert Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Hydraulic Radius, R, ft Hydraulic R	0.1973	
Length, ft 8425 Slope, ft/ft 0.026 Velocity ⁸ , ft/sec 5.644 T, hr 0.415 Culvert Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Hydraulic Radius, R, ft Hydraulic R		
velocity ⁸ , ft/sec 5.644 0.415 0.415 Culvert		
T ₁ , hr 0.415 Culvert 0 Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Wanning's No. Velocity ¹¹ , ft/sec Length, L, ft		
T ₁ , hr 0.415 Culvert 0 Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Wanning's No. Velocity ¹¹ , ft/sec Length, L, ft		
Diameter, ft Area, ft ² Wetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. Velocity ¹¹ , ft/sec Length, L, ft T _P , hr	0.4147	
Area, ft ² Netted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. /elocity ¹¹ , ft/sec Length, L, ft It, hr		
Vetted Perimeter, ft Hydraulic Radius, R, ft Slope, ft/ft Manning's No. /elocity ¹¹ , ft/sec Length, L, ft		
tydraulic Radius, R, ft Slope, ft/ft Aanning's No. /elocity ¹¹ , ft/sec .ength, L, ft		
Slope, ft/ft Aanning's No. /elocity ¹¹ , ft/sec .ength, L, ft T, hr		
/anning's No. /elocity ¹¹ , ft/sec .ength, L, ft		
/elocity ¹¹ , ft/sec .ength, L, ft 		
ength, L, ft ;, hr		
ength, L, ft ;, hr		
, hr		
	0.0000	
	1.130	
Min	67.82	

249 Western Avenue Augusta, ME 04330 207.621.7000 рноме 207.621.7001 FAX www.TRCsolutions.com

Assumptions:

Runoff curve numbers for cover types as referenced from Table 2-2c USDA, 1986, Urban Hydrology for Small Watersheds: TR55. Land cover types as referenced from recent aerial photography and site visits.

Soil types and hydrologic soil groups are referenced from the NRCS Web Soil Survey for Hillsborough County, NH

Pre-development (1W - North Branch River Watershed)

Cover Description	Hydrologic Soil Group	Land Area (acres)	Land Area % of total	CN	Product of CN x Area
Buildings	A	0.016	0.00%	98	1.568
-	В	0.374	0.02%	98	36.652
	С	0.278	0.02%	98	27.244
	D	0.010	0.00%	98	0.980
	Unclassified	0.110	0.01%	98	10.780
Other Impervious	А	1.837	0.11%	76	139.612
	В	2.685	0.16%	85	228.225
	С	1.753	0.11%	89	156.017
	D	0.655	0.04%	91	59.605
	Unclassified	0.920	0.06%	91	83.720
	Pavement	3.281	0.20%	98	321.538
Meadow, Good Condition	А	12.831	0.77%	30	384.930
	В	13.799	0.83%	58	800.342
	С	37.423	2.25%	71	2657.033
	D	5.959	0.36%	78	464.802
	Unclassified	0.577	0.03%	78	45.006
Woods, Good Condition	А	66.513	4.00%	30	1995.390
	В	152.463	9.16%	55	8385.465
	С	1282.411	77.04%	70	89768.770
	D	53.855	3.24%	77	4146.835
	Unclassified	26.934	1.62%	77	2073.918
Total Watershed =		1664.684	100.00%		111788.432
				Weighted CN =	67

Post-development (1W - North Branch River Watershed)

Cover Description	Hydrologic Soil Group	Land Area (acres)	Land Area % of total	CN	Product of CN x Area
Buildings	A	0.016	0.00%	98	1.568
0	В	0.374	0.02%	98	36.652
	С	0.364	0.02%	98	35.672
	D	0.010	0.00%	98	0.980
	Unclassified	0.110	0.01%	98	10.780
Other Impervious	Α	1.837	0.11%	76	139.612
·	В	2.685	0.16%	85	228.225
	С	9.844	0.59%	89	876.116
	D	0.769	0.05%	91	69.979
	Unclassified	0.920	0.06%	91	83.720
	Pavement	3.281	0.20%	98	321.538
Meadow, Good Condition	Α	12.831	0.77%	30	384.930
	В	13.799	0.83%	58	800.342
	С	64.485	3.88%	71	4578.435
	D	6.170	0.37%	78	481.260
	Unclassified	0.577	0.03%	78	45.006
Woods, Good Condition	А	66.513	4.00%	30	1995.390
	В	152.463	9.16%	55	8385.465
	С	1246.019	74.90%	70	87221.330
	D	53.540	3.22%	77	4122.580
	Unclassified	26.934	1.62%	77	2073.918
Total Watershed =		1663.541	100.00%		111893.498
				Weighted CN =	67

PROJECT: Proj. No.: Watershed:	Antrim Wind ProjectCheck186317.0000.0000Date:					Calculated By: Checked By: Date: Revised:		PMM PGT November 10, 2011	
Time of Concen				ksheet.	SCS Metho	ds			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	Seg i	Jey z	Seg 5	Jeg 4	Seg 5	Jey U	Jeg /	Jeg 0	
/anning's No.	0.4								
ength, ft	150								
2, in	2.8								
Slope, ft/ft	0.1								0.0700
									0.2780
SHALLOW CONCE		FLOW							
Paved					1	1			
ength, ft									
Slope, ft/ft									
/elocity ² , ft/sec									
³ _t , hr									0.0000
Jnpaved					1				
₋ength, ft									
Slope, ft/ft									
/elocity ² , ft/sec									
Γ ³ , hr									0.0000
Short Grass Pastu	ire								
_ength, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
T _t ³ , hr									0.0000
Woodland									
_ength, ft		2760							
Slope, ft/ft		0.092							
/elocity ⁵ , ft/sec		1.5166							
Γ_{t}^{3} hr		0.506							0.5055
		0.000							0.0000
Waterways & Swa	mns No Ch	annels							
Length, ft	1103, NO 01	unners							
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T_{t}^{3} hr									0.0000
	/Poodoid	Ditchoo							0.0000
Grassed Waterway	s/Roausiue	Ditches		1		1			
Length, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									
F _t , hr									0.0000
Small Tributary &	Swamp w/C	nannels		1					
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec						1			
Γ _t , hr									0.0000
Large Tributary									
ength, ft									
Slope, ft/ft									
/elocity ⁸ , ft/sec						1			
Γ _t , hr									0.0000
Culvert									
Diameter, ft									
Area, ft ²						1			
Vetted Perimeter, ft						1			
lydraulic Radius, R, ft									
Slope, ft/ft						1			
/anning's No.]				
/elocity ¹¹ , ft/sec									
ength, L, ft						1			
_t , hr						1			0.0000
								HR	0.784

249 Western Avenue Augusta, ME 04330 207.621.7000 PHONE 207.621.7001 FAX www.TRCsolutions.com PROJECT:Antrim Wind ProjectProject No:186317.0000.0000Subject:Curve Number ComparisonCalculated By:PMMChecked By:PGTDate:December 6, 2011Revised Date:December 6, 2011

Assumptions:

Runoff curve numbers for cover types as referenced from Table 2-2c USDA, 1986, Urban Hydrology for Small Watersheds: TR55. Land cover types as referenced from recent aerial photography and site visits.

Soil types and hydrologic soil groups are referenced from the NRCS Web Soil Survey for Hillsborough County, NH

Pre-development (2W - Unnamed Watershed)

Cover	Hydrologic	Land Area	Land Area		Product of
Description	Soil Group	(acres)	% of total	CN	CN x Area
Buildings	A	0	0%	98	0.000
	В	0.038	0.01%	98	3.724
	С	0.204	0.03%	98	19.992
	D	0	0%	98	0.000
	Unclassified	0	0%	98	0.000
Other Impervious	А	0.894	0.15%	76	67.944
	В	0.614	0.10%	85	52.190
	С	2.068	0.35%	89	184.052
	D	0.318	0.05%	91	28.938
	Unclassified	0	0%	91	0.000
Meadow, Good Condition	А	1.770	0.30%	30	53.100
	В	6.372	1.07%	58	369.576
	С	7.926	1.33%	71	562.746
	D	44.214	7.43%	78	3448.692
	Unclassified	0	0%	78	0.000
Woods, Good Condition	А	28.548	4.79%	30	856.440
	В	27.101	4.55%	55	1490.555
	С	430.277	72.26%	70	30119.390
	D	45.093	7.57%	77	3472.161
	Unclassified	0	0%	77	0.000
Total Watershed =		595.437	100.00%		40729.500
				Weighted CN =	68

Post-development (2W - Unnamed Watershed)

Cover Description	Hydrologic Soil Group	Land Area (acres)	Land Area % of total	CN	Product of CN x Area
Buildings	Α	0	0%	98	0.000
-	В	0.038	0.01%	98	3.724
	С	0.204	0.03%	98	19.992
	D	0	0%	98	0.000
	Unclassified	0	0%	98	0.000
Other Impervious	Α	0.894	0.15%	76	67.944
	В	0.614	0.10%	85	52.190
	С	2.281	0.38%	89	203.009
	D	0.318	0.05%	91	28.938
	Unclassified	0	0%	91	0.000
Meadow, Good Condition	Α	1.770	0.30%	30	53.100
	В	6.372	1.07%	58	369.576
	С	8.692	1.46%	71	617.132
	D	44.996	7.56%	78	3509.688
	Unclassified	0	0%	78	0.000
Woods, Good Condition	А	28.548	4.79%	30	856.440
	В	27.101	4.55%	55	1490.555
	С	429.554	72.14%	70	30068.780
	D	44.046	7.40%	77	3391.542
	Unclassified	0	0%	77	0.000
Total Watershed =		595.428	100.00%		40732.610
				Weighted CN =	68

PROJECT: Proj. No.: Watershed:	Eolian Ro Antrim W 186317.0 3W - Pre	/ind Proje 000.0000 and Post	ect				Calculate Checked Date: Revised:	By:	PMM PGT November 10, 2011
Time of Concer	tration Def	terminat	ion Wor	ksheet, S	SCS Metho	ods			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW			Ţ				Ţ		
/lanning's No.	0.4								
.ength, ft	150								
² 2, in	2.8								
Slope, ft/ft	0.033								
$\frac{1}{1}$ hr	0.433								0.4331
		FLOW							0:4001
Paved									
ength, ft									
Slope, ft/ft									
•									
/elocity ² , ft/sec									
³ , hr									0.0000
Unpaved									
₋ength, ft									
Slope, ft/ft									
/elocity ² , ft/sec									
Γ ³ , hr									0.0000
Short Grass Past	ure								
_ength, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
Γ_{t}^{3} hr									0.0000
Noodland									0.0000
ength, ft		765	630						
Slope, ft/ft									
•		0.052	0.087						
/elocity ⁵ , ft/sec		1.1402	1.4748						0.0050
T _t ³ , hr		0.186	0.119						0.3050
CHANNEL FLOW									
Waterways & Swa	imps, No Cr	anneis				1	1		
Length, ft									
Slope, ft/ft									
velocity ⁶ , ft/sec									
Γ _t ³, hr									0.0000
Grassed Waterwa	ys/Roadside	e Ditches		· · · · · ·		-			
_ength, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									
F _t , hr									0.0000
Small Tributary &	Swamp w/C	hannels							
_ength, ft				4925					
Slope, ft/ft				0.004					
/elocity ⁸ , ft/sec				1.328					
Γ _t , hr				1.030					1.0300
				1.000		1			1.0000
Large Tributary									
ength, ft									
Slope, ft/ft									
/elocity ⁸ , ft/sec									
t, hr									0.0000
Culvert									
Diameter, ft									
vrea, ft ²									
Vetted Perimeter, ft									
lydraulic Radius, R, ft									
slope, ft/ft									
/anning's No.									
/elocity ¹¹ , ft/sec									
ength, L, ft									
-									0.0000
, hr									0.0000
								HR	1.768
									1.100

249 Western Avenue Augusta, ME 04330 207.621.7000 PHONE 207.621.7001 FAX www.TRCsolutions.com PROJECT: Antrim Wind Project Project No: 186317.0000.0000 Subject: Curve Number Comparison Calculated By: PMM Checked By: PGT Date: December 6, 2011 Revised Date:

Assumptions:

Runoff curve numbers for cover types as referenced from Table 2-2c USDA, 1986, Urban Hydrology for Small Watersheds: TR55. Land cover types as referenced from recent aerial photography and site visits.

Soil types and hydrologic soil groups are referenced from the NRCS Web Soil Survey for Hillsborough County, NH

Pre-development (3W - Gregg Lake Watershed)

Cover Description	Hydrologic Soil Group	Land Area (acres)	Land Area % of total	CN	Product of CN x Area
Buildings	A	0	0%	98	0.000
Ū.	В	0.135	0.01%	98	13.230
	С	0.781	0.04%	98	76.538
	D	0	0%	98	0.000
	Unclassified	0	0%	98	0.000
Other Impervious	А	0.304	0.02%	76	23.104
	В	3.282	0.16%	85	278.970
	С	9.071	0.45%	89	807.319
	D	0.057	0.00%	91	5.187
	Unclassified	0	0%	91	0.000
Meadow, Good Condition	А	1.389	0.07%	30	41.670
	В	13.053	0.65%	58	757.074
	С	53.756	2.69%	71	3816.676
	D	28.798	1.44%	78	2246.244
	Unclassified	57.362	2.87%	78	4474.236
Woods, Good Condition	А	42.100	2.11%	30	1263.000
	В	606.658	30.37%	55	33366.190
	С	1103.235	55.22%	70	77226.450
	D	29.079	1.46%	77	2239.083
	Unclassified	48.668	2.44%	77	3747.436
Total Watershed =		1997.728	100.00%		130382.407
				Weighted CN =	65

Post-development (3W - Gregg Lake Watershed)

Cover Description	Hydrologic Soil Group	Land Area (acres)	Land Area % of total	CN	Product of CN x Area
Buildings	A	0	0.0%	98	0.000
-	В	0.135	0.01%	98	13.230
	С	0.781	0.04%	98	76.538
	D	0	0%	98	0.000
	Unclassified	0	0%	98	0.000
Other Impervious	Α	0.304	0.02%	76	23.104
	В	3.282	0.16%	85	278.970
	С	11.345	0.57%	89	1009.705
	D	0.489	0.02%	91	44.499
	Unclassified	0	0%	91	0.000
Meadow, Good Condition	Α	1.389	0.07%	30	41.670
	В	13.053	0.65%	58	757.074
	С	68.410	3.42%	71	4857.110
	D	30.862	1.54%	78	2407.236
	Unclassified	57.362	2.87%	78	4474.236
Woods, Good Condition	Α	42.100	2.11%	30	1263.000
	В	606.658	30.36%	55	33366.190
	С	1086.743	54.38%	70	76072.010
	D	26.837	1.34%	77	2066.449
	Unclassified	48.668	2.44%	77	3747.436
Total Watershed =		1998.418	100.00%		130498.457
				Weighted CN =	65

PROJECT: Proj. No.: Watershed:	Eolian Ro Antrim W 186317.0 4W - Pre	/ind Proje 000.0000	ect	LLC			Calculate Checked Date: Revised:	By:	PMM PGT November 10, 2011
Time of Concent				ksheet	SCS Metho	ds	noneeu.		
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
HEET FLOW	ocg i	0091	CCG C	ocg 4	0090	0090	ocg i	0090	
/anning's No.	0.4								
ength, ft	150								
2, in	2.8								
Slope, ft/ft	0.033								
t^{1} hr	0.433								0.4331
		FLOW				1			0:4001
Paved									
ength, ft									
Slope, ft/ft									
/elocity ² , ft/sec									
r_{t}^{3} hr									0.0000
Jnpaved				I	<u> </u>	1	<u> </u>		5.0000
ength, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
$\Gamma_{t_{1}}^{3}$ hr									0.0000
Short Grass Pastu	re								0.0000
Length, ft									
Lengtn, ft Slope, ft/ft									
Velocity ⁴ , ft/sec									
$\Gamma_{t_{1}}^{3}$ hr									0.0000
Woodland									0.0000
_ength, ft		880	525						
Slope, ft/ft		0.072	0.21						
/elocity ⁵ , ft/sec		1.3416	2.2913						
Γ_t^3 hr		0.182	0.064						0.2458
		0.102	0.004						0:2430
Waterways & Swar	nns No Ch	annels							
Length, ft						1			
Slope, ft/ft									
Velocity ⁶ , ft/sec									
Γ_{t}^{3} hr									0.0000
Grassed Waterway	s/Roadside	e Ditches							0.0000
_ength, ft	Siltouusiu	Diteries					1		
Slope, ft/ft									
/elocity ⁷ , ft/sec									
Γ _t , hr									0.0000
Small Tributary & S	Swamp w/C	hannels		I	1	1	1		3.0000
_ength, ft				3700	1250				
Slope, ft/ft				0.114	0.048				
/elocity ⁸ , ft/sec				7.090	4.601				
Γ _t , hr				0.145	0.075				0.2204
Large Tributary				0.140	0.070	1			5.2204
_ength, ft									
Slope, ft/ft									
/elocity ⁸ , ft/sec									
f_t , hr									0.0000
Culvert				1		1	1		0.0000
Diameter, ft									
λrea, ft ²									
Vetted Perimeter, ft									
lydraulic Radius, R, ft									
Slope, ft/ft									
fanning's No.									
elocity ¹¹ , ft/sec									
ength, L, ft									
_t , hr									0.0000
								HR	0.899
								Min	53.96

249 Western Avenue Augusta, ME 04330 207.621.7000 PHONE 207.621.7001 FAX www.TRCsolutions.com PROJECT:Antrim Wind ProjectProject No:186317.0000.0000Subject:Curve Number ComparisonCalculated By:PMMChecked By:PGTDate:December 6, 2011Revised Date:December 6, 2011

Assumptions:

Runoff curve numbers for cover types as referenced from Table 2-2c USDA, 1986, Urban Hydrology for Small Watersheds: TR55. Land cover types as referenced from recent aerial photography and site visits.

Soil types and hydrologic soil groups are referenced from the NRCS Web Soil Survey for Hillsborough County, NH

Pre-development (4W - Willard Pond Watershed)

Cover	Hydrologic	Land Area	Land Area		Product of
Description	Soil Group	(acres)	% of total	CN	CN x Area
Buildings	А	0.000	0.00%	98	0.000
	В	0.000	0.00%	98	0.000
	С	0.000	0.00%	98	0.000
	D	0.000	0.00%	98	0.000
	Unclassified	0.000	0.00%	98	0.000
Other Impervious	А	0.249	0.03%	76	18.924
	В	0.266	0.04%	85	22.610
	С	0.000	0.00%	89	0.000
	D	0.000	0.00%	91	0.000
	Unclassified	0.000	0.00%	91	0.000
Meadow, Good Condition	А	0.175	0.02%	30	5.250
	В	0.183	0.03%	58	10.614
	С	10.268	1.43%	71	729.028
	D	2.589	0.36%	78	201.942
	Unclassified	0	0.00%	78	0.000
Woods, Good Condition	А	5.362	0.75%	30	160.860
	В	150.231	20.98%	55	8262.705
	С	524.666	73.28%	70	36726.620
	D	14.793	2.07%	77	1139.061
	Unclassified	7.170	1.00%	77	552.090
Total Watershed =		715.952	100.00%		47829.704
				Weighted CN =	67

Post-development (4W - Willard Pond Watershed)

Cover Description	Hydrologic Soil Group	Land Area (acres)	Land Area % of total	CN	Product of CN x Area
Buildings	A	0.000	0.00%	98	0.000
-	В	0	0.00%	98	0.000
	С	0	0.00%	98	0.000
	D	0.000	0.00%	98	0.000
	Unclassified	0.000	0.00%	98	0.000
Other Impervious	А	0.249	0.03%	76	18.924
	В	0.266	0.04%	85	22.610
	С	0.037	0.01%	89	3.293
	D	0.000	0.00%	91	0.000
	Unclassified	0.000	0.00%	91	0.000
Meadow, Good Condition	А	0.175	0.02%	30	5.250
	В	0.183	0.03%	58	10.614
	С	11.055	1.54%	71	784.905
	D	2.596	0.36%	78	202.488
	Unclassified	0.000	0.00%	78	0.000
Woods, Good Condition	А	5.362	0.75%	30	160.860
	В	150.231	20.97%	55	8262.705
	С	524.302	73.18%	70	36701.140
	D	14.785	2.06%	77	1138.445
	Unclassified	7.170	1.00%	77	552.090
Total Watershed =		716.411	100.00%		47863.324
				Weighted CN =	67

APPENDIX B

Water Quality Calculations

Summary Table (2 pages) Ditch Turnout Buffer Calculations (3 pages) Treatment Swale Calculations (20 pages) Bioretention Basin Calculations (1 page)

PROJECT:		Eolian R	enewable Ener	rgy, LLC											Calculated By	
			indpower Pro	ject											Checked By:	PGT
TRC Project:		186317.0	000.0000												Date: Revised:	December 1, 201 January 11, 201
															Revised.	January 11, 201
					GENER	AL BMP WAT	ER QUAI	ITY STAND	ARDS CAL		IS SUMMA	ARY				
Impervious area calculations	based on:	Final Boa	dway Width: 16	c'		1W - North Brar		atorchad								
			d Area = 70' X 8			2W - Unnamed		atersned								
			on Area: D = 50			3W - Gregg Lake		ł								
						4W - Willard Po	nd Watersh	ed								
	Road	way					Vegetat	ed Buffer				Treatmo	ent Swale			Comments
			Treated	Untreated						Water					Hydraulic	
Contract ID		Length	Impervious	Impervious		D ((Average	Hydrologic		Quality Flow			Longitudinal		Residence	
Section ID Ridge Road	Watershee	d (ft)	Area (ac)	Area (ac)	BMP ID	Buffer Type	Slope	Soli Group	Land Cover	(cfs)	Length (ft)	Width (ft)	Slope	(ft/s)	Time (min.)	
STA 0+00 L to STA 5+50	1W	550		0.202	-											Deep cut, close to ROW
STA 5+50 to STA 11+00	1W	550		0.202	-											Too close to wetland
SUBSTATION	1W		1.610	0.101	BR1 & 2											Bioretention Systems
STA 11+00 to STA 13+50	1W	250		0.092	-											Too close to ROW
STA 13+50 to STA 17+00	1W	350	0.119		B-1	Ditch Turnout	0.11	С	Wooded							
STA 17+00 to STA 18+50	1W	150	0.055		B-2	Roadway	0.10	С	-							
STA 18+50 to STA 20+00	1W	150		0.055	-											Stream crossing
STA 20+00 to STA 24+25	1W	425	0.156		SW-1					0.16	150	3	0.0075	0.25	10.0	
STA 24+25 to STA 28+25	1W	400	0.147		B-3	Roadway	0.12	С	-							
STA 28+25 to STA 29+50	1W	125		0.046	-											Adjacent to stream
STA 29+50 to STA 32+00	1W	250	0.092		B-4	Ditch Turnout	0.15	С	Wooded							
STA 32+00 to STA 35+55	1W	355	0.130		SW-2			_		0.13	130	3	0.005	0.20	10.8	
STA 35+55 to STA 41+75	1W	620	0.228		B-5	Roadway	0.12	С	-							
WTG-1 STA 41+75 to STA 45+00	1W 1W	325	0.182 0.119		B-5 B-6	Ditch Turnout	0.11	С	Wooded							
STA 41+75 to STA 45+00 STA 45+00 to STA 66+75	1W	2175	0.799		в-о В-7	Roadway	0.11	c	wooded							
STA 66+75 to STA 68+50	1W	Intersecti		0.186	-	Noadway	0.22	C								Too close to property line
North Course Doord																
North Spur Road STA 0+00 to STA 1+00	1\\/	Coo Intor	action above													
STA 0+00 to STA 1+00	1W 1W	125	section above	0.046												
STA 1+00 to STA 2+25 STA 2+25 to STA 21+00	1W	125	0.699	0.040	B-25	Roadway	0.25	С								
WTG-2	2W	1075	0.182		WTG-2	Small Area	0.05	c	Meadow							
WTG-3	3W		0.182		B-25	Roadway	0.25	C	-							
Ridge Road (Continued)																
STA 68+50 to STA 70+50	3W	200	0.073		SW-3					0.08	130	3	0.01	0.21	10.3	
STA 70+50 to STA 74+25	3W	375	0.138		B-8	Roadway	0.16	D	-			-				
STA 74+25 to STA 75+00	3W	75		0.028	-	,	-									Too close to wetland
STA 75+00 to STA 77+35	3W	235	0.086		SW-4					0.09	125	3	0.0075	0.20	10.4	
STA 77+35 to STA 81+00	3W	365	0.134		B-9	Ditch Turnout	0.09	С	Wooded							
STA 81+00 to STA 85+00	1W	400	0.147		B-10	Roadway	0.08	С	-							
WTG-4	1W		0.182		B-10											
STA 85+00 to STA 87+25	1W	225	0.083		B-11	Ditch Turnout	0.11	С	Wooded							
STA 87+25 to STA 89+00	1W	175	0.064		B-12	Roadway	0.15	С	-			-				
STA 89+00 to STA 92+25	1W	325	0.119	0.0.0	SW-5					0.12	120	3	0.005	0.20	10.0	-
STA 92+25 to STA 99+00	1W	675	0.400	0.248		Concil A	0.02	~	Marili							Too close to wetlands
WTG-5	1W	400	0.182		WTG-5	Small Area	0.03	С	Meadow							
STA 99+00 to STA 103+00 STA 103+00 to STA 104+50	1W 1W	400 150	0.147	0.055	B-13	Roadway	0.25	С	-							Too Steep
STA 103+00 to STA 104+50 STA 104+50 to STA 107+00	1W 1W	150 250	0.092	0.055	- SW-6					0.11	120	4	0.0075	0.20	10.0	100 Steep
	TAA	200	0.052		344-0	1				0.11	120	4	0.0073	0.20	10.0	

		Antrim V	enewable Ener /indpower Pro												Calculated B Checked By:	-
TRC Project:		186317.0	000.0000												Date: Revised:	December 1, 201
					GENER	AL BMP WAT	ER QUAL	LITY STAND	ARDS CAI	LCULATION	IS SUMM	ARY				
Impervious area calculations b																
			dway Width: 1 d Area = 70' X 8			1W - North Bra 2W - Unnamed		atershed								
			undation: D = 2			3W - Gregg Lak		4								
		10000110		20		4W - Willard Po										
	Roadw	av					Vegetat	ed Buffer				Treatme	ent Swale			Comments
			Treated	Untreated						Water					Hydraulic	
Section ID	Watershed	Length (ft)	Impervious Area (ac)	Impervious Area (ac)	BMP ID	Buffer Type	Average Slope	Hydrologic Soil Group	Land Cover	Quality Flow (cfs)	Swale Length (ft)	Swale Base Width (ft)	Longitudinal Slope	Velocity (ft/s)	Residence Time (min.)	
STA 111+75 to STA 113+50	1W	175	0.064	Alea (ac)	SW-7	builer type	Slope	Son Group	Lanu Cover	0.07	120	3	0.0075	0.19	10.5	
STA 113+50 to STA 115+50	1W	200	0.073		B-14	Roadway	0.12	С	-	2.07	-20	5	2.5075		2010	
WTG-6	3W		0.182		B-14	,										
STA 115+50 to STA 117+50	1W	200		0.073	-											Too steep
STA 117+50 to STA 119+00	1W	150	0.055		B-15	Roadway	0.15	С	-							
STA 119+00 to STA 119+75	1W	75		0.028	-											
STA 119+75 to STA 123+00	1W	325	0.119		SW-8					0.12	135	3	0.0075	0.22	10.2	
STA 123+00 to STA 124+25	1W	125		0.046	-											Too steep
STA 124+25 to STA 126+00	1W	175	0.064		SW-9					0.07	120	3	0.0075	0.19	10.5	
STA 126+00 to STA 128+50	1W	250	0.092		B-16	Roadway	0.25	С	-							
STA 128+50 to STA 131+50	1W	300	0.110		SW-10					0.11	135	3	0.0075	0.22	10.2	
STA 131+50 to STA 145+25	1W	1375	0.505		B-17	Roadway	0.25	С	-							
Spur Road 2																
STA 0+50 to STA 2+00	3W	150	0.133		SW-11					0.13	125	3	0.005	0.2	10.4	
STA 2+00 to STA 4+75	3W	275	0.101		B-18	Roadway	0.20	С	-							
STA 4+75 to STA 7+65	1W	290	0.107		B-19	Roadway	0.20	С	-							
WTG-7	3W		0.182		B-20	Roadway	0.15	С	-							
Ridge Road 1 (Continued)																
WTG-8	3W		0.182		WTG-8	Small Area	0.12	С	Meadow							
STA 145+25 to STA 147+00	1W	175		0.064	-											
STA 147+00 to STA 149+00	3W	200		0.073	-											Steep, near wetland
STA 149+00 to STA 150+25	3W	125	0.046		B-21	Roadway	0.3	С	Meadow							
STA 150+25 to STA 163+25	3W	1300		0.478				_								Steep, near wetland
WTG-9	3W		0.182		WTG-9	Small Area	0.03	С	Meadow							
STA 163+25 to STA 169+50	3W	625	0.230		B-22	Roadway	0.25	С	-				0.0075			
STA 169+50 to STA 173+75	3W	425	0.156		SW-12	Dead	0.10	~		0.16	150	3	0.0075	0.25	10.0	
STA 173+75 to STA 177+00 STA 177+00 to STA 179+50	4W 4W	325 250	0.119 0.092		B-23 SW-13	Roadway	0.10	С	-	0.09	125	3	0.0075	0.20	10.4	
STA 177+00 to STA 179+50 STA 179+50 to STA 183+18	4W 4W	250 318	0.092		SW-13 B-24	Roadway	0.20	С		0.09	125	3	0.0075	0.20	10.4	
WTG-10	4W 4W	210	0.117		B-24 WTG-10	Roadway Small Area	0.20	c	Meadow							
SUBTOTAL:			9.240	2.197												

Total New Impervious Area: Percent Treated: 11.437 (= Treated New Impervious + Untreated New Impervious)

80.8% (= Treated New Impervious / Total New Impervious)

PROJECT: TRC Project:	Eolian Renew Antrim Windu 186317.0000.	oower Proj								Calculated By: Checked By: Date: Revised:	PMM PGT
				WATER QUALITY STAN	DARDS CALCULATIO	NS					
DITCH TURNOL	JT BUFFER B	1 (Subcat	tchment	NQ4)							
Total Contributin	g Area, A =	10,063	sf								
For Buffer Area:	Cover = HSG = S =	Forested C 11%									
1. Calculate buff	er length for m	inimum lev	vel spread	er length, L _{LS} = 20 feet:							
	L ₁ =	151	ft	L ₁ = (15 ft/1000 sf) * A							
	L ₂ =	22	ft	$L_2 = 2 \text{ ft} * S$							
	L _{Total} =	173	ft	L ₁ = (15 ft/1000 sf) * A L ₂ = 2 ft * S L _{Total} = L ₁ + L ₂							
2. CalculateTota	I Buffer Area:										
	A _{Total} =	3459	sf	$A_{Total} = L_{Total} * 20 \text{ ft}$							
3. Calculate Buff	er Length for V	arious Lev	vel Sprea	der Lengths:							
	L _{LS} =	25	ft								
	L _{Buffer} =	138	ft	$L_{Buffer} = A_{Tota}/L_{LS}$							
	L _{LS} =	30	ft								
	L _{Buffer} =	115	ft								
	L _{LS} =	35	ft		ı	USE:	L _{LS} =	30	ft		
	L _{Buffer} =	99	ft				L _{Buffer} =	115	ft		
		4 (0		1(00)							
DITCH TURNOL Total Contributin	_		_	WQ6)							
	y Alea, A -	11,520	51								
For Buffer Area:	Cover =	Forested									
	HSG =	C 15%									
1. Calculate buff	er length for m	inimum lev	/el spread	er length, L _{LS} = 20 feet:							
	L ₁ =	179	ft	L ₁ = (15 ft/1000 sf) * A							
	L ₂ =	30	ft	$L_2 = 2 \text{ ft} * S$							
	L _{Total} =	209	ft	$L_{\text{Total}} = L_1 + L_2$							
2. CalculateTota	Buffer Area:										
	A _{Total} =	4176	sf	$A_{Total} = L_{Total} * 20 \text{ ft}$							
3. Calculate Buff	er Length for V	arious Lev	vel Sprea	der Lengths:							
	L _{LS} =	25	ft								
	L _{Buffer} =	167	ft	$L_{Buffer} = A_{Tota}/L_{LS}$							
	L _{LS} =	30	ft								
	L _{Buffer} =	139	ft								
	L _{LS} =	35	ft		ı	USE:	L _{LS} =	35	ft		
	L _{Buffer} =	119	ft				L _{Buffer} =	120	ft		

TRC Project:	Eolian Renewa Antrim Windpo 186317.0000.00	ower Proj							Calculated By: Checked By: Date: Revised:	PMM PGT
				WATER QUALITY STANDA	RDS CALCULATIONS					
	JT BUFFER B-6		_	WQ8)						
	g Area, A =	16,850	SI							
For Buffer Area:	Cover = F HSG = S =	С								
1. Calculate buf	er length for min	imum lev	el spread	ler length, l _{LS} = 20 feet:						
	L ₁ =	253	ft	L ₁ = (15 ft/1000 sf) * A						
l	L ₂ =	22	ft	$L_2 = 2 \text{ ft} * S$						
	L _{Total} =	275	ft	L ₁ = (15 ft/1000 sf) * A L ₂ = 2 ft * S L _{Total} = L ₁ + L ₂						
2. CalculateTota	I Buffer Area:									
1	A _{Total} =	5495	sf	$A_{Total} = L_{Total} * 20 \text{ ft}$						
3. Calculate Buf	er Length for Va	irious Lev	/el Sprea	der Lengths:						
	L _{LS} =	30	ft							
	L _{Buffer} =	183	ft	$L_{Buffer} = A_{Tota}/L_{LS}$						
	L _{LS} =	40	ft							
	L _{Buffer} =	137	ft							
	L _{LS} =	50	ft		USE		30	ft		
1	L _{LS} =	110	ft		035	L _{LS} = L _{Buffer} =				
DITCH TURNO	JT BUFFER B-9	(Subcat	chment	WQ11)						
DITCH TURNO	JT BUFFER B-9	(Subcat 16,823	_	WQ11)						
Total Contributir	J T BUFFER B-9 g Area, A =		_	WQ11)						
	JT BUFFER B-9 g Area, A = Cover = F	16,823 Forested	_	WQ11)						
Total Contributir	JT BUFFER B-9 g Area, A =	16,823 Forested C	_	WQ11)						
Total Contributir For Buffer Area:	JT BUFFER B-9 g Area, A = Cover = F HSG = S =	16,823 Forested C 9%	sf	WQ11) Ier length, L _{LS} = 20 feet:						
Total Contributir For Buffer Area:	JT BUFFER B-9 g Area, A = Cover = HSG = S = er length for min	16,823 Forested C 9% imum lev	sf vel spread	ler length, L_{LS} = 20 feet:						
Total Contributir For Buffer Area:	JT BUFFER B-9 g Area, A = Cover = F HSG = S =	16,823 Forested C 9%	sf vel spread	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * \text{A}$ $L_2 = 2 \text{ ft} * \text{S}$						
Total Contributir For Buffer Area:	JT BUFFER B-9 g Area, A = Cover = HSG = S = er length for min $L_1 =$	16,823 Forested C 9% imum lev 252	sf vel spread	ler length, L _{LS} = 20 feet: L ₁ = (15 ft/1000 sf) * A						
Total Contributir For Buffer Area: 1. Calculate buf	JT BUFFER B-9 g Area, A = Cover = F HSG = S = er length for min $L_1 =$ $L_2 =$ $L_{Total} =$	16,823 Forested C 9% imum lev 252 18	sf vel spread ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * \text{A}$ $L_2 = 2 \text{ ft} * \text{S}$						
Total Contributir For Buffer Area: 1. Calculate buf	JT BUFFER B-9 g Area, A = Cover = F HSG = S = er length for min $L_1 =$ $L_2 =$ $L_{Total} =$	16,823 Forested C 9% imum lev 252 18	sf vel spread ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * \text{A}$ $L_2 = 2 \text{ ft} * \text{S}$						
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = HSG = S = er length for min $L_1 =$ $L_2 =$ $L_{Total} =$ I Buffer Area:	16,823 Forested C 9% imum lev 252 18 270 5407	sf rel spread ft ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$						
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = F HSG = S = er length for min $L_1 =$ $L_2 =$ $L_{Total} =$ I Buffer Area: $A_{Total} =$	16,823 Forested C 9% imum lev 252 18 270 5407	sf rel spread ft ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$						
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = F HSG = S = er length for min $L_1 =$ $L_2 =$ $L_{Total} =$ I Buffer Area: $A_{Total} =$ fer Length for Va	16,823 Forested C 9% imum lev 252 18 270 5407 rious Lev	sf rel spread ft ft ft sf vel Sprea	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$						
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = HSG = S = er length for min L ₁ = L ₂ = L _{Total} = I Buffer Area: A _{Total} = fer Length for Va L _{LS} = L _{Buffer} =	16,823 Forested C 9% imum lev 252 18 270 5407 rious Lev 25	sf rel spread ft ft sf vel Sprea	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$ der Lengths:						
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = F HSG = S = er length for min $L_1 =$ $L_2 =$ $L_{Total} =$ I Buffer Area: $A_{Total} =$ fer Length for Va $L_{LS} =$	16,823 Forested C 9% imum lev 252 18 270 5407 stor rious Lev 25 216	sf rel spread ft ft ft vel Sprea ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$ der Lengths:						
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = HSG = S = er length for min L ₁ = L ₂ = L _{Total} = I Buffer Area: A _{Total} = ier Length for Va L _{LS} = L _{LS} =	16,823 Forested C 9% imum lev 252 18 270 5407 stor rious Lev 25 216 30	sf rel spread ft ft ft vel Sprea ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$ der Lengths:	USE	L _{LS} =	40	ft		
Total Contributir For Buffer Area: 1. Calculate buf 2. CalculateTota	JT BUFFER B-9 g Area, A = Cover = F HSG = S = er length for min L ₁ = L ₂ = L _{Total} = I Buffer Area: A _{Total} = Ver Length for Va L _{LS} = L _{Buffer} = L _{LS} = L _{Buffer} =	16,823 Forested C 9% imum lev 252 18 270 5407 rrious Lev 25 216 30 180	sf rel spread ft ft ft vel Sprea ft ft ft ft	ler length, $L_{LS} = 20$ feet: $L_1 = (15 \text{ ft}/1000 \text{ sf}) * A$ $L_2 = 2 \text{ ft} * S$ $L_{Total} = L_1 + L_2$ $A_{Total} = L_{Total} * 20 \text{ ft}$ der Lengths:	USE	L _{LS} = L _{Buffer} =		ft		

PROJECT: TRC Project:	Eolian Renew Antrim Windg 186317.0000.0	oower Proj								Calculated By: Checked By: Date: Revised:	PMM PGT
					ANDARDS CALCULATIO	ONS					
				WATER QUALITY SI	ANDARDS CALCOLATI	0113					
DITCH TURNOU	T BUFFER B-	-11 (Subca	atchment	WQ12)							
Total Contributing	g Area, A =	9,650	sf								
For Buffer Area:	Cover =	Forested									
	HSG =	C 11%									
1. Calculate buffe			vel spread	er length, L _{LS} = 20 feet:							
	L ₁ = L ₂ =	145 22	ft ft	L ₁ = (15 ft/1000 sf) * A L ₂ = 2 ft * S							
	L _{Total} =	167	ft	$L_{Total} = L_1 + L_2$							
2. CalculateTotal	Buffer Area:										
	A _{Total} =	3335	sf	A _{Total} = L _{Total} * 20 ft							
3. Calculate Buffe											
5. Calculate Dull											
	L _{LS} = L _{Buffer} =	25 133	ft ft	$L_{Buffer} = A_{Tota}/L_{LS}$							
	L _{LS} = L _{Buffer} =	30 111	ft ft								
		25	4			USE:		25	4		
	L _{LS} = L _{Buffer} =	35 95	ft ft			03E.	L _{LS} = L _{Buffer} =	25 135	ft ft		
DITCH TURNOU	T BUFFER										
Total Contributing			sf								
For Buffer Area:	g /ou, / t		0.								
T OF Buildi Area.	Cover = HSG =										
	H3G = S =										
1. Calculate buffe	er length for mi	inimum lev	/el spread	er length, I _{LS} = 20 feet:							
	L ₁ =	0	ft	L ₁ = (15 ft/1000 sf) * A							
	L ₂ =	0	ft	$L_2 = 2 \text{ ft } * \text{ S}$							
	L _{Total} =	0	ft	$L_{\text{Total}} = L_1 + L_2$							
2. CalculateTotal	Buffer Area:										
	A _{Total} =	0	sf	$A_{Total} = L_{Total} * 20 \text{ ft}$							
3. Calculate Buffe	er Length for V	arious Lev	vel Spread	ler Lengths:							
	L _{LS} =		ft								
		#DIV/0!		$L_{Buffer} = A_{Tota}/L_{LS}$							
	L _{LS} =		ft								
		#DIV/0!	ft								
	L _{LS} =		ft			USE:	L _{LS} =		ft		
	L _{Buffer} =	#DIV/0!	ft				L _{Buffer} =		ft		

PROJECT: TRC Project:	Eolian Renewable Energy, LLC Antrim Windpower Project 186317.0000.0000					Calculated By: Checked By: Date: Revised:	PMM PGT
		W	ATER QU	JALITY STA	NDARDS CALCULATIONS		
TREATMENT	SWALE SW-1						
	ITY VOLUME (WQV) CALCULATIC nent of the first 1 inch of rainfall	<u>DNS</u>					
	ng Area, A (ac) tributing Area, Ai (ac) P (in)	A = Ai = P =	0.412 0.156 1.0	ac. ac. in.			
Percent Imperv Runoff Coefficie		l = Rv =	0.38 0.39		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality V	volume, WQV (acin)	WQV = WQV =	0.16 584	acin. cu. ft.	WQV = P * Rv * A		
	ITY FLOW (WQF) CALCULATIONS nent of the first 1 inch of rainfall	<u>8</u>					
Time of Concer	ntration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality D	Depth, Q (in)	Q =	0.39	in.	Q = WQV / A		
Water Quality D	Depth Curve Number, CN	CN =	91.7		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. I Initial Abstractio Ratio of la / P	Retention, S (in.) on, Ia (in.)	S = la = la / P =	0.90 0.18 0.18	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (la	/ P) with TR-55 Exhibit 4-II or 4-III to	o determine Un	it Peak Di	scharge, q "			
Unit Peak Disch	narge, q _u (cfs/sq.mi./in)	qu =	630	cfs/sq.mi./i	n From TR-55 Exhibit 4-III		
Calculate Wate	r Quality Flow, WQF (cfs)	WQF =	0.16	cfs	WQF = q _u * WQV		
TREATMENT S	SWALE SW-2						
	ITY VOLUME (WQV) CALCULATIC nent of the first 1 inch of rainfall	<u>INS</u>					
Total Contributi	ng Area, A (ac) htributing Area, Ai (ac)	A = Ai = P =	0.268 0.130 1.0	ac. ac. in.			
Percent Imperv Runoff Coefficie		l = Rv =	0.49 0.49		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality V	/olume, WQV (acin)	WQV = WQV =	0.13 473	acin. cu. ft.	WQV = P * Rv * A		
	ITY FLOW (WQF) CALCULATIONS nent of the first 1 inch of rainfall	<u>5</u>					
Time of Concer	ntration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality D	Depth, Q (in)	Q =	0.49	in.	Q = WQV / A		
Water Quality D	Pepth Curve Number, CN	CN =	93.7		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
	Retention, S (in.) on, Ia (in.)	S = la = la / P =	0.67 0.13 0.13	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
Initial Abstraction Ratio of Ia / P							
Ratio of Ia / P	/ P) with TR-55 Exhibit 4-II or 4-III to	o determine Un	it Peak Di	scharge, q _u			
Ratio of Ia / P USE Tc and (Ia	/P) with TR-55 Exhibit 4-II or 4-III to	o determine Un qu =	it Peak Dis 640	scharge, q _u cfs/sq.mi./ii	n From TR-55 Exhibit 4-III		

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.16	ft³/s
Results		
Normal Depth	0.18	ft
Flow Area	0.64	ft²
Wetted Perimeter	4.15	ft
Hydraulic Radius	0.16	ft
Top Width	4.09	ft
Critical Depth	0.04	ft
Critical Slope	0.94604	ft/ft
Velocity	0.25	ft/s
Velocity Head	0.00	ft
Specific Energy	0.18	ft
Froude Number	0.11	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.18	ft
Critical Depth	0.04	ft
Channel Slope	0.00750	ft/ft
Critical Slope	0.94604	ft/ft

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00500	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.13	ft³/s
Results		
Normal Depth	0.18	ft
Flow Area	0.64	ft²
Wetted Perimeter	4.15	ft
Hydraulic Radius	0.16	ft
Top Width	4.09	ft
Critical Depth	0.04	ft
Critical Slope	0.99010	ft/ft
Velocity	0.20	ft/s
Velocity Head	0.00	ft
Specific Energy	0.18	ft
Froude Number	0.09	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.18	ft
Critical Depth	0.04	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.99010	ft/ft

Antrim	Renewable Energy, LLC Windpower Project 7.0000.0000					Calculated By: Checked By: Date: Revised:	PMM PGT
		W	ATER QI	JALITY ST	ANDARDS CALCULATIONS		
TREATMENT SWALE S	SW-3						
WATER QUALITY VOL Based on treatment of th	UME (WQV) CALCULATION the first 1 inch of rainfall	<u>NS</u>					
Total Contributing Area, Impervious Contributing Rainfall Depth, P (in)		A = Ai = P =	0.309 0.073 1.0	ac. ac. in.			
Percent Impervious Area Runoff Coefficient, Rv	a, I	l = Rv =	0.24 0.26		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, V	VQV (acin)	WQV = WQV =	0.08 295	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLO Based on treatment of th	W (WQF) CALCULATIONS the first 1 inch of rainfall						
Time of Concentration (I	nours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q	(in)	Q =	0.26	in.	Q = WQV / A		
Water Quality Depth Cu	rve Number, CN	CN =	88.3		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retentior Initial Abstraction, Ia (in. Ratio of Ia / P		S = la = la / P =	1.32 0.26 0.26	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (la / P) with	TR-55 Exhibit 4-II or 4-III to	determine Un	it Peak Di	scharge, q "			
Unit Peak Discharge, qu	(cfs/sq.mi./in)	qu =	620	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality	Flow, WQF (cfs)	WQF =	0.08	cfs	_WQF = q _u * WQV		
TREATMENT SWALE S	SW-4						
WATER QUALITY VOL Based on treatment of th	UME (WQV) CALCULATION the first 1 inch of rainfall	<u>NS</u>					
Total Contributing Area, Impervious Contributing Rainfall Depth, P (in)		A = Ai = P =	0.250 0.086 1.0	ac. ac. in.			
Percent Impervious Area Runoff Coefficient, Rv	a, I	l = Rv =	0.34 0.36		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, V	VQV (acin)	WQV = WQV =	0.09 326	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLO Based on treatment of th	W (WQF) CALCULATIONS the first 1 inch of rainfall						
Time of Concentration (I	nours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q	(in)	Q =	0.36	in.	Q = WQV / A		
Water Quality Depth Cu	rve Number, CN	CN =	91.0		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retentior Initial Abstraction, Ia (in. Ratio of Ia / P		S = la = la / P =	0.99 0.20 0.20	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with	TR-55 Exhibit 4-II or 4-III to	determine Un	it Peak Di	scharge, q "			
Unit Peak Discharge, qu	(cfs/sq.mi./in)	qu =	625	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality	Flow, WQF (cfs)	WQF =	0.09	cfs	_WQF = q _u * WQV		

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.01000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.08	ft³/s
Results		
Normal Depth	0.11	ft
Flow Area	0.37	ft²
Wetted Perimeter	3.71	ft
Hydraulic Radius	0.10	ft
Top Width	3.67	ft
Critical Depth	0.03	ft
Critical Slope	1.09773	ft/ft
Velocity	0.21	ft/s
Velocity Head	0.00	ft
Specific Energy	0.11	ft
Froude Number	0.12	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.11	ft
Critical Depth	0.03	ft
Channel Slope	0.01000	ft/ft
Critical Slope	1.09773	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.09	ft³/s
Results		
Normal Depth	0.13	ft
Flow Area	0.44	ft²
Wetted Perimeter	3.82	ft
Hydraulic Radius	0.12	ft
Top Width	3.78	ft
Critical Depth	0.03	ft
Critical Slope	1.07143	ft/ft
Velocity	0.20	ft/s
Velocity Head	0.00	ft
Specific Energy	0.13	ft
Froude Number	0.11	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.13	ft
Critical Depth	0.03	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.07143	ft/ft

PROJECT: Eolian Renewable Antrim Windpowe TRC Project: 186317.0000.0000					Calculated By: Checked By: Date: Revised:	PMM PGT
	Ŵ	ATER Q	UALITY ST	ANDARDS CALCULATIONS		
TREATMENT SWALE SW-5						
WATER QUALITY VOLUME (WQ) Based on treatment of the first 1 inc						
Total Contributing Area, A (ac) Impervious Contributing Area, Ai (a Rainfall Depth, P (in)	A = Ai = P =	0.396 0.119 1.0	ac. ac. in.			
Percent Impervious Area, I Runoff Coefficient, Rv	= Rv =	0.30 0.32		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, WQV (acir	i) WQV = WQV =	0.13 461	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLOW (WQF) C Based on treatment of the first 1 inc						
Time of Concentration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q (in)	Q =	0.32	in.	Q = WQV / A		
Water Quality Depth Curve Number	r, CN CN =	90.0		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retention, S (in.) Initial Abstraction, Ia (in.) Ratio of Ia / P	S = la = la / P =	1.11 0.22 0.22	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with TR-55 Ext	nibit 4-II or 4-III to determine U	nit Peak Di	ischarge, q _u			
Unit Peak Discharge, q _u (cfs/sq.mi.	/in) qu =	625	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality Flow, WQF	(cfs) WQF =	0.12	cfs	$WQF = q_u * WQV$		
TREATMENT SWALE SW-6						
WATER QUALITY VOLUME (WQ) Based on treatment of the first 1 inc						
Total Contributing Area, A (ac) Impervious Contributing Area, Ai (a Rainfall Depth, P (in)	A = c) Ai = P =	0.591 0.092 1.0	ac. ac. in.			
Percent Impervious Area, I Runoff Coefficient, Rv	l = Rv =	0.16 0.19		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, WQV (acir) WQV = WQV =	0.11 408	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLOW (WQF) C Based on treatment of the first 1 inc						
Time of Concentration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q (in)	Q =	0.19	in.	Q = WQV / A		
Water Quality Depth Curve Number	r, CN CN =	85.7		$CN = 1000/[10+5P+10Q-10(Q^2+1.25^{\star}Q^{\star}P)^{0.5}]$		
Potential Max. Retention, S (in.) Initial Abstraction, Ia (in.) Ratio of Ia / P	S = a = a / P =	1.67 0.33 0.33	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with TR-55 Ext	nibit 4-II or 4-III to determine U	nit Peak Di	ischarge, q "			
Unit Peak Discharge, q _u (cfs/sq.mi.	/in) qu =	610	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality Flow, WQF	(cfs) WQF =	0.11	cfs	WQF = q _u * WQV		

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00500	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.12	ft³/s
Results		
Normal Depth	0.17	ft
Flow Area	0.61	ft²
Wetted Perimeter	4.10	ft
Hydraulic Radius	0.15	ft
Top Width	4.04	ft
Critical Depth	0.04	ft
Critical Slope	1.00681	ft/ft
Velocity	0.20	ft/s
Velocity Head	0.00	ft
Specific Energy	0.17	ft
Froude Number	0.09	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.17	ft
Critical Depth	0.04	ft
Channel Slope	0.00500	ft/ft
Critical Slope	1.00681	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	4.00	ft
Discharge	0.11	ft³/s
Results		
Normal Depth	0.12	ft
Flow Area	0.55	ft²
Wetted Perimeter	4.79	ft
Hydraulic Radius	0.11	ft
Top Width	4.75	ft
Critical Depth	0.03	ft
Critical Slope	1.08626	ft/ft
Velocity	0.20	ft/s
Velocity Head	0.00	ft
Specific Energy	0.13	ft
Froude Number	0.10	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.12	ft
Critical Depth	0.03	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.08626	ft/ft

Based on treatment Total Contributing A Impervious Contribu Rainfall Depth, P (ir Percent Impervious Runoff Coefficient, I Water Quality Volur WATER QUALITY Based on treatment	VOLUME (WQV) CALCULATION of the first 1 inch of rainfall rea, A (ac) titing Area, Ai (ac) i) Area, I Rv ne, WQV (acin) FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall		0.254 0.064 1.0 0.25 0.28 0.07 255	ac. ac. ac. in. acin. cu. ft.	ANDARDS CALCULATIONS I = Ai / A Rv = 0.05 + (0.9 * I) WQV = P * Rv * A	
WATER QUALITY Based on treatment Total Contributing A Impervious Contribu Rainfall Depth, P (ir Percent Impervious Runoff Coefficient, I Water Quality Volur WATER QUALITY Based on treatment	VOLUME (WQV) CALCULATION of the first 1 inch of rainfall rea, A (ac) titing Area, Ai (ac) i) Area, I Rv ne, WQV (acin) FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall	A = Ai = P = I = Rv = WQV = WQV =	0.064 1.0 0.25 0.28 0.07	ac. in. acin.	Rv = 0.05 + (0.9 * I)	
Based on treatment Total Contributing A Impervious Contribu Rainfall Depth, P (ir Percent Impervious Runoff Coefficient, I Water Quality Volur WATER QUALITY Based on treatment	of the first 1 inch of rainfall trea, A (ac) tring Area, Ai (ac)) Area, I Rv ne, WQV (acin) FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall	A = Ai = P = I = Rv = WQV = WQV =	0.064 1.0 0.25 0.28 0.07	ac. in. acin.	Rv = 0.05 + (0.9 * I)	
Impervious Contribu Rainfall Depth, P (ir Percent Impervious Runoff Coefficient, I Water Quality Volur WATER QUALITY Based on treatment	iting Area, Ai (ac)) Area, I ₹v ne, WQV (acin) FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall	Ai = P = I = Rv = WQV = WQV =	0.064 1.0 0.25 0.28 0.07	ac. in. acin.	Rv = 0.05 + (0.9 * I)	
Runoff Coefficient, I Water Quality Volur WATER QUALITY Based on treatment	₹v ne, WQV (acin) FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall	Rv = WQV = WQV =	0.28 0.07		Rv = 0.05 + (0.9 * I)	
WATER QUALITY Based on treatment	FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall	WQV =			WQV = P * Rv * A	
Based on treatment	of the first 1 inch of rainfall	To -				
	on (hours):	To -				
Time of Concentrati		Tc = Tc =	6 0.10	min. hours		
Water Quality Dept	n, Q (in)	Q =	0.28	in.	Q = WQV / A	
Water Quality Deptl	n Curve Number, CN	CN =	88.8		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]	
Potential Max. Rete Initial Abstraction, la Ratio of la / P		S = la = la / P =	1.27 0.25 0.25	in. in.	S = (1000 / CN) - 10 la = 0.2 * S	
USE Tc and (Ia / P)	with TR-55 Exhibit 4-II or 4-III to	determine Un	it Peak Di	scharge, q "		
Unit Peak Discharg	e, q _u (cfs/sq.mi./in)	qu =	615	cfs/sq.mi.	in From TR-55 Exhibit 4-III	
Calculate Water Qu	ality Flow, WQF (cfs)	WQF =	0.07	cfs	WQF = q _u * WQV	
TREATMENT SWA	LE SW-8					
	VOLUME (WQV) CALCULATION of the first 1 inch of rainfall	<u>NS</u>				
Total Contributing A Impervious Contribu Rainfall Depth, P (ir	iting Area, Ai (ac)	A = Ai = P =	0.367 0.119 1.0	ac. ac. in.		
Percent Impervious Runoff Coefficient, I		l = Rv =	0.32 0.34		I = Ai / A Rv = 0.05 + (0.9 * I)	
Water Quality Volur	ne, WQV (acin)	WQV = WQV =	0.13 455	acin. cu. ft.	WQV = P * Rv * A	
	FLOW (WQF) CALCULATIONS of the first 1 inch of rainfall					
Time of Concentrati	on (hours):	Tc = Tc =	6 0.10	min. hours		
Water Quality Dept	n, Q (in)	Q =	0.34	in.	Q = WQV / A	
Water Quality Deptl	n Curve Number, CN	CN =	90.6		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]	
Potential Max. Rete Initial Abstraction, la Ratio of la / P		S = la = la / P =	1.04 0.21 0.21	in. in.	S = (1000 / CN) - 10 Ia = 0.2 * S	
USE Tc and (Ia / P)	with TR-55 Exhibit 4-II or 4-III to	determine Un	it Peak Di	scharge, q "		
Unit Peak Discharg	e, q _u (cfs/sq.mi./in)	qu =	625	cfs/sq.mi.	in From TR-55 Exhibit 4-III	
Calculate Water Qu	ality Flow, WQF (cfs)	WQF =	0.12	cfs	WQF = q_u * WQV	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.07	ft³/s
Results		
Normal Depth	0.11	ft
Flow Area	0.38	ft ²
Wetted Perimeter	3.71	ft
Hydraulic Radius	0.10	ft
Top Width	3.68	ft
Critical Depth	0.03	ft
Critical Slope	1.12920	ft/ft
Velocity	0.19	ft/s
Velocity Head	0.00	ft
Specific Energy	0.11	ft
Froude Number	0.10	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.11	ft
Critical Depth	0.03	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.12920	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.12	ft³/s
Results		
Normal Depth	0.15	ft
Flow Area	0.53	ft²
Wetted Perimeter	3.98	ft
Hydraulic Radius	0.13	ft
Top Width	3.93	ft
Critical Depth	0.04	ft
Critical Slope	1.00815	ft/ft
Velocity	0.22	ft/s
Velocity Head	0.00	ft
Specific Energy	0.15	ft
Froude Number	0.11	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.15	ft
Critical Depth	0.04	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.00815	ft/ft

PROJECT: TRC Project:	Eolian Renewable Energy, LLC Antrim Windpower Project 186317.0000.0000					Calculated By: Checked By: Date: Revised:	PMM PGT
		w	ATER QI	JALITY ST	ANDARDS CALCULATIONS		
TREATMENT S	WALE SW-9						
	TY VOLUME (WQV) CALCULATIOn the first 1 inch of rainfall	ONS					
Total Contributir Impervious Con Rainfall Depth, F	tributing Area, Ai (ac)	A = Ai = P =	0.183 0.064 1.0	ac. ac. in.			
Percent Impervie Runoff Coefficie		l = Rv =	0.35 0.36		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality V	olume, WQV (acin)	WQV = WQV =	0.07 242	acin. cu. ft.	WQV = P * Rv * A		
	TY FLOW (WQF) CALCULATION nent of the first 1 inch of rainfall	<u>s</u>					
Time of Concen	tration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality D	epth, Q (in)	Q =	0.36	in.	Q = WQV / A		
Water Quality D	epth Curve Number, CN	CN =	91.1		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. F Initial Abstractio Ratio of Ia / P		S = la = la / P =	0.97 0.19 0.19	in. in.	S = (1000 / CN) - 10 Ia = 0.2 * S		
USE Tc and (la	/ P) with TR-55 Exhibit 4-II or 4-III	o determine Un	it Peak Di	scharge, q "			
Unit Peak Disch	arge, q _u (cfs/sq.mi./in)	qu =	625	cfs/sq.mi.	in From TR-55 Exhibit 4-III		
Calculate Water	Quality Flow, WQF (cfs)	WQF =	0.07	cfs	WQF = q _u * WQV		
TREATMENT S	WALE SW-10						
	TY VOLUME (WQV) CALCULATIOn the first 1 inch of rainfall	ONS					
Total Contributir Impervious Cont Rainfall Depth, F	tributing Area, Ai (ac)	A = Ai = P =	0.294 0.110 1.0	ac. ac. in.			
Percent Impervi Runoff Coefficie		l = Rv =	0.37 0.39		l = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality V	olume, WQV (acin)	WQV = WQV =	0.11 413	acin. cu. ft.	WQV = P * Rv * A		
	TY FLOW (WQF) CALCULATION tent of the first 1 inch of rainfall	<u>s</u>					
Time of Concen	tration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality D	epth, Q (in)	Q =	0.39	in.	Q = WQV / A		
Water Quality D	epth Curve Number, CN	CN =	91.6		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. F Initial Abstractio Ratio of Ia / P	Retention, S (in.) n, Ia (in.)	S = la = la / P =	0.91 0.18 0.18	in. in.	S = (1000 / CN) - 10 Ia = 0.2 * S		
USE Tc and (la	/ P) with TR-55 Exhibit 4-II or 4-III t	o determine Un	it Peak Di	scharge, q "			
Unit Peak Disch	arge, q _u (cfs/sq.mi./in)	qu =	625	cfs/sq.mi.	in From TR-55 Exhibit 4-III		
Calculate Water	Quality Flow, WQF (cfs)	WQF =	0.11	cfs	$WQF = q_u * WQV$		

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.07	ft³/s
Results		
Normal Depth	0.11	ft
Flow Area	0.38	ft²
Wetted Perimeter	3.71	ft
Hydraulic Radius	0.10	ft
Top Width	3.68	ft
Critical Depth	0.03	ft
Critical Slope	1.12920	ft/ft
Velocity	0.19	ft/s
Velocity Head	0.00	ft
Specific Energy	0.11	ft
Froude Number	0.10	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.11	ft
Critical Depth	0.03	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.12920	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.11	ft³/s
Results		
Normal Depth	0.15	ft
Flow Area	0.50	ft²
Wetted Perimeter	3.93	ft
Hydraulic Radius	0.13	ft
Top Width	3.88	ft
Critical Depth	0.03	ft
Critical Slope	1.02484	ft/ft
Velocity	0.22	ft/s
Velocity Head	0.00	ft
Specific Energy	0.15	ft
Froude Number	0.11	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.15	ft
Critical Depth	0.03	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.02484	ft/ft

PROJECT: Eolian Renewable E Antrim Windpower I TRC Project: 186317.0000.0000					Calculated By: Checked By: Date: Revised:	PMM PGT
	w	ATER QI	JALITY ST	ANDARDS CALCULATIONS		
TREATMENT SWALE SW-11						
WATER QUALITY VOLUME (WQV) Based on treatment of the first 1 inch						
Total Contributing Area, A (ac) Impervious Contributing Area, Ai (ac) Rainfall Depth, P (in)	A = Ai = P =	0.183 0.133 1.0	ac. ac. in.			
Percent Impervious Area, I Runoff Coefficient, Rv	l = Rv =	0.73 0.70		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, WQV (acin)	WQV = WQV =	0.13 468	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLOW (WQF) CA Based on treatment of the first 1 inch						
Time of Concentration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q (in)	Q =	0.70	in.	Q = WQV / A		
Water Quality Depth Curve Number,	CN CN =	97.0		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retention, S (in.) Initial Abstraction, Ia (in.) Ratio of Ia / P	S = la = la / P =	0.31 0.06 0.06	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with TR-55 Exhib	nit 4-II or 4-III to determine Un	nit Peak Di	ischarge, q _u			
Unit Peak Discharge, q _u (cfs/sq.mi./ir	n) qu =	650	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality Flow, WQF (cfs) WQF =	0.13	cfs	$WQF = q_u * WQV$		
TREATMENT SWALE SW-12						
WATER QUALITY VOLUME (WQV) Based on treatment of the first 1 inch						
Total Contributing Area, A (ac) Impervious Contributing Area, Ai (ac) Rainfall Depth, P (in)	A = Ai = P =	0.514 0.156 1.0	ac. ac. in.			
Percent Impervious Area, I Runoff Coefficient, Rv	l = Rv =	0.30 0.32		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, WQV (acin)	WQV = WQV =	0.17 603	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLOW (WQF) CA Based on treatment of the first 1 inch						
Time of Concentration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q (in)	Q =	0.32	in.	Q = WQV / A		
Water Quality Depth Curve Number,	CN CN =	90.1		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retention, S (in.) Initial Abstraction, Ia (in.) Ratio of Ia / P	S = la = la / P =	1.10 0.22 0.22	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with TR-55 Exhib	nit 4-II or 4-III to determine Un	it Peak Di	ischarge, q "			
Unit Peak Discharge, q _u (cfs/sq.mi./ir	i) qu =	625	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality Flow, WQF (cfs) WQF =	0.16	cfs	WQF = q_u * WQV		

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
	········ - • - • - • · · ·	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00500	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.13	ft³/s
Results		
Normal Depth	0.18	ft
Flow Area	0.64	ft²
Wetted Perimeter	4.15	ft
Hydraulic Radius	0.16	ft
Top Width	4.09	ft
Critical Depth	0.04	ft
Critical Slope	0.99010	ft/ft
Velocity	0.20	ft/s
Velocity Head	0.00	ft
Specific Energy	0.18	ft
Froude Number	0.09	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.18	ft
Critical Depth	0.04	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.99010	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.16	ft³/s
Results		
Normal Depth	0.18	ft
Flow Area	0.64	ft²
Wetted Perimeter	4.15	ft
Hydraulic Radius	0.16	ft
Top Width	4.09	ft
Critical Depth	0.04	ft
Critical Slope	0.94604	ft/ft
Velocity	0.25	ft/s
Velocity Head	0.00	ft
Specific Energy	0.18	ft
Froude Number	0.11	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.18	ft
Critical Depth	0.04	ft
Channel Slope	0.00750	ft/ft
Critical Slope	0.94604	ft/ft

PROJECT: Eolian Renewable Energy, L Antrim Windpower Project TRC Project: 186317.0000.0000	LC				Calculated By: Checked By: Date: Revised:	PMM PGT
	W	ATER QU	IALITY STA	ANDARDS CALCULATIONS		
TREATMENT SWALE SW-13						
WATER QUALITY VOLUME (WQV) CALCU Based on treatment of the first 1 inch of rainfa						
Total Contributing Area, A (ac) Impervious Contributing Area, Ai (ac) Rainfall Depth, P (in)	A = Ai = P =	0.274 0.092 1.0	ac. ac. in.			
Percent Impervious Area, I Runoff Coefficient, Rv	l = Rv =	0.34 0.35		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, WQV (acin)	WQV = WQV =	0.10 350	acin. cu. ft.	WQV = P * Rv * A		
WATER QUALITY FLOW (WQF) CALCULA Based on treatment of the first 1 inch of rainfi						
Time of Concentration (hours):	Tc = Tc =	6 0.10	min. hours			
Water Quality Depth, Q (in)	Q =	0.35	in.	Q = WQV / A		
Water Quality Depth Curve Number, CN	CN =	90.8		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retention, S (in.) Initial Abstraction, Ia (in.) Ratio of Ia / P	S = la = la / P =	1.01 0.20 0.20	in. in.	S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with TR-55 Exhibit 4-II or	- 4-III to determine Un	it Peak Dis	scharge, q "			
Unit Peak Discharge, q _u (cfs/sq.mi./in)	qu =	625	cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality Flow, WQF (cfs)	WQF =	0.09	cfs	_WQF = q _u * WQV		
TREATMENT SWALE SW-						
WATER QUALITY VOLUME (WQV) CALCU Based on treatment of the first 1 inch of rainfo						
Total Contributing Area, A (ac) Impervious Contributing Area, Ai (ac) Rainfall Depth, P (in)	A = Ai = P =	1.0	ac. ac. in.			
Percent Impervious Area, I Runoff Coefficient, Rv	l = Rv =	#DIV/0! #DIV/0!		I = Ai / A Rv = 0.05 + (0.9 * I)		
Water Quality Volume, WQV (acin)	WQV = WQV =	#DIV/0! # DIV/0!		WQV = P * Rv * A		
WATER QUALITY FLOW (WQF) CALCULA Based on treatment of the first 1 inch of rainfa						
Time of Concentration (hours):	Tc = Tc =	0.00	min. hours			
Water Quality Depth, Q (in)	Q =	#DIV/0!	in.	Q = WQV / A		
Water Quality Depth Curve Number, CN	CN =	#DIV/0!		CN = 1000/[10+5P+10Q-10(Q ² +1.25*Q*P) ^{0.5}]		
Potential Max. Retention, S (in.) Initial Abstraction, Ia (in.) Ratio of Ia / P	S = la = la / P =	#DIV/0! #DIV/0! #DIV/0!		S = (1000 / CN) - 10 la = 0.2 * S		
USE Tc and (Ia / P) with TR-55 Exhibit 4-II o	USE Tc and (Ia / P) with TR-55 Exhibit 4-II or 4-III to determine Unit Peak Discharge, q					
Unit Peak Discharge, q _u (cfs/sq.mi./in)	qu =		cfs/sq.mi./	in From TR-55 Exhibit 4-III		
Calculate Water Quality Flow, WQF (cfs)	WQF =	#DIV/0!	cfs	_WQF = q _u * WQV		

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.150	
Channel Slope	0.00750	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	3.00	ft
Discharge	0.09	ft³/s
Results		
Normal Depth	0.13	ft
Flow Area	0.44	ft²
Wetted Perimeter	3.82	ft
Hydraulic Radius	0.12	ft
Top Width	3.78	ft
Critical Depth	0.03	ft
Critical Slope	1.07143	ft/ft
Velocity	0.20	ft/s
Velocity Head	0.00	ft
Specific Energy	0.13	ft
Froude Number	0.11	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.13	ft
Critical Depth	0.03	ft
Channel Slope	0.00750	ft/ft
Critical Slope	1.07143	ft/ft

PROJECT: TRC Project:	Eolian Renewable Energy, LLC Antrim Windpower Project 186317.0000.0000						Calculated By: Checked By: Date: Revised:	PMM PGT
			WATER		STANDARDS CALCULATIONS			
BIORETENTION	I BASIN BR-1							
	TY VOLUME (WQV) CALCULATION	NS						
	ent of the first 1 inch of rainfall			_				
Total Contributin Impervious Cont Rainfall Depth, F	ributing Area, Ai (ac)	A = Ai = P =	1.006 0.895 1.0	ac. ac. in.				
Percent Impervio Runoff Coefficie		l = Rv =	0.89 0.85		l = Ai / A Rv = 0.05 + (0.9 * I)			
Water Quality Vo	blume, WQV (acin)	WQV = WQV =	0.86 3,107	acin. cu. ft.	WQV = P * Rv * A			
Basin Sizing Ca	lculations							
Ponding Storage	<u>.</u>							
Water Surface A Basin Base Area		A ₁ = A ₂ =	3,400 2,735	sq. ft. sq. ft.				
Ponding Depth, Storage Volume	d (ft.)	d = V ₁ =	0.5 1,534	ft. cu. ft.	$V_1 = ((A_1 + A_2) / 2) * d$			
Soil Filter Bed S	torage							
Soil Filter Depth		D =	1.5	ft.				
Soil Filter Porosi Storage Volume	3 .	n = V ₂ =	0.4 1,641	cu. ft.	V ₂ = A ₂ * D * n			
Total Storage Vo	blume, V _T (cu. ft.)	ν _τ =	3,175	cu. ft.	$V_{T} = V_{1} + V_{2}$			
	I BASIN BR-2 TY VOLUME (WQV) CALCULATIO! ent of the first 1 inch of rainfall	<u>NS</u>						
Total Contributin Impervious Cont Rainfall Depth, F	ributing Area, Ai (ac)	A = Ai = P =	0.986 0.715 1.0	ac. ac. in.		0.463 0.45		
Percent Impervio Runoff Coefficie		l = Rv =	0.73 0.70		I = Ai / A Rv = 0.05 + (0.9 * I)			
Water Quality Vo	olume, WQV (acin)	WQV = WQV =	0.69 2,515	acin. cu. ft.	WQV = P * Rv * A	1554		
BASIN SIZING	CALCULATIONS							
Ponding Storage	<u>.</u>							
Water Surface A	rea, A ₁ (sq.ft.)	A ₁ =	3,160	sq. ft.				
Basin Base Area Ponding Depth,		A ₂ = d =	2,050 0.5	sq. ft. ft.				
Storage Volume		d = V ₁ =	0.5 1,303	π. cu. ft.	$V_1 = ((A_1 + A_2) / 2) * d$			
Soil Filter Bed S	torage							
Soil Filter Depth		D =	1.5	ft.				
Soil Filter Porosi Storage Volume		n = V ₂ =	0.4 1,230	cu. ft.	V ₂ = A ₂ * D * n			
Total Storage Vo	blume, V _T (cu. ft.)	V _T =	2,533	cu. ft.	$V_{T} = V_{1} + V_{2}$			

APPENDIX C

Conveyance and Stabilization Calculations

PROJECT: Eolian Renewable Antrim Windpowe IRC Project: 186317.0000.0000	r Project						Calculated By: PMM Checked By: PGT Date: December 17, 20 Revised:
			RIPR	AP CHANNE	L PROTECTION	CALCULATI	ONS
2. All channels with slopes great	er than 8% rec d on a 10-year unless otherwi	uire riprap design sto	reinforceme rm event. F d.	ent.			IPs" (2003). Refer to Section E-6 Riprap Waterways. ware. Velocities and flow depths are determined
			[21.6*log ₁₀	(y/D ₅₀)+14.0]			
LOCATION	HydroCAD Node	Q ₁₀ (cfs)	Depth, y (ft)	Minimum D₅₀ (ft)	Manning's "n"	V ₁₀ (fps)	Comments
Sta 0+00 to Sta 2+50 R	1.1R	5.87	0.51	0.50	0.065	3.83	Velocity and depth from HydroCAD model
Sta 2+50 to Sta 5+75 R	1.1R	4.44	0.48	0.50	0.067	3.16	Velocity and depth from HydroCAD model
Sta 0+00 to Sta 2+50 L	1.1		0.40	0.50	0.001	0.10	Only a small portion of SC 1.1 contributes to channel flow. Use D ₅₀ = for simplified construction.
Sta 2+50 to Sta 5+00 L	1.1	2.05	0.33	0.50	0.086	2.37	
Sta 8+50 to Sta 10+25 R	1.3	4.44	0.48	0.50	0.067	3.16	Velocity and depth from HydroCAD model
Sta 9+00 to Sta 10+25 L	1.5	3.93	0.44	0.50	0.070	3.13	
Sta 12+25 to Sta 13+50 R	1.4A	0.45	0.14	0.25	0.091	1.40	
Sta 13+50 to Sta 16+00 R	WQ4	0.62	0.16	0.25	0.081	1.68	
Sta 12+25 to Sta 16+00 L	1.5	3.93	0.44	0.50	0.071	3.13	
Sta 19+00 to Sta 24+50 R	WQ5	0.98	0.19	0.25	0.071	2.14	
Sta 19+00 to Sta 24+00 L	1.6	-	-	0.25	-	-	Only a small portion of SC 1.6 contributes to channel flow. Assume equivalent to WQ5.
Sta 32+00 to Sta 35+50 R	WQ7	0.69	0.17	0.25	0.078	1.79	
Sta 32+00 to Sta 36+00 L	1.6	10.0	0.63	0.50	0.059	4.92	Based on contributing area, assume flow is 25% of Q ₁₀ for SC1.6
Sta 41+75 R (Slope)	1.8/6P	17.0	0.58	0.83	0.088	6.88	Design based on Q25
Sta 45+00 to Sta 49+50 L	1.9	8.42	0.58	0.50	0.061	4.58	Assumes full flow to all culverts
Sta 54+00 to Sta 57+50 L	1.10	9.63	0.61	0.50	0.059	4.87	Assumes full flow to all culverts
Sta 57+50 to Sta 63+50 L	1.11	5.40	0.48	0.50	0.067	3.77	
Sta 63+50 to Sta 66+75 L	1.12	1.54	0.23	0.25	0.062	2.72	Use D ₅₀ =6" for simplified construction.
Sta 68+00 to Sta 69+75 L	WQ9	0.65	0.16	0.25	0.081	1.71	
Sta 68+00 to Sta 69+75 R				0.25			Small contributing area. Assume equivalent to WQ9.
Sta 77+50 to Sta 80+25 L	WQ11	0.76	0.18	0.25	0.074	1.80	
Sta 77+00 to Sta 80+25 R	-	-	-	-	-	-	Small contributing area. Assume equivalent to WQ11.
Sta 97+00 to Sta 98+50 R	-	-	-	0.25	-	-	Minimal contributing area.
Sta 101+75 to Sta 103+25 L	-	-	-	0.25	-	-	Minimal contributing area.
Sta 104+25 to Sta 106+50 L	-	-	-	0.25	-	-	Minimal contributing area.
Sta 111+50 to Sta 113+25 L Sta 120+00 to Sta 123+00 R	-	-	-	0.25	- 0.074	-	Minimal contributing area.
Sta 120+00 to Sta 123+00 R Sta 124+50 to Sta 126+00 R	WQ16 WQ17	0.84	0.18	0.25	0.074	1.98 1.36	
Sta 124+50 to Sta 126+00 R Sta 119+75 to Sta 126+00 L	-	- 0.42	- 0.14	0.25	0.091	-	Small contributing area. Assume equivalent to WQ16 &17.
Sta 128+00 to Sta 120+00 L	1.15	2.64	0.29	0.25	0.055	3.50	
Sta 128+50 to Sta 131+50 R	WQ18	0.70	0.23	0.25	0.077	1.81	
Sta 131+50 to Sta 137+00 L	1.16	2.40	0.28	0.25	0.057	3.31	
Sta 137+00 to Sta 139+00 L	1.17	0.33	0.13	0.25	0.099	1.19	
Sta 1+00 to Sta 3+25 L	3.2	0.53	0.15	0.25	0.086	1.53	
Sta 145+75 to Sta 147+00 R	-	-	-	0.25	-	-	Small contributing area. Assume equivalent to SC3.2.
Sta 157+25 to Sta 163+25 R	3.3	9.71	0.62	0.50	0.059	4.88	
Sta 158+00 to Sta 163+25 L				0.50			Small contributing area. Use D ₅₀ =6" for simplified construction.
Sta 163+25 to Sta 167+75 R	3.4	- 5.81	0.50	0.50	0.066	3.90	Assumes full flow to all culverts
Sta 167+75 to Sta 172+50 R	3.5	4.35	0.30	0.50	0.000	3.40	
Sta 169+50 to Sta 172+50 L	WQ20	1.13	0.44	0.30	0.068	2.30	
Sta 177+00 to Sta 179+25 L	WQ20	0.63	0.20	0.25	0.081	1.69	
Sta 178+00 to Sta 179+25 R	-	-	-	0.25	-	-	Small contributing area. Assume equivalent to WQ21.
Sta 179+00 to Sta 181+25 L	-	-	-	0.25	-	-	Small contributing area. Assume equivalent to WQ21.

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.086	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	2.05	ft³/s
Results		
Normal Depth	0.33	ft
Flow Area	0.86	ft²
Wetted Perimeter	3.46	ft
Hydraulic Radius	0.25	ft
Top Width	3.30	ft
Critical Depth	0.29	ft
Critical Slope	0.18457	ft/ft
Velocity	2.37	ft/s
Velocity Head	0.09	ft
Specific Energy	0.41	ft
Froude Number	0.82	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	
Normal Depth	0.33	ft
Critical Depth	0.29	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.18457	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.070	
Channel Slope	0.10000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	3.93	ft³/s
Results		
Normal Depth	0.44	ft
Flow Area	1.26	ft²
Wetted Perimeter	3.96	ft
Hydraulic Radius	0.32	ft
Top Width	3.75	ft
Critical Depth	0.42	ft
Critical Slope	0.11116	ft/ft
Velocity	3.13	ft/s
Velocity Head	0.15	ft
Specific Energy	0.59	ft
Froude Number	0.95	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.44	ft
Critical Depth	0.42	ft
Channel Slope	0.10000	ft/ft
Critical Slope	0.11116	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.091	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.45	ft³/s
Results		
Normal Depth	0.14	ft
Flow Area	0.32	ft²
Wetted Perimeter	2.63	ft
Hydraulic Radius	0.12	ft
Top Width	2.57	ft
Critical Depth	0.11	ft
Critical Slope	0.26590	ft/ft
Velocity	1.40	ft/s
Velocity Head	0.03	ft
Specific Energy	0.17	ft
Froude Number	0.69	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.14	ft
Critical Depth	0.11	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.26590	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.081	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.62	ft³/s
Results		
Normal Depth	0.16	ft
Flow Area	0.37	ft²
Wetted Perimeter	2.71	ft
Hydraulic Radius	0.14	ft
Top Width	2.64	ft
Critical Depth	0.14	ft
Critical Slope	0.19901	ft/ft
Velocity	1.68	ft/s
Velocity Head	0.04	ft
Specific Energy	0.20	ft
Froude Number	0.79	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.16	ft
Critical Depth	0.14	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.19901	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.071	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.98	ft³/s
Results		
Normal Depth	0.19	ft
Flow Area	0.46	ft²
Wetted Perimeter	2.86	ft
Hydraulic Radius	0.16	ft
Top Width	2.77	ft
Critical Depth	0.18	ft
Critical Slope	0.14141	ft/ft
Velocity	2.14	ft/s
Velocity Head	0.07	ft
Specific Energy	0.26	ft
Froude Number	0.93	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.19	ft
Critical Depth	0.18	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.14141	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.059	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	10.00	ft³/s
Results		
Normal Depth	0.63	ft
Flow Area	2.03	ft²
Wetted Perimeter	4.80	ft
Hydraulic Radius	0.42	ft
Top Width	4.50	ft
Critical Depth	0.72	ft
Critical Slope	0.06957	ft/ft
Velocity	4.92	ft/s
Velocity Head	0.38	ft
Specific Energy	1.00	ft
Froude Number	1.29	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.63	ft
Critical Depth	0.72	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.06957	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.078	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.69	ft³/s
Results		
Normal Depth	0.17	ft
Flow Area	0.39	ft²
Wetted Perimeter	2.74	ft
Hydraulic Radius	0.14	ft
Top Width	2.66	ft
Critical Depth	0.15	ft
Critical Slope	0.18111	ft/ft
Velocity	1.79	ft/s
Velocity Head	0.05	ft
Specific Energy	0.22	ft
Froude Number	0.83	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.17	ft
Critical Depth	0.15	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.18111	ft/ft

Worksheet for SC1.8/6P

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.088	
Channel Slope		0.50000	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Bottom Width		3.00	ft
Discharge		17.00	ft³/s
Results			
Normal Depth		0.59	ft
Flow Area		2.47	ft²
Wetted Perimeter		5.64	ft
Hydraulic Radius		0.44	ft
Top Width		5.36	ft
Critical Depth		0.83	ft
Critical Slope		0.14420	ft/ft
Velocity		6.88	ft/s
Velocity Head		0.74	ft
Specific Energy		1.33	ft
Froude Number		1.79	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.59	ft
Critical Depth		0.83	ft
Channel Slope		0.50000	ft/ft
		· · · ·	

Critical Slope

0.14420 ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.061	6//L
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	8.42	ft³/s
Results		
Normal Depth	0.58	ft
Flow Area	1.84	ft²
Wetted Perimeter	4.60	ft
Hydraulic Radius	0.40	ft
Top Width	4.33	ft
Critical Depth	0.65	ft
Critical Slope	0.07608	ft/ft
Velocity	4.58	ft/s
Velocity Head	0.33	ft
Specific Energy	0.91	ft
Froude Number	1.24	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.58	ft
Critical Depth	0.65	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.07608	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.059	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	9.63	ft³/s
Results		
Normal Depth	0.61	ft
Flow Area	1.98	ft ²
Wetted Perimeter	4.74	ft
Hydraulic Radius	0.42	ft
Top Width	4.45	ft
Critical Depth	0.71	ft
Critical Slope	0.06992	ft/ft
Velocity	4.87	ft/s
Velocity Head	0.37	ft
Specific Energy	0.98	ft
Froude Number	1.29	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.61	ft
Critical Depth	0.71	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.06992	ft/ft

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge	0.067 0.12000 2.00 2.00 2.00 5.40	ft/ft ft/ft (H:V) ft/ft (H:V) ft ft
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	0.48 1.43 4.16 0.34 3.93 0.51 0.09745 3.77 0.22 0.70 1.10 Supercritical	ft ft ² ft ft ft ft/ft ft/s ft ft
GVF Input Data		
Downstream Depth Length Number Of Steps	0.00 0.00 0	ft ft
GVF Output Data		
Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth	0.00 0.00 Infinity Infinity 0.48 0.51	ft ft/s ft/s ft ft
Channel Slope Critical Slope	0.31 0.12000 0.09745	ft/ft ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.062	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	1.57	ft³/s
Results		
Normal Depth	0.23	ft
Flow Area	0.57	ft²
Wetted Perimeter	3.04	ft
Hydraulic Radius	0.19	ft
Top Width	2.93	ft
Critical Depth	0.25	ft
Critical Slope	0.09995	ft/ft
Velocity	2.73	ft/s
Velocity Head	0.12	ft
Specific Energy	0.35	ft
Froude Number	1.09	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.23	ft
Critical Depth	0.25	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.09995	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.081	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.65	ft³/s
Results		
Normal Depth	0.16	ft
Flow Area	0.38	ft²
Wetted Perimeter	2.73	ft
Hydraulic Radius	0.14	ft
Top Width	2.65	ft
Critical Depth	0.14	ft
Critical Slope	0.19736	ft/ft
Velocity	1.71	ft/s
Velocity Head	0.05	ft
Specific Energy	0.21	ft
Froude Number	0.80	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.16	ft
Critical Depth	0.14	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.19736	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.074	
Channel Slope	0.10000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.76	ft³/s
Results		
Normal Depth	0.18	ft
Flow Area	0.42	ft²
Wetted Perimeter	2.80	ft
Hydraulic Radius	0.15	ft
Top Width	2.72	ft
Critical Depth	0.16	ft
Critical Slope	0.16032	ft/ft
Velocity	1.80	ft/s
Velocity Head	0.05	ft
Specific Energy	0.23	ft
Froude Number	0.80	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.18	ft
Critical Depth	0.16	ft
Channel Slope	0.10000	ft/ft
Critical Slope	0.16032	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.057	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	2.40	ft³/s
Results		
Normal Depth	0.28	ft
Flow Area	0.72	ft²
Wetted Perimeter	3.26	ft
Hydraulic Radius	0.22	ft
Top Width	3.13	ft
Critical Depth	0.32	ft
Critical Slope	0.07917	ft/ft
Velocity	3.31	ft/s
Velocity Head	0.17	ft
Specific Energy	0.45	ft
Froude Number	1.21	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	
Normal Depth	0.28	
Critical Depth	0.32	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.07917	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.091	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.42	ft³/s
Results		
Normal Depth	0.14	ft
Flow Area	0.31	ft²
Wetted Perimeter	2.61	ft
Hydraulic Radius	0.12	ft
Top Width	2.54	ft
Critical Depth	0.11	ft
Critical Slope	0.26925	ft/ft
Velocity	1.36	ft/s
Velocity Head	0.03	ft
Specific Energy	0.16	ft
Froude Number	0.69	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.14	ft
Critical Depth	0.11	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.26925	ft/ft

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.055	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	2.64	ft³/s
Results		
Normal Depth	0.29	ft
Flow Area	0.76	ft²
Wetted Perimeter	3.31	ft
Hydraulic Radius	0.23	ft
Top Width	3.17	ft
Critical Depth	0.34	ft
Critical Slope	0.07268	ft/ft
Velocity	3.50	ft/s
Velocity Head	0.19	ft
Specific Energy	0.48	ft
Froude Number	1.26	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.29	ft
Critical Depth	0.34	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.07268	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
lanut Data	•	
Input Data		
Roughness Coefficient	0.077	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.70	ft³/s
Results		
Normal Depth	0.17	ft
Flow Area	0.39	ft²
Wetted Perimeter	2.74	ft
Hydraulic Radius	0.14	ft
Top Width	2.66	ft
Critical Depth	0.15	ft
Critical Slope	0.17608	ft/ft
Velocity	1.81	ft/s
Velocity Head	0.05	ft
Specific Energy	0.22	ft
Froude Number	0.84	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.17	ft
Critical Depth	0.15	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.17608	ft/ft

Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient		0.053	
Channel Slope		0.12000	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Bottom Width		2.00	ft
Discharge		3.29	ft³/s
Results			
Normal Depth		0.32	ft
Flow Area		0.86	ft²
Wetted Perimeter		3.45	ft
Hydraulic Radius		0.25	ft
Top Width		3.29	ft
Critical Depth		0.38	ft
Critical Slope		0.06536	ft/ft
Velocity		3.84	ft/s
Velocity Head		0.23	ft
Specific Energy		0.55	ft
Froude Number		1.33	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.32	ft
Critical Depth		0.38	ft
Channel Slope		0.12000	ft/ft
Critical Slope		0.06536	ft/ft

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.099	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.33	ft³/s
Results		
Normal Depth	0.12	ft
Flow Area	0.28	ft²
Wetted Perimeter	2.55	ft
Hydraulic Radius	0.11	ft
Top Width	2.50	ft
Critical Depth	0.09	ft
Critical Slope	0.33316	ft/ft
Velocity	1.19	ft/s
Velocity Head	0.02	ft
Specific Energy	0.15	ft
Froude Number	0.63	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.12	ft
Critical Depth	0.09	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.33316	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
	········ - • - • - • · · ·	
Input Data		
Roughness Coefficient	0.086	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.53	ft³/s
Results		
Normal Depth	0.15	ft
Flow Area	0.35	ft²
Wetted Perimeter	2.67	ft
Hydraulic Radius	0.13	ft
Top Width	2.60	ft
Critical Depth	0.12	ft
Critical Slope	0.23060	ft/ft
Velocity	1.53	ft/s
Velocity Head	0.04	ft
Specific Energy	0.19	ft
Froude Number	0.74	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.15	ft
Critical Depth	0.12	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.23060	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.059	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	9.71	ft³/s
Results		
Normal Depth	0.62	ft
Flow Area	1.99	ft²
Wetted Perimeter	4.75	ft
Hydraulic Radius	0.42	ft
Top Width	4.46	ft
Critical Depth	0.71	ft
Critical Slope	0.06984	ft/ft
Velocity	4.88	ft/s
Velocity Head	0.37	ft
Specific Energy	0.99	ft
Froude Number	1.29	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.62	ft
Critical Depth	0.71	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.06984	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.066	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:∨)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	5.81	ft³/s
Results		
Normal Depth	0.50	ft
Flow Area	1.49	ft²
Wetted Perimeter	4.23	ft
Hydraulic Radius	0.35	ft
Top Width	3.99	ft
Critical Depth	0.53	ft
Critical Slope	0.09361	ft/ft
Velocity	3.90	ft/s
Velocity Head	0.24	ft
Specific Energy	0.73	ft
Froude Number	1.12	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.50	ft
Critical Depth	0.53	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.09361	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
	········ - • - • - • · · ·	
Input Data		
Roughness Coefficient	0.071	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	4.35	ft³/s
Results		
Normal Depth	0.44	ft
Flow Area	1.28	ft²
Wetted Perimeter	3.98	ft
Hydraulic Radius	0.32	ft
Top Width	3.77	ft
Critical Depth	0.45	ft
Critical Slope	0.11274	ft/ft
Velocity	3.40	ft/s
Velocity Head	0.18	ft
Specific Energy	0.62	ft
Froude Number	1.03	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.44	ft
Critical Depth	0.45	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.11274	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.068	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	1.13	ft³/s
Results		
Normal Depth	0.20	ft
Flow Area	0.49	ft²
Wetted Perimeter	2.91	ft
Hydraulic Radius	0.17	ft
Top Width	2.81	ft
Critical Depth	0.20	ft
Critical Slope	0.12672	ft/ft
Velocity	2.30	ft/s
Velocity Head	0.08	ft
Specific Energy	0.29	ft
Froude Number	0.97	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.20	ft
Critical Depth	0.20	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.12672	ft/ft

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.081	
Channel Slope	0.12000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.63	ft³/s
Results		
Normal Depth	0.16	ft
Flow Area	0.37	ft²
Wetted Perimeter	2.72	ft
Hydraulic Radius	0.14	ft
Top Width	2.64	ft
Critical Depth	0.14	ft
Critical Slope	0.19845	ft/ft
Velocity	1.69	ft/s
Velocity Head	0.04	ft
Specific Energy	0.20	ft
Froude Number	0.79	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.16	ft
Critical Depth	0.14	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.19845	ft/ft

APPENDIX D

Runoff Analysis Calculations and Report

Rainfall and Soils Data (12 pages)

Water Quality Model (HydroCAD) (71 pages)

Time of Concentration Calculations (21 pages)

Runoff Conveyance Model (HydroCAD) (152 pages)

MDEP Letter (2 pages)

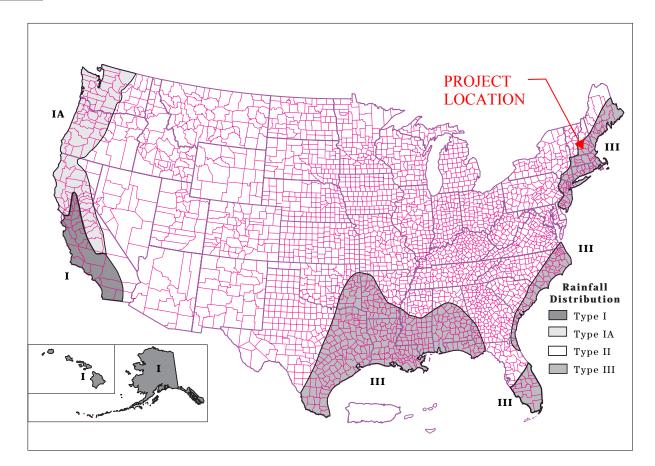


Figure B-2 Approximate geographic boundaries for NRCS (SCS) rainfall distributions

Rainfall data sources

This section lists the most current 24-hour rainfall data published by the National Weather Service (NWS) for various parts of the country. Because NWS Technical Paper 40 (TP-40) is out of print, the 24-hour rainfall maps for areas east of the 105th meridian are included here as figures B-3 through B-8. For the area generally west of the 105th meridian, TP-40 has been superseded by NOAA Atlas 2, the Precipitation-Frequency Atlas of the Western United States, published by the National Ocean and Atmospheric Administration.

East of 105th meridian

Hershfield, D.M. 1961. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 40. Washington, DC. 155 p.

West of 105th meridian

Miller, J.F., R.H. Frederick, and R.J. Tracey. 1973. Precipitation-frequency atlas of the Western United States. Vol. I Montana; Vol. II, Wyoming; Vol III, Colorado; Vol. IV, New Mexico; Vol V, Idaho; Vol. VI, Utah; Vol. VII, Nevada; Vol. VIII, Arizona; Vol. IX, Washington; Vol. X, Oregon; Vol. XI, California. U.S. Dept. of Commerce, National Weather Service, NOAA Atlas 2. Silver Spring, MD.

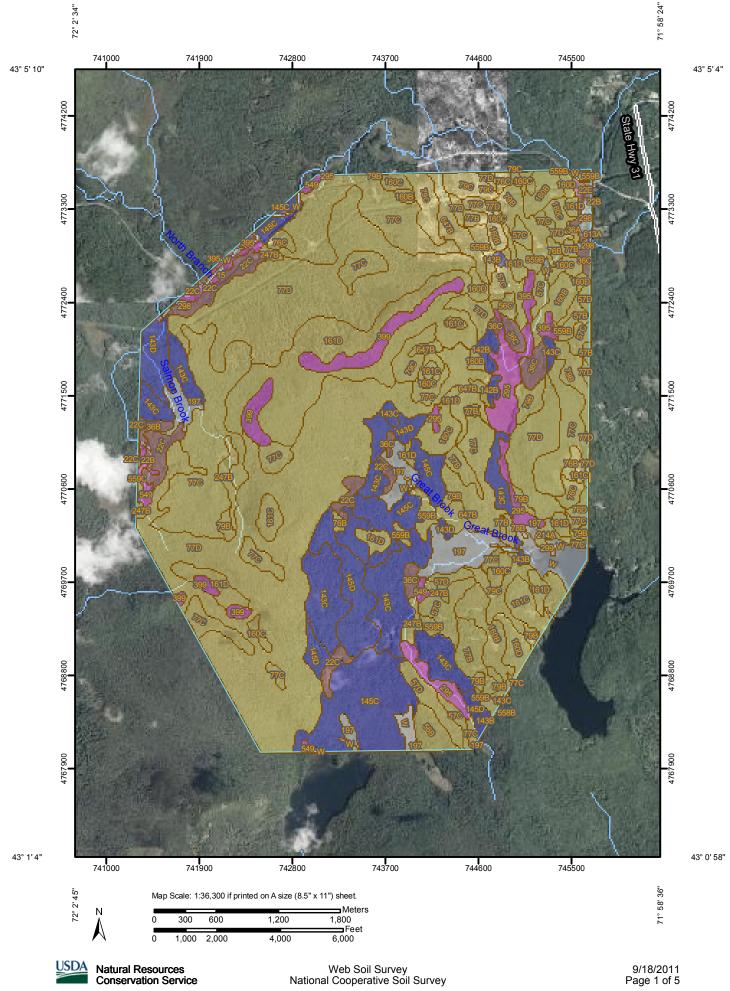
Alaska

Miller, John F. 1963. Probable maximum precipitation and rainfall-frequency data for Alaska for areas to 400 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. of Commerce, Weather Bur. Tech. Pap. No. 47. Washington, DC. 69 p.

Hawaii

Weather Bureau. 1962. Rainfall-frequency atlas of the Hawaiian Islands for areas to 200 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 43. Washington, DC. 60 p.

Puerto Rico and Virgin Islands


Weather Bureau. 1961. Generalized estimates of probable maximum precipitation and rainfall-frequency data for Puerto Rico and Virgin Islands for areas to 400 square miles, durations to 24 hours, and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 42. Washington, DC. 94 P.

* FROM: New Hampshire Stormwater Manual, Volume 2, Appendix A (2008)

TOWN	1 yr	24 2 yr	4-hour SC 10 yr	S Rainfal 25 yr	l* 50 yr	100 yr
ACWORTH	2.3	2.7	4.1	4.8	5.4	6.1
	2.3				6.1	
ALBANY		3.2	4.8	5.5		6.4
ALEXANDRIA	2.4	2.7	4.1	4.9	5.3	6.0
ALLENSTOWN	2.5	2.9	4.3	5.1	5.6	6.3
ALSTEAD	2.3	2.7	4.1	4.9	5.4	6.1
ALTON	2.4	2.9	4.2	5.1	5.5	6.2
AMHERST	2.5	2.9	4.3	5.1	5.7	6.4
ANDOVER	2.3	2.8	4.1	4.9	6.4	6.0
ANTRIM	2.4	2.8	4.2	5.0	5.6	6.2
ASHLAND	14	2.8	AZ	<u>15.01</u>	L SK	<u>16.0</u>
ATKINSON	2.5	3.0	4.4	5.2	5.8	6.5
		n de la segura. Na segura	in the new sector sector in the sector in the			
ATKINSON & GILMANTON	1		n na genegen. Tra	and a finite state of the second state of the		
ACADEMY GRANT	2.3	2.5	3.8	4.6	4.9	5.4
AUBURN	2.5	3.0	4.3	5.1	5.7	6.4
BARNSTEAD	2.4	2.9	4.2	5.1	5.6	6.2
BARRINGTON	2.5	3.0	4.3	5.1	5.7	6.3
BARTLETT	3.0	3.5	5.1	5.9	6.4	7.0
BATH	2.3	2.5	3.9	4.7	5.0	5.7
BEAN'S GRANT2.80	3.6	4.5	5.9	6.4	7.2	a and a second s
BEAN'S PURCHASE	3.0	3.7	5.2	6.1	6.6	7.2
BEDFORD	2.5	2.9	4.3	5.1	5.7	6.4
BELMONT	2.4	2.8	4.2	5.0	5.5	6.1
BENNINGTON	2.4	2.8	4.2	5.0	5.6	6.3
BENTON	2.3	2.6	4.0	4.8	5.1	5.8
BERLIN	2.5	3.2	4.4	5.0	5.6	6.2
BETHLEHEM EAST	2.4	3.3	4.5	5.2	6.0	6.6
BETHLEHEM WEST	2.4	2.8	4.0	4.9	5.2	5.9
BOSCAWEN	2.4	2.8	4.2	5.0	5.5	6.1
BOW	2.4	2.9	4.2	5.0	5.6	6.3
BRADFORD	2.3	2.8	4.1	4.9	5.5	6.1
BRENTWOOD	2.6	3.0	4.3	5.2	5.7	6.4
BRIDGEWATER	2.4	2.7	4.1	4.9	5.4	6.0
BRISTOL	2.4	2.7	4.1	4.9	5.4	6.0
BROOKFIELD	2.4	2.9	4.2	5.2	5.5	6.2
BROOKLINE	2.5	2.9	4.3	5.1	5.7	6.4
CAMBRIDGE	2.5	2.8	4.0	4.9	5.2	6.0
CAMPTON	2.4	2.8	4.2	4.9	5.3	6.0
CANAAN	2.3	2.6	4.0	4.8	5.3	5.9
CANDIA	2.5	3.0	4.3	5.1	5.7	6.3
CANTERBURY	2.3	2.8	4.2	5.0	5.5	6.2
CARROLL	2.4	3.2	4.2	5.1		6.4
CENTER HARBOR			*****		6.0	6.0
CHANDLER'S PURCHASE	2.4	2.8	4.2	5.0 5.8	5.4	7.1

*Rainfall data is interpolated from *Technical Paper No. 40 (TP40) Rainfall Frequency Atlas of the Eastern United States*. Other data may be used (e.g., *Atlas of Precipitation Extremes for the Northeastern United States and Southeastern Canada* by Cornell University, Northeast Regional Climate Center, September, 1993.)

Hydrologic Soil Group—Hillsborough County, New Hampshire, Western Part (Antrim Wind Project)

9/18/2011 Page 1 of 5

MA	AP LEGEND	MAP INFORMATION
Area of In	terest (AOI)	Map Scale: 1:36,300 if printed on A size (8.5" × 11") sheet.
Soils	Area of Interest (AOI) Soil Map Units	The soil surveys that comprise your AOI were mapped at 1:20,000. Please rely on the bar scale on each map sheet for accurate map
Soil Rat	•	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
	A/D B	Coordinate System: UTM Zone 18N NAD83 This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
	B/D C	Soil Survey Area: Hillsborough County, New Hampshire, Western Part Survey Area Data: Version 11, Oct 27, 2009
	C/D D	Date(s) aerial images were photographed: Data not available.
Political F	Not rated or not available	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting
● Water Fea		of map unit boundaries may be evident.
Transport		
~	Rails Interstate Highways	
~	US Routes Major Roads	
~	Local Roads	

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
15	Searsport muck	D	12.9	0.3%
22B	Colton loamy sand, 3 to 8 percent slopes	A	5.2	0.1%
22C	Colton loamy sand, 8 to 15 percent slopes	A	95.5	1.9%
22E	Colton loamy sand, 15 to 50 percent slopes	A	5.0	0.1%
27B	Groveton very fine sandy loam, 0 to 5 percent slopes	В	0.4	0.0%
36A	Adams loamy sand, 0 to 3 percent slopes	A	5.0	0.1%
36B	Adams loamy sand, 3 to 8 percent slopes	A	8.5	0.2%
36C	Adams loamy sand, 8 to 15 percent slopes	A	55.7	1.1%
36E	Adams loamy sand, 15 to 50 percent slopes	A	1.5	0.0%
56B	Becket fine sandy loam, 3 to 8 percent slopes	С	30.1	0.6%
56C	Becket fine sandy loam, 8 to 15 percent slopes	С	10.3	0.2%
57B	Becket stony fine sandy loam, 3 to 8 percent slopes	С	12.1	0.2%
57C	Becket stony fine sandy loam, 8 to 15 percent slopes	С	108.8	2.1%
57D	Becket stony fine sandy loam, 15 to 25 percent slopes	С	52.2	1.0%
76B	Marlow loam, 3 to 8 percent slopes	С	18.8	0.4%
76C	Marlow loam, 8 to 15 percent slopes	С	28.2	0.6%
76D	Marlow loam, 15 to 25 percent slopes	С	10.1	0.2%
77B	Marlow stony loam, 3 to 8 percent slopes	С	75.2	1.5%
77C	Marlow stony loam, 8 to 15 percent slopes	С	680.8	13.3%
77D	Marlow stony loam, 15 to 35 percent slopes	С	1,387.4	27.2%
78B	Peru loam, 3 to 8 percent slopes	С	6.8	0.1%
79B	Peru stony loam, 0 to 8 percent slopes	С	125.9	2.5%
79C	Peru stony loam, 8 to 15 percent slopes	С	123.3	2.4%
142B	Monadnock fine sandy loam, 3 to 8 percent slopes	В	21.8	0.4%
143B	Monadnock stony fine sandy loam, 3 to 8 percent slopes	В	11.5	0.2%
143C	Monadnock stony fine sandy loam, 8 to 15 percent slopes	В	337.5	6.6%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
143D	Monadnock stony fine sandy loam, 15 to 35 percent slope s	В	82.1	1.6%
145C	Monadnock very bouldery fine sandy loam, 8 to 15 percen t slopes	В	282.0	5.5%
145D	Monadnock very bouldery fine sandy loam, 15 to 35 perce nt slopes	В	116.0	2.3%
160B	Tunbridge-Lyman-Monadnock complex, stony, 3 to 8 percen t slopes	С	121.7	2.4%
160C	Tunbridge-Lyman-Monadnock complex, stony, 8 to 15 perce nt slopes	С	104.4	2.0%
160D	Tunbridge-Lyman-Monadnock complex, stony, 15 to 25 perc ent slopes	С	54.2	1.1%
161C	Lyman-Tunbridge-Rock outcrop complex, 3 to 15 percent s lopes	С	83.4	1.6%
161D	Lyman-Tunbridge-Rock outcrop complex, 15 to 35 percent slopes	С	377.0	7.4%
197	Borohemists, ponded		119.0	2.3%
214A	Naumburg fine sandy loam, 0 to 3 percent slopes	С	10.9	0.2%
247B	Lyme stony loam, 0 to 5 percent slopes	С	41.9	0.8%
295	Greenwood mucky peat	D	109.1	2.1%
298	Pits, gravel		15.2	0.3%
299	Udorthents, smoothed		3.0	0.1%
395	Chocorua mucky peat	D	20.8	0.4%
399	Rock outcrop	D	93.1	1.8%
549	Peacham stony muck	D	23.0	0.4%
558B	Skerry fine sandy loam, 3 to 8 percent slopes	С	0.0	0.0%
559B	Skerry stony fine sandy loam, 0 to 8 percent slopes	С	69.6	1.4%
559C	Skerry stony fine sandy loam, 8 to 15 percent slopes	С	0.1	0.0%
613A	Croghan loamy fine sand, 0 to 3 percent slopes	В	1.3	0.0%
647B	Pillsbury stony loam, 0 to 5 percent slopes	С	69.3	1.4%
W	Water		79.5	1.6%
Totals for Area of Interest			5,107.0	100.0%

Description

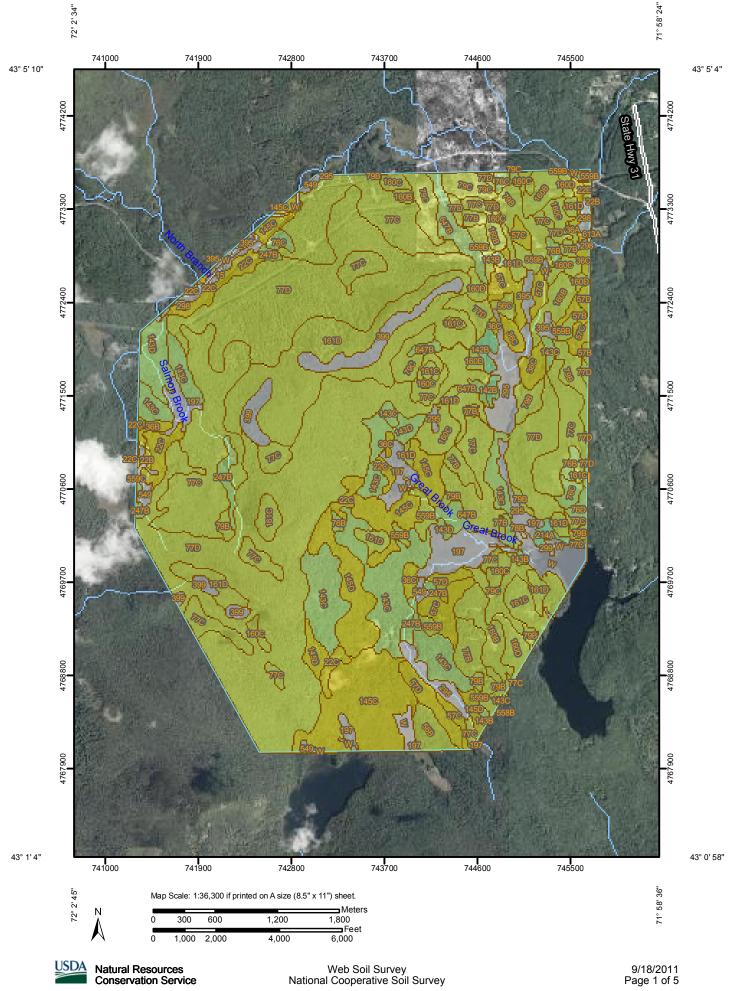
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

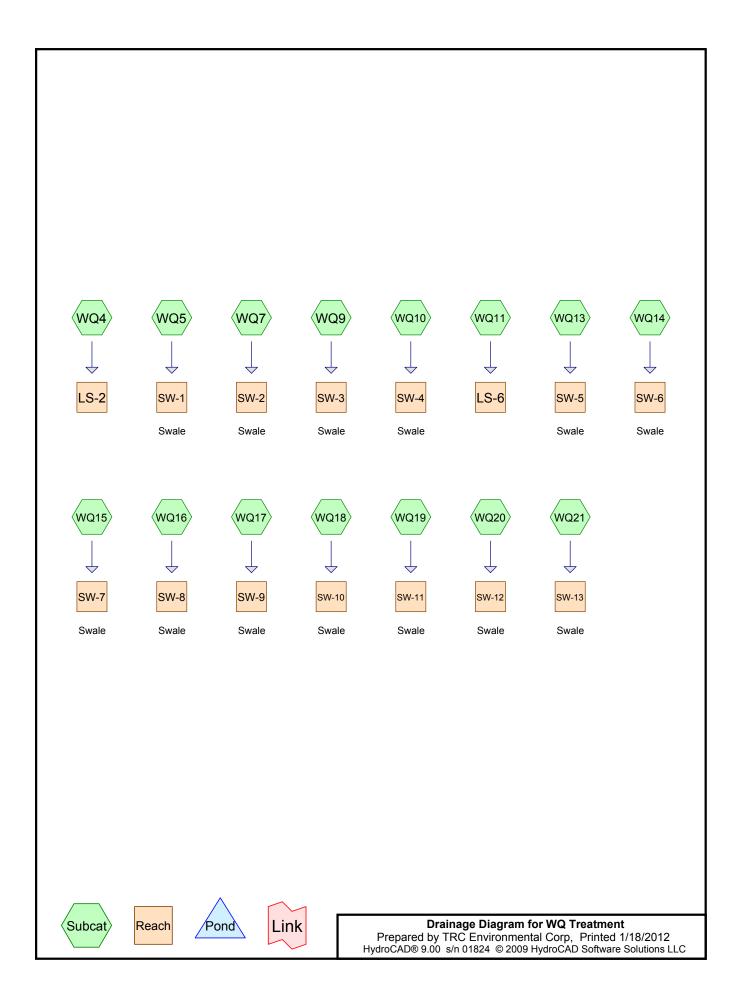
K Factor, Whole Soil—Hillsborough County, New Hampshire, Western Part (Antrim Wind Project)

MAP LE	GEND	MAP INFORMATION
Area of Interest (AOI)	Interstate Highways	Map Scale: 1:36,300 if printed on A size (8.5" × 11") sheet.
Area of Interest (AOI)	N US Routes	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Units	Major Roads	Please rely on the bar scale on each map sheet for accurate map measurements.
Soil Ratings		Source of Map: Natural Resources Conservation Service
.02		Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 18N NAD83
.05		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
.15		Soil Survey Area: Hillsborough County, New Hampshire, Western
.17		Part
.20		Survey Area Data: Version 11, Oct 27, 2009
.24		Date(s) aerial images were photographed: Data not available.
.28		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
.32		imagery displayed on these maps. As a result, some minor shifting
.37		of map unit boundaries may be evident.
.43		
.49		
.55		
.64		
Not rated or not available		
Political Features		
Cities		
Water Features Streams and Canals		
Transportation +++ Rails		

K Factor, Whole Soil

K Factor, W	hole Soil— Summary by Map Unit — Hil	Isborough County	, New Hampshire, Wester	n Part (NH602)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
15	Searsport muck		12.9	0.3%
22B	Colton loamy sand, 3 to 8 percent slopes	.17	5.2	0.1%
22C	Colton loamy sand, 8 to 15 percent slopes	.17	95.5	1.9%
22E	Colton loamy sand, 15 to 50 percent slopes	.17	5.0	0.1%
27B	Groveton very fine sandy loam, 0 to 5 percent slopes	.32	0.4	0.0%
36A	Adams loamy sand, 0 to 3 percent slopes	.17	5.0	0.1%
36B	Adams loamy sand, 3 to 8 percent slopes	.17	8.5	0.2%
36C	Adams loamy sand, 8 to 15 percent slopes	.17	55.7	1.1%
36E	Adams loamy sand, 15 to 50 percent slopes	.17	1.5	0.0%
56B	Becket fine sandy loam, 3 to 8 percent slopes	.20	30.1	0.6%
56C	Becket fine sandy loam, 8 to 15 percent slopes	.20	10.3	0.2%
57B	Becket stony fine sandy loam, 3 to 8 percent slopes	.17	12.1	0.2%
57C	Becket stony fine sandy loam, 8 to 15 percent slopes	.17	108.8	2.1%
57D	Becket stony fine sandy loam, 15 to 25 percent slopes	.17	52.2	1.0%
76B	Marlow loam, 3 to 8 percent slopes	.24	18.8	0.4%
76C	Marlow loam, 8 to 15 percent slopes	.24	28.2	0.6%
76D	Marlow loam, 15 to 25 percent slopes	.24	10.1	0.2%
77B	Marlow stony loam, 3 to 8 percent slopes	.20	75.2	1.5%
77C	Marlow stony loam, 8 to 15 percent slopes	.20	680.8	13.3%
77D	Marlow stony loam, 15 to 35 percent slopes	.20	1,387.4	27.2%
78B	Peru loam, 3 to 8 percent slopes	.24	6.8	0.1%
79B	Peru stony loam, 0 to 8 percent slopes	.20	125.9	2.5%
79C	Peru stony loam, 8 to 15 percent slopes	.20	123.3	2.4%
142B	Monadnock fine sandy loam, 3 to 8 percent slopes	.28	21.8	0.4%
143B	Monadnock stony fine sandy loam, 3 to 8 percent slopes	.24	11.5	0.2%
143C	Monadnock stony fine sandy loam, 8 to 15 percent slopes	.24	337.5	6.6%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
143D	Monadnock stony fine sandy loam, 15 to 35 percent slope s	.24	82.1	1.6%
145C	Monadnock very bouldery fine sandy loam, 8 to 15 percen t slopes	.17	282.0	5.5%
145D	Monadnock very bouldery fine sandy loam, 15 to 35 perce nt slopes	.17	116.0	2.3%
160B	Tunbridge-Lyman-Monadnock complex, stony, 3 to 8 percen t slopes	.20	121.7	2.4%
160C	Tunbridge-Lyman-Monadnock complex, stony, 8 to 15 perce nt slopes	.20	104.4	2.0%
160D	Tunbridge-Lyman-Monadnock complex, stony, 15 to 25 perc ent slopes	.20	54.2	1.1%
161C	Lyman-Tunbridge-Rock outcrop complex, 3 to 15 percent s lopes	.20	83.4	1.6%
161D	Lyman-Tunbridge-Rock outcrop complex, 15 to 35 percent slopes	.20	377.0	7.4%
197	Borohemists, ponded		119.0	2.3%
214A	Naumburg fine sandy loam, 0 to 3 percent slopes	.28	10.9	0.2%
247B	Lyme stony loam, 0 to 5 percent slopes	.24	41.9	0.8%
295	Greenwood mucky peat		109.1	2.1%
298	Pits, gravel		15.2	0.3%
299	Udorthents, smoothed		3.0	0.1%
395	Chocorua mucky peat		20.8	0.4%
399	Rock outcrop		93.1	1.8%
549	Peacham stony muck		23.0	0.4%
558B	Skerry fine sandy loam, 3 to 8 percent slopes	.24	0.0	0.0%
559B	Skerry stony fine sandy loam, 0 to 8 percent slopes	.20	69.6	1.4%
559C	Skerry stony fine sandy loam, 8 to 15 percent slopes	.20	0.1	0.0%
613A	Croghan loamy fine sand, 0 to 3 percent slopes	.17	1.3	0.0%
647B	Pillsbury stony loam, 0 to 5 percent slopes	.24	69.3	1.4%
W	Water		79.5	1.6%
Totals for Area of	Interest		5,107.0	100.0%


Description

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Layer Options: Surface Layer

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.838	71	Meadow, non-grazed, HSG C (WQ13, WQ14, WQ15, WQ16, WQ17, WQ18, WQ19, WQ20, WQ21, WQ4, WQ5, WQ7, WQ9)
0.347	78	Meadow, non-grazed, HSG D (WQ10, WQ11)
1.436	89	Gravel roads, HSG C (WQ13, WQ14, WQ15, WQ16, WQ17, WQ18, WQ19, WQ20, WQ21, WQ4, WQ5, WQ7, WQ9)
0.178	91	Gravel roads, HSG D (WQ10, WQ11)

Soil Listing (all nodes)

ŀ	Area	Soil	Subcatchment
(ac	cres)	Goup	Numbers
0	.000	HSG A	
0	.000	HSG B	
4	.274		WQ13, WQ14, WQ15, WQ16, WQ17, WQ18, WQ19, WQ20, WQ21, WQ4, WQ5, WQ7, WQ9
0	.525	HSG D	WQ10, WQ11
0	.000	Other	

WQ Treatment	Type II
Prepared by TRC Environmental Corp	
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solution	tions LLC

Time span=0.00-36.00 hrs, dt=0.02 hrs, 1801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentWQ10:	Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=1.22" Tc=6.0 min CN=82 Runoff=0.35 cfs 0.025 af
SubcatchmentWQ11:	Runoff Area=0.275 ac 0.00% Impervious Runoff Depth=1.22" Tc=6.0 min CN=82 Runoff=0.39 cfs 0.028 af
SubcatchmentWQ13:	Runoff Area=0.396 ac 0.00% Impervious Runoff Depth=0.88" Tc=6.0 min CN=76 Runoff=0.39 cfs 0.029 af
SubcatchmentWQ14:	Runoff Area=0.591 ac 0.00% Impervious Runoff Depth=0.78" Tc=6.0 min CN=74 Runoff=0.50 cfs 0.039 af
SubcatchmentWQ15:	Runoff Area=0.254 ac 0.00% Impervious Runoff Depth=0.88" Tc=6.0 min CN=76 Runoff=0.25 cfs 0.019 af
SubcatchmentWQ16:	Runoff Area=0.367 ac 0.00% Impervious Runoff Depth=0.93" Tc=6.0 min CN=77 Runoff=0.38 cfs 0.029 af
SubcatchmentWQ17:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=0.93" Tc=6.0 min CN=77 Runoff=0.19 cfs 0.014 af
SubcatchmentWQ18:	Runoff Area=0.294 ac 0.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=78 Runoff=0.33 cfs 0.024 af
SubcatchmentWQ19:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=1.35" Tc=6.0 min CN=84 Runoff=0.29 cfs 0.021 af
SubcatchmentWQ20:	Runoff Area=0.514 ac 0.00% Impervious Runoff Depth=0.88" Tc=6.0 min CN=76 Runoff=0.50 cfs 0.038 af
SubcatchmentWQ21:	Runoff Area=0.274 ac 0.00% Impervious Runoff Depth=0.93" Tc=6.0 min CN=77 Runoff=0.29 cfs 0.021 af
SubcatchmentWQ4:	Runoff Area=0.231 ac 0.00% Impervious Runoff Depth=1.16" Tc=6.0 min CN=81 Runoff=0.31 cfs 0.022 af
SubcatchmentWQ5:	Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=78 Runoff=0.46 cfs 0.034 af
SubcatchmentWQ7:	Runoff Area=0.268 ac 0.00% Impervious Runoff Depth=1.10" Tc=6.0 min CN=80 Runoff=0.34 cfs 0.025 af
SubcatchmentWQ9:	Runoff Area=0.308 ac 0.00% Impervious Runoff Depth=0.83" Tc=6.0 min CN=75 Runoff=0.28 cfs 0.021 af
Reach LS-2:	Inflow=0.31 cfs 0.022 af Outflow=0.31 cfs 0.022 af

WQ Treatment

Reach LS-6:

Prepared by TRC Environmental Corp HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Event Rainfall=2.80"Printed 1/18/2012ns LLCPage 5

Inflow=0.39 cfs 0.028 af Outflow=0.39 cfs 0.028 af

Reach SW-1: Swale	Avg. Depth=0.27' Max Vel=0.36 fps Inflow=0.46 cfs 0.034 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=0.36 cfs 0.034 af
Reach SW-10: Swale	Avg. Depth=0.23' Max Vel=0.30 fps Inflow=0.33 cfs 0.024 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.25 cfs 0.024 af
Reach SW-11: Swale	Avg. Depth=0.24' Max Vel=0.24 fps Inflow=0.29 cfs 0.021 af n=0.150 L=125.0' S=0.0050 '/' Capacity=7.38 cfs Outflow=0.22 cfs 0.021 af
Reach SW-12: Swale	Avg. Depth=0.28' Max Vel=0.37 fps Inflow=0.50 cfs 0.038 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=0.40 cfs 0.038 af
Reach SW-13: Swale	Avg. Depth=0.22' Max Vel=0.28 fps Inflow=0.29 cfs 0.021 af n=0.150 L=125.0' S=0.0080 '/' Capacity=9.30 cfs Outflow=0.22 cfs 0.021 af
Reach SW-2: Swale	Avg. Depth=0.25' Max Vel=0.28 fps Inflow=0.34 cfs 0.025 af n=0.130 L=130.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=0.26 cfs 0.025 af
Reach SW-3: Swale	Avg. Depth=0.20' Max Vel=0.30 fps Inflow=0.28 cfs 0.021 af n=0.150 L=130.0' S=0.0100 '/' Capacity=10.40 cfs Outflow=0.22 cfs 0.021 af
Reach SW-4: Swale	Avg. Depth=0.25' Max Vel=0.31 fps Inflow=0.35 cfs 0.025 af n=0.140 L=125.0' S=0.0072 '/' Capacity=9.45 cfs Outflow=0.28 cfs 0.025 af
Reach SW-5: Swale	Avg. Depth=0.27' Max Vel=0.29 fps Inflow=0.39 cfs 0.029 af n=0.130 L=120.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=0.31 cfs 0.029 af
Reach SW-6: Swale	Avg. Depth=0.25' Max Vel=0.35 fps Inflow=0.50 cfs 0.039 af n=0.130 L=120.0' S=0.0075 '/' Capacity=12.16 cfs Outflow=0.41 cfs 0.039 af
Reach SW-7: Swale	Avg. Depth=0.20' Max Vel=0.26 fps Inflow=0.25 cfs 0.019 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.19 cfs 0.019 af
Reach SW-8: Swale	Avg. Depth=0.25' Max Vel=0.32 fps Inflow=0.38 cfs 0.029 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.30 cfs 0.029 af
Reach SW-9: Swale	Avg. Depth=0.17' Max Vel=0.24 fps Inflow=0.19 cfs 0.014 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.14 cfs 0.014 af

WQ Treatment	Type III 24-hr 10-Year Event Rainfall=4.20"
Prepared by TRC Environmental Corp	Printed 1/18/2012
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solu	itions LLC Page 6

Time span=0.00-36.00 hrs, dt=0.02 hrs, 1801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentWQ10:	Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=2.37" Tc=6.0 min CN=82 Runoff=0.70 cfs 0.049 af
SubcatchmentWQ11:	Runoff Area=0.275 ac 0.00% Impervious Runoff Depth=2.37" Tc=6.0 min CN=82 Runoff=0.76 cfs 0.054 af
SubcatchmentWQ13:	Runoff Area=0.396 ac 0.00% Impervious Runoff Depth=1.89" Tc=6.0 min CN=76 Runoff=0.87 cfs 0.062 af
SubcatchmentWQ14:	Runoff Area=0.591 ac 0.00% Impervious Runoff Depth=1.74" Tc=6.0 min CN=74 Runoff=1.19 cfs 0.086 af
SubcatchmentWQ15:	Runoff Area=0.254 ac 0.00% Impervious Runoff Depth=1.89" Tc=6.0 min CN=76 Runoff=0.56 cfs 0.040 af
SubcatchmentWQ16:	Runoff Area=0.367 ac 0.00% Impervious Runoff Depth=1.97" Tc=6.0 min CN=77 Runoff=0.84 cfs 0.060 af
SubcatchmentWQ17:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=1.97" Tc=6.0 min CN=77 Runoff=0.42 cfs 0.030 af
SubcatchmentWQ18:	Runoff Area=0.294 ac 0.00% Impervious Runoff Depth=2.05" Tc=6.0 min CN=78 Runoff=0.70 cfs 0.050 af
SubcatchmentWQ19:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=2.55" Tc=6.0 min CN=84 Runoff=0.54 cfs 0.039 af
SubcatchmentWQ20:	Runoff Area=0.514 ac 0.00% Impervious Runoff Depth=1.89" Tc=6.0 min CN=76 Runoff=1.13 cfs 0.081 af
SubcatchmentWQ21:	Runoff Area=0.274 ac 0.00% Impervious Runoff Depth=1.97" Tc=6.0 min CN=77 Runoff=0.63 cfs 0.045 af
SubcatchmentWQ4:	Runoff Area=0.231 ac 0.00% Impervious Runoff Depth=2.29" Tc=6.0 min CN=81 Runoff=0.62 cfs 0.044 af
SubcatchmentWQ5:	Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=2.05" Tc=6.0 min CN=78 Runoff=0.98 cfs 0.070 af
SubcatchmentWQ7:	Runoff Area=0.268 ac 0.00% Impervious Runoff Depth=2.21" Tc=6.0 min CN=80 Runoff=0.69 cfs 0.049 af
SubcatchmentWQ9:	Runoff Area=0.308 ac 0.00% Impervious Runoff Depth=1.82" Tc=6.0 min CN=75 Runoff=0.65 cfs 0.047 af
Reach LS-2:	Inflow=0.62 cfs 0.044 af Outflow=0.62 cfs 0.044 af

WQ Treatment

 Prepared by TRC Environmental Corp
 Printed 1/18/2012

 HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solutions LLC
 Page 7

Type III 24-hr 10-Year Event Rainfall=4.20"

Reach LS-6:	Inflow=0.76 cfs 0.054 af Outflow=0.76 cfs 0.054 af
Reach SW-1: Swale	Avg. Depth=0.42' Max Vel=0.46 fps Inflow=0.98 cfs 0.070 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=0.83 cfs 0.070 af
Reach SW-10: Swale	Avg. Depth=0.36' Max Vel=0.39 fps Inflow=0.70 cfs 0.050 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.59 cfs 0.050 af
Reach SW-11: Swale	Avg. Depth=0.36' Max Vel=0.30 fps Inflow=0.54 cfs 0.039 af n=0.150 L=125.0' S=0.0050 '/' Capacity=7.38 cfs Outflow=0.44 cfs 0.039 af
Reach SW-12: Swale	Avg. Depth=0.46' Max Vel=0.48 fps Inflow=1.13 cfs 0.081 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=0.96 cfs 0.081 af
Reach SW-13: Swale	Avg. Depth=0.35' Max Vel=0.37 fps Inflow=0.63 cfs 0.045 af n=0.150 L=125.0' S=0.0080 '/' Capacity=9.30 cfs Outflow=0.53 cfs 0.045 af
Reach SW-2: Swale	Avg. Depth=0.38' Max Vel=0.36 fps Inflow=0.69 cfs 0.049 af n=0.130 L=130.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=0.57 cfs 0.049 af
Reach SW-3: Swale	Avg. Depth=0.34' Max Vel=0.41 fps Inflow=0.65 cfs 0.047 af n=0.150 L=130.0' S=0.0100 '/' Capacity=10.40 cfs Outflow=0.55 cfs 0.047 af
Reach SW-4: Swale	Avg. Depth=0.37' Max Vel=0.39 fps Inflow=0.70 cfs 0.049 af n=0.140 L=125.0' S=0.0072 '/' Capacity=9.45 cfs Outflow=0.59 cfs 0.049 af
Reach SW-5: Swale	Avg. Depth=0.44' Max Vel=0.39 fps Inflow=0.87 cfs 0.062 af n=0.130 L=120.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=0.74 cfs 0.062 af
Reach SW-6: Swale	Avg. Depth=0.42' Max Vel=0.47 fps Inflow=1.19 cfs 0.086 af n=0.130 L=120.0' S=0.0075 '/' Capacity=12.16 cfs Outflow=1.05 cfs 0.086 af
Reach SW-7: Swale	Avg. Depth=0.33' Max Vel=0.35 fps Inflow=0.56 cfs 0.040 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.47 cfs 0.040 af
Reach SW-8: Swale	Avg. Depth=0.40' Max Vel=0.42 fps Inflow=0.84 cfs 0.060 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.71 cfs 0.060 af
Reach SW-9: Swale	Avg. Depth=0.28' Max Vel=0.32 fps Inflow=0.42 cfs 0.030 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.34 cfs 0.030 af

WQ Treatment	Type III 24-hr 25-Year
Prepared by TRC Environmental Corp	
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solut	ions LLC

Time span=0.00-36.00 hrs, dt=0.02 hrs, 1801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentWQ10:	Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=3.08" Tc=6.0 min CN=82 Runoff=0.90 cfs 0.064 af
SubcatchmentWQ11:	Runoff Area=0.275 ac 0.00% Impervious Runoff Depth=3.08" Tc=6.0 min CN=82 Runoff=0.99 cfs 0.071 af
SubcatchmentWQ13:	Runoff Area=0.396 ac 0.00% Impervious Runoff Depth=2.54" Tc=6.0 min CN=76 Runoff=1.17 cfs 0.084 af
SubcatchmentWQ14:	Runoff Area=0.591 ac 0.00% Impervious Runoff Depth=2.36" Tc=6.0 min CN=74 Runoff=1.63 cfs 0.116 af
SubcatchmentWQ15:	Runoff Area=0.254 ac 0.00% Impervious Runoff Depth=2.54" Tc=6.0 min CN=76 Runoff=0.75 cfs 0.054 af
SubcatchmentWQ16:	Runoff Area=0.367 ac 0.00% Impervious Runoff Depth=2.62" Tc=6.0 min CN=77 Runoff=1.13 cfs 0.080 af
SubcatchmentWQ17:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=2.62" Tc=6.0 min CN=77 Runoff=0.56 cfs 0.040 af
SubcatchmentWQ18:	Runoff Area=0.294 ac 0.00% Impervious Runoff Depth=2.71" Tc=6.0 min CN=78 Runoff=0.93 cfs 0.066 af
SubcatchmentWQ19:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=3.27" Tc=6.0 min CN=84 Runoff=0.70 cfs 0.050 af
SubcatchmentWQ20:	Runoff Area=0.514 ac 0.00% Impervious Runoff Depth=2.54" Tc=6.0 min CN=76 Runoff=1.52 cfs 0.109 af
SubcatchmentWQ21:	Runoff Area=0.274 ac 0.00% Impervious Runoff Depth=2.62" Tc=6.0 min CN=77 Runoff=0.84 cfs 0.060 af
SubcatchmentWQ4:	Runoff Area=0.231 ac 0.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=81 Runoff=0.81 cfs 0.057 af
SubcatchmentWQ5:	Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=2.71" Tc=6.0 min CN=78 Runoff=1.31 cfs 0.093 af
SubcatchmentWQ7:	Runoff Area=0.268 ac 0.00% Impervious Runoff Depth=2.89" Tc=6.0 min CN=80 Runoff=0.91 cfs 0.065 af
SubcatchmentWQ9:	Runoff Area=0.308 ac 0.00% Impervious Runoff Depth=2.45" Tc=6.0 min CN=75 Runoff=0.88 cfs 0.063 af
Reach LS-2:	Inflow=0.81 cfs 0.057 af Outflow=0.81 cfs 0.057 af

WQ Treatment

Prepared by TRC Environmental Corp Printed 1 HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Event Rainfall=5.00" Printed 1/18/2012 Page 9

Reach LS-6:	Inflow=0.99 cfs 0.071 af Outflow=0.99 cfs 0.071 af
Reach SW-1: Swale	Avg. Depth=0.50' Max Vel=0.50 fps Inflow=1.31 cfs 0.093 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=1.12 cfs 0.093 af
Reach SW-10: Swale	Avg. Depth=0.43' Max Vel=0.43 fps Inflow=0.93 cfs 0.066 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.79 cfs 0.066 af
Reach SW-11: Swale	Avg. Depth=0.41' Max Vel=0.32 fps Inflow=0.70 cfs 0.050 af n=0.150 L=125.0' S=0.0050 '/' Capacity=7.38 cfs Outflow=0.57 cfs 0.050 af
Reach SW-12: Swale	Avg. Depth=0.54' Max Vel=0.53 fps Inflow=1.52 cfs 0.109 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=1.32 cfs 0.109 af
Reach SW-13: Swale	Avg. Depth=0.41' Max Vel=0.41 fps Inflow=0.84 cfs 0.060 af n=0.150 L=125.0' S=0.0080 '/' Capacity=9.30 cfs Outflow=0.72 cfs 0.060 af
Reach SW-2: Swale	Avg. Depth=0.45' Max Vel=0.39 fps Inflow=0.91 cfs 0.065 af n=0.130 L=130.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=0.76 cfs 0.065 af
Reach SW-3: Swale	Avg. Depth=0.40' Max Vel=0.45 fps Inflow=0.88 cfs 0.063 af n=0.150 L=130.0' S=0.0100 '/' Capacity=10.40 cfs Outflow=0.76 cfs 0.063 af
Reach SW-4: Swale	Avg. Depth=0.43' Max Vel=0.42 fps Inflow=0.90 cfs 0.064 af n=0.140 L=125.0' S=0.0072 '/' Capacity=9.45 cfs Outflow=0.77 cfs 0.064 af
Reach SW-5: Swale	Avg. Depth=0.52' Max Vel=0.42 fps Inflow=1.17 cfs 0.084 af n=0.130 L=120.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=1.01 cfs 0.084 af
Reach SW-6: Swale	Avg. Depth=0.50' Max Vel=0.53 fps Inflow=1.63 cfs 0.116 af n=0.130 L=120.0' S=0.0075 '/' Capacity=12.16 cfs Outflow=1.46 cfs 0.116 af
Reach SW-7: Swale	Avg. Depth=0.40' Max Vel=0.39 fps Inflow=0.75 cfs 0.054 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.64 cfs 0.054 af
Reach SW-8: Swale	Avg. Depth=0.48' Max Vel=0.46 fps Inflow=1.13 cfs 0.080 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.97 cfs 0.080 af
Reach SW-9: Swale	Avg. Depth=0.33' Max Vel=0.35 fps Inflow=0.56 cfs 0.040 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.47 cfs 0.040 af

WQ Treatment	Type III 24-hr 50-Year Event Rainfall=5.60"
Prepared by TRC Environmental Corp	Printed 1/18/2012
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solu	tions LLC Page 10

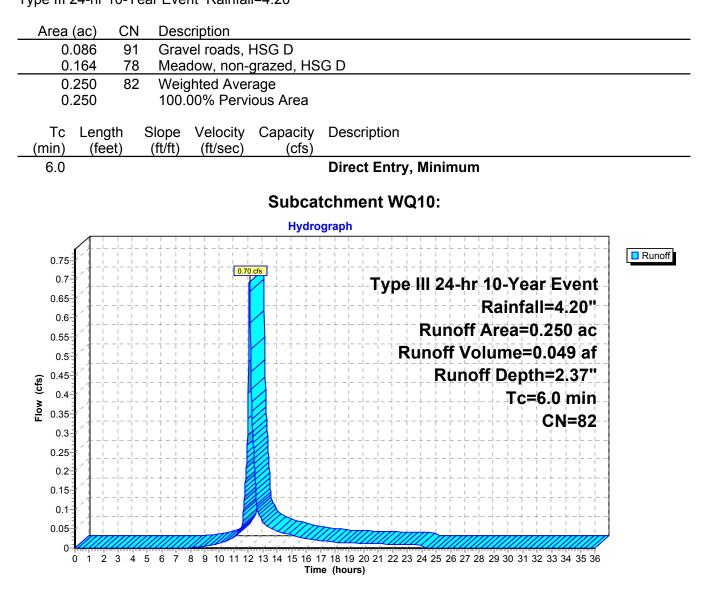
Time span=0.00-36.00 hrs, dt=0.02 hrs, 1801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentWQ10:	Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=3.62" Tc=6.0 min CN=82 Runoff=1.05 cfs 0.075 af
SubcatchmentWQ11:	Runoff Area=0.275 ac 0.00% Impervious Runoff Depth=3.62" Tc=6.0 min CN=82 Runoff=1.16 cfs 0.083 af
SubcatchmentWQ13:	Runoff Area=0.396 ac 0.00% Impervious Runoff Depth=3.04" Tc=6.0 min CN=76 Runoff=1.41 cfs 0.100 af
SubcatchmentWQ14:	Runoff Area=0.591 ac 0.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=74 Runoff=1.97 cfs 0.140 af
SubcatchmentWQ15:	Runoff Area=0.254 ac 0.00% Impervious Runoff Depth=3.04" Tc=6.0 min CN=76 Runoff=0.90 cfs 0.064 af
SubcatchmentWQ16:	Runoff Area=0.367 ac 0.00% Impervious Runoff Depth=3.13" Tc=6.0 min CN=77 Runoff=1.35 cfs 0.096 af
SubcatchmentWQ17:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=3.13" Tc=6.0 min CN=77 Runoff=0.67 cfs 0.048 af
SubcatchmentWQ18:	Runoff Area=0.294 ac 0.00% Impervious Runoff Depth=3.23" Tc=6.0 min CN=78 Runoff=1.11 cfs 0.079 af
SubcatchmentWQ19:	Runoff Area=0.183 ac 0.00% Impervious Runoff Depth=3.82" Tc=6.0 min CN=84 Runoff=0.81 cfs 0.058 af
SubcatchmentWQ20:	Runoff Area=0.514 ac 0.00% Impervious Runoff Depth=3.04" Tc=6.0 min CN=76 Runoff=1.83 cfs 0.130 af
SubcatchmentWQ21:	Runoff Area=0.274 ac 0.00% Impervious Runoff Depth=3.13" Tc=6.0 min CN=77 Runoff=1.01 cfs 0.072 af
SubcatchmentWQ4:	Runoff Area=0.231 ac 0.00% Impervious Runoff Depth=3.52" Tc=6.0 min CN=81 Runoff=0.95 cfs 0.068 af
SubcatchmentWQ5:	Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=3.23" Tc=6.0 min CN=78 Runoff=1.55 cfs 0.111 af
SubcatchmentWQ7:	Runoff Area=0.268 ac 0.00% Impervious Runoff Depth=3.42" Tc=6.0 min CN=80 Runoff=1.07 cfs 0.076 af
SubcatchmentWQ9:	Runoff Area=0.308 ac 0.00% Impervious Runoff Depth=2.94" Tc=6.0 min CN=75 Runoff=1.06 cfs 0.076 af
Reach LS-2:	Inflow=0.95 cfs 0.068 af Outflow=0.95 cfs 0.068 af

WQ Treatment

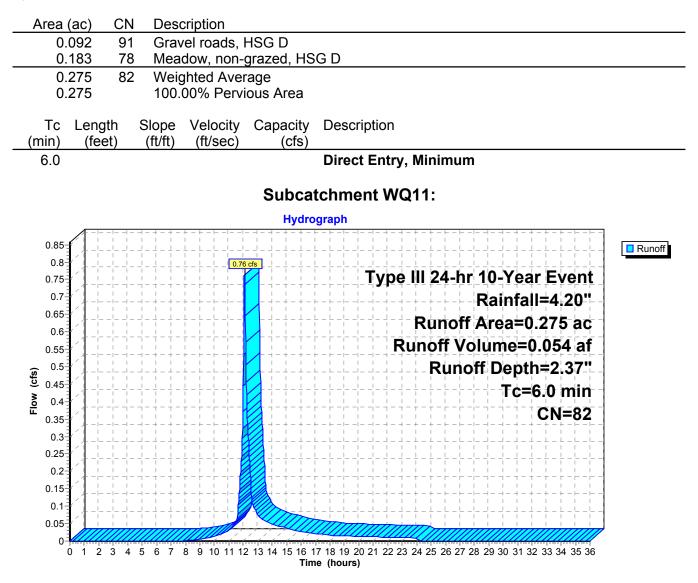
Reach LS-6:

	51
Prepared by TRC Environmental Corp	
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD S	Software Solutions LLC

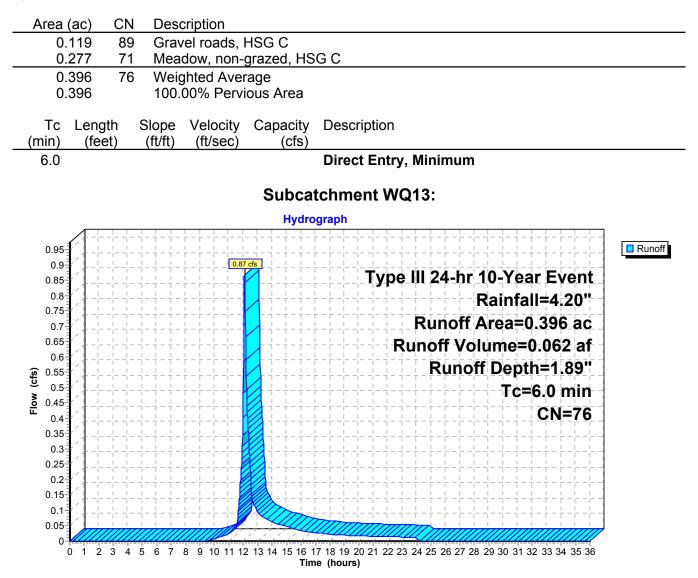

Inflow=1.16 cfs 0.083 af Outflow=1.16 cfs 0.083 af

Page 11

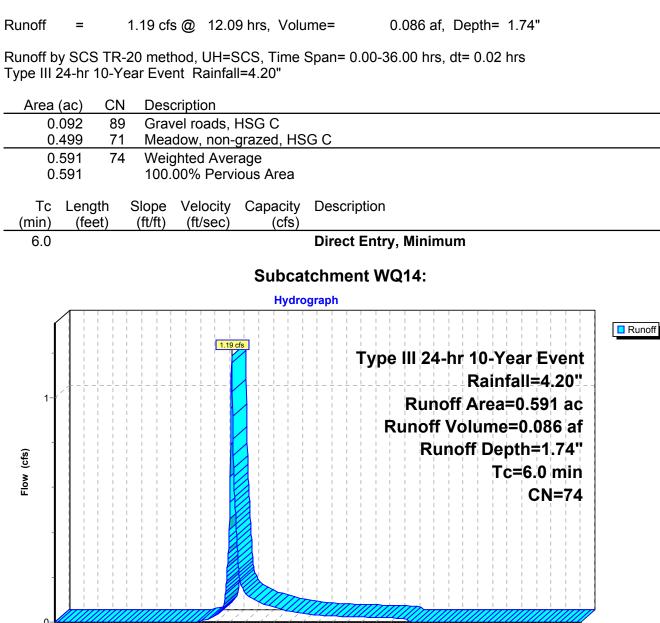
Reach SW-1: Swale	Avg. Depth=0.55' Max Vel=0.53 fps Inflow=1.55 cfs 0.111 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=1.35 cfs 0.111 af
Reach SW-10: Swale	Avg. Depth=0.48' Max Vel=0.45 fps Inflow=1.11 cfs 0.079 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=0.95 cfs 0.079 af
Reach SW-11: Swale	Avg. Depth=0.45' Max Vel=0.34 fps Inflow=0.81 cfs 0.058 af n=0.150 L=125.0' S=0.0050 '/' Capacity=7.38 cfs Outflow=0.67 cfs 0.058 af
Reach SW-12: Swale	Avg. Depth=0.60' Max Vel=0.56 fps Inflow=1.83 cfs 0.130 af n=0.130 L=150.0' S=0.0075 '/' Capacity=10.41 cfs Outflow=1.60 cfs 0.130 af
Reach SW-13: Swale	Avg. Depth=0.46' Max Vel=0.43 fps Inflow=1.01 cfs 0.072 af n=0.150 L=125.0' S=0.0080 '/' Capacity=9.30 cfs Outflow=0.87 cfs 0.072 af
Reach SW-2: Swale	Avg. Depth=0.49' Max Vel=0.41 fps Inflow=1.07 cfs 0.076 af n=0.130 L=130.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=0.91 cfs 0.076 af
Reach SW-3: Swale	Avg. Depth=0.45' Max Vel=0.48 fps Inflow=1.06 cfs 0.076 af n=0.150 L=130.0' S=0.0100 '/' Capacity=10.40 cfs Outflow=0.93 cfs 0.076 af
Reach SW-4: Swale	Avg. Depth=0.47' Max Vel=0.44 fps Inflow=1.05 cfs 0.075 af n=0.140 L=125.0' S=0.0072 '/' Capacity=9.45 cfs Outflow=0.92 cfs 0.075 af
Reach SW-5: Swale	Avg. Depth=0.58' Max Vel=0.45 fps Inflow=1.41 cfs 0.100 af n=0.130 L=120.0' S=0.0050 '/' Capacity=8.48 cfs Outflow=1.23 cfs 0.100 af
Reach SW-6: Swale	Avg. Depth=0.56' Max Vel=0.56 fps Inflow=1.97 cfs 0.140 af n=0.130 L=120.0' S=0.0075 '/' Capacity=12.16 cfs Outflow=1.79 cfs 0.140 af
Reach SW-7: Swale	Avg. Depth=0.44' Max Vel=0.41 fps Inflow=0.90 cfs 0.064 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.78 cfs 0.064 af
Reach SW-8: Swale	Avg. Depth=0.53' Max Vel=0.48 fps Inflow=1.35 cfs 0.096 af n=0.140 L=135.0' S=0.0074 '/' Capacity=9.59 cfs Outflow=1.17 cfs 0.096 af
Reach SW-9: Swale	Avg. Depth=0.37' Max Vel=0.37 fps Inflow=0.67 cfs 0.048 af n=0.150 L=120.0' S=0.0075 '/' Capacity=9.00 cfs Outflow=0.57 cfs 0.048 af


Summary for Subcatchment WQ10:

Runoff=0.70 cfs @12.09 hrs, Volume=0.049 af, Depth=2.37"Runoff by SCS TR-20 method, UH=SCS, Time Span=0.00-36.00 hrs, dt=0.02 hrsType III 24-hr 10-Year Event Rainfall=2.20"

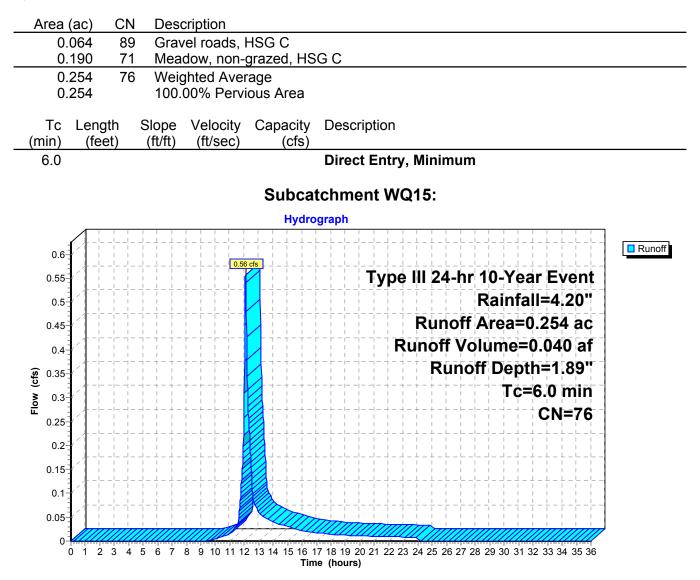

Summary for Subcatchment WQ11:

Runoff = 0.76 cfs @ 12.09 hrs, Volume= 0.054 af, Depth= 2.37"

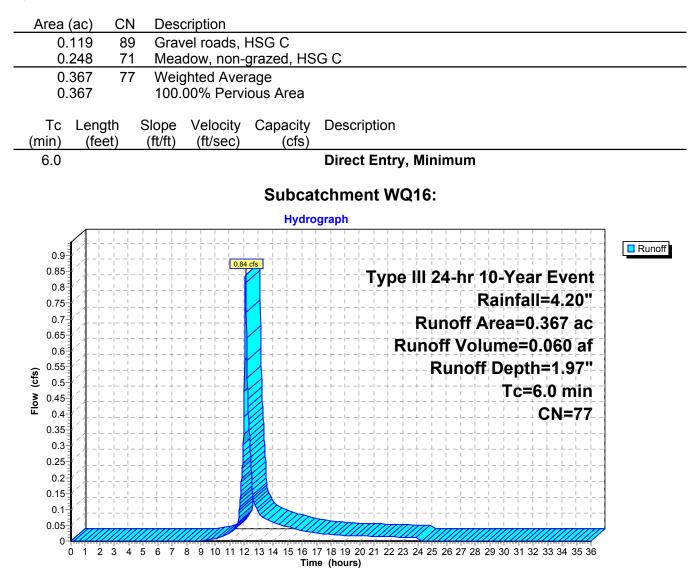


Summary for Subcatchment WQ13:

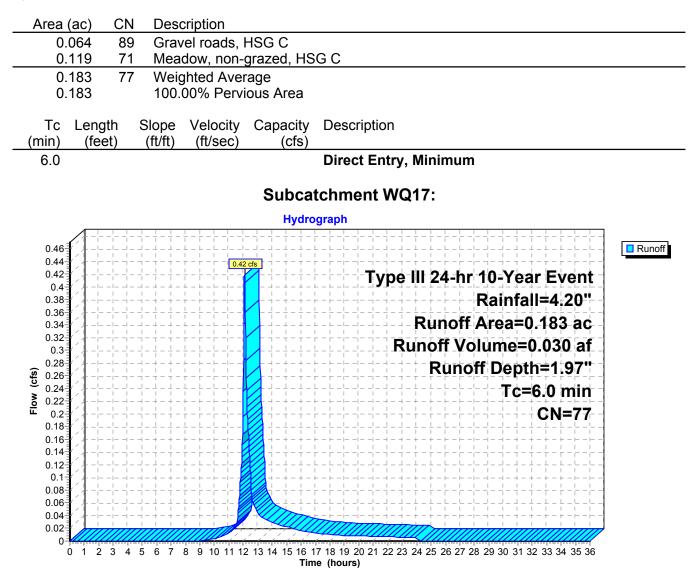
Runoff = 0.87 cfs @ 12.09 hrs, Volume= 0.062 af, Depth= 1.89"


Summary for Subcatchment WQ14:

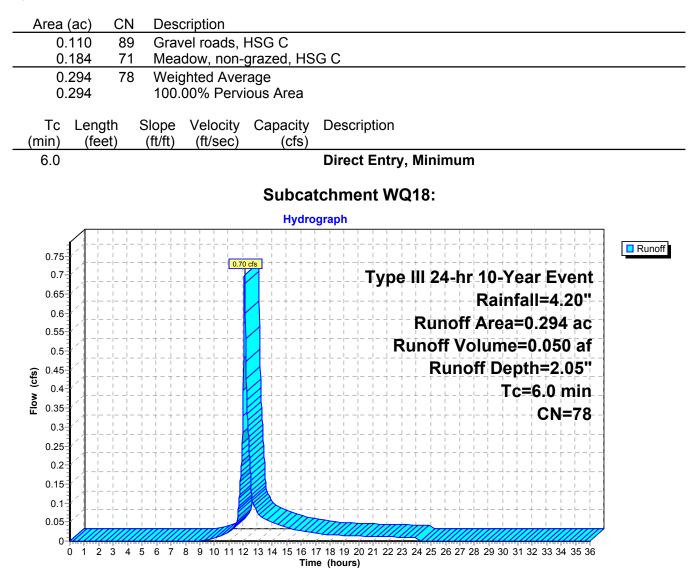
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)


Summary for Subcatchment WQ15:

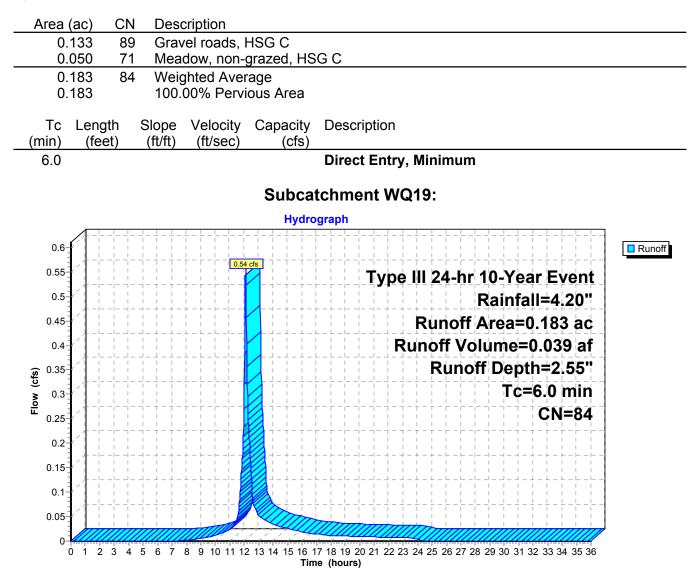
Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 1.89"


Summary for Subcatchment WQ16:

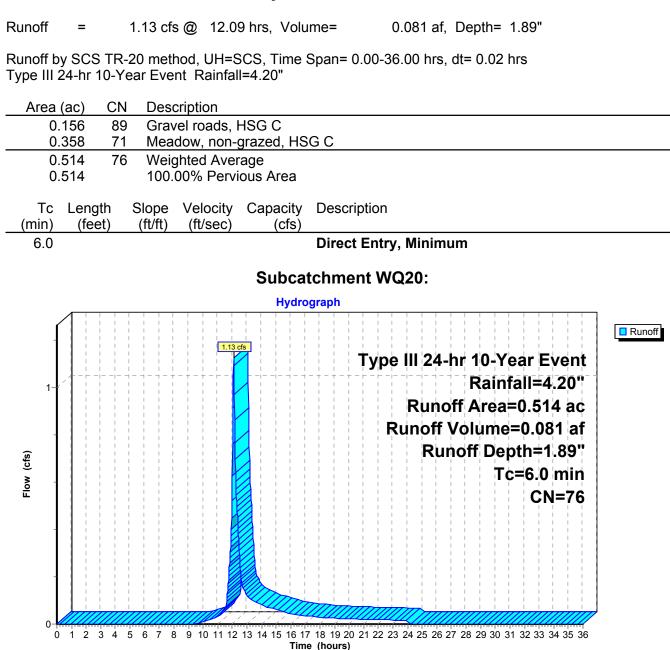
Runoff = 0.84 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 1.97"


Summary for Subcatchment WQ17:

Runoff = 0.42 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 1.97"

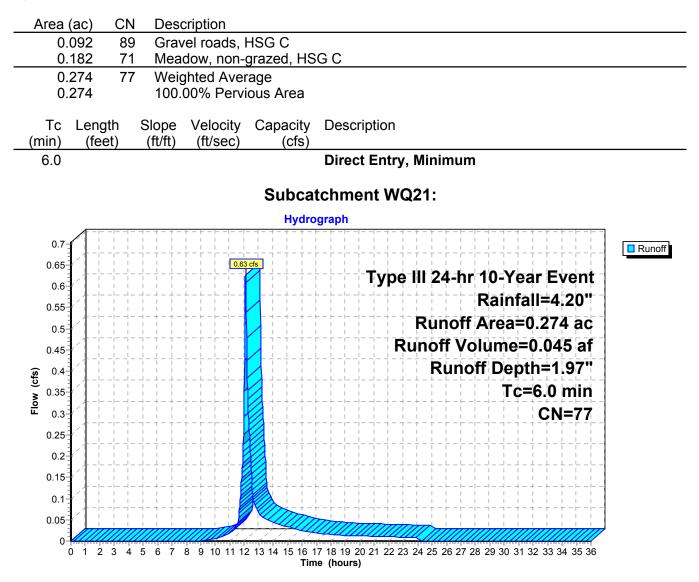

Summary for Subcatchment WQ18:

Runoff = 0.70 cfs @ 12.09 hrs, Volume= 0.050 af, Depth= 2.05"

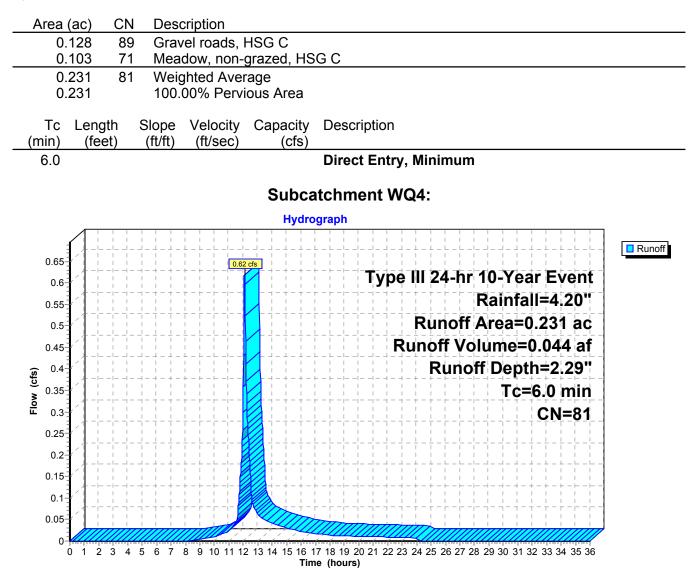


Summary for Subcatchment WQ19:

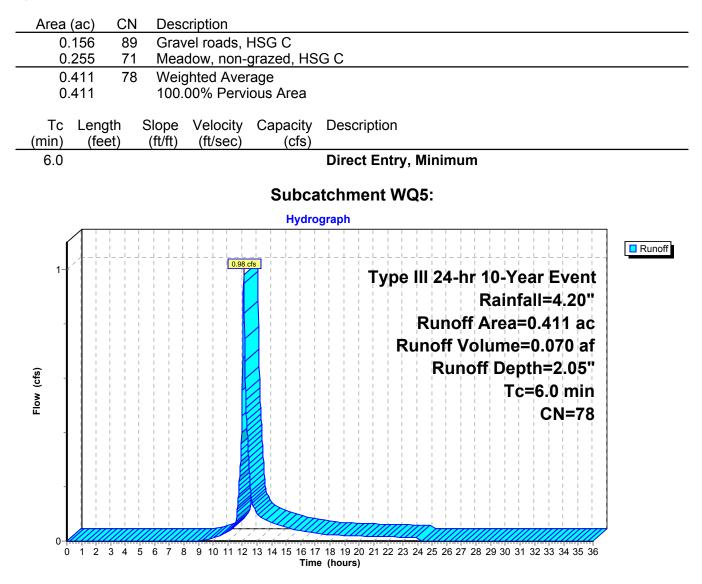
Runoff = 0.54 cfs @ 12.09 hrs, Volume= 0.039 af, Depth= 2.55"



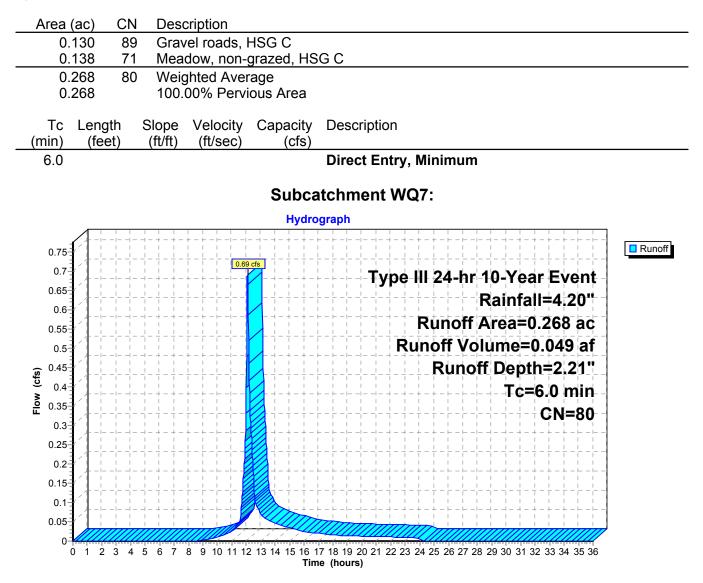
Summary for Subcatchment WQ20:


Summary for Subcatchment WQ21:

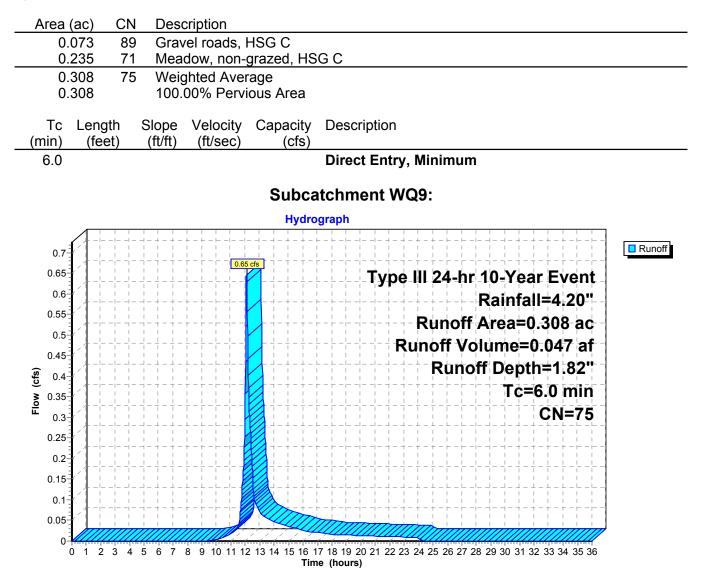
Runoff = 0.63 cfs @ 12.09 hrs, Volume= 0.045 af, Depth= 1.97"


Summary for Subcatchment WQ4:

Runoff = 0.62 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 2.29"

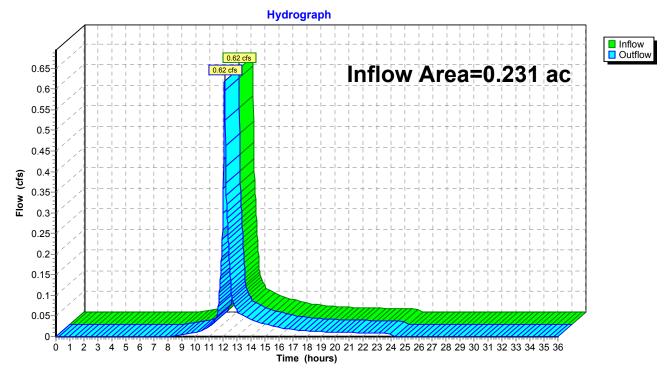

Summary for Subcatchment WQ5:

Runoff = 0.98 cfs @ 12.09 hrs, Volume= 0.070 af, Depth= 2.05"


Summary for Subcatchment WQ7:

Runoff = 0.69 cfs @ 12.09 hrs, Volume= 0.049 af, Depth= 2.21"

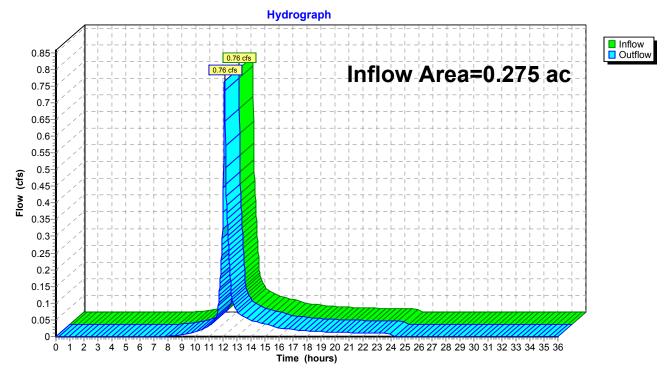
Summary for Subcatchment WQ9:


Runoff = 0.65 cfs @ 12.09 hrs, Volume= 0.047 af, Depth= 1.82"

Summary for Reach LS-2:

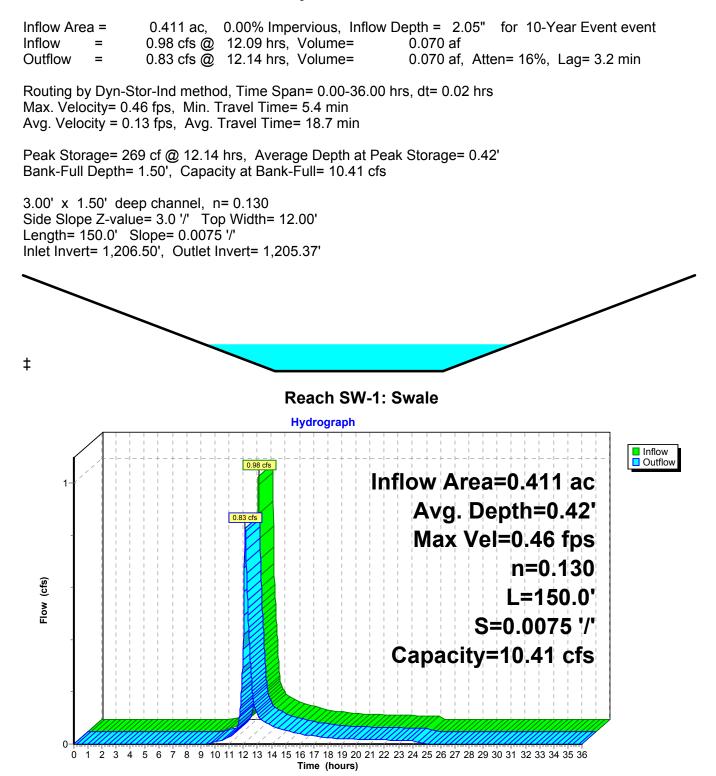
Inflow Area =	0.231 ac,	0.00% Impervious, Inflow D	Depth = 2.29" for 10-Year Event event
Inflow =	0.62 cfs @	12.09 hrs, Volume=	0.044 af
Outflow =	0.62 cfs @	12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs



Reach LS-2:

Summary for Reach LS-6:


Inflow Area =	=	0.275 ac,	0.00% Impervious, Inflow D	epth = 2.37" for 1	0-Year Event event
Inflow =		0.76 cfs @	12.09 hrs, Volume=	0.054 af	
Outflow =		0.76 cfs @	12.09 hrs, Volume=	0.054 af, Atten= 0	%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs

Reach LS-6:

Summary for Reach SW-1: Swale

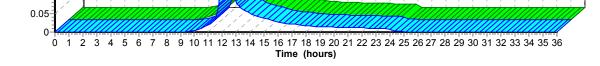
0.55

(**s**) 0.45

0.4 0.35

0.3

0.25 0.2 0.15 0.1 n=0.140


L=135.0'

S=0.0074 '/'

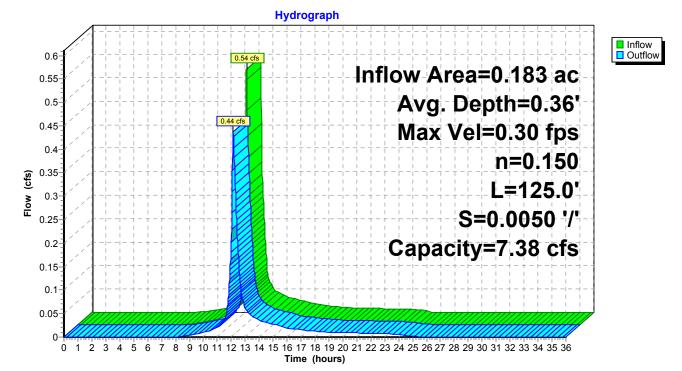
Capacity=9.59 cfs

Summary for Reach SW-10: Swale

Inflow Area = 0.294 ac. 0.00% Impervious, Inflow Depth = 2.05" for 10-Year Event event Inflow 0.70 cfs @ 12.09 hrs, Volume= 0.050 af = Outflow 0.59 cfs @ 12.15 hrs, Volume= 0.050 af, Atten= 17%, Lag= 3.3 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.39 fps, Min. Travel Time= 5.7 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 19.7 min Peak Storage= 202 cf @ 12.15 hrs, Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.59 cfs 3.00' x 1.50' deep channel, n= 0.140 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 135.0' Slope= 0.0074 '/' Inlet Invert= 1,571.00', Outlet Invert= 1,570.00' ‡ Reach SW-10: Swale Hydrograph Inflow Outflow 0.75 Inflow Area=0.294 ac 0.7 Avg. Depth=0.36' 0.65 0.59 0.6 Max Vel=0.39 fps

Summary for Reach SW-11: Swale

Inflow Area =0.183 ac,0.00% Impervious,Inflow Depth =2.55"for10-Year Event eventInflow =0.54 cfs @12.09 hrs,Volume=0.039 afOutflow =0.44 cfs @12.15 hrs,Volume=0.039 af,Atten=

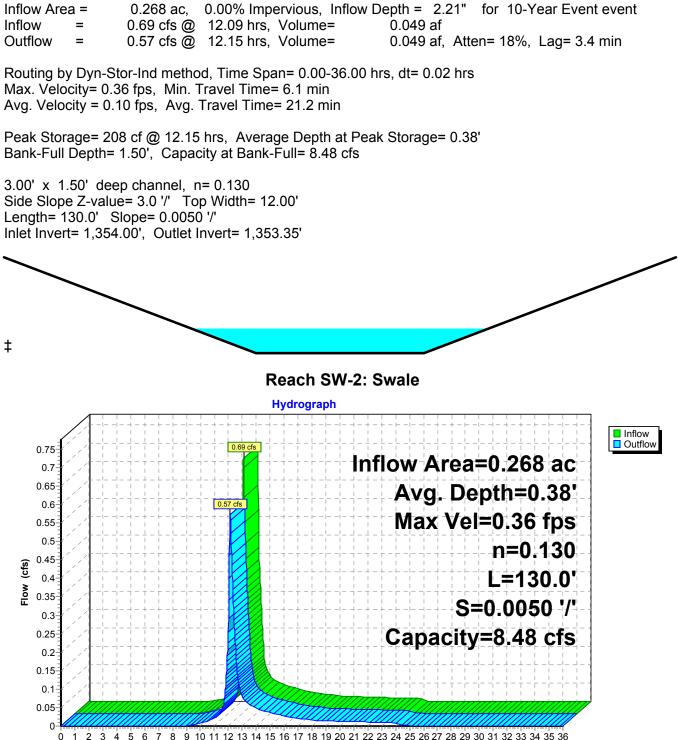

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.30 fps, Min. Travel Time= 7.0 min Avg. Velocity = 0.08 fps, Avg. Travel Time= 25.0 min

Peak Storage= 182 cf @ 12.15 hrs, Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.38 cfs

3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 125.0' Slope= 0.0050 '/' Inlet Invert= 1,688.00', Outlet Invert= 1,687.37'

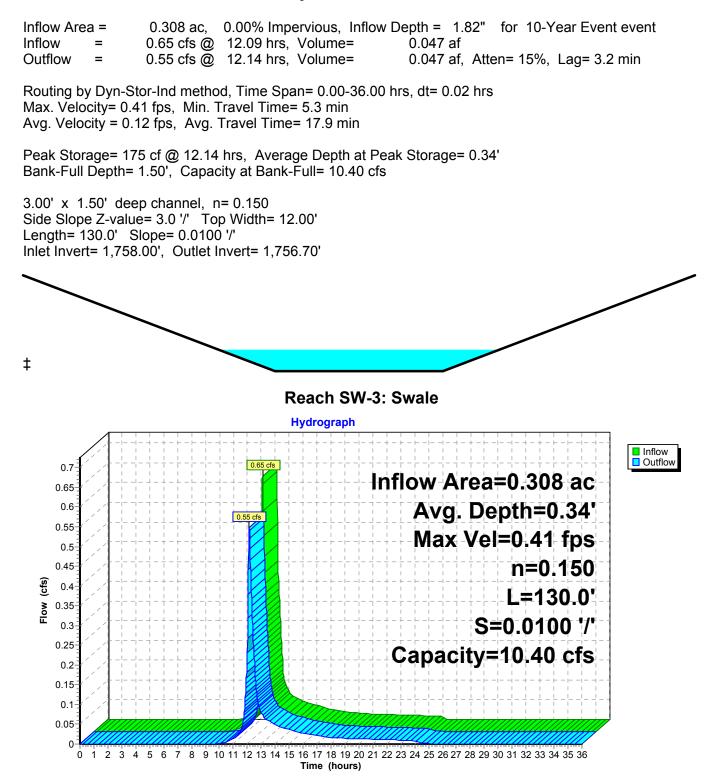
‡

Summary for Reach SW-12: Swale


Inflow Area = 0.514 ac, 0.00% Impervious, Inflow Depth = 1.89" for 10-Year Event event Inflow 1.13 cfs @ 12.09 hrs, Volume= 0.081 af = Outflow 0.96 cfs @ 12.14 hrs, Volume= 0.081 af, Atten= 15%, Lag= 3.1 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.48 fps, Min. Travel Time= 5.2 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 17.7 min Peak Storage= 298 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.46' Bank-Full Depth= 1.50', Capacity at Bank-Full= 10.41 cfs 3.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 150.0' Slope= 0.0075 '/' Inlet Invert= 1,787.00', Outlet Invert= 1,785.87' ‡ Reach SW-12: Swale Hydrograph Inflow Outflow 1.13 cfs Inflow Area=0.514 ac Avg. Depth=0.46' 0.96 cfs Max Vel=0.48 fps n=0.130 (cfs) L=150.0' Flow S=0.0075 '/' Capacity=10.41 cfs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Reach SW-13: Swale

Inflow Area = 0.274 ac. 0.00% Impervious, Inflow Depth = 1.97" for 10-Year Event event Inflow 0.63 cfs @ 12.09 hrs, Volume= 0.045 af = Outflow 0.53 cfs @ 12.14 hrs, Volume= 0.045 af, Atten= 16%, Lag= 3.3 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.37 fps, Min. Travel Time= 5.6 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 19.1 min Peak Storage= 177 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.30 cfs 3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 125.0' Slope= 0.0080 '/' Inlet Invert= 1,849.00', Outlet Invert= 1,848.00' ‡ Reach SW-13: Swale Hydrograph Inflow 0.7 Outflow 0.63 cfs Inflow Area=0.274 ac 0.65 0.6 Avg. Depth=0.35' 0.55 0.53 cfs Max Vel=0.37 fps 0.5 0.45 n=0.150 0.4 (cfs) L=125.0' 0.35 Flow 0.3 S=0.0080 '/' 0.25 Capacity=9.30 cfs 0.2 0.15 0.1 0.05


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Reach SW-2: Swale

Time (hours)

Summary for Reach SW-3: Swale

Summary for Reach SW-4: Swale

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 2.37" for 10-Year Event event Inflow 0.70 cfs @ 12.09 hrs, Volume= 0.049 af = Outflow 0.59 cfs @ 12.14 hrs, Volume= 0.049 af, Atten= 15%, Lag= 3.1 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.39 fps, Min. Travel Time= 5.4 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 18.8 min Peak Storage= 189 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.45 cfs 3.00' x 1.50' deep channel, n= 0.140 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 125.0' Slope= 0.0072 '/' Inlet Invert= 1,628.00', Outlet Invert= 1,627.10' ‡ Reach SW-4: Swale Hydrograph Inflow Outflow 0.75 Inflow Area=0.250 ac 0.7 0.65 Avg. Depth=0.37' 0.6 Max Vel=0.39 fps 0.55 0.5 n=0.140 0.45 (cfs) L=125.0' 0.4 No 0.35 S=0.0072 '/' 0.3 Capacity=9.45 cfs 0.25 02 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

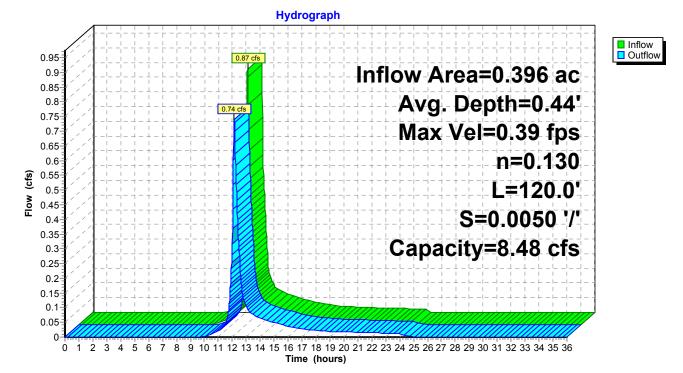
Time (hours)

Summary for Reach SW-5: Swale

 Inflow Area =
 0.396 ac,
 0.00% Impervious,
 Inflow Depth =
 1.89"
 for
 10-Year Event event

 Inflow =
 0.87 cfs @
 12.09 hrs,
 Volume=
 0.062 af

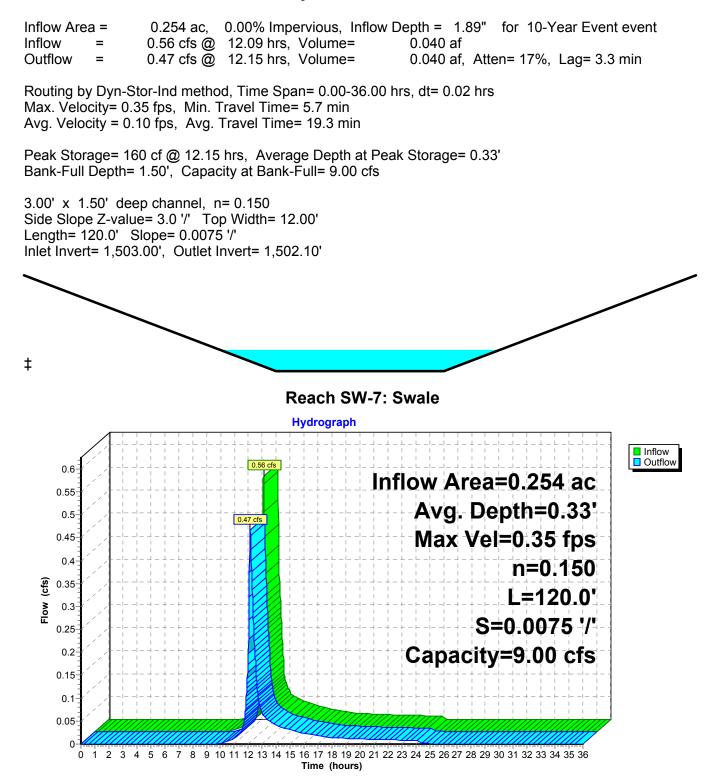
 Outflow =
 0.74 cfs @
 12.14 hrs,
 Volume=
 0.062 af,
 Atten=
 15%,
 Lag=
 3.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.39 fps, Min. Travel Time= 5.2 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 17.6 min

Peak Storage= 230 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.50', Capacity at Bank-Full= 8.48 cfs

3.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 120.0' Slope= 0.0050 '/' Inlet Invert= 1,682.50', Outlet Invert= 1,681.90'

‡



Summary for Reach SW-6: Swale

Inflow Area = 0.591 ac, 0.00% Impervious, Inflow Depth = 1.74" for 10-Year Event event Inflow 1.19 cfs @ 12.09 hrs, Volume= 0.086 af = Outflow 1.05 cfs @ 12.14 hrs, Volume= 0.086 af, Atten= 12%, Lag= 2.7 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.47 fps, Min. Travel Time= 4.2 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 14.5 min Peak Storage= 265 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.42' Bank-Full Depth= 1.50', Capacity at Bank-Full= 12.16 cfs 4.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 13.00' Length= 120.0' Slope= 0.0075 '/' Inlet Invert= 1,579.50', Outlet Invert= 1,578.60' ‡ **Reach SW-6: Swale** Hydrograph Inflow Outflow Inflow Area=0.591 ac Avg. Depth=0.42' Max Vel=0.47 fps n=0.130 (cfs) L=120.0' Flow S=0.0075 '/' Capacity=12.16 cfs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Time (hours)

Summary for Reach SW-7: Swale

Summary for Reach SW-8: Swale

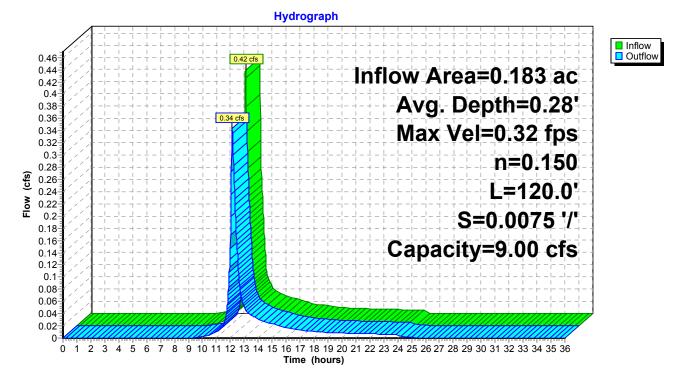
Inflow Area = 0.367 ac, 0.00% Impervious, Inflow Depth = 1.97" for 10-Year Event event Inflow 0.84 cfs @ 12.09 hrs, Volume= 0.060 af = Outflow 0.71 cfs @ 12.14 hrs, Volume= 0.060 af, Atten= 16%, Lag= 3.2 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.42 fps, Min. Travel Time= 5.4 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 18.5 min Peak Storage= 230 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.59 cfs 3.00' x 1.50' deep channel, n= 0.140 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 135.0' Slope= 0.0074 '/' Inlet Invert= 1,471.00', Outlet Invert= 1,470.00' ‡ Reach SW-8: Swale Hydrograph Inflow Outflow 0.9 Inflow Area=0.367 ac 0.85 0.8 Avg. Depth=0.40' 0.75 0.71 0.7 Max Vel=0.42 fps 0.65 0.6 n=0.140 0.55 (cfs) 0.5 L=135.0' Flow 0.45 S=0.0074 '/' 0.4 0.35 Capacity=9.59 cfs 0.3 0.25 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Reach SW-9: Swale

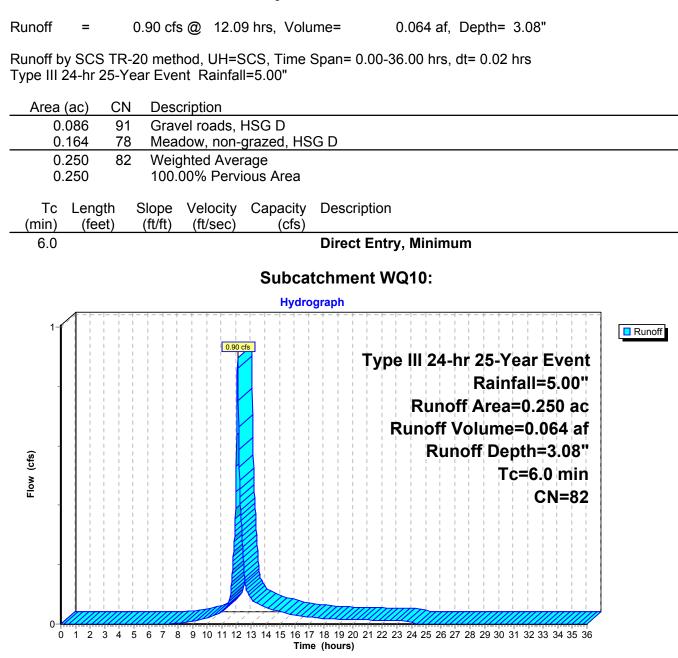
 Inflow Area =
 0.183 ac,
 0.00% Impervious,
 Inflow Depth =
 1.97"
 for
 10-Year Event event

 Inflow =
 0.42 cfs @
 12.09 hrs,
 Volume=
 0.030 af

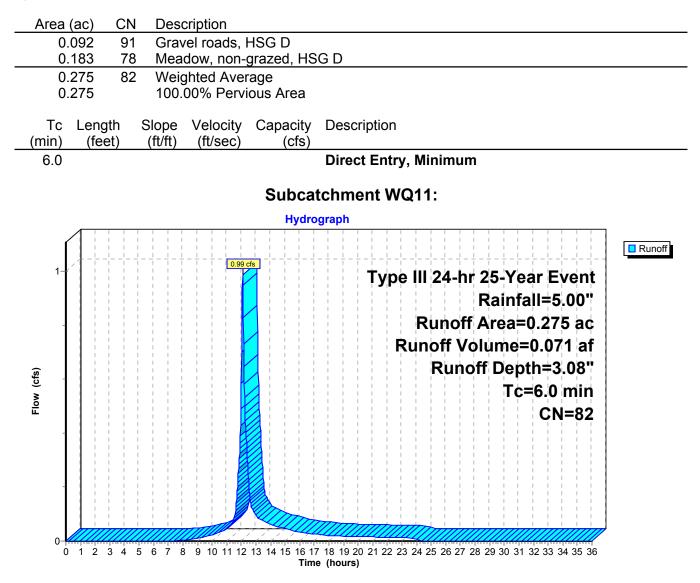
 Outflow =
 0.34 cfs @
 12.15 hrs,
 Volume=
 0.030 af,
 Atten=
 18%,
 Lag=
 3.5 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.32 fps, Min. Travel Time= 6.3 min Avg. Velocity = 0.09 fps, Avg. Travel Time= 21.2 min

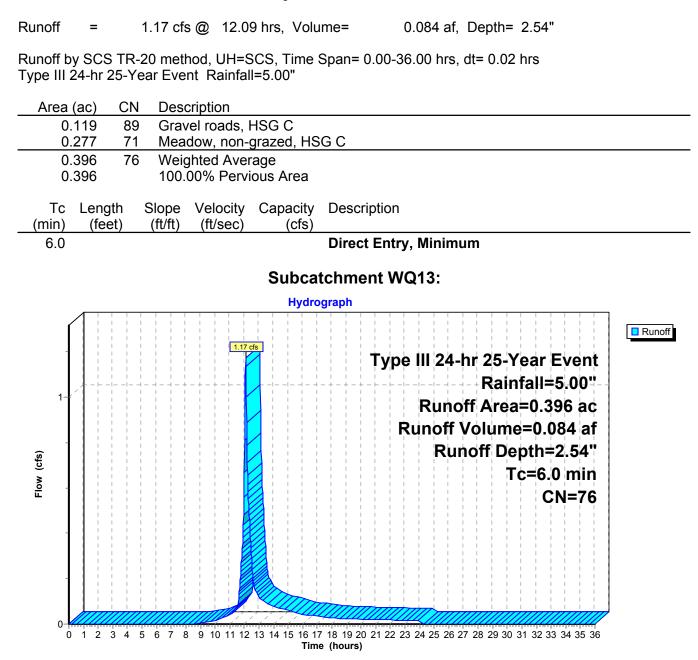
Peak Storage= 129 cf @ 12.15 hrs, Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.00 cfs


3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 120.0' Slope= 0.0075 '/' Inlet Invert= 1,521.00', Outlet Invert= 1,520.10'

‡

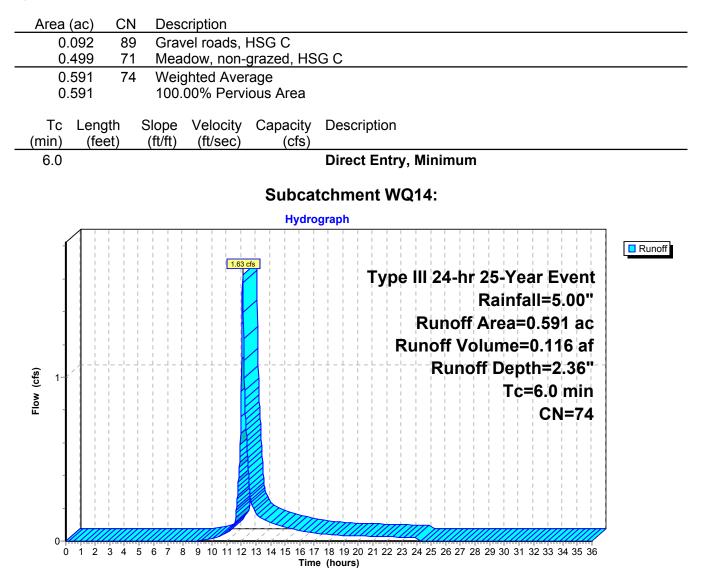


Summary for Subcatchment WQ10:

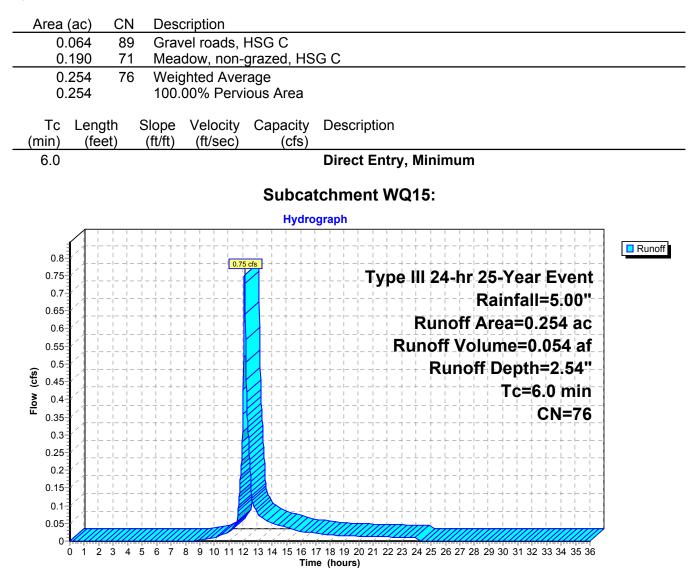


Summary for Subcatchment WQ11:

Runoff = 0.99 cfs @ 12.09 hrs, Volume= 0.071 af, Depth= 3.08"



Summary for Subcatchment WQ13:


Summary for Subcatchment WQ14:

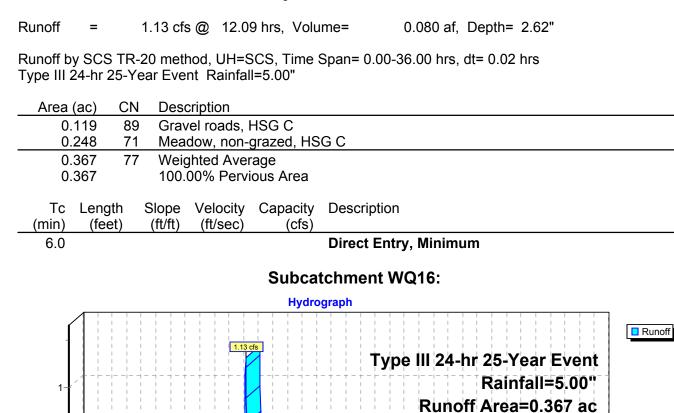
Runoff = 1.63 cfs @ 12.09 hrs, Volume= 0.116 af, Depth= 2.36"

Summary for Subcatchment WQ15:

Runoff = 0.75 cfs @ 12.09 hrs, Volume= 0.054 af, Depth= 2.54"

(cfs)

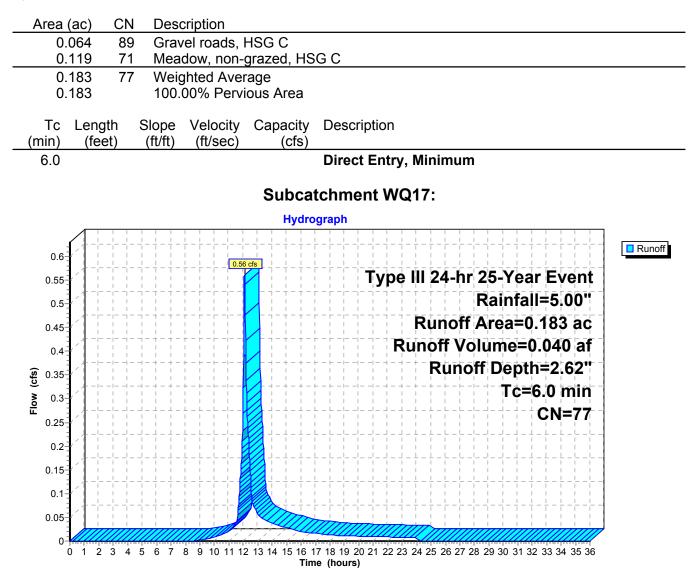
Flow


Runoff Volume=0.080 af

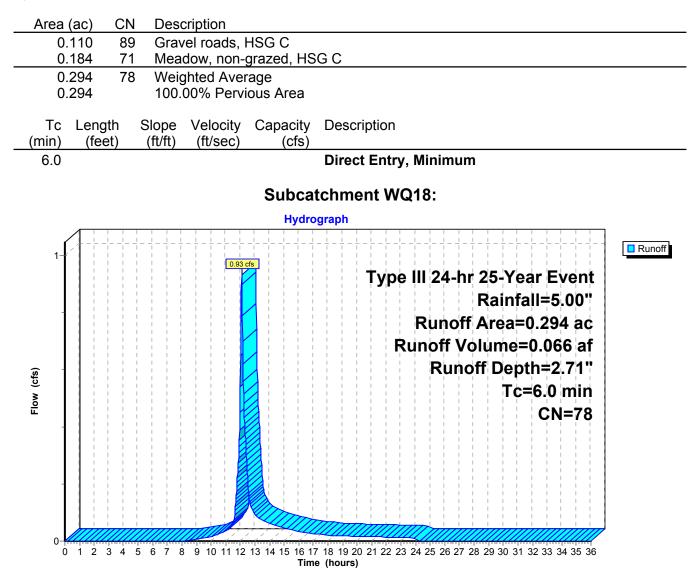
Runoff Depth=2.62"

Tc=6.0 min

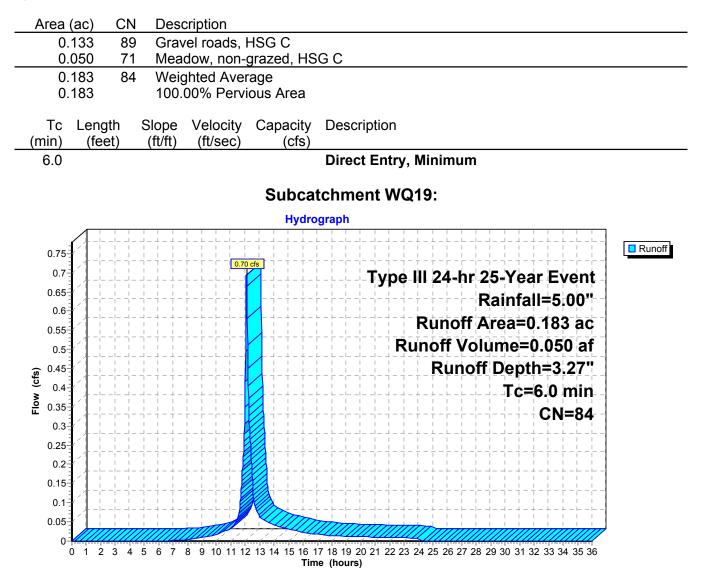
CN=77


Summary for Subcatchment WQ16:

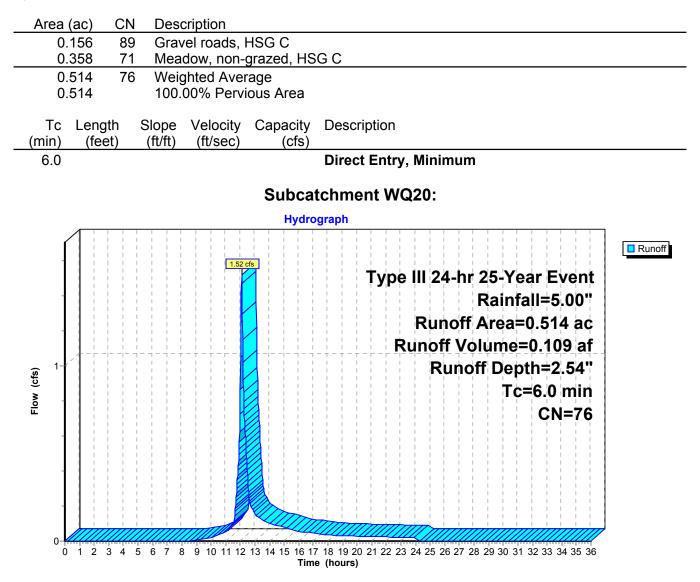
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)


Summary for Subcatchment WQ17:

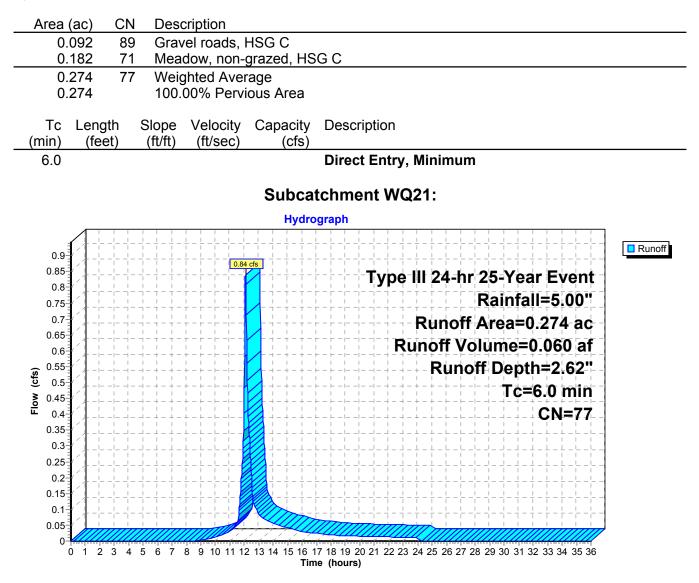
Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 2.62"


Summary for Subcatchment WQ18:

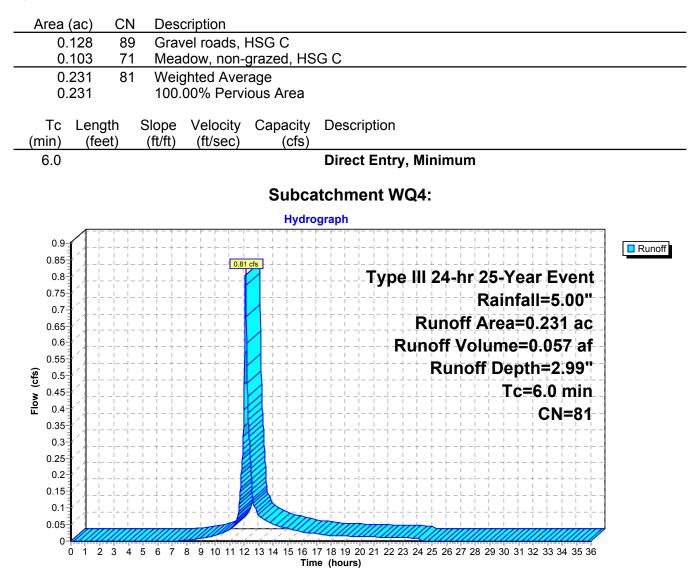
Runoff = 0.93 cfs @ 12.09 hrs, Volume= 0.066 af, Depth= 2.71"


Summary for Subcatchment WQ19:

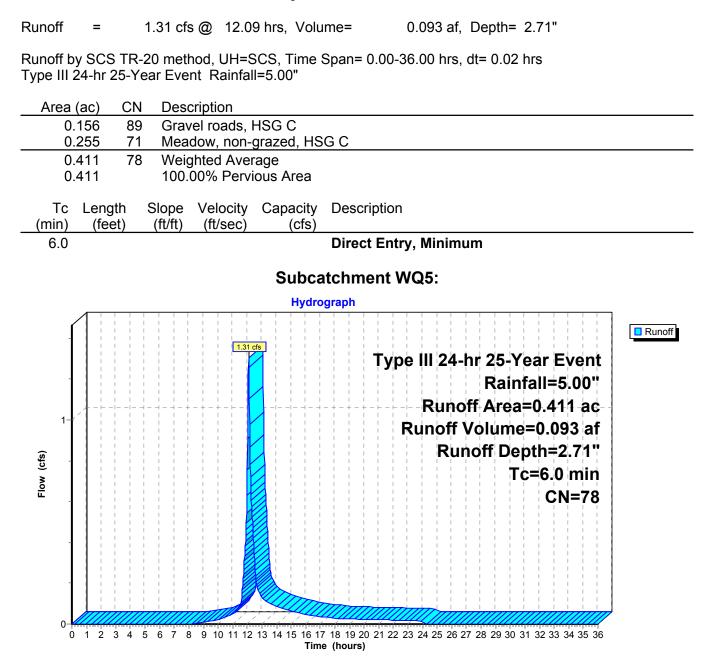
Runoff = 0.70 cfs @ 12.09 hrs, Volume= 0.050 af, Depth= 3.27"


Summary for Subcatchment WQ20:

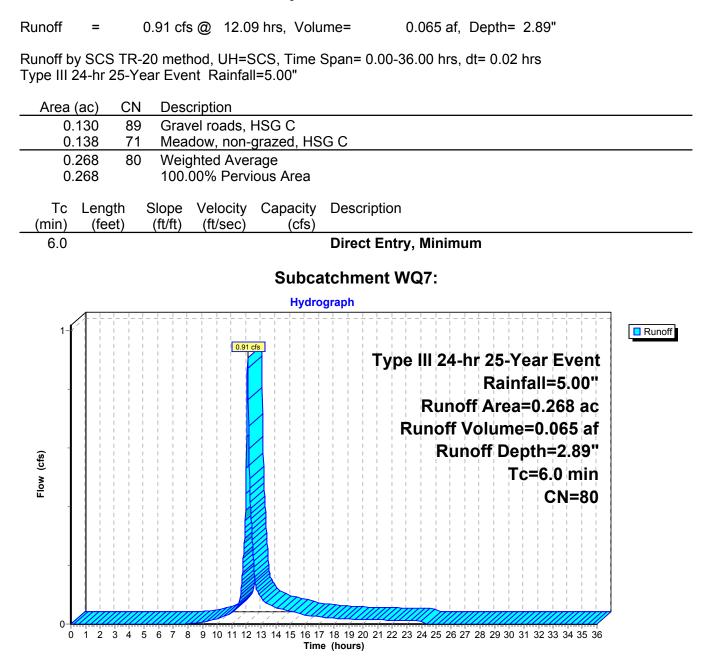
Runoff = 1.52 cfs @ 12.09 hrs, Volume= 0.109 af, Depth= 2.54"


Summary for Subcatchment WQ21:

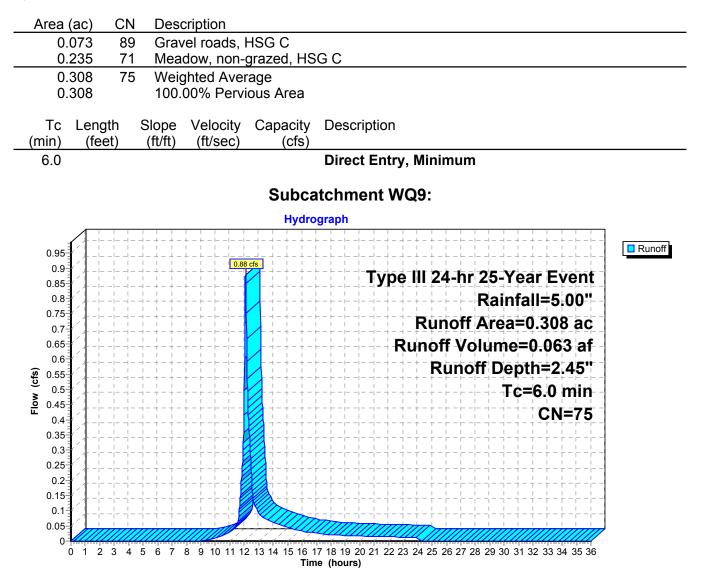
Runoff = 0.84 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 2.62"



Summary for Subcatchment WQ4:

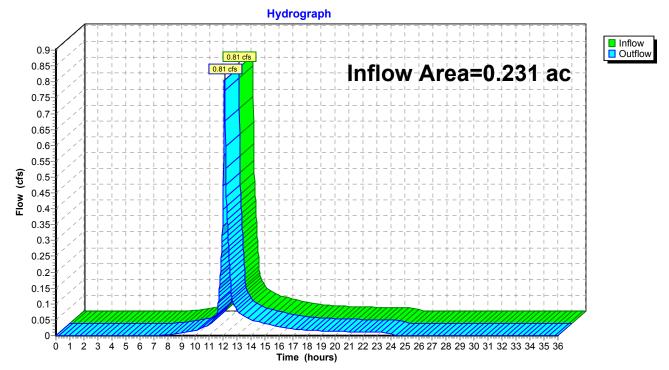

Runoff = 0.81 cfs @ 12.09 hrs, Volume= 0.057 af, Depth= 2.99"

Summary for Subcatchment WQ5:



Summary for Subcatchment WQ7:

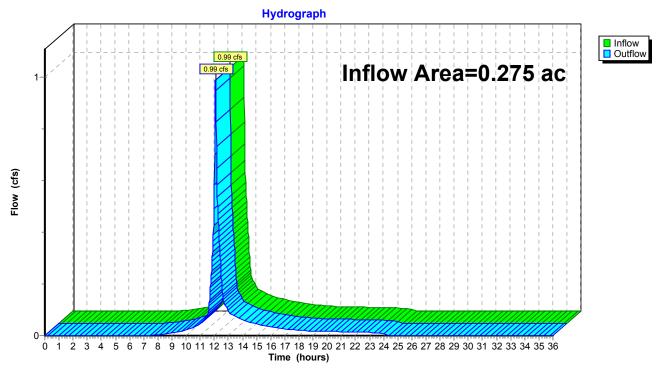
Summary for Subcatchment WQ9:


Runoff = 0.88 cfs @ 12.09 hrs, Volume= 0.063 af, Depth= 2.45"

Summary for Reach LS-2:

Inflow Area =	0.231 ac,	0.00% Impervious, Inflow D	epth = 2.99"	for 25-Year Event event
Inflow =	0.81 cfs @	12.09 hrs, Volume=	0.057 af	
Outflow =	0.81 cfs @	12.09 hrs, Volume=	0.057 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs



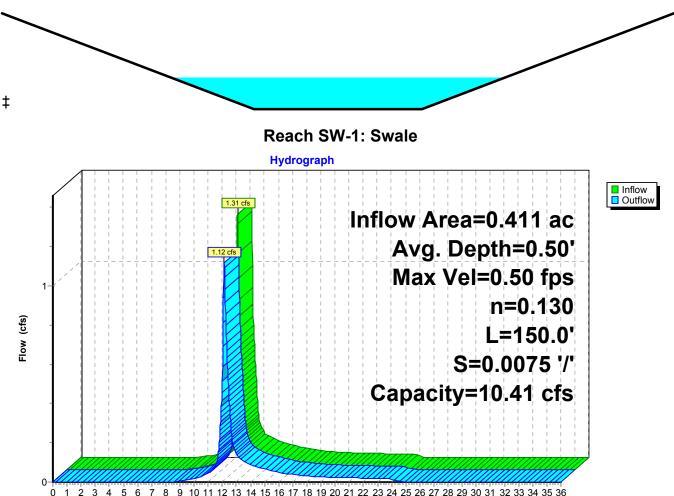
Reach LS-2:

Summary for Reach LS-6:

Inflow Area =	0.275 ac,	0.00% Impervious, Inflow D	epth = 3.08"	for 25-Year Event event
Inflow =	0.99 cfs @	12.09 hrs, Volume=	0.071 af	
Outflow =	0.99 cfs @	12.09 hrs, Volume=	0.071 af, Att	en= 0%, Lag= 0.0 min

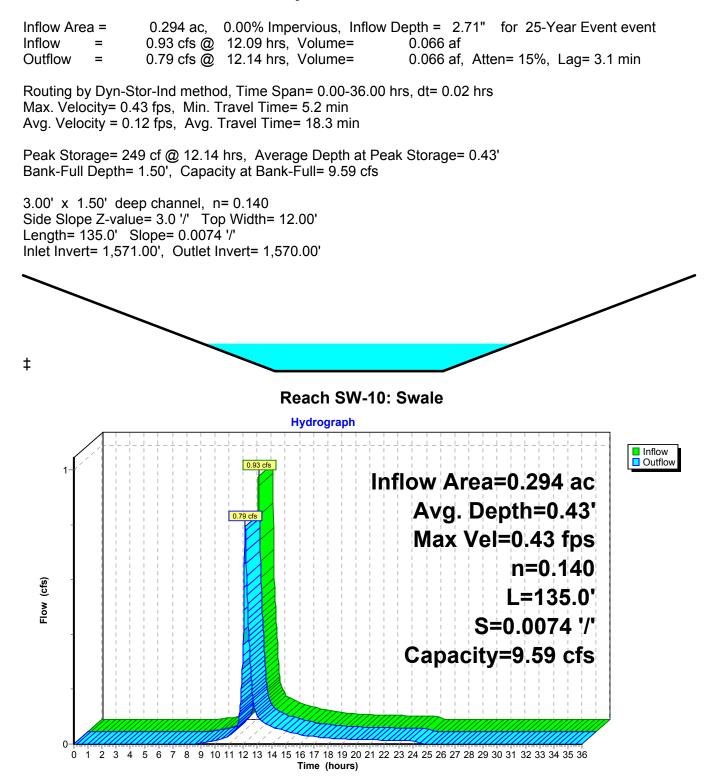
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs

Reach LS-6:


Summary for Reach SW-1: Swale

Inflow Area =0.411 ac,0.00% Impervious,Inflow Depth =2.71"for25-Year Event eventInflow =1.31 cfs @12.09 hrs,Volume=0.093 afOutflow =1.12 cfs @12.14 hrs,Volume=0.093 af,Atten=14%,Lag=3.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.50 fps, Min. Travel Time= 5.0 min Avg. Velocity = 0.14 fps, Avg. Travel Time= 17.4 min


Peak Storage= 333 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.50', Capacity at Bank-Full= 10.41 cfs

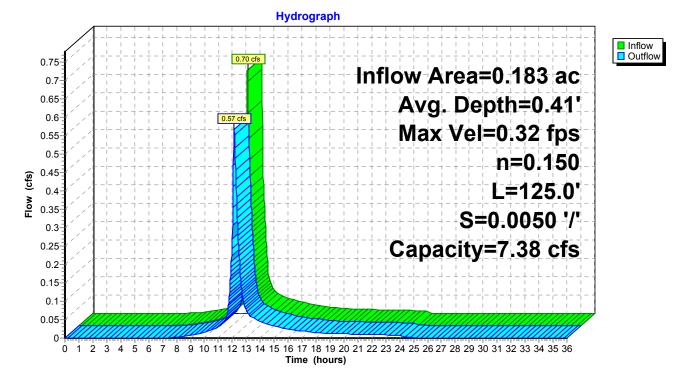
3.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 150.0' Slope= 0.0075 '/' Inlet Invert= 1,206.50', Outlet Invert= 1,205.37'

Time (hours)

Summary for Reach SW-10: Swale

Summary for Reach SW-11: Swale

Inflow Area =0.183 ac,0.00% Impervious, Inflow Depth =3.27"for 25-Year Event eventInflow =0.70 cfs @12.09 hrs, Volume=0.050 afOutflow =0.57 cfs @12.14 hrs, Volume=0.050 af, Atten=

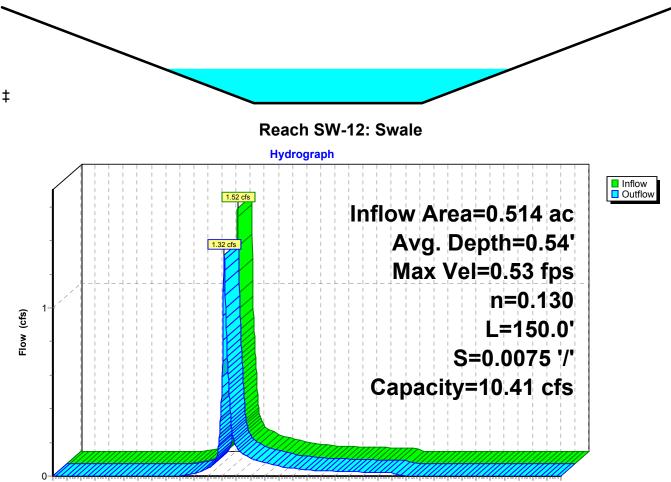

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.32 fps, Min. Travel Time= 6.4 min Avg. Velocity = 0.09 fps, Avg. Travel Time= 23.4 min

Peak Storage= 219 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.38 cfs

3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 125.0' Slope= 0.0050 '/' Inlet Invert= 1,688.00', Outlet Invert= 1,687.37'

‡

Reach SW-11: Swale


Summary for Reach SW-12: Swale

Inflow Area =0.514 ac,0.00% Impervious, Inflow Depth =2.54" for 25-Year Event eventInflow =1.52 cfs @12.09 hrs, Volume=0.109 afOutflow =1.32 cfs @12.14 hrs, Volume=0.109 af, Atten=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.53 fps, Min. Travel Time= 4.7 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 16.4 min

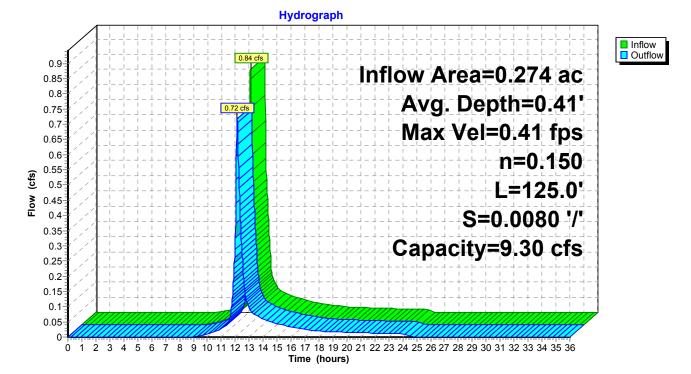
Peak Storage= 374 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.50', Capacity at Bank-Full= 10.41 cfs

3.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 150.0' Slope= 0.0075 '/' Inlet Invert= 1,787.00', Outlet Invert= 1,785.87'

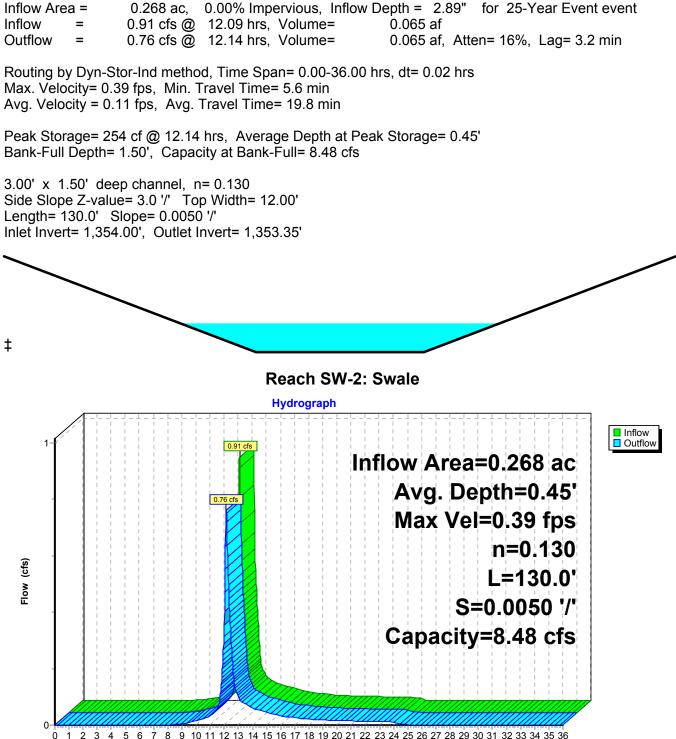
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Reach SW-13: Swale

Inflow Area =0.274 ac,0.00% Impervious,Inflow Depth =2.62"for25-Year Event eventInflow =0.84 cfs @12.09 hrs,Volume=0.060 afOutflow =0.72 cfs @12.14 hrs,Volume=0.060 af,Atten=


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.41 fps, Min. Travel Time= 5.1 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 17.7 min

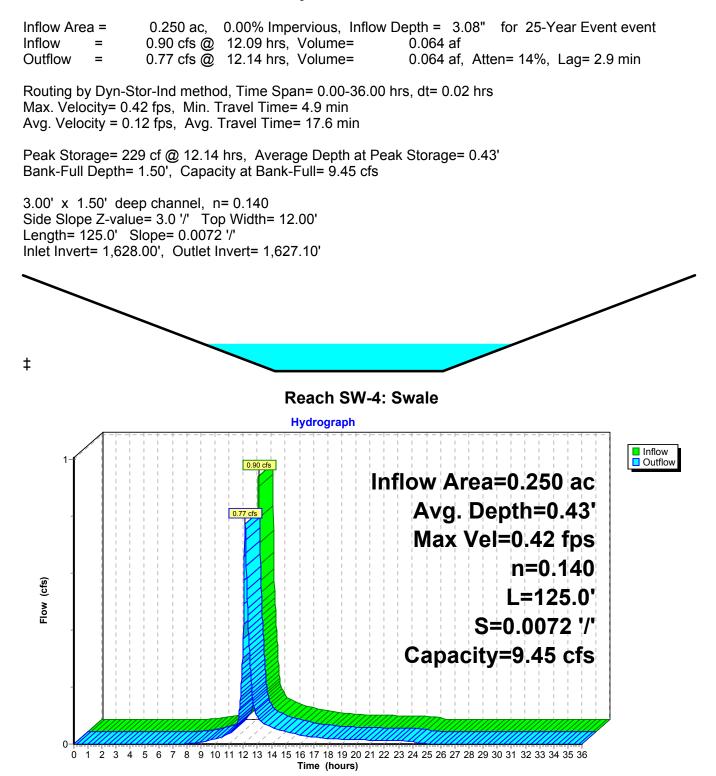
Peak Storage= 220 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.30 cfs


3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 125.0' Slope= 0.0080 '/' Inlet Invert= 1,849.00', Outlet Invert= 1,848.00'

‡

Reach SW-13: Swale

Summary for Reach SW-2: Swale



Summary for Reach SW-3: Swale

Inflow Area = 0.308 ac, 0.00% Impervious, Inflow Depth = 2.45" for 25-Year Event event Inflow 0.88 cfs @ 12.09 hrs, Volume= 0.063 af = Outflow 0.76 cfs @ 12.14 hrs, Volume= 0.063 af, Atten= 14%, Lag= 2.9 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.45 fps, Min. Travel Time= 4.8 min Avg. Velocity = 0.13 fps, Avg. Travel Time= 16.5 min Peak Storage= 220 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.50', Capacity at Bank-Full= 10.40 cfs 3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 130.0' Slope= 0.0100 '/' Inlet Invert= 1,758.00', Outlet Invert= 1,756.70' ‡ **Reach SW-3: Swale** Hydrograph Inflow Outflow 0.88 cfs 0.95 Inflow Area=0.308 ac 0.9 0.85 Avg. Depth=0.40' 0.8 0.76 cfs 0.75 Max Vel=0.45 fps 0.7 0.65 n=0.150 0.6 (cfs) 0.55 L=130.0' 0.5 Flow 0.45 S=0.0100 '/' 0.4 0.35 Capacity=10.40 cfs 0.3 0.25 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

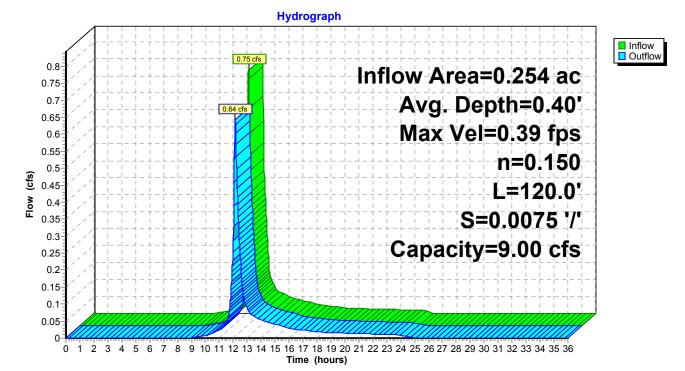
Time (hours)

Summary for Reach SW-4: Swale

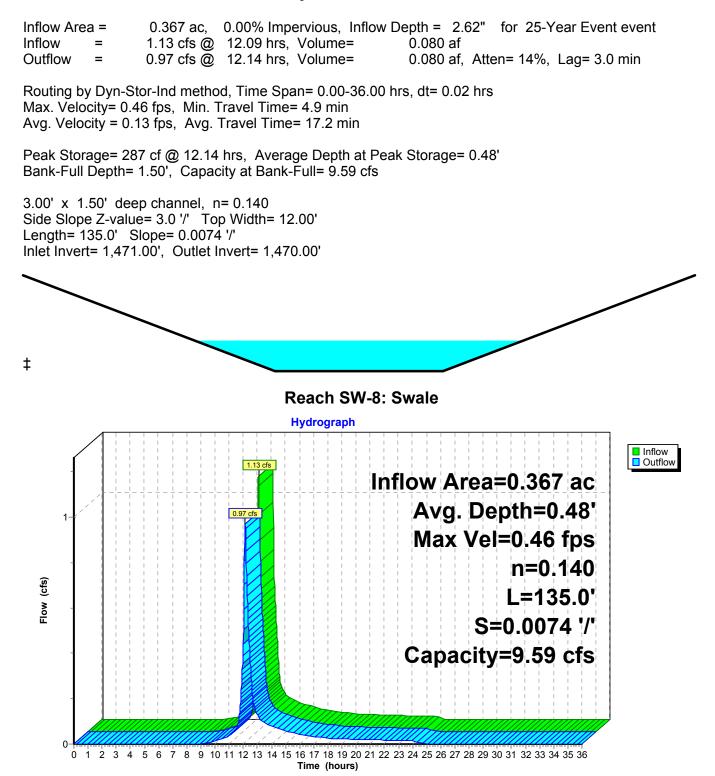
Summary for Reach SW-5: Swale

Inflow Area = 0.396 ac, 0.00% Impervious, Inflow Depth = 2.54" for 25-Year Event event Inflow 1.17 cfs @ 12.09 hrs, Volume= 0.084 af = Outflow 1.01 cfs @ 12.14 hrs, Volume= 0.084 af, Atten= 14%, Lag= 2.9 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.42 fps, Min. Travel Time= 4.7 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 16.3 min Peak Storage= 287 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.50', Capacity at Bank-Full= 8.48 cfs 3.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 120.0' Slope= 0.0050 '/' Inlet Invert= 1,682.50', Outlet Invert= 1,681.90' ‡ Reach SW-5: Swale Hydrograph Inflow Outflow Inflow Area=0.396 ac Avg. Depth=0.52' 1.01 cf Max Vel=0.42 fps n=0.130 (cfs) L=120.0' Flow S=0.0050 '/' Capacity=8.48 cfs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

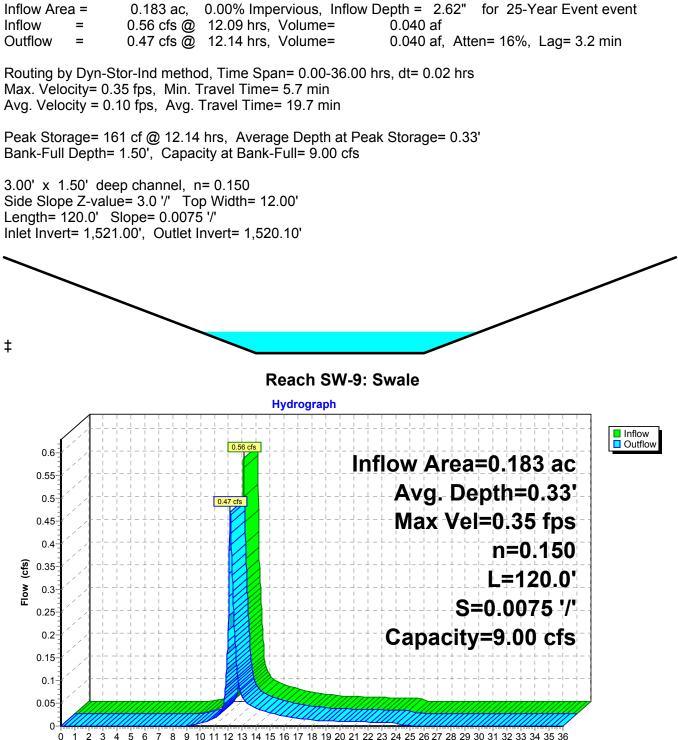
Time (hours)


Summary for Reach SW-6: Swale

Inflow Area = 0.591 ac, 0.00% Impervious, Inflow Depth = 2.36" for 25-Year Event event Inflow 1.63 cfs @ 12.09 hrs, Volume= 0.116 af = Outflow 1.46 cfs @ 12.13 hrs, Volume= 0.116 af, Atten= 10%, Lag= 2.4 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.53 fps, Min. Travel Time= 3.8 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 13.4 min Peak Storage= 334 cf @ 12.13 hrs, Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.50', Capacity at Bank-Full= 12.16 cfs 4.00' x 1.50' deep channel, n= 0.130 Side Slope Z-value= 3.0 '/' Top Width= 13.00' Length= 120.0' Slope= 0.0075 '/' Inlet Invert= 1,579.50', Outlet Invert= 1,578.60' ‡ **Reach SW-6: Swale** Hydrograph Inflow Outflow Inflow Area=0.591 ac Avg. Depth=0.50' Max Vel=0.53 fps n=0.130 (cfs) L=120.0' Flow S=0.0075 '/' Capacity=12.16 cfs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)


Summary for Reach SW-7: Swale

0.254 ac, 0.00% Impervious, Inflow Depth = 2.54" for 25-Year Event event Inflow Area = Inflow 0.75 cfs @ 12.09 hrs, Volume= 0.054 af = Outflow 0.64 cfs @ 12.14 hrs, Volume= 0.054 af, Atten= 15%, Lag= 3.1 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.39 fps, Min. Travel Time= 5.2 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 17.9 min Peak Storage= 199 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.50', Capacity at Bank-Full= 9.00 cfs 3.00' x 1.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 120.0' Slope= 0.0075 '/' Inlet Invert= 1,503.00', Outlet Invert= 1,502.10' ‡


Reach SW-7: Swale

Summary for Reach SW-8: Swale

Summary for Reach SW-9: Swale

Time (hours)

PROJECT: Eolian Renewable Energy LLC Antrim Wind Project Proj. No.: 186317.0000.0000

Calculated By: Checked By: Date:

PMM PGT

PC

Time of Concentration Summary

Time of Concentration Equations:

1. Where $T_t := \frac{0.007 \cdot (N \cdot L)^{0.8}}{P_2^{0.5} \cdot S^{0.4}}$	from SCS TR-55.	For Sheet Flow (300 feet or less)
2. Where $V := 20.3282 \cdot \sqrt{s}$ from the s	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Paved surfaces)
3. Where T $t := \frac{L}{3600 \cdot V}$ from the S	CS Upland Method Channel Flow Chart	Travel time equation
4. Where $v := 16.1345 \cdot \sqrt{s}$ from the SC	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Unpaved surfaces)
5. Where: $v = 7 \sqrt{S}$ from the SC	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Short Grass Pasture)
6. Where: $v = 5 \sqrt{S}$ from the SC	CS Upland Method Channel Flow Chart	For Shallow Concentrated Flow (Woodland)
7. Where $\mathbf{v} := 12 \cdot \sqrt{s}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Waterways and Swamps, No Channels
8. Where $v := 15 \cdot \sqrt{s}$ from the SCS	S Upland Method Channel Flow Chart	For Channel Flow - Grassed Waterways and Roadside Ditches
9. Where $v := 21 \cdot \sqrt{s}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Small Tributary & Swamp w/Channels
10. Where $V := 35 \cdot \sqrt{S}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Large Tributary
11. Where $\mathbf{v} := 60 \cdot \sqrt{\mathbf{s}}$ from the SC	S Upland Method Channel Flow Chart	For Channel Flow - Main River
12. Where $V := \frac{1.49 \cdot R^{-667} \cdot \sqrt{S}}{N}$		For Channel Flow - Culvert Flow

13. Where $P_2 = 2$ -Year, 24 Hour Rainfall (in) (Antrim, NH: P2= 2.8 inches)

Mannings Roughness Coefficients Table

Surface Description	n - value
Smooth surfaces	0.011
Crush Stone/Substation Yards	0.025
Fallow	0.050
Cultivated: Residue<=20%	0.060
Cultivated: Residue>=20%	0.170
Grass: Short	0.150
Grass: Dense	0.240
Grass: Bermuda	0.410
Range	0.130
Woods: Light underbrush	0.400
Woods: Dense underbrush	0.800

PROJECT: Proj. No.: Subcatchment:	Eolian R Antrim W 186317.0 1.1 - Pos	/ind Proj 000.0000 t-develop	ect oment		Calculate Checked Date: Revised:	By:	PMM PGT		
Time of Concent	ration Def								
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW			, i i i i i i i i i i i i i i i i i i i						
Manning's No.	0.8								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.09								
Γ_t^1 hr	0.365								0.3650
SHALLOW CONCE		FLOW							0:5050
Paved									
_ength, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
Γ _t ³ , hr									0.0000
Unpaved				1		1			
_ength, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ , hr									0.0000
Short Grass Pastu	re								
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
T _t ³ , hr									0.0000
Woodland									
Length, ft		1070			545	25			
Slope, ft/ft		0.094			0.092	0.4			
Velocity ⁵ , ft/sec		1.5330			1.5166	3.1623			
$T_{t_{1}}^{3}$ hr		0.194			0.100	0.002			0.2959
		0.194			0.100	0.002			0.2959
Waterways & Swar	nna Na Ch	annolo							
Length, ft	nps, No ci	anneis	405	1		1			
			185						
Slope, ft/ft			0.081						
Velocity ⁶ , ft/sec			3.415						
T _t ³ , hr			0.015						0.0150
Grassed Waterway	s/Roadsid	e Ditches	;	r		1			
Length, ft				510			245		
Slope, ft/ft				0.020			0.016		
Velocity ⁷ , ft/sec				2.121			1.897		
T _t , hr				0.067			0.036		0.1027
Small Tributary & S	Swamp w/C	Channels							
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Large Tributary									
_ength, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
Γ _t , hr									0.0000
						1	<u> </u>		0.0000
Culvert				1		1			
Diameter, ft									
Area, ft ²									
Vetted Perimeter, ft									
lydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
/elocity ¹¹ , ft/sec									
ength, L, ft									
t, hr									0.0000
L'				1		1	<u> </u>	HR	
									0.779
								Min	46.72

PROJECT: Proj. No.: Subcatchment:	Eolian R Antrim V 186317.0 1.3 - Pos	Vind Proj 000.0000	ect	LLC			Calculat Checked Date: Revised	By:	PMM PGT
Time of Concent				ksheet.	SCS Metho	ds			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW					9-				
Manning's No.	0.025	0.24							
Length, ft	35	65							
P2, in	2.8	2.8							
Slope, ft/ft	0.071	0.015							
T _t ¹ hr	0.011	0.202							0.2129
SHALLOW CONCE	NTRATED	FLOW							
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ , hr									0.0000
Unpaved									
Length, ft			170						
Slope, ft/ft			0.044			1			
Velocity ² , ft/sec			3.384						
T ³ _t hr			0.014						0.0140
Short Grass Pastu	re								
Length, ft				150					
Slope, ft/ft				0.113					
Velocity ⁴ , ft/sec				2.3531					
Tt ³ , hr				0.018					0.0177
Woodland									
Length, ft									
Slope, ft/ft									
Velocity ⁵ , ft/sec									
T _t ³, hr									0.0000
CHANNEL FLOW	NI 01								
Waterways & Swar	nps, No Cr	nanneis		1		1			
Length, ft									
Slope, ft/ft Velocity ⁶ , ft/sec									
Velocity [°] , π/sec T _t ³ hr									0.0000
	. (Decale ist	- Ditalaa							0.0000
Grassed Waterway	s/Roadsid	e Ditches	5	1	1	1	1		
Length, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									0.0000
T _t , hr	Swampwill	hannels		L		1	1		0.0000
Small Tributary & S	swamp w/C	Juanneis			005				
Length, ft Slope, ft/ft					235 0.119				
Slope, ft/ft Velocity ⁸ , ft/sec									
Velocity [°] , π/sec T _t , hr					7.244 0.009				0.0090
Large Tributary					0.009	I			0.0090
Large Iributary Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Culvert			1	L	I	1	1	1	0.0000
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft						1			
Slope, ft/ft									
Manning's No.						1			
Velocity ¹¹ , ft/sec									
Length, L, ft									
T _t , hr									0.0000
	<u> </u>		I	L	1	1	1	HR	
									0.254
								Min	15.22

PROJECT: Proj. No.: Subcatchment:	Eolian R Antrim W 186317.0 1.5 - Pos	/ind Proje 000.0000	ect	LLC	Calculate Checked Date: Revised:	By:	PMM PGT		
Time of Concent	ration Def	erminati							
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	Ŭ		<u> </u>		Ŭ	Ŭ		Ť	
Manning's No.	0.80								
_ength, ft	100								
P2, in	2.8								
Slope, ft/ft	0.07								
Γ _t ¹ hr	0.404								0.4036
SHALLOW CONCE		FLOW				1	1		
Paved									
_ength, ft									
Slope, ft/ft									
velocity ² , ft/sec									
Γ ³ , hr									0.0000
Unpaved				•					
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Short Grass Pastu	re								
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
$T_{t,}^{3}$ hr									0.0000
Woodland									3.0000
Length, ft		540			190				
Slope, ft/ft		0.085			0.063				
Velocity ⁵ , ft/sec		1.4577			1.2550				
T _t ³ hr		0.103			0.042				0.1450
CHANNEL FLOW		0.100			01012				0.1100
Waterways & Swar	nps. No Cł	annels							
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T _t ³ hr									0.0000
Grassed Waterway	s/Roadsid	e Ditches							
Length, ft			200	430		100			
Slope, ft/ft			0.035	0.102		0.11			
Velocity ⁷ , ft/sec			2.806	4.791		4.975			
T _t , hr			0.020	0.025		0.006			0.0503
Small Tributary & S	Swamp w/C	hannels							
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Large Tributary									
Length, ft						1			
Slope, ft/ft									
velocity ⁸ , ft/sec									
Γ _t , hr									0.0000
Culvert									
Diameter, ft									
Area, ft ²									
Vetted Perimeter, ft									
lydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
/anning's No. /elocity ¹¹ , ft/sec									
elocity, ft/sec .ength, L, ft									
									0.0000
t, hr				<u> </u>		<u> </u>	<u> </u>		0.0000
								HR	0.599
								Min	35.93

PROJECT: Proj. No.: Subcatchment:	Antrim W 186317.0	enewable /ind Proje 000.0000 t-develop	ect	LLC	Calculat Checked Date: Revised	l By:	PMM PGT		
Time of Concent				ksheet S	SCS Metho	ds		-	
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	Jeg i	Jey z	Jey J	Jeg 4	Jeg 5	Jeg 0	Jeg /	Jey o	
Manning's No.	0.8								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft									
T_t^1 hr	0.17 0.283								0.0000
SHALLOW CONCE									0.2830
Paved									
Length, ft		1		1		1			
-									
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ , hr									0.0000
Unpaved				1 1		1	1		
Length, ft									
Slope, ft/ft						1	1		
Velocity ² , ft/sec									
T ³ , hr									0.0000
Short Grass Pastur	e								
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
T _t ³ , hr									0.0000
Woodland									
Length, ft		1760							
Slope, ft/ft		0.262							
Velocity ⁵ , ft/sec		2.5593							
$T_{t_{i}}^{3}$ hr		0.191							0.1910
CHANNEL FLOW		0.191							0.1910
Waterways & Swan	ans No Ch	annole							
Length, ft	103, 110 01	anneis							
Slope, ft/ft									
Velocity ⁶ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
	o (Deedeid	Ditabaa							0.0000
Grassed Waterway	s/Roadsid	e Ditches				1			
Length, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr									0.0000
Small Tributary & S	wamp w/C	Channels				1			
Length, ft			225			1			
Slope, ft/ft			0.071						
Velocity ⁸ , ft/sec			5.596						
T _t , hr			0.011						0.0112
Large Tributary									
Length, ft									
Slope, ft/ft						1	1		
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Culvert	1					1	1	r	
Diameter, ft		-							
Area, ft ²						1	1		
Wetted Perimeter, ft						1	1		
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.						1	1		
Velocity ¹¹ , ft/sec						1	1		
Length, L, ft									
T _t , hr									0.0000
								HR	0.485

PROJECT: Proj. No.: Subcatchment:	Eolian R Antrim V 186317.0 1.7 - Pos	Vind Proj 0000.0000	ect)	LLC			Calculat Checked Date: Revised	l By:	PMM PGT	
Time of Concent				ksheet.	SCS Metho	ds				
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8		
SHEET FLOW		- J	g -				- J			
Manning's No.	0.025	0.24	0.8							
Length, ft	16	30	54							
P2, in	2.8	2.8	2.8							
Slope, ft/ft	0.02	0.5	0.185							
T _t ¹ .hr	0.010	0.027	0.167						0.2035	
SHALLOW CONCE	NTRATED	FLOW				1				
Paved										
Length, ft										
Slope, ft/ft										
Velocity ² , ft/sec										
T _t ³ , hr									0.0000	
Unpaved										
Length, ft										
Slope, ft/ft										
Velocity ² , ft/sec										
T _t ³ , hr									0.0000	
Short Grass Pastu	re						İ			
Length, ft										
Slope, ft/ft										
Velocity ⁴ , ft/sec										
T _t ³ hr									0.0000	
Woodland										
Length, ft				645						
Slope, ft/ft				0.186						
Velocity ⁵ , ft/sec				2.1564						
$T_{t_{i}}^{3}$ hr				0.083					0.0831	
CHANNEL FLOW				0.005					0.0031	
Waterways & Swar	nps. No Cl	nannels								
Length, ft										
Slope, ft/ft										
Velocity ⁶ , ft/sec										
T _t ³ hr									0.0000	
Grassed Waterway	s/Roadsid	e Ditches								
Length, ft	Sintouusiu			[
Slope, ft/ft										
Velocity ⁷ , ft/sec										
T _t , hr									0.0000	
Small Tributary & S	Swamp w/	Channele	1	I	1	1	1	I	0.0000	
Length, ft										
Slope, ft/ft										
Velocity ⁸ , ft/sec										
T _t , hr									0.0000	
Large Tributary		I	1	I	1	1	1	I	0.0000	
Length, ft										
Slope, ft/ft										
Slope, π/π Velocity ⁸ , ft/sec										
T _t , hr									0.0000	
Culvert			1	1	1	1	1		0.0000	
Diameter, ft Area, ft ²										
Netted Perimeter, ft										
Hydraulic Radius, R, ft										
Slope, ft/ft						1				
Manning's No.										
velocity ¹¹ , ft/sec										
₋ength, L, ft										
「 _t , hr					<u> </u>			<u> </u>	0.0000	
								HR	0.287	

PROJECT: Proj. No.: Subcatchment:	186317.0	enewable /ind Proje 000.0000 t-develop	ect	LLC	Calculat Checked Date: Revised	I By:	PMM PGT		
Time of Concent				ksheet.	SCS Metho	ds		-	
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW		0091		009.			009.	0090	
Manning's No.	0.8								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.23								
T _t ¹ hr	0.251								0.2508
SHALLOW CONCE		FLOW							0.2000
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Unpaved				1					
Length, ft						1			
Slope, ft/ft									
Velocity ² , ft/sec									
T_{t}^{3} , hr									0.0000
Short Grass Pastu	re								0.0000
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
Woodland									0.0000
Length, ft		1240							
Slope, ft/ft		0.235							
Velocity ⁵ , ft/sec		2.4238							
$T_{t_{i}}^{3}$ hr		0.142							0.1421
CHANNEL FLOW		0.142							0.1421
Waterways & Swar	nns No Ch	annels							
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T _t ³ hr									0.0000
Grassed Waterway	s/Roadsid	Ditches							
Length, ft		Ditolio							
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr									0.0000
Small Tributary & S	wamp w/C	hannels		I				l	0.0000
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Large Tributary				I			1		0.0000
Large Iributary									
Length, ft Slope, ft/ft									
Slope, π/π Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Culvert						1	1		0.0000
Diameter, ft Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
Velocity ¹¹ , ft/sec									
Length, L, ft									
Γ _t , hr									0.0000
								HR	0.393

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proje 0000.0000 t-develop	ect	LLC	Calculat Checked Date: Revised	l By:	PMM PGT		
Time of Concent				ksheet.	SCS Metho	ds			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	ocgi	ocg 2	Ucg U	ocg 4	Ccg C	ocgo	ocg i	0090	
Manning's No.	0.025	0.24	0.8						
Length, ft	16	15	69						
P2, in	2.8	2.8	2.8						
Slope, ft/ft	0.02	0.5	0.29						
T_t^1 hr	0.02	0.015	0.29						0.1949
SHALLOW CONCE			0.170						0.1949
Paved									
Length, ft				1			1		
Slope, ft/ft									
Velocity ² , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
									0.0000
Unpaved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec T _t ³, hr									0.0000
									0.0000
Short Grass Pastu	re								
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
T ³ , hr									0.0000
Woodland									
Length, ft				175	500				
Slope, ft/ft				0.468	0.236				
Velocity ⁵ , ft/sec				3.4205	2.4290				
T _t ³ , hr				0.014	0.057				0.0714
CHANNEL FLOW									
Waterways & Swan	nps, No Cł	nannels							
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T _t ³ , hr									0.0000
Grassed Waterway	s/Roadsid	e Ditches	;						
Length, ft						460			
Slope, ft/ft						0.124			
Velocity ⁷ , ft/sec						5.282			
T _t , hr						0.024			0.0242
Small Tributary & S	Swamp w/O	Channels							
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Large Tributary									
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Culvert	-			1		1	1		
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft							1		
Slope, ft/ft							1		
Siope, init Manning's No.							1		
Velocity ¹¹ , ft/sec									
Length, L, ft T. br									0.0000
T _t , hr						1	<u> </u>		0.0000
								HR	0.290
								Min	17.43

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proj 0000.0000 ost-develo	ect	LLC			Calculat Checked Date: Revised	l By:	PMM PGT
Time of Concent				kaboot C		do	Reviseu		
Time of Concent							_		
SHEET FLOW	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
						1	1		
Manning's No.	0.24								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.02								
T _t ,hr	0.254	EL ON							0.2543
SHALLOW CONCE	NIRAIEU	FLOW							
Paved		1	[1				1	
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Unpaved				,					
Length, ft			16						
Slope, ft/ft			0.02						
Velocity ² , ft/sec			2.282						
T ³ , hr			0.002						0.0019
Short Grass Pastu	re								
Length, ft		100		9	30				
Slope, ft/ft		0.08		0.02	0.5				
Velocity ⁴ , ft/sec		1.9799		0.9899	4.9497				
T _t ³ , hr		0.014		0.003	0.002				0.0182
Woodland									
Length, ft						725			
Slope, ft/ft						0.207			
Velocity ⁵ , ft/sec						2.2749			
T _t ³ hr						0.089			0.0885
CHANNEL FLOW				I			1		
Waterways & Swar	mps. No C	hannels							
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
Grassed Waterway	s/Roadsid	e Ditches							0.0000
Length, ft			-						
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr									0.0000
Small Tributary &	Swamp w/	Channolo	1	I		1	1	1	0.0000
Length, ft Slope, ft/ft									
Slope, ft/ft Velocity ⁸ , ft/sec									
Velocity [°] , π/sec T _t , hr									0.0000
		L	L				<u> </u>	l	0.0000
Large Tributary									
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Culvert									
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
		1		1				1	1
Slope, ft/ft Manning's No.									
Hydraulic Radius, R, ft Slope, ft/ft Manning's No. Velocity ¹¹ , ft/sec									
Slope, ft/ft Manning's No. Velocity ¹¹ , ft/sec									
Slope, ft/ft Manning's No.									0.0000
Slope, ft/ft Manning's No. Velocity ¹¹ , ft/sec Length, L, ft								HR	0.0000

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proje 0000.0000 ost-develo	ect	LLC	Calculat Checked Date: Revised	I By:	PMM PGT		
Time of Concent				ksheet	SCS Metho	ds			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	ocg i	009 2	0090	ocg 4	Ccg C	ocg o	ocg i	ocgo	
Manning's No.	0.025	0.24	0.8						
Length, ft	16	18	66						
P2, in	2.8	2.8	2.8						
Slope, ft/ft	0.02	0.042	0.045						
T_t^1 hr	0.010	0.042	0.345						0.4030
SHALLOW CONCE			0.345						0.4030
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T_{t}^{3} , hr									0.0000
Unpaved									0.0000
Length, ft				1					
Slope, ft/ft									
Velocity ² , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
Short Grass Pastu	0								0.0000
Length, ft	C				50				
Length, ft Slope, ft/ft					50 0.500				
Velocity ⁴ , ft/sec									
$T_{t_{i}}^{3}$ hr					4.9497				0.0028
Woodland					0.003				0.0028
	1			200					
Length, ft				200					
Slope, ft/ft Velocity⁵, ft/sec				0.195					
$T_{t_{\perp}}^{3}$ hr				2.2079					0.0050
CHANNEL FLOW				0.025					0.0252
Waterways & Swan	ane No Cl	hannole							
Length, ft	np3, no oi	anneis		1					
Slope, ft/ft									
Velocity ⁶ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
Grassed Waterway	e/Poadeid	o Ditchos							0.0000
Length, ft	SINUausiu	e Ditches		1	[490			
Slope, ft/ft						0.12			
Velocity ⁷ , ft/sec						5.196			
T _t , hr						0.026			0.0262
Small Tributary & S	wamp w//	Channole		1		0.020	1	I	0.0202
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
				1		1	1	I	0.0000
Large Tributary									
Length, ft									
Slope, ft/ft Velociti ⁸ ft/sec									
Velocity ⁸ , ft/sec									0.0000
T _t , hr				L	<u> </u>	1	1		0.0000
Culvert									
Diameter, ft Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.						1	1		
Velocity ¹¹ , ft/sec									
Length, L, ft									
T _t , hr									0.0000
								HR	0.457

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proj 0000.0000 ost-develo	ect	LLC			Calculat Checked Date: Revised	By:	PMM PGT	
Time of Concent				ksheet.	SCS Metho	ds				
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8		
SHEET FLOW										
Manning's No.	0.8									
Length, ft	100									
P2, in	2.8									
Slope, ft/ft	0.05									
T _t ¹ , hr	0.462								0.4617	
SHALLOW CONCE	NTRATED	FLOW								
Paved										
Length, ft										
Slope, ft/ft										
Velocity ² , ft/sec										
T ³ , hr									0.0000	
Unpaved										
Length, ft										
Slope, ft/ft										
Velocity ² , ft/sec										
T ³ _t , hr									0.0000	
Short Grass Pastu	re									
Length, ft			55							
Slope, ft/ft			0.5							
Velocity ⁴ , ft/sec			4.9497							
T ³ , hr			0.003						0.0031	
Woodland	1									
Length, ft		100								
Slope, ft/ft		0.210								
Velocity ⁵ , ft/sec		2.2913								
T _t ³, hr		0.012							0.0121	
CHANNEL FLOW										
Waterways & Swar	nps, No Ci	nanneis		1	T	1	1	1		
Length, ft										
Slope, ft/ft Velocity ⁶ , ft/sec										
$T_{t_{i}}^{3}$ hr									0.0000	
	o/Poadaid	o Ditobor							0.0000	
Grassed Waterway	S/Roausiu	e Ditches	•		1	1				
Slope, ft/ft										
Velocity ⁷ , ft/sec										
T _t , hr									0.0000	
Small Tributary & S	Swamn w/	Channele	1	1		1	1	1	0.0000	
Length, ft		-14111013								
Slope, ft/ft										
Velocity ⁸ , ft/sec										
T _t , hr									0.0000	
Large Tributary				1	1	1	1	1		
Length, ft										
Slope, ft/ft										
Velocity ⁸ , ft/sec										
T _t , hr									0.0000	
Culvert				1	1	1	1	1		
Diameter, ft										
Area, ft ²										
Wetted Perimeter, ft										
Hydraulic Radius, R, ft										
Slope, ft/ft										
Manning's No.										
Velocity ¹¹ , ft/sec										
Length, L, ft										
T _t , hr									0.0000	
<i>v</i> :	1	1	1	1	1	1		HR	0.477	
								Min	28.62	

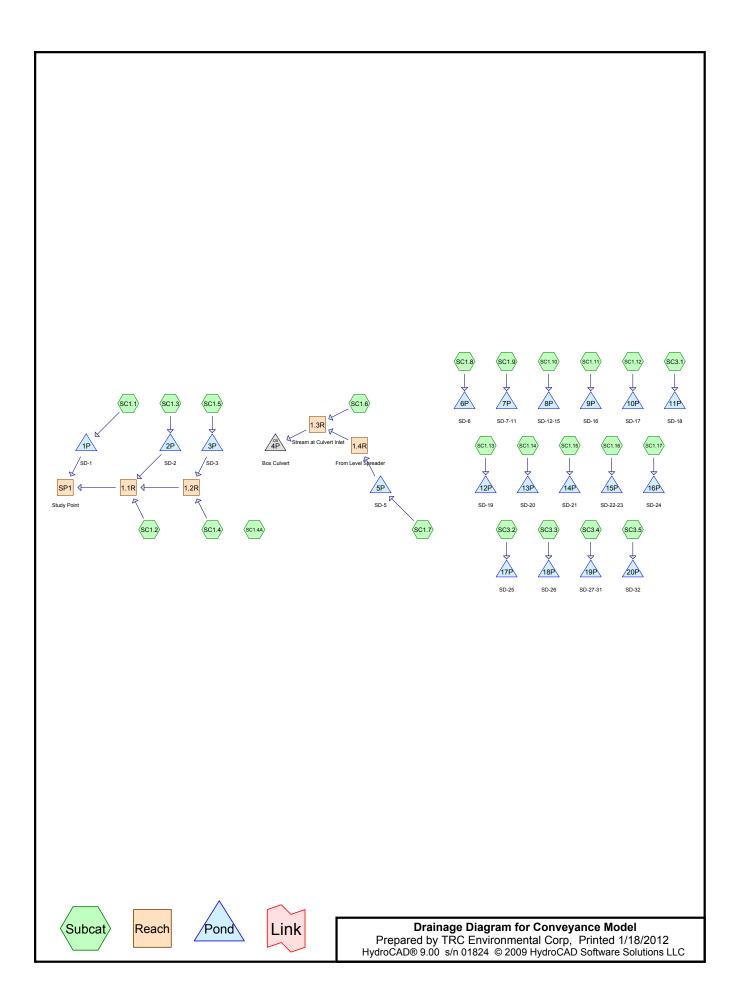
PROJECT: Proj. No.: Subcatchment:	Eolian Re Antrim W 186317.0 3.1 - Pos	/ind Proj 000.0000 t-develoj	ect oment		Calculate Checked Date: Revised:	By:	PMM PGT		
Time of Concentr	ation Det	erminat	ion Wor	ksheet,	SCS Metho	ds			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW									
Manning's No.	0.8								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.06								
Tt ¹ , hr	0.429								0.4293
SHALLOW CONCE	NTRATED	FLOW							
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ , hr									0.0000
Unpaved					1				
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Short Grass Pastur	e								
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
T _t ³ , hr									0.0000
Woodland								-	
Length, ft		590							
Slope, ft/ft		0.218							
Velocity ⁵ , ft/sec		2.3345							0.0700
T _t ³ hr CHANNEL FLOW		0.070							0.0702
Waterways & Swan	ne No Ch	annole							
Length, ft	103, 110 01	anneis			1				
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T _t ³ hr									0.0000
Grassed Waterway	s/Roadside	Ditches			1				
Length, ft		Ditoliot	-						
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr									0.0000
Small Tributary & S	wamp w/C	hannels	ı				1		
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Large Tributary									
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
Culvert									
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
Velocity ¹¹ , ft/sec									
Length, L, ft									
T _t , hr									0.0000
. [,									
. [,								HR	0.499

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proje 0000.0000 st-develo	ect	LLC	Calculat Checked Date: Revised	I By:	PMM PGT				
Time of Concent				ksheet (SCS Metho	de					
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8			
SHEET FLOW	Oby 1	Oby 2	069 0	oeg 4	Jeg J	Jeg U	Ucg /	Jeg U			
Manning's No.	0.8										
Length, ft	100										
P2, in	2.8										
Slope, ft/ft	0.045										
T _t ¹ hr	0.482								0.4816		
SHALLOW CONCE		FLOW							0.1010		
Paved											
Length, ft											
Slope, ft/ft											
Velocity ² , ft/sec											
T _t ³ , hr									0.0000		
Unpaved											
Length, ft											
Slope, ft/ft											
Velocity ² , ft/sec											
T ³ , hr									0.0000		
Short Grass Pastu	re										
Length, ft											
Slope, ft/ft											
Velocity ⁴ , ft/sec											
T _t ³ , hr									0.0000		
Woodland											
Length, ft		175									
Slope, ft/ft		0.068									
Velocity ⁵ , ft/sec		1.3038									
T _t hr		0.037							0.0373		
CHANNEL FLOW											
Waterways & Swar	nps, No Cl	nannels									
Length, ft											
Slope, ft/ft											
Velocity ⁶ , ft/sec											
T ³ , hr									0.0000		
Grassed Waterway	s/Roadsid	e Ditches									
Length, ft											
Slope, ft/ft											
Velocity ⁷ , ft/sec											
T _t , hr									0.0000		
Small Tributary & S	Swamp w/O	Channels									
Length, ft											
Slope, ft/ft											
Velocity ⁸ , ft/sec											
T _t , hr									0.0000		
Large Tributary				1		1	1	1			
Length, ft											
Slope, ft/ft											
Velocity ⁸ , ft/sec											
T _t , hr									0.0000		
Culvert											
Diameter, ft											
Area, ft ²											
Wetted Perimeter, ft											
Hydraulic Radius, R, ft											
Slope, ft/ft											
Manning's No.											
Velocity ¹¹ , ft/sec											
Length, L, ft											
T _t , hr									0.0000		
								HR	0.519		

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proje 0000.0000 st-develo	ect	LLC	Calculat Checked Date: Revised	l By:	PMM PGT				
Time of Concentr				ksheet. S	SCS Metho	ds					
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8			
SHEET FLOW		0092	0090		0090			0090			
Manning's No.	0.8										
Length, ft	100										
P2, in	2.8										
Slope, ft/ft	0.100										
T _t ¹ hr	0.350								0.3499		
SHALLOW CONCE		FLOW				1					
Paved											
Length, ft											
Slope, ft/ft											
Velocity ² , ft/sec											
T _t ³ , hr									0.0000		
Unpaved											
Length, ft											
Slope, ft/ft											
Velocity ² , ft/sec											
$T_{t_{i}}^{3}$ hr									0.0000		
Short Grass Pastur	e										
Length, ft											
Slope, ft/ft											
Velocity ⁴ , ft/sec											
T_{t}^{3} , hr									0.0000		
Woodland									0.0000		
Length, ft		120									
Lengtn, ft Slope, ft/ft		0.017									
Velocity ⁵ , ft/sec		0.6519									
$T_{t_{\perp}}^{3}$ hr									0.0511		
CHANNEL FLOW		0.051							0.0511		
Waterways & Swan	ana No Ch	annolo									
Length, ft	105, 100 01	laineis									
Slope, ft/ft											
Velocity ⁶ , ft/sec											
$T_{t_{i}}^{3}$ hr									0.0000		
	o/Doodoid	o Ditohoo							0.0000		
Grassed Waterway	s/Roausiu	e Ditches				1					
•											
Slope, ft/ft Velocity ⁷ , ft/sec											
T _t , hr									0.0000		
	womp w/	hannala							0.0000		
Small Tributary & S	wamp w/C	Jilanneis									
Length, ft Slope, ft/ft											
Slope, ft/ft Velocity ⁸ , ft/sec											
									0.0000		
T _t , hr						<u> </u>	1		0.0000		
Large Tributary											
Length, ft											
Slope, ft/ft											
Velocity ⁸ , ft/sec									0.0000		
T _t , hr						1	1		0.0000		
Culvert				1		1					
Diameter, ft											
Area, ft ²											
Wetted Perimeter, ft											
Hydraulic Radius, R, ft											
Slope, ft/ft											
Manning's No.											
Velocity ¹¹ , ft/sec											
Length, L, ft											
	1					1	1		0.0000		
T _t , hr											
T _t , hr								HR	0.401		

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proj 0000.0000 ost-develo	ect	LLC	Calculat Checked Date: Revised	I By:	PMM PGT		
	tration Determination Worksheet, SCS Methods								
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW		0091	0090		0090				
Manning's No.	0.24								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.05								
T _t ¹ hr	0.176								0.1762
SHALLOW CONCE		FLOW		1		1			
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Unpaved									
Length, ft			85						
Slope, ft/ft			0.024						
Velocity ² , ft/sec			2.500						
$T_{t_{i}}^{3}$ hr			0.009						0.0094
Short Grass Pastur	'e		2.500						
Length, ft		95			80				
Slope, ft/ft		0.04			0.5				
Velocity ⁴ , ft/sec		1.4000			4.9497				
T_{t}^{3} , hr		0.019			0.004				0.0233
Woodland		0.013			0.004				0.0200
Length, ft				145					
Slope, ft/ft				0.234					
Velocity ⁵ , ft/sec				2.4187					
$T_{t_{i}}^{3}$ hr				0.017					0.0167
CHANNEL FLOW				0.017					0.0107
Waterways & Swan	nns No Cl	hannels							
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.0000
Grassed Waterway	s/Roadsid	e Ditches							0.0000
Length, ft	Sindausiu	e Ditches	•			300			
Slope, ft/ft						0.12			
Velocity ⁷ , ft/sec						5.196			
T _t , hr						0.016			0.0160
Small Tributary & S	wamp w//	Channole		l		0.010	1	I	0.0100
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.0000
					l	1	1		0.0000
Large Tributary									
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									0.0000
T _t , hr					<u> </u>	<u> </u>	1		0.0000
Culvert									
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft						1	1		
Hydraulic Radius, R, ft						1	1		
Slope, ft/ft						1	1		
Manning's No.									
Velocity ¹¹ , ft/sec									
Length, L, ft									
T _t , hr							1		0.0000
								HR	0.242

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proj 0000.0000 st-develo	ect	LLC		Calculat Checked Date: Revised	By:	PMM PGT	
Time of Concent				ksheet	SCS Metho	Revised			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	Oby 1	069 2	Ueg U	Ueg 4	069.0	Oby 0	Ueg /	Jeg U	
Manning's No.	0.8								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.10								
T _t ¹ hr	0.350								0.3499
SHALLOW CONCE		FLOW							
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Unpaved					÷				
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ , hr									0.0000
Short Grass Pastu	re								
Length, ft			25						
Slope, ft/ft			0.5						
Velocity ⁴ , ft/sec			4.9497						
T _t ³, hr			0.001						0.0014
Woodland									
Length, ft		130							
Slope, ft/ft		0.154							
Velocity ⁵ , ft/sec		1.9621							
T _t , hr		0.018							0.0184
CHANNEL FLOW									-
Waterways & Swar	nps, No Cl	nannels		1	T.	1		1	
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T ³ , hr									0.0000
Grassed Waterway	s/Roadsid	e Ditches	6		1	1	1	1	
Length, ft				300					
Slope, ft/ft				0.117					
Velocity ⁷ , ft/sec				5.131					0.0100
T _t , hr		2h ann I		0.016		1	1		0.0162
Small Tributary & S	swamp w/o	nannels							
Length, ft									
Slope, ft/ft Velocity ⁸ , ft/sec									
									0.0000
T _t , hr						1	1		0.0000
Large Tributary									
Length, ft									
Slope, ft/ft Velocity ⁸ , ft/sec									
Velocity°, ft/sec T _t , hr									0.0000
Culvert							1		0.0000
Diameter, ft Area, ft ²						1	1		
Wetted Perimeter, ft									
Hydraulic Radius, R, ft Slope, ft/ft									
Siope, π/π Manning's No.									
Manning's No. Velocity ¹¹ , ft/sec									
Length, L, ft Tobr						1	1		0.0000
T _t , hr				<u> </u>	I				0.0000
								HR	0.386
								Min	23.16


PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proje 0000.0000 ost-develo	ect	LLC		Calculat Checked Date: Revised	By:	PMM PGT	
Time of Concent				ksheet.	SCS Metho	ds		-	
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	ocgi	0091	ocg o	ocg 4	0090	ocg o	ocg /	ocgio	
Manning's No.	0.8								
Length, ft	100								
P2, in	2.8								
Slope, ft/ft	0.13								
T _t ¹ hr	0.315								0.3151
SHALLOW CONCE		FLOW			1		1		
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.0000
Unpaved									
Length, ft			-						
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ , hr									0.0000
Short Grass Pastu	re								
Length, ft		25							
Slope, ft/ft		0.5							
Velocity ⁴ , ft/sec		4.9497							
T _t ³, hr		0.001							0.0014
Woodland									
Length, ft									
Slope, ft/ft									
Velocity ⁵ , ft/sec									
T _t , hr									0.0000
CHANNEL FLOW									
Waterways & Swar	nps, No Cl	hannels		1		1		1	
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T ³ , hr									0.0000
Grassed Waterway	s/Roadsid	le Ditches	;	1		1	-		
Length, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr						1			0.0000
Small Tributary & S	swamp w/	Channels							
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									0.0005
T _t , hr						1	1		0.0000
Large Tributary		1							
Length, ft									
Slope, ft/ft Velocity ⁸ , ft/sec									
									0.0000
T _t , hr						1	1		0.0000
Culvert		1				1			
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
Velocity ¹¹ , ft/sec									
Length, L, ft									0.0000
T _t , hr									0.0000
								HR	0.316
								Min	

PROJECT: Proj. No.: Subcatchment:	Eolian Ro Antrim W 186317.0 3.2 - Pos	/ind Proj 000.0000 t-develop	ect oment				ed By: By:			
Time of Concent	ration Det	erminat	ion Wor	ksheet,	SCS Metho	ds				
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8		
SHEET FLOW										
Manning's No.	0.8									
Length, ft	100									
P2, in	2.8									
Slope, ft/ft	0.08									
T _t ¹ , hr	0.383								0.383	
SHALLOW CONCE	NTRATED	FLOW								
Paved										
Length, ft										
Slope, ft/ft										
Velocity ² , ft/sec										
T _t ³, hr									0.000	
Unpaved										
Length, ft										
Slope, ft/ft										
Velocity ² , ft/sec										
T ³ , hr									0.000	
Short Grass Pastu	re									
Length, ft			15			1				
Slope, ft/ft			0.5							
Velocity ⁴ , ft/sec			4.9497							
T ³ , hr			0.001						0.001	
Woodland										
Length, ft		15								
Slope, ft/ft		0.133								
Velocity ⁵ , ft/sec		1.8235								
T ³ , hr		0.002							0.002	
CHANNEL FLOW									-	
Waterways & Swar	nps, No Ch	annels		r	1	1				
Length, ft										
Slope, ft/ft										
Velocity ⁶ , ft/sec										
T _t ³ , hr									0.000	
Grassed Waterway	s/Roadsid	e Ditches	5	1	1	1				
Length, ft										
Slope, ft/ft										
Velocity ⁷ , ft/sec										
T _t , hr									0.000	
Small Tributary & S	swamp w/C	nannels								
Length, ft										
Slope, ft/ft										
Velocity ⁸ , ft/sec									0.000	
T _t , hr		_		L		1	1		0.000	
Large Tributary					1					
Length, ft										
Slope, ft/ft										
Velocity ⁸ , ft/sec									0.000	
T _t , hr				l			1	_	0.000	
Culvert					1					
Diameter, ft										
Area, ft ²										
Wetted Perimeter, ft						1				
Hydraulic Radius, R, ft						1				
Slope, ft/ft						1				
Manning's No.										
Velocity ¹¹ , ft/sec										
Length, L, ft										
T _t , hr									0.000	
								HR	0.386	
								Min	23.14	

PROJECT: Proj. No.: Subcatchment:	186317.0	enewable Vind Proj 0000.0000 st-develoj	ect	LLC			Calculat Checked Date: Revised	By:	PMM PGT
Time of Concent				ksheet.	SCS Metho	ds		-	
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW		0091			u c g u	0090	009.	0090	
Manning's No.	0.025	0.24	0.8						
Length, ft	16	24	60						
P2, in	2.8	2.8	2.8						
Slope, ft/ft	0.02	0.05	0.2						
T_t^1 hr	0.010	0.056	0.176						0.242
SHALLOW CONCE			0.110						01212
Paved									
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T _t ³ , hr									0.000
Unpaved	1				n			1	
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
$T_{t_{i}}^{3}$ hr									0.000
Short Grass Pastu	re								5.000
Length, ft									
Slope, ft/ft									
Velocity ⁴ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.000
Woodland									0.000
Length, ft				1280					
Slope, ft/ft				0.209					
Velocity ⁵ , ft/sec				2.2858					
$T_{t_{i}}^{3}$ hr				0.156					0.156
CHANNEL FLOW				0.130					0.150
Waterways & Swar	nns No Ch	nannels							
Length, ft	11p3, 110 01				425	1	1		
Slope, ft/ft					0.028				
Velocity ⁶ , ft/sec					2.008				
T _t ³ hr					0.059				0.059
Grassed Waterway	s/Roadsid	e Ditches							
Length, ft	ontoudord		-						
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr									0.000
Small Tributary &	Swamp w/	Channels		1			1	1	
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.000
Large Tributary	1	1	n	1		1	1	1	0.000
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.000
Culvert		I	I	1		1	1	1	
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
Velocity ¹¹ , ft/sec									
Length, L, ft									0.000
Γ _t , hr						I			0.000
								HR	0.456
								Min	27.39

PROJECT: Proj. No.: Subcatchment:	Antrim V 186317.0	enewable Vind Proj 0000.0000 st-develoj	ect)	LLC	Calculat Checked Date: Revised	By:	PMM PGT		
Time of Concent				ksheet. S	CS Methor	ls			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	Oeg i	009 2	069.0	Jeg 4	Jeg J	Jeg v	Ucg /	oeg o	
Manning's No.	0.025	0.24	0.8						
Length, ft	16	35	49						
P2, in	2.8	2.8	2.8						
Slope, ft/ft	0.02	0.171	0.204						
T_t^1 hr	0.010	0.047	0.149						0.205
SHALLOW CONCE			0.140						0.200
Paved									
Length, ft		1							
Slope, ft/ft									
Velocity ² , ft/sec									
T_{t}^{3} , hr									0.000
Unpaved				I					0.000
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T_{t}^{3} , hr									0.000
Short Grass Pastu	re								5.000
Length, ft					70				
Slope, ft/ft					0.5				
Velocity ⁴ , ft/sec					4.9497				
T _t ³ , hr					0.004				0.004
Woodland					0.004				0.004
Length, ft	1			685					
Slope, ft/ft				0.178					
Velocity ⁵ , ft/sec				2.1095					
T_t^3 hr				0.090					0.090
				0.090					0.090
Waterways & Swa	mns No Cl	hannole							
Length, ft	mp3, NO O	anneis	1						
Slope, ft/ft									
Velocity ⁶ , ft/sec									
$T_{t_{i}}^{3}$ hr									0.000
Grassed Waterway	/Poodoid	lo Ditchor							0.000
Length, ft	ys/Ruausiu	e Ditches	5	[[]		[1		
- ·									
Slope, ft/ft Velocity ⁷ , ft/sec									
									0.000
T ₆ , hr Small Tributary &	Swamp w/	Channolo					<u> </u>		0.000
	Swamp W/	Snanneis							
Length, ft Slope, ft/ft									
Siope, π/π Velocity ⁸ , ft/sec									
									0.000
T _t , hr		L	L						0.000
Large Tributary			1						
Length, ft									
Slope, ft/ft Velocity ⁸ , ft/sec									
•									0.000
T _t , hr							<u> </u>		0.000
Culvert		1	1						
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
Manning's No.									
Velocity ¹¹ , ft/sec									
Length, L, ft									
	1	1	1	1			1	1	0.000
T _t , hr									0.000
T _t , hr			1	1				HR	0.299

PROJECT: Proj. No.: Subcatchment:	Eolian R Antrim W 186317.0 3.5 - Pos	/ind Proj 000.0000 t-develoj	ect) oment				Calculate Checked Date: Revised:	By:	PMM PGT
Time of Concent	ration Def	terminat	ion Wor	ksheet, S	SCS Metho	ds			
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW				1		1			
Manning's No.	0.41								
Length, ft	100								
P2,in	2.8								
Slope, ft/ft	0.17								
T _t ,hr	0.166								0.166
SHALLOW CONCE	NTRATED	FLOW							
Paved			1	1		1			
Length, ft									
Slope, ft/ft									
Velocity ² , ft/sec									
T ³ _t , hr						I			0.000
Unpaved									
Length, ft									
Slope, ft/ft Velocity ² , ft/sec									
Tt ³ , hr									0.000
						-			0.000
Short Grass Pastur	e	75		15					
Length, ft Slope, ft/ft		75 0.147		15					
Slope, π/π Velocity ⁴ , ft/sec		2.6838		0.5					
Tt ³ , hr		2.6838		4.9497 0.001					0.009
Woodland		0.008		0.001					0.009
Length, ft			510						
Slope, ft/ft			0.137						
Velocity ⁵ , ft/sec			1.8507						
T _t ³ hr			0.077						0.077
CHANNEL FLOW			0.077						0.077
Waterways & Swan	nos. No Ch	annels							
Length, ft									
Slope, ft/ft									
Velocity ⁶ , ft/sec									
T _t ³ hr									0.000
Grassed Waterway	s/Roadsid	e Ditches	5			1			
Length, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t , hr									0.000
Small Tributary & S	wamp w/C	hannels							
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.000
Large Tributary									
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec									
T _t , hr									0.000
Culvert									
Diameter, ft		-							
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft						1			
Manning's No.						1			
Velocity ¹¹ , ft/sec									
Length, L, ft									
T _t , hr									0.000
								HR	0.251

Area Listing (all nodes)

Area	-	
(acres)		(subcatchment-numbers)
1.619	55	Yard stone, HSG C (SC1.1, SC1.3)
116.518	3 70	Woods, Good, HSG C (SC1.1, SC1.10, SC1.11, SC1.12, SC1.13, SC1.14,
		SC1.15, SC1.16, SC1.17, SC1.3, SC1.4, SC1.5, SC1.6, SC1.7, SC1.8, SC1.9,
		SC3.1, SC3.2, SC3.3, SC3.4, SC3.5)
17.214	71	Meadow, non-grazed, HSG C (SC1.1, SC1.10, SC1.11, SC1.12, SC1.13, SC1.14,
		SC1.15, SC1.16, SC1.17, SC1.2, SC1.3, SC1.4, SC1.4A, SC1.5, SC1.6, SC1.7,
		SC1.8, SC1.9, SC3.2, SC3.3, SC3.4, SC3.5)
4.686	5 77	Woods, Good, HSG D (SC3.1)
0.492	. 78	Meadow, non-grazed, HSG D (SC3.1)
1.992	89	Gravel roads, HSG C (SC1.10, SC1.11, SC1.12, SC1.14, SC1.15, SC1.16, SC1.4,
		SC1.4A, SC1.6, SC1.7, SC1.9, SC3.1, SC3.3, SC3.4)
0.118	98	Paved roads w/curbs & sewers, HSG C (SC1.1)
0.318	98	Paved roads, HSG C (SC1.2, SC1.4)
0.086	98	Roofs, HSG C (SC1.3)

Soil Listing (all nodes)

Area (acres)	Soil Goup	Subcatchment Numbers
(40100)	Coup	Numbero
0.000	HSG A	
0.000	HSG B	
137.865	HSG C	SC1.1, SC1.10, SC1.11, SC1.12, SC1.13, SC1.14, SC1.15, SC1.16, SC1.17, SC1.2, SC1.3, SC1.4, SC1.4A, SC1.5, SC1.6, SC1.7, SC1.8, SC1.9, SC3.1, SC2.2, SC2.4, SC2.5
		SC3.2, SC3.3, SC3.4, SC3.5
5.178	HSG D	SC3.1
0.000	Other	

Conveyance Model	Type III 24-hr 2-Year Event Rainfall=2.80"
Prepared by TRC Environmental Corp	Printed 1/18/2012
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solution	ons LLC Page 4

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC1.1:	Runoff Area=16.719 ac 0.71% Impervious Runoff Depth=0.57" Tc=46.7 min CN=69 Runoff=4.12 cfs 0.788 af
SubcatchmentSC1.10:	Runoff Area=8.557 ac 0.00% Impervious Runoff Depth=0.65" Tc=21.8 min CN=71 Runoff=3.62 cfs 0.462 af
SubcatchmentSC1.11:	Runoff Area=5.297 ac 0.00% Impervious Runoff Depth=0.65" Tc=27.4 min CN=71 Runoff=2.05 cfs 0.286 af
SubcatchmentSC1.12:	Runoff Area=1.538 ac 0.00% Impervious Runoff Depth=0.65" Tc=28.6 min CN=71 Runoff=0.58 cfs 0.083 af
SubcatchmentSC1.13:	Runoff Area=2.416 ac 0.00% Impervious Runoff Depth=0.61" Tc=31.1 min CN=70 Runoff=0.81 cfs 0.122 af
SubcatchmentSC1.14:	Runoff Area=1.587 ac 0.00% Impervious Runoff Depth=0.65" Tc=24.1 min CN=71 Runoff=0.65 cfs 0.086 af
SubcatchmentSC1.15:	Runoff Area=1.898 ac 0.00% Impervious Runoff Depth=0.69" Tc=14.5 min CN=72 Runoff=1.03 cfs 0.109 af
SubcatchmentSC1.16:	Runoff Area=2.191 ac 0.00% Impervious Runoff Depth=0.65" Tc=23.2 min CN=71 Runoff=0.90 cfs 0.118 af
SubcatchmentSC1.17:	Runoff Area=0.278 ac 0.00% Impervious Runoff Depth=0.65" Tc=19.0 min CN=71 Runoff=0.12 cfs 0.015 af
SubcatchmentSC1.2:	Runoff Area=0.214 ac 32.71% Impervious Runoff Depth=1.10" Tc=6.0 min CN=80 Runoff=0.27 cfs 0.020 af
SubcatchmentSC1.3:	Runoff Area=1.981 ac 4.34% Impervious Runoff Depth=0.49" Tc=15.2 min CN=67 Runoff=0.63 cfs 0.081 af
SubcatchmentSC1.4:	Runoff Area=1.014 ac 24.46% Impervious Runoff Depth=0.99" Tc=6.0 min CN=78 Runoff=1.13 cfs 0.084 af
SubcatchmentSC1.4A:	Runoff Area=0.167 ac 0.00% Impervious Runoff Depth=1.16" Tc=6.0 min CN=81 Runoff=0.22 cfs 0.016 af
SubcatchmentSC1.5:	Runoff Area=4.600 ac 0.00% Impervious Runoff Depth=0.61" Tc=35.9 min CN=70 Runoff=1.44 cfs 0.232 af
SubcatchmentSC1.6:	Runoff Area=41.257 ac 0.00% Impervious Runoff Depth=0.61" Tc=29.1 min CN=70 Runoff=14.16 cfs 2.084 af
SubcatchmentSC1.7:	Runoff Area=5.355 ac 0.00% Impervious Runoff Depth=0.65" Tc=17.2 min CN=71 Runoff=2.48 cfs 0.289 af

Conveyance Model

Type III 24-hr 2-Year Event Rainfall=2.80"

Printed 1/18/2012

Page 5

Prepared by TRC Environmental Corp HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solutions LLC SubcatchmentSC1.8: Runoff Area=12.525 ac 0.00% Impe

Runoff Area=12.525 ac 0.00% Impervious Runoff Depth=0.61" Tc=23.6 min CN=70 Runoff=4.68 cfs 0.633 af

Runoff Area=10.036 ac 0.00% Impervious Runoff Depth=0.61"

Runoff Area=5.027 ac 0.00% Impervious Runoff Depth=0.61"

Tc=27.4 min CN=70 Runoff=3.54 cfs 0.507 af

Tc=17.9 min CN=70 Runoff=2.09 cfs 0.254 af

- SubcatchmentSC1.9: Runoff Area=7.206 ac 0.00% Impervious Runoff Depth=0.61" Tc=17.4 min CN=70 Runoff=3.03 cfs 0.364 af
- SubcatchmentSC3.1: Runoff Area=9.148 ac 0.00% Impervious Runoff Depth=0.78" Tc=30.0 min CN=74 Runoff=4.34 cfs 0.598 af
- SubcatchmentSC3.2: Runoff Area=0.510 ac 0.00% Impervious Runoff Depth=0.61" Tc=23.1 min CN=70 Runoff=0.19 cfs 0.026 af
- SubcatchmentSC3.3:
- SubcatchmentSC3.4:
 - SubcatchmentSC3.5: Runoff Area=3.522 ac 0.00% Impervious Runoff Depth=0.61" Tc=15.1 min_CN=70_Runoff=1.56 cfs_0.178 af
 - Reach 1.1R:
 Avg. Depth=0.29'
 Max Vel=2.85 fps
 Inflow=2.17 cfs
 0.416 af

 n=0.065
 L=200.0'
 S=0.1100 '/'
 Capacity=96.75 cfs
 Outflow=2.17 cfs
 0.416 af
 - Reach 1.2R:
 Avg. Depth=0.28'
 Max Vel=2.35 fps
 Inflow=1.68 cfs
 0.316 af

 n=0.067
 L=670.0'
 S=0.0858 '/'
 Capacity=82.91 cfs
 Outflow=1.66 cfs
 0.316 af
 - Reach 1.3R: Stream at Culvert Inlet
 Avg. Depth=0.76'
 Max Vel=5.17 fps
 Inflow=15.47 cfs
 2.372 af

 n=0.040
 L=600.0'
 S=0.0713 '/'
 Capacity=49.53 cfs
 Outflow=15.42 cfs
 2.372 af
 - Reach 1.4R: From Level Spreader
 Avg. Depth=0.10'
 Max Vel=0.14 fps
 Inflow=2.48 cfs
 0.289 af

 n=0.800
 L=255.0'
 S=0.1412 '/'
 Capacity=1.53 cfs
 Outflow=1.42 cfs
 0.289 af
 - Reach SP1: Study Point
 Avg. Depth=0.75'
 Max Vel=1.46 fps
 Inflow=6.01 cfs
 1.204 af

 n=0.069
 L=20.0'
 S=0.0100 '/'
 Capacity=92.84 cfs
 Outflow=6.01 cfs
 1.204 af
 - Pond 1P: SD-1
 Peak Elev=1,043.19' Storage=140 cf Inflow=4.12 cfs 0.788 af 24.0" Round Culvert n=0.013 L=90.0' S=0.0083 '/' Outflow=4.12 cfs 0.788 af
 - Pond 2P: SD-2
 Peak Elev=1,064.49' Storage=8 cf Inflow=0.63 cfs 0.081 af

 15.0" Round Culvert n=0.013 L=28.0' S=0.0268 '/' Outflow=0.63 cfs 0.081 af
 - Pond 3P: SD-3
 Peak Elev=1,122.67' Storage=54 cf
 Inflow=1.44 cfs
 0.232 af

 15.0" Round Culvert
 n=0.013
 L=30.0'
 S=0.0083 '/'
 Outflow=1.43 cfs
 0.232 af
 - Pond 4P: Box Culvert
 Peak Elev=1,199.53'
 Inflow=15.42 cfs
 2.372 af

 120.0" x 24.0"
 Box Culvert n=0.040
 L=35.0'
 S=0.0714 '/'
 Outflow=15.42 cfs
 2.372 af
 - Pond 5P: SD-5
 Peak Elev=1,262.83'
 Storage=31 cf
 Inflow=2.48 cfs
 0.289 af

 18.0"
 Round Culvert
 n=0.013
 L=38.0'
 S=0.0526 '/'
 Outflow=2.48 cfs
 0.289 af

Conveyance Model Prepared by TRC Envi HvdroCAD® 9.00 s/n 0183	<i>Type III 24-hr 2-Year Event Rainf</i> 24 © 2009 HydroCAD Software Solutions LLC	
Pond 6P: SD-6	Peak Elev=1,423.06' Storage=258 cf Inflow=4.68 cfs 24.0" Round Culvert n=0.013 L=62.0' S=0.0282 '/' Outflow=4.67 cfs	
Pond 7P: SD-7-11	Peak Elev=1,453.45' Storage=10 cf Inflow=3.03 cfs 12.0" Round Culvert x 5.00 n=0.013 L=60.0' S=0.0250 '/' Outflow=3.03 cfs	
Pond 8P: SD-12-15	Peak Elev=1,558.06' Storage=9 cf Inflow=3.62 cfs 12.0" Round Culvert x 4.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=3.62 cfs	
Pond 9P: SD-16	Peak Elev=1,602.81' Storage=17 cf Inflow=2.05 cfs 15.0" Round Culvert n=0.013 L=50.0' S=0.8500 '/' Outflow=2.05 cfs	
Pond 10P: SD-17	Peak Elev=1,675.40' Storage=7 cf Inflow=0.58 cfs 15.0" Round Culvert n=0.013 L=53.0' S=0.0943 '/' Outflow=0.58 cfs	
Pond 11P: SD-18	Peak Elev=1,638.85' Storage=1,837 cf Inflow=4.34 cfs 36.0" Round Culvert n=0.013 L=80.0' S=0.1250 '/' Outflow=4.10 cfs	
Pond 12P: SD-19	Peak Elev=1,681.07' Storage=397 cf Inflow=0.81 cfs 15.0" Round Culvert n=0.013 L=64.0' S=0.0094 '/' Outflow=0.78 cfs	
Pond 13P: SD-20	Peak Elev=1,701.33' Storage=34 cf Inflow=0.65 cfs	0.086 af
	36.0" Round Culvert n=0.013 L=65.0' S=0.0154 '/' Outflow=0.64 cfs	0.086 af
Pond 14P: SD-21	Peak Elev=1,563.55' Storage=7 cf Inflow=1.03 cfs 15.0" Round Culvert n=0.013 L=43.0' S=0.0233 '/' Outflow=1.03 cfs	
Pond 15P: SD-22-23	Peak Elev=1,605.38' Storage=5 cf Inflow=0.90 cfs 12.0" Round Culvert x 2.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=0.90 cfs	
Pond 16P: SD-24	Peak Elev=1,671.18' Storage=2 cf Inflow=0.12 cfs 15.0" Round Culvert n=0.013 L=46.0' S=0.0217 '/' Outflow=0.12 cfs	
Pond 17P: SD-25	Peak Elev=1,679.23' Storage=3 cf Inflow=0.19 cfs 15.0" Round Culvert n=0.013 L=50.0' S=0.0600 '/' Outflow=0.19 cfs	
Pond 18P: SD-26	Peak Elev=1,600.78' Storage=729 cf Inflow=3.54 cfs 36.0" Round Culvert n=0.013 L=70.0' S=0.0429 '/' Outflow=3.47 cfs	0.507 af
Pond 19P: SD-27-31	Peak Elev=1,709.36' Storage=5 cf Inflow=2.09 cfs 12.0" Round Culvert x 5.00 n=0.013 L=70.0' S=0.0143 '/' Outflow=2.09 cfs	0.254 af
Pond 20P: SD-32	12.0" Round Culvert x 5.00 n=0.013 L=70.0" S=0.0143 7" Outflow=2.09 cfs Peak Elev=1,763.69' Storage=10 cf Inflow=1.56 cfs 15.0" Round Culvert n=0.013 L=56.0' S=0.0893 '/' Outflow=1.56 cfs	0.178 af

Conveyance Model	Type III 24-hr 10-Year Event Rainfall=4.20"
Prepared by TRC Environmental Corp	Printed 1/18/2012
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solu	tions LLC Page 7
	-

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC1.1:	Runoff Area=16.719 ac 0.71% Impervious Runoff Depth=1.40" Tc=46.7 min CN=69 Runoff=11.79 cfs 1.948 af
SubcatchmentSC1.10:	Runoff Area=8.557 ac 0.00% Impervious Runoff Depth=1.53" Tc=21.8 min CN=71 Runoff=9.63 cfs 1.093 af
SubcatchmentSC1.11:	Runoff Area=5.297 ac 0.00% Impervious Runoff Depth=1.53" Tc=27.4 min CN=71 Runoff=5.40 cfs 0.677 af
SubcatchmentSC1.12:	Runoff Area=1.538 ac 0.00% Impervious Runoff Depth=1.53" Tc=28.6 min CN=71 Runoff=1.54 cfs 0.196 af
SubcatchmentSC1.13:	Runoff Area=2.416 ac 0.00% Impervious Runoff Depth=1.46" Tc=31.1 min CN=70 Runoff=2.21 cfs 0.295 af
SubcatchmentSC1.14:	Runoff Area=1.587 ac 0.00% Impervious Runoff Depth=1.53" Tc=24.1 min CN=71 Runoff=1.71 cfs 0.203 af
SubcatchmentSC1.15:	Runoff Area=1.898 ac 0.00% Impervious Runoff Depth=1.60" Tc=14.5 min CN=72 Runoff=2.64 cfs 0.253 af
SubcatchmentSC1.16:	Runoff Area=2.191 ac 0.00% Impervious Runoff Depth=1.53" Tc=23.2 min CN=71 Runoff=2.40 cfs 0.280 af
SubcatchmentSC1.17:	Runoff Area=0.278 ac 0.00% Impervious Runoff Depth=1.53" Tc=19.0 min CN=71 Runoff=0.33 cfs 0.036 af
SubcatchmentSC1.2:	Runoff Area=0.214 ac 32.71% Impervious Runoff Depth=2.21" Tc=6.0 min CN=80 Runoff=0.55 cfs 0.039 af
SubcatchmentSC1.3:	Runoff Area=1.981 ac 4.34% Impervious Runoff Depth=1.27" Tc=15.2 min CN=67 Runoff=2.05 cfs 0.210 af
SubcatchmentSC1.4:	Runoff Area=1.014 ac 24.46% Impervious Runoff Depth=2.05" Tc=6.0 min CN=78 Runoff=2.43 cfs 0.173 af
SubcatchmentSC1.4A:	Runoff Area=0.167 ac 0.00% Impervious Runoff Depth=2.29" Tc=6.0 min CN=81 Runoff=0.45 cfs 0.032 af
SubcatchmentSC1.5:	Runoff Area=4.600 ac 0.00% Impervious Runoff Depth=1.46" Tc=35.9 min CN=70 Runoff=3.93 cfs 0.562 af
SubcatchmentSC1.6:	Runoff Area=41.257 ac 0.00% Impervious Runoff Depth=1.46" Tc=29.1 min CN=70 Runoff=38.88 cfs 5.036 af
SubcatchmentSC1.7:	Runoff Area=5.355 ac 0.00% Impervious Runoff Depth=1.53" Tc=17.2 min CN=71 Runoff=6.64 cfs 0.684 af

Type III 24-hr 10-Year Event Rainfall=4.20" Printed 1/18/2012

Conveyance ModelType III 24-hr 10-Year Event RaintPrepared by TRC Environmental CorpPrinted 1HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solutions LLCPrinted 1

Page 8

SubcatchmentSC1.8:	Runoff Area=12.525 ac 0.00% Impervious Runoff Depth=1.46" Tc=23.6 min CN=70 Runoff=12.94 cfs 1.529 af
SubcatchmentSC1.9:	Runoff Area=7.206 ac 0.00% Impervious Runoff Depth=1.46" Tc=17.4 min CN=70 Runoff=8.42 cfs 0.880 af
SubcatchmentSC3.1:	Runoff Area=9.148 ac 0.00% Impervious Runoff Depth=1.74" Tc=30.0 min CN=74 Runoff=10.39 cfs 1.330 af
SubcatchmentSC3.2:	Runoff Area=0.510 ac 0.00% Impervious Runoff Depth=1.46" Tc=23.1 min CN=70 Runoff=0.53 cfs 0.062 af
SubcatchmentSC3.3:	Runoff Area=10.036 ac 0.00% Impervious Runoff Depth=1.46" Tc=27.4 min CN=70 Runoff=9.71 cfs 1.225 af
SubcatchmentSC3.4:	Runoff Area=5.027 ac 0.00% Impervious Runoff Depth=1.46" Tc=17.9 min CN=70 Runoff=5.81 cfs 0.614 af
SubcatchmentSC3.5:	Runoff Area=3.522 ac 0.00% Impervious Runoff Depth=1.46" Tc=15.1 min CN=70 Runoff=4.35 cfs 0.430 af
Reach 1.1R:	Avg. Depth=0.51' Max Vel=3.83 fps Inflow=5.87 cfs 0.984 af n=0.065 L=200.0' S=0.1100 '/' Capacity=96.75 cfs Outflow=5.87 cfs 0.984 af
Reach 1.2R:	Avg. Depth=0.48' Max Vel=3.16 fps Inflow=4.48 cfs 0.735 af n=0.067 L=670.0' S=0.0858 '/' Capacity=82.91 cfs Outflow=4.44 cfs 0.735 af
Reach 1.3R: Stream at	Culvert Inlet Avg. Depth=1.14' Max Vel=5.87 fps Inflow=43.18 cfs 5.720 af n=0.040 L=600.0' S=0.0713 '/' Capacity=49.53 cfs Outflow=42.99 cfs 5.720 af
Reach 1.4R: From Leve	Spreader Avg. Depth=0.21' Max Vel=0.19 fps Inflow=6.61 cfs 0.684 af n=0.800 L=255.0' S=0.1412 '/' Capacity=1.53 cfs Outflow=4.34 cfs 0.683 af
Reach SP1: Study Poir	Avg. Depth=1.30' Max Vel=1.97 fps Inflow=16.84 cfs 2.932 af n=0.069 L=20.0' S=0.0100 '/' Capacity=92.84 cfs Outflow=16.84 cfs 2.932 af
Pond 1P: SD-1	Peak Elev=1,044.26' Storage=410 cf Inflow=11.79 cfs 1.948 af 24.0" Round Culvert n=0.013 L=90.0' S=0.0083 '/' Outflow=11.80 cfs 1.948 af
Pond 2P: SD-2	Peak Elev=1,064.88' Storage=20 cf Inflow=2.05 cfs 0.210 af 15.0" Round Culvert n=0.013 L=28.0' S=0.0268 '/' Outflow=2.05 cfs 0.210 af
Pond 3P: SD-3	Peak Elev=1,123.33' Storage=149 cf Inflow=3.93 cfs 0.562 af 15.0" Round Culvert n=0.013 L=30.0' S=0.0083 '/' Outflow=3.92 cfs 0.562 af
Pond 4P: Box Culvert	Peak Elev=1,200.05' Inflow=42.99 cfs 5.720 af 120.0" x 24.0" Box Culvert n=0.040 L=35.0' S=0.0714 '/' Outflow=42.99 cfs 5.720 af
Pond 5P: SD-5	Peak Elev=1,263.72' Storage=124 cf Inflow=6.64 cfs 0.684 af 18.0" Round Culvert n=0.013 L=38.0' S=0.0526 '/' Outflow=6.61 cfs 0.684 af

Conveyance Model Prepared by TRC Envi	ironmental Corp Printed 1/18/2012
HydroCAD® 9.00 s/n 018	24 © 2009 HydroCAD Software Solutions LLC Page 9
Pond 6P: SD-6	Peak Elev=1,424.12' Storage=1,108 cf Inflow=12.94 cfs 1.529 af 24.0" Round Culvert n=0.013 L=62.0' S=0.0282 '/' Outflow=12.61 cfs 1.529 af
Pond 7P: SD-7-11	Peak Elev=1,453.82' Storage=24 cf Inflow=8.42 cfs 0.880 af 12.0" Round Culvert x 5.00 n=0.013 L=60.0' S=0.0250 '/' Outflow=8.42 cfs 0.880 af
Pond 8P: SD-12-15	Peak Elev=1,558.65' Storage=30 cf Inflow=9.63 cfs 1.093 af 12.0" Round Culvert x 4.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=9.62 cfs 1.093 af
Pond 9P: SD-16	Peak Elev=1,603.96' Storage=83 cf Inflow=5.40 cfs 0.677 af 15.0" Round Culvert n=0.013 L=50.0' S=0.8500 '/' Outflow=5.40 cfs 0.677 af
Pond 10P: SD-17	Peak Elev=1,675.69' Storage=17 cf Inflow=1.54 cfs 0.196 af 15.0" Round Culvert n=0.013 L=53.0' S=0.0943 '/' Outflow=1.54 cfs 0.196 af
Pond 11P: SD-18	Peak Elev=1,639.36' Storage=3,794 cf Inflow=10.39 cfs 1.330 af 36.0" Round Culvert n=0.013 L=80.0' S=0.1250 '/' Outflow=9.81 cfs 1.330 af
Pond 12P: SD-19	Peak Elev=1,681.44' Storage=731 cf Inflow=2.21 cfs 0.295 af 15.0" Round Culvert n=0.013 L=64.0' S=0.0094 '/' Outflow=2.14 cfs 0.292 af
Pond 13P: SD-20	Peak Elev=1,701.54' Storage=81 cf Inflow=1.71 cfs 0.203 af 36.0" Round Culvert n=0.013 L=65.0' S=0.0154 '/' Outflow=1.71 cfs 0.203 af
Pond 14P: SD-21	Peak Elev=1,563.96' Storage=14 cf Inflow=2.64 cfs 0.253 af 15.0" Round Culvert n=0.013 L=43.0' S=0.0233 '/' Outflow=2.65 cfs 0.253 af
Pond 15P: SD-22-23	Peak Elev=1,605.66' Storage=11 cf Inflow=2.40 cfs 0.280 af 12.0" Round Culvert x 2.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=2.40 cfs 0.280 af
Pond 16P: SD-24	Peak Elev=1,671.30' Storage=4 cf Inflow=0.33 cfs 0.036 af 15.0" Round Culvert n=0.013 L=46.0' S=0.0217 '/' Outflow=0.33 cfs 0.036 af
Pond 17P: SD-25	Peak Elev=1,679.38' Storage=5 cf Inflow=0.53 cfs 0.062 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0600 '/' Outflow=0.53 cfs 0.062 af
Pond 18P: SD-26	Peak Elev=1,601.34' Storage=1,885 cf Inflow=9.71 cfs 1.225 af 36.0" Round Culvert n=0.013 L=70.0' S=0.0429 '/' Outflow=9.48 cfs 1.225 af
Pond 19P: SD-27-31	Peak Elev=1,709.65' Storage=12 cf Inflow=5.81 cfs 0.614 af 12.0" Round Culvert x 5.00 n=0.013 L=70.0' S=0.0143 '/' Outflow=5.81 cfs 0.614 af
Pond 20P: SD-32	Peak Elev=1,764.49' Storage=34 cf Inflow=4.35 cfs 0.430 af 15.0" Round Culvert n=0.013 L=56.0' S=0.0893 '/' Outflow=4.35 cfs 0.430 af

Conveyance Model	Type III 24-hr 25-Year Event Rainfall=5.00"
Prepared by TRC Environmental Corp	Printed 1/18/2012
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solu	tions LLC Page 10
Time span=0.00.36.00 brs. dt=0.	01 brs 3601 points x 3

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC1.1:	Runoff Area=16.719 ac 0.71% Impervious Runoff Depth=1.96" Tc=46.7 min CN=69 Runoff=16.93 cfs 2.727 af
SubcatchmentSC1.10:	Runoff Area=8.557 ac 0.00% Impervious Runoff Depth=2.12" Tc=21.8 min CN=71 Runoff=13.55 cfs 1.509 af
SubcatchmentSC1.11:	Runoff Area=5.297 ac 0.00% Impervious Runoff Depth=2.12" Tc=27.4 min CN=71 Runoff=7.62 cfs 0.934 af
SubcatchmentSC1.12:	Runoff Area=1.538 ac 0.00% Impervious Runoff Depth=2.12" Tc=28.6 min CN=71 Runoff=2.17 cfs 0.271 af
SubcatchmentSC1.13:	Runoff Area=2.416 ac 0.00% Impervious Runoff Depth=2.04" Tc=31.1 min CN=70 Runoff=3.14 cfs 0.410 af
SubcatchmentSC1.14:	Runoff Area=1.587 ac 0.00% Impervious Runoff Depth=2.12" Tc=24.1 min CN=71 Runoff=2.41 cfs 0.280 af
SubcatchmentSC1.15:	Runoff Area=1.898 ac 0.00% Impervious Runoff Depth=2.20" Tc=14.5 min CN=72 Runoff=3.70 cfs 0.348 af
SubcatchmentSC1.16:	Runoff Area=2.191 ac 0.00% Impervious Runoff Depth=2.12" Tc=23.2 min CN=71 Runoff=3.38 cfs 0.386 af
SubcatchmentSC1.17:	Runoff Area=0.278 ac 0.00% Impervious Runoff Depth=2.12" Tc=19.0 min CN=71 Runoff=0.47 cfs 0.049 af
SubcatchmentSC1.2:	Runoff Area=0.214 ac 32.71% Impervious Runoff Depth=2.89" Tc=6.0 min CN=80 Runoff=0.73 cfs 0.052 af
SubcatchmentSC1.3:	Runoff Area=1.981 ac 4.34% Impervious Runoff Depth=1.80" Tc=15.2 min CN=67 Runoff=3.02 cfs 0.298 af
SubcatchmentSC1.4:	Runoff Area=1.014 ac 24.46% Impervious Runoff Depth=2.71" Tc=6.0 min CN=78 Runoff=3.23 cfs 0.229 af
SubcatchmentSC1.4A:	Runoff Area=0.167 ac 0.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=81 Runoff=0.58 cfs 0.042 af
SubcatchmentSC1.5:	Runoff Area=4.600 ac 0.00% Impervious Runoff Depth=2.04" Tc=35.9 min CN=70 Runoff=5.58 cfs 0.781 af
SubcatchmentSC1.6:	Runoff Area=41.257 ac 0.00% Impervious Runoff Depth=2.04" Tc=29.1 min CN=70 Runoff=55.23 cfs 7.001 af
SubcatchmentSC1.7:	Runoff Area=5.355 ac 0.00% Impervious Runoff Depth=2.12" Tc=17.2 min CN=71 Runoff=9.36 cfs 0.944 af

Conveyance Model Prepared by TRC Enviro HydroCAD® 9.00, s/p.0182	<i>Type III 24-hr 25-Year Event Rainfall=5.00"</i> Onmental Corp Printed 1/18/2012 4 © 2009 HydroCAD Software Solutions LLC Page 11
SubcatchmentSC1.8:	Runoff Area=12.525 ac 0.00% Impervious Runoff Depth=2.04" Tc=23.6 min CN=70 Runoff=18.40 cfs 2.125 af
SubcatchmentSC1.9:	Runoff Area=7.206 ac 0.00% Impervious Runoff Depth=2.04" Tc=17.4 min CN=70 Runoff=12.01 cfs 1.223 af
SubcatchmentSC3.1:	Runoff Area=9.148 ac 0.00% Impervious Runoff Depth=2.36" Tc=30.0 min CN=74 Runoff=14.25 cfs 1.802 af
SubcatchmentSC3.2:	Runoff Area=0.510 ac 0.00% Impervious Runoff Depth=2.04" Tc=23.1 min CN=70 Runoff=0.76 cfs 0.087 af
SubcatchmentSC3.3:	Runoff Area=10.036 ac 0.00% Impervious Runoff Depth=2.04" Tc=27.4 min CN=70 Runoff=13.83 cfs 1.703 af
SubcatchmentSC3.4:	Runoff Area=5.027 ac 0.00% Impervious Runoff Depth=2.04" Tc=17.9 min CN=70 Runoff=8.27 cfs 0.853 af
SubcatchmentSC3.5:	Runoff Area=3.522 ac 0.00% Impervious Runoff Depth=2.04" Tc=15.1 min CN=70 Runoff=6.20 cfs 0.598 af
Reach 1.1R:	Avg. Depth=0.61' Max Vel=4.21 fps Inflow=8.20 cfs 1.359 af n=0.065 L=200.0' S=0.1100 '/' Capacity=96.75 cfs Outflow=8.20 cfs 1.359 af
Reach 1.2R:	Avg. Depth=0.57' Max Vel=3.48 fps Inflow=6.23 cfs 1.010 af n=0.067 L=670.0' S=0.0858 '/' Capacity=82.91 cfs Outflow=6.19 cfs 1.010 af
Reach 1.3R: Stream at C	ulvert Inlet Avg. Depth=1.28' Max Vel=6.25 fps Inflow=61.38 cfs 7.945 af n=0.040 L=600.0' S=0.0713 '/' Capacity=49.53 cfs Outflow=61.20 cfs 7.945 af
Reach 1.4R: From Level	Spreader Avg. Depth=0.28' Max Vel=0.20 fps Inflow=9.22 cfs 0.944 af n=0.800 L=255.0' S=0.1412 '/' Capacity=1.53 cfs Outflow=6.23 cfs 0.944 af
Reach SP1: Study Point	Avg. Depth=1.55' Max Vel=2.17 fps Inflow=23.88 cfs 4.086 af n=0.069 L=20.0' S=0.0100 '/' Capacity=92.84 cfs Outflow=23.88 cfs 4.086 af
Pond 1P: SD-1	Peak Elev=1,045.54' Storage=976 cf Inflow=16.93 cfs 2.727 af 24.0" Round Culvert n=0.013 L=90.0' S=0.0083 '/' Outflow=16.88 cfs 2.727 af
Pond 2P: SD-2	Peak Elev=1,065.09' Storage=28 cf Inflow=3.02 cfs 0.298 af 15.0" Round Culvert n=0.013 L=28.0' S=0.0268 '/' Outflow=3.02 cfs 0.298 af
Pond 3P: SD-3	Peak Elev=1,124.04' Storage=309 cf Inflow=5.58 cfs 0.781 af 15.0" Round Culvert n=0.013 L=30.0' S=0.0083 '/' Outflow=5.55 cfs 0.781 af
Pond 4P: Box Culvert	Peak Elev=1,200.33' Inflow=61.20 cfs 7.945 af 20.0" x 24.0" Box Culvert n=0.040 L=35.0' S=0.0714 '/' Outflow=61.20 cfs 7.945 af
Pond 5P: SD-5	Peak Elev=1,264.64' Storage=320 cf Inflow=9.36 cfs 0.944 af 18.0" Round Culvert n=0.013 L=38.0' S=0.0526 '/' Outflow=9.22 cfs 0.944 af

Conveyance Mode Prepared by TRC En HydroCAD® 9.00 s/n 01	
Pond 6P: SD-6	Peak Elev=1,425.02' Storage=2,712 cf Inflow=18.40 cfs 2.125 af 24.0" Round Culvert n=0.013 L=62.0' S=0.0282 '/' Outflow=16.99 cfs 2.125 af
Pond 7P: SD-7-11	Peak Elev=1,454.15' Storage=41 cf Inflow=12.01 cfs 1.223 af 12.0" Round Culvert x 5.00 n=0.013 L=60.0' S=0.0250 '/' Outflow=12.00 cfs 1.223 af
Pond 8P: SD-12-15	Peak Elev=1,559.29' Storage=79 cf Inflow=13.55 cfs 1.509 af 12.0" Round Culvert x 4.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=13.55 cfs 1.509 af
Pond 9P: SD-16	Peak Elev=1,605.25' Storage=241 cf Inflow=7.62 cfs 0.934 af 15.0" Round Culvert n=0.013 L=50.0' S=0.8500 '/' Outflow=7.56 cfs 0.934 af
Pond 10P: SD-17	Peak Elev=1,675.84' Storage=24 cf Inflow=2.17 cfs 0.271 af 15.0" Round Culvert n=0.013 L=53.0' S=0.0943 '/' Outflow=2.17 cfs 0.271 af
Pond 11P: SD-18	Peak Elev=1,639.63' Storage=5,099 cf Inflow=14.25 cfs 1.802 af 36.0" Round Culvert n=0.013 L=80.0' S=0.1250 '/' Outflow=13.39 cfs 1.802 af
Pond 12P: SD-19	Peak Elev=1,681.65' Storage=985 cf Inflow=3.14 cfs 0.410 af 15.0" Round Culvert n=0.013 L=64.0' S=0.0094 '/' Outflow=3.01 cfs 0.407 af
Pond 13P: SD-20	Peak Elev=1,701.64' Storage=114 cf Inflow=2.41 cfs 0.280 af 36.0" Round Culvert n=0.013 L=65.0' S=0.0154 '/' Outflow=2.41 cfs 0.280 af
Pond 14P: SD-21	Peak Elev=1,564.25' Storage=21 cf Inflow=3.70 cfs 0.348 af 15.0" Round Culvert n=0.013 L=43.0' S=0.0233 '/' Outflow=3.70 cfs 0.348 af
Pond 15P: SD-22-23	Peak Elev=1,605.82' Storage=16 cf Inflow=3.38 cfs 0.386 af 12.0" Round Culvert x 2.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=3.38 cfs 0.386 af
Pond 16P: SD-24	Peak Elev=1,671.36' Storage=5 cf Inflow=0.47 cfs 0.049 af 15.0" Round Culvert n=0.013 L=46.0' S=0.0217 '/' Outflow=0.47 cfs 0.049 af
Pond 17P: SD-25	Peak Elev=1,679.46' Storage=7 cf Inflow=0.76 cfs 0.087 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0600 '/' Outflow=0.76 cfs 0.087 af
Pond 18P: SD-26	Peak Elev=1,601.63' Storage=2,759 cf Inflow=13.83 cfs 1.703 af 36.0" Round Culvert n=0.013 L=70.0' S=0.0429 '/' Outflow=13.40 cfs 1.703 af
Pond 19P: SD-27-31	Peak Elev=1,709.81' Storage=16 cf Inflow=8.27 cfs 0.853 af 12.0" Round Culvert x 5.00 n=0.013 L=70.0' S=0.0143 '/' Outflow=8.27 cfs 0.853 af
Pond 20P: SD-32	Peak Elev=1,765.38' Storage=91 cf Inflow=6.20 cfs 0.598 af 15.0" Round Culvert n=0.013 L=56.0' S=0.0893 '/' Outflow=6.18 cfs 0.598 af

Conveyance Model	Type III 24-hr 50-Year Event Rainfall=5.60"
Prepared by TRC Environmental Corp	Printed 1/18/2012
HydroCAD® 9.00 s/n 01824 © 2009 HydroCAD Software Solut	ions LLC Page 13

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC1.1:	Runoff Area=16.719 ac 0.71% Impervious Runoff Depth=2.40" Tc=46.7 min CN=69 Runoff=21.03 cfs 3.349 af
SubcatchmentSC1.10:	Runoff Area=8.557 ac 0.00% Impervious Runoff Depth=2.58" Tc=21.8 min CN=71 Runoff=16.66 cfs 1.840 af
SubcatchmentSC1.11:	Runoff Area=5.297 ac 0.00% Impervious Runoff Depth=2.58" Tc=27.4 min CN=71 Runoff=9.37 cfs 1.139 af
SubcatchmentSC1.12:	Runoff Area=1.538 ac 0.00% Impervious Runoff Depth=2.58" Tc=28.6 min CN=71 Runoff=2.66 cfs 0.331 af
SubcatchmentSC1.13:	Runoff Area=2.416 ac 0.00% Impervious Runoff Depth=2.49" Tc=31.1 min CN=70 Runoff=3.87 cfs 0.502 af
SubcatchmentSC1.14:	Runoff Area=1.587 ac 0.00% Impervious Runoff Depth=2.58" Tc=24.1 min CN=71 Runoff=2.97 cfs 0.341 af
SubcatchmentSC1.15:	Runoff Area=1.898 ac 0.00% Impervious Runoff Depth=2.67" Tc=14.5 min CN=72 Runoff=4.53 cfs 0.422 af
SubcatchmentSC1.16:	Runoff Area=2.191 ac 0.00% Impervious Runoff Depth=2.58" Tc=23.2 min CN=71 Runoff=4.15 cfs 0.471 af
SubcatchmentSC1.17:	Runoff Area=0.278 ac 0.00% Impervious Runoff Depth=2.58" Tc=19.0 min CN=71 Runoff=0.57 cfs 0.060 af
SubcatchmentSC1.2:	Runoff Area=0.214 ac 32.71% Impervious Runoff Depth=3.42" Tc=6.0 min CN=80 Runoff=0.86 cfs 0.061 af
SubcatchmentSC1.3:	Runoff Area=1.981 ac 4.34% Impervious Runoff Depth=2.23" Tc=15.2 min CN=67 Runoff=3.81 cfs 0.369 af
SubcatchmentSC1.4:	Runoff Area=1.014 ac 24.46% Impervious Runoff Depth=3.23" Tc=6.0 min CN=78 Runoff=3.84 cfs 0.273 af
SubcatchmentSC1.4A:	Runoff Area=0.167 ac 0.00% Impervious Runoff Depth=3.52" Tc=6.0 min CN=81 Runoff=0.69 cfs 0.049 af
SubcatchmentSC1.5:	Runoff Area=4.600 ac 0.00% Impervious Runoff Depth=2.49" Tc=35.9 min CN=70 Runoff=6.90 cfs 0.955 af
SubcatchmentSC1.6:	Runoff Area=41.257 ac 0.00% Impervious Runoff Depth=2.49" Tc=29.1 min CN=70 Runoff=68.22 cfs 8.566 af
SubcatchmentSC1.7:	Runoff Area=5.355 ac 0.00% Impervious Runoff Depth=2.58" Tc=17.2 min CN=71 Runoff=11.51 cfs 1.151 af

Conveyance Model Prepared by TRC Environ HydroCAD® 9.00 s/n 01824 (Type III 24-hr 50-Year Event Rainfall=5.60" Printed 1/18/2012 © 2009 HydroCAD Software Solutions LLC Page 14
SubcatchmentSC1.8:	Runoff Area=12.525 ac 0.00% Impervious Runoff Depth=2.49" Tc=23.6 min CN=70 Runoff=22.72 cfs 2.601 af
SubcatchmentSC1.9:	Runoff Area=7.206 ac 0.00% Impervious Runoff Depth=2.49" Tc=17.4 min CN=70 Runoff=14.84 cfs 1.496 af
SubcatchmentSC3.1:	Runoff Area=9.148 ac 0.00% Impervious Runoff Depth=2.85" Tc=30.0 min CN=74 Runoff=17.26 cfs 2.174 af
SubcatchmentSC3.2:	Runoff Area=0.510 ac 0.00% Impervious Runoff Depth=2.49" Tc=23.1 min CN=70 Runoff=0.93 cfs 0.106 af
SubcatchmentSC3.3:	Runoff Area=10.036 ac 0.00% Impervious Runoff Depth=2.49" Tc=27.4 min CN=70 Runoff=17.08 cfs 2.084 af
SubcatchmentSC3.4:	Runoff Area=5.027 ac 0.00% Impervious Runoff Depth=2.49" Tc=17.9 min CN=70 Runoff=10.22 cfs 1.044 af
SubcatchmentSC3.5:	Runoff Area=3.522 ac 0.00% Impervious Runoff Depth=2.49" Tc=15.1 min CN=70 Runoff=7.66 cfs 0.731 af
Reach 1.1R:	Avg. Depth=0.67' Max Vel=4.44 fps Inflow=9.96 cfs 1.657 af n=0.065 L=200.0' S=0.1100 '/' Capacity=96.75 cfs Outflow=9.95 cfs 1.657 af
Reach 1.2R:	Avg. Depth=0.63' Max Vel=3.67 fps Inflow=7.52 cfs 1.228 af n=0.067 L=670.0' S=0.0858 '/' Capacity=82.91 cfs Outflow=7.48 cfs 1.228 af
Reach 1.3R: Stream at Culv	vert Inlet Avg. Depth=1.40' Max Vel=6.44 fps Inflow=75.80 cfs 9.717 af n=0.040 L=600.0' S=0.0713 '/' Capacity=49.53 cfs Outflow=75.58 cfs 9.717 af
Reach 1.4R: From Level Sp	Avg. Depth=0.34' Max Vel=0.21 fps Inflow=11.12 cfs 1.151 af n=0.800 L=255.0' S=0.1412 '/' Capacity=1.53 cfs Outflow=7.74 cfs 1.151 af
Reach SP1: Study Point	Avg. Depth=1.71' Max Vel=2.28 fps Inflow=29.02 cfs 5.007 af n=0.069 L=20.0' S=0.0100 '/' Capacity=92.84 cfs Outflow=29.02 cfs 5.007 af
Pond 1P: SD-1	Peak Elev=1,046.69' Storage=1,908 cf Inflow=21.03 cfs 3.349 af 24.0" Round Culvert n=0.013 L=90.0' S=0.0083 '/' Outflow=20.65 cfs 3.349 af
Pond 2P: SD-2	Peak Elev=1,065.33' Storage=39 cf Inflow=3.81 cfs 0.369 af 15.0" Round Culvert n=0.013 L=28.0' S=0.0268 '/' Outflow=3.80 cfs 0.369 af
Pond 3P: SD-3	Peak Elev=1,124.73' Storage=548 cf Inflow=6.90 cfs 0.955 af 15.0" Round Culvert n=0.013 L=30.0' S=0.0083 '/' Outflow=6.78 cfs 0.955 af
Pond 4P: Box Culvert	Peak Elev=1,200.53' Inflow=75.58 cfs 9.717 af 0.0" x 24.0" Box Culvert n=0.040 L=35.0' S=0.0714 '/' Outflow=75.58 cfs 9.717 af
Pond 5P: SD-5	Peak Elev=1,265.49' Storage=619 cf Inflow=11.51 cfs 1.151 af 18.0" Round Culvert n=0.013 L=38.0' S=0.0526 '/' Outflow=11.12 cfs 1.151 af

Conveyance Mode Prepared by TRC En HydroCAD® 9.00 s/n 01	
Pond 6P: SD-6	Peak Elev=1,425.74' Storage=4,823 cf Inflow=22.72 cfs 2.601 af 24.0" Round Culvert n=0.013 L=62.0' S=0.0282 '/' Outflow=19.78 cfs 2.601 af
Pond 7P: SD-7-11	Peak Elev=1,454.49' Storage=66 cf Inflow=14.84 cfs 1.496 af 12.0" Round Culvert x 5.00 n=0.013 L=60.0' S=0.0250 '/' Outflow=14.83 cfs 1.496 af
Pond 8P: SD-12-15	Peak Elev=1,559.94' Storage=167 cf Inflow=16.66 cfs 1.840 af 12.0" Round Culvert x 4.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=16.64 cfs 1.840 af
Pond 9P: SD-16	Peak Elev=1,606.67' Storage=378 cf Inflow=9.37 cfs 1.139 af 15.0" Round Culvert n=0.013 L=50.0' S=0.8500 '/' Outflow=9.38 cfs 1.139 af
Pond 10P: SD-17	Peak Elev=1,675.96' Storage=31 cf Inflow=2.66 cfs 0.331 af 15.0" Round Culvert n=0.013 L=53.0' S=0.0943 '/' Outflow=2.66 cfs 0.331 af
Pond 11P: SD-18	Peak Elev=1,639.81' Storage=6,172 cf Inflow=17.26 cfs 2.174 af 36.0" Round Culvert n=0.013 L=80.0' S=0.1250 '/' Outflow=16.15 cfs 2.174 af
Pond 12P: SD-19	Peak Elev=1,681.83' Storage=1,245 cf Inflow=3.87 cfs 0.502 af 15.0" Round Culvert n=0.013 L=64.0' S=0.0094 '/' Outflow=3.64 cfs 0.498 af
Pond 13P: SD-20	Peak Elev=1,701.72' Storage=141 cf Inflow=2.97 cfs 0.341 af 36.0" Round Culvert n=0.013 L=65.0' S=0.0154 '/' Outflow=2.96 cfs 0.341 af
Pond 14P: SD-21	Peak Elev=1,564.56' Storage=32 cf Inflow=4.53 cfs 0.422 af 15.0" Round Culvert n=0.013 L=43.0' S=0.0233 '/' Outflow=4.52 cfs 0.422 af
Pond 15P: SD-22-23	Peak Elev=1,605.98' Storage=20 cf Inflow=4.15 cfs 0.471 af 12.0" Round Culvert x 2.00 n=0.013 L=50.0' S=0.0200 '/' Outflow=4.15 cfs 0.471 af
Pond 16P: SD-24	Peak Elev=1,671.40' Storage=6 cf Inflow=0.57 cfs 0.060 af 15.0" Round Culvert n=0.013 L=46.0' S=0.0217 '/' Outflow=0.57 cfs 0.060 af
Pond 17P: SD-25	Peak Elev=1,679.52' Storage=8 cf Inflow=0.93 cfs 0.106 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0600 '/' Outflow=0.93 cfs 0.106 af
Pond 18P: SD-26	Peak Elev=1,601.83' Storage=3,524 cf Inflow=17.08 cfs 2.084 af 36.0" Round Culvert n=0.013 L=70.0' S=0.0429 '/' Outflow=16.47 cfs 2.084 af
Pond 19P: SD-27-31	Peak Elev=1,709.96' Storage=22 cf Inflow=10.22 cfs 1.044 af 12.0" Round Culvert x 5.00 n=0.013 L=70.0' S=0.0143 '/' Outflow=10.22 cfs 1.044 af
Pond 20P: SD-32	Peak Elev=1,766.40' Storage=158 cf Inflow=7.66 cfs 0.731 af 15.0" Round Culvert n=0.013 L=56.0' S=0.0893 '/' Outflow=7.77 cfs 0.731 af

Conveyance Model

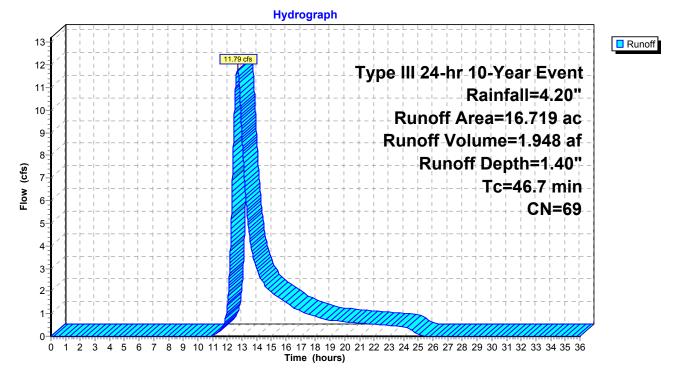
Prepared by TR	C Enviro	nmental Corp	
HydroCAD® 9.00	s/n 01824	© 2009 HydroCAD	Software Solutions LLC

Printed 1/18/2012 Page 1

line# Node In-Invert Out-Invert l enath Slone n Diam/Width

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)
1	1P	1,042.00	1,041.25	90.0	0.0083	0.013	24.0	0.0
2	2P	1,064.00	1,063.25	28.0	0.0268	0.013	15.0	0.0
3	3P	1,122.00	1,121.75	30.0	0.0083	0.013	15.0	0.0
4	4P	1,199.00	1,196.50	35.0	0.0714	0.040	120.0	24.0
5	5P	1,262.00	1,260.00	38.0	0.0526	0.013	18.0	0.0
6	6P	1,422.00	1,420.25	62.0	0.0282	0.013	24.0	0.0
7	7P	1,453.00	1,451.50	60.0	0.0250	0.013	12.0	0.0
8	8P	1,557.50	1,556.50	50.0	0.0200	0.013	12.0	0.0
9	9P	1,602.00	1,559.50	50.0	0.8500	0.013	15.0	0.0
10	10P	1,675.00	1,670.00	53.0	0.0943	0.013	15.0	0.0
11	11P	1,638.00	1,628.00	80.0	0.1250	0.013	36.0	0.0
12	12P	1,680.60	1,680.00	64.0	0.0094	0.013	15.0	0.0
13	13P	1,701.00	1,700.00	65.0	0.0154	0.013	36.0	0.0
14	14P	1,563.00	1,562.00	43.0	0.0233	0.013	15.0	0.0
15	15P	1,605.00	1,604.00	50.0	0.0200	0.013	12.0	0.0
16	16P	1,671.00	1,670.00	46.0	0.0217	0.013	15.0	0.0
17	17P	1,679.00	1,676.00	50.0	0.0600	0.013	15.0	0.0
18	18P	1,600.00	1,597.00	70.0	0.0429	0.013	36.0	0.0
19	19P	1,709.00	1,708.00	70.0	0.0143	0.013	12.0	0.0
20	20P	1,763.00	1,758.00	56.0	0.0893	0.013	15.0	0.0


Summary for Subcatchment SC1.1:

Runoff = 11.79 cfs @ 12.71 hrs, Volume= 1.948 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Event Rainfall=4.20"

_	Area	(ac)	CN	Desc	cription								
	13.	069	70	Woo	Noods, Good, HSG C								
	2.	462	71	Mea	dow, non-g	grazed, HS	IG C						
	0.	118	98	Pave	ed roads w	/curbs & se	ewers, HSG C						
*	1.	070	55	Yard	stone, HS	SG C							
	16.	719	69	Weig	ghted Aver	age							
	16.	601		99.2	9% Pervio	us Area							
	0.	118		0.71	% Impervi	ous Area							
	Тс	Leng	th	Slope	Velocity	Capacity	Description						
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)							
	46.7						Direct Entry, See spreadsheet						

Subcatchment SC1.1:

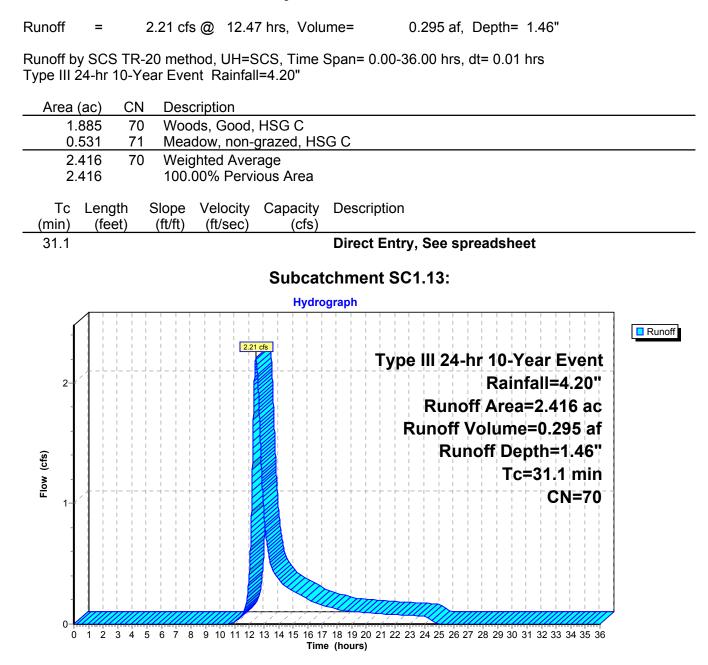
Summary for Subcatchment SC1.10:

Runoff = 9.63 cfs @ 12.33 hrs, Volume= 1.093 af, Depth= 1.53"

	0.	567 498		71 89	G	rave	l roa	ids, İ	ISG	G C	SG C											
		557 557		71				Aver Pervi		Area												
- mi	Гc n)		ngt feel		Slop (ft/f		Velo (ft/s		Са	pacity (cfs)		scrip	otion									
21	.8										Dire	ect	Entr	y, S	ee s	pre	ads	hee	t			
									S	ubca	tchm	nen	t SC	C1.1	0:							
										Hydı	rograph	1										
	10-1						$\begin{vmatrix} & 1 \\ 1 & 1 \\ \frac{1}{1} - \frac{1}{1} - \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & - + - \end{vmatrix}$	$\frac{1}{1} - \frac{1}{1} - \frac{1}$	 				Гур	e-H	24	-hr	-10	-Ye	ar	Eve	ent -	Runc
	9-7		-				 						 T - T -				Ra	inf	all=	=4.2	20"	
	8-7	/	¦-	 - 		 	$\begin{vmatrix} & & \\ & & \\ \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $					- <u>-</u>					Ar					
-	7-1	,	 -	 -		 +	 + - + -	+ + - +				 - + - +	 + - + - 	Rur	1 1	I Ī	ff C	1 1	1 1		1 1	
LIOW (CIS)	6	/		 -			$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$													8 n	1 1	
	5- 4-	/	 	 _ 		 	 	+ - +				- + - +				 _ 			C	:N=	71 -	
	3	/	- 	-i 		- +	+ - + - 					- + - +			- -				- + - 			
	2		'- 																			
	1						 			D												

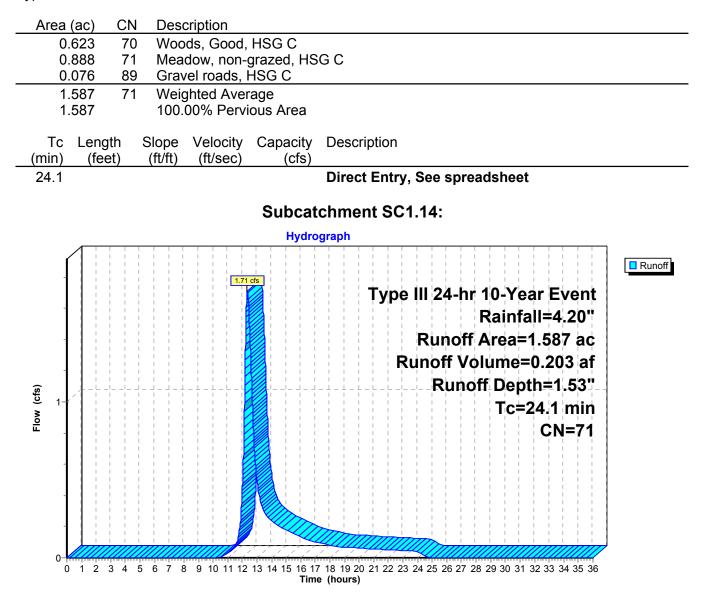
Summary for Subcatchment SC1.11:

Runoff = 5.40 cfs @ 12.40 hrs, Volume= 0.677 af, Depth= 1.53"


1. 5.	(ac) CN .038 70 .081 71 .178 89 .297 71 .297 Length (feet)) Woo 1 Mea 9 Grav 1 Weig	cription ods, Good, dow, non <u>/el roads, l</u> ghted Aver 00% Pervi Velocity (ft/sec)	grazed, HS <u>HSG C</u> rage	Description	
21.4					Direct Entry, See spreadsheet	
				Subcat	tchment SC1.11:	
				Hydro	ograph	
6 					Type III 24-hr 10-Year Event Rainfall=4.20" Runoff Area=5.297 ac Runoff Volume=0.677 af Runoff Depth=1.53" Tc=27.4 min CN=71	Runoff

Summary for Subcatchment SC1.12:

Runoff = 1.54 cfs @ 12.43 hrs, Volume= 0.196 af, Depth= 1.53"


(min) (feet) (ft/ft) (ft/sec) (cfs)	C Description Direct Entry, See spreadsheet
	hment SC1.12:
	Type III 24-hr 10-Year Event Rainfall=4.20" Runoff Area=1.538 ac Runoff Volume=0.196 af Runoff Depth=1.53" Tc=28.6 min CN=71

Summary for Subcatchment SC1.13:

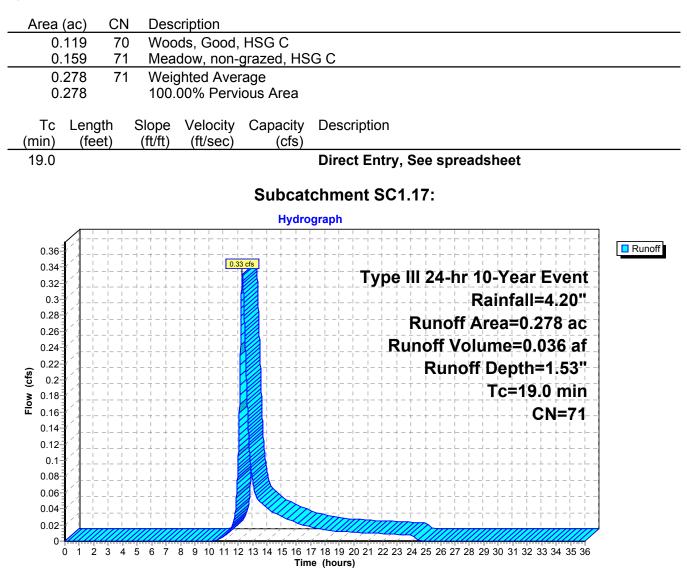
Summary for Subcatchment SC1.14:

Runoff = 1.71 cfs @ 12.35 hrs, Volume= 0.203 af, Depth= 1.53"

Summary for Subcatchment SC1.15:

Runoff = 2.64 cfs @ 12.21 hrs, Volume= 0.253 af, Depth= 1.60"

0 0 1 1 Tc (min)) (feet) (ft/ft) (ft/sec) (cfs)	
14.5	5 Direct Entry	, See spreadsheet
	Subcatchment SC	1.15:
	Hydrograph	
2 2 2 2 2 2 	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	III 24-hr 10-Year Event Rainfall=4.20" Runoff Area=1.898 ac unoff Volume=0.253 af Runoff Depth=1.60" Tc=14.5 min CN=72
1- - - - 0 (24 25 26 27 28 29 30 31 32 33 34 35 36


Summary for Subcatchment SC1.16:

Runoff = 2.40 cfs @ 12.35 hrs, Volume= 0.280 af, Depth= 1.53"

Area (ac) CN Description								
1.222 70 Woods, Good, HSG C								
0.864 71 Meadow, non-grazed, HSG C 0.105 89 Gravel roads, HSG C								
2.191 71 Weighted Average								
2.191 100.00% Pervious Area								
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description							
23.2	Direct Entry, See spreadsheet							
Subca	tchment SC1.16:							
Hydro	ograph							
	Type III 24-hr 10-Year Event Rainfall=4.20" Runoff Area=2.191 ac Runoff Volume=0.280 af Runoff Depth=1.53" Tc=23.2 min CN=71							

Summary for Subcatchment SC1.17:

Runoff = 0.33 cfs @ 12.27 hrs, Volume= 0.036 af, Depth= 1.53"

Summary for Subcatchment SC1.2:

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.039 af, Depth= 2.21"

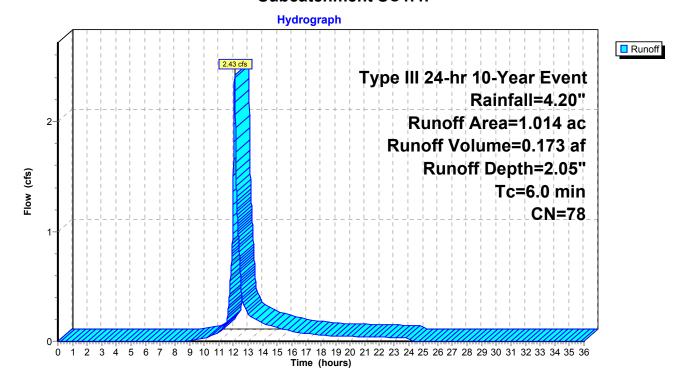
	070 98		ed roads, l			
	<u>144 7'</u>			grazed, HS	GC	
	214 80 144		ghted Aver 9% Pervic			
	070			vious Area		
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, Minimum	
				Subca	tchment SC1.2:	
				Hydro	graph	
0.6				+ - + - + - + - + - + - + - + - + -		Runoff
0.55					Type III 24-hr 10-Year Event	
0.5					Rainfall=4.20"	
0.45		<u>'</u> - <u>'</u> - <u>'</u> - 			Runoff Area=0.214 ac	
0.4		<u>'</u> - <u>'</u> - <u>'</u> - 			Runoff Volume=0.039 af	
<u>2</u> 0.35					Runoff Depth=2.21"	
0.35 0.35 0.3-					Tc=6.0 min	
0.25		+ - +	+ - +		+ - + - + - + - + - + - + - + - + - + -	
0.2		+ - +	+ - + - 			
0.15						
0.1-					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.05			$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$			
-						

CN=67

Summary for Subcatchment SC1.3:

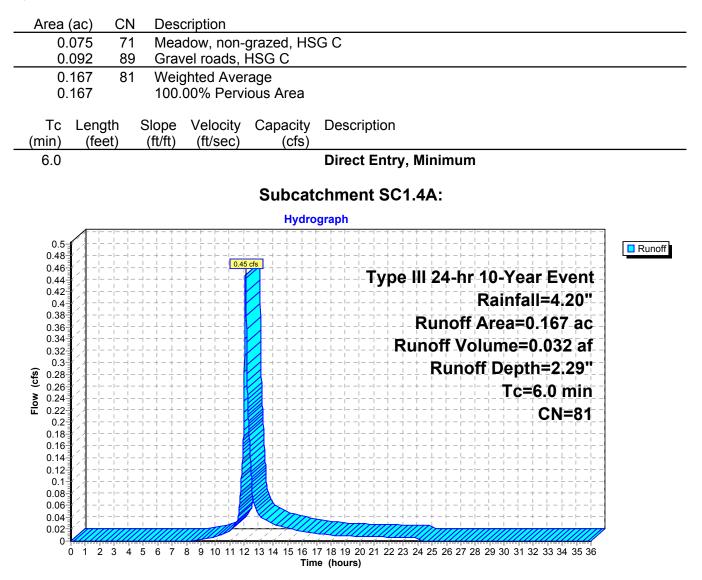
Runoff 2.05 cfs @ 12.23 hrs, Volume= 0.210 af, Depth= 1.27" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Event Rainfall=4.20"

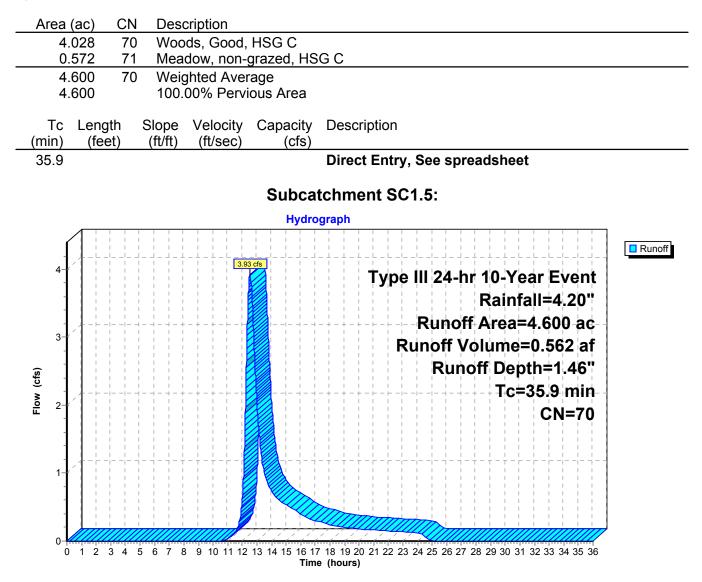

Area	(ac) CN	Description			
	.681 70	Woods, Good	I, HSG C		
0	.665 71			SG C	
* 0	.549 55	Yard stone, ⊢	ISG C		
0	.086 98	Roofs, HSG ()		
1	.981 67	0			
	.895	95.66% Pervi			
0	.086	4.34% Imperv	vious Area		
Тс	Length	Slope Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	Description	
15.2	(1001)	(1010) (10000)	(0.0)	Direct Entry, See spreadsheet	
			Subca	tchment SC1.3:	
			Hydro	ograph	
-			1 1 1 1 1 1 1 1 1 1 1 15 cfs		Runoff
2-				Type III 24-hr 10-Year Event	
-				Rainfall=4.20"	
				Runoff Area=1.981 ac	
-				Runoff Volume=0.210 af	
-					
(sj				Runoff Depth=1.27"	
-⊺ -⊺		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Runoff Depth=1.27" Tc=15.2 min	

0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Subcatchment SC1.4:


Runoff = 2.43 cfs @ 12.09 hrs, Volume= 0.173 af, Depth= 2.05"

_	Area	(ac)	CN	Desc	cription						
	0.	275	70	Woo	ds, Good,	HSG C					
	0.	445	71	Mea	dow, non-g	grazed, HS	IG C				
*	0.	248	98	Pave	ed roads, H	ISG C					
_	0.	046	89	Grav	vel roads, l	HSG C					
	1.	014	78	Weig	ghted Aver	age					
	0.	766		75.5	4% Pervio	us Area					
	0.	248		24.4	6% Imperv	ious Area/					
	_										
	Tc	Leng		Slope	Velocity	Capacity	Description				
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	6.0						Direct Entry, Minimum				
	Subcatchment SC1.4:										


Summary for Subcatchment SC1.4A:

Runoff = 0.45 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 2.29"

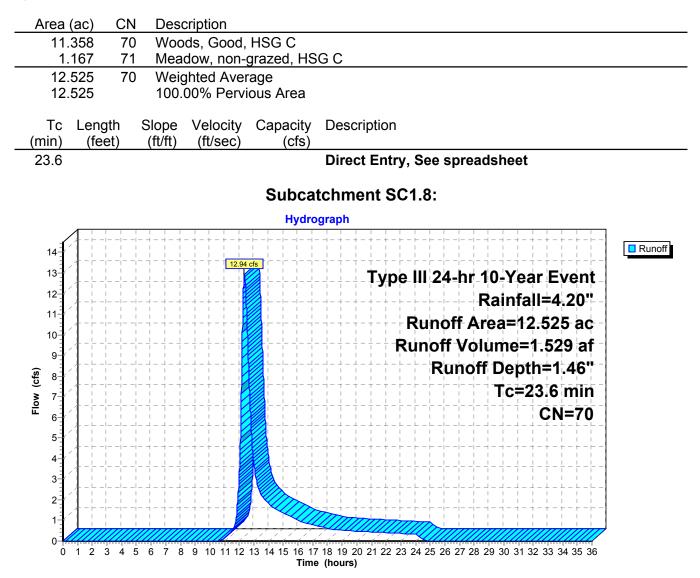
Summary for Subcatchment SC1.5:

Runoff = 3.93 cfs @ 12.53 hrs, Volume= 0.562 af, Depth= 1.46"

Summary for Subcatchment SC1.6:

Runoff = 38.88 cfs @ 12.44 hrs, Volume= 5.036 af, Depth= 1.46"

39.420		ds, Good,			
0.285		/el roads, l			
1.552			grazed, HS	GC	
41.257 41.257		ghted Aver 00% Pervi			
41.257	100.		ous Area		
Tc Leng	th Slope	Velocity	Capacity	Description	
(min) (fe		(ft/sec)	(cfs)		
29.1				Direct Entry, See spreadsheet	
			• •		
			Subca	tchment SC1.6:	
			Hydro	ograph	
		-+-+-+-+-			Runof
42		- + - + - + - + - 	- - - -		
38	· · · · · · · ·			Type III 24-hr 10-Year Event	
36					
34 32		-+-+-++++++++++++++++++++++++++++++++++			
30					
28				Runoff Volume=5.036 af	
	 			Runoff Depth=1.46"	
(sj) 24 22 22 20 20 20					
6 20				CN=70	
- 18- 16- 16-	''''''' 				
14		- + - + - + - +			
12					
8					
6		- + - + - + -			
4					
0			· · · · · · · · · · · · · · · · · · ·		


Summary for Subcatchment SC1.7:

Runoff = 6.64 cfs @ 12.25 hrs, Volume= 0.684 af, Depth= 1.53"

Area 4			cription ds, Good,	HSG C		
0		9 Grav	/el roads, l			
5		1 Weig	ghted Aver 00% Pervi	age		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
17.2					Direct Entry, See spreadsheet	
				Subca	tchment SC1.7:	
				Hydro	ograph	
7-			- + + + + - + - + - + - + - + - + - + -	1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type III 24-hr 10-Year Event	Runof
- 6					Rainfall=4.20" Runoff Area=5.355 ac	
5-					Runoff Volume=0.684 af	
Flow (cfs)		 			Runoff Depth=1-53" Tc=17.2 min	
6 3- -					CN=71	
2-						
- 1 -			$ \frac{1}{1}$ $ \frac{1}{1$			
0- 0) 1 2 3 4	5678	3 9 10 11 12		nafanfanfanfanfanfanfanfanfanfanfanfanfa	,

Summary for Subcatchment SC1.8:

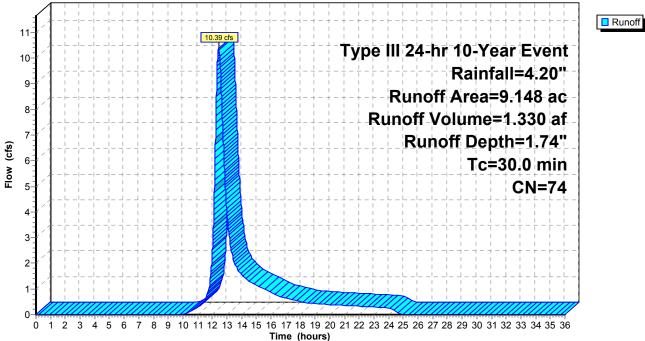
Runoff = 12.94 cfs @ 12.35 hrs, Volume= 1.529 af, Depth= 1.46"

Summary for Subcatchment SC1.9:

Runoff = 8.42 cfs @ 12.25 hrs, Volume= 0.880 af, Depth= 1.46"

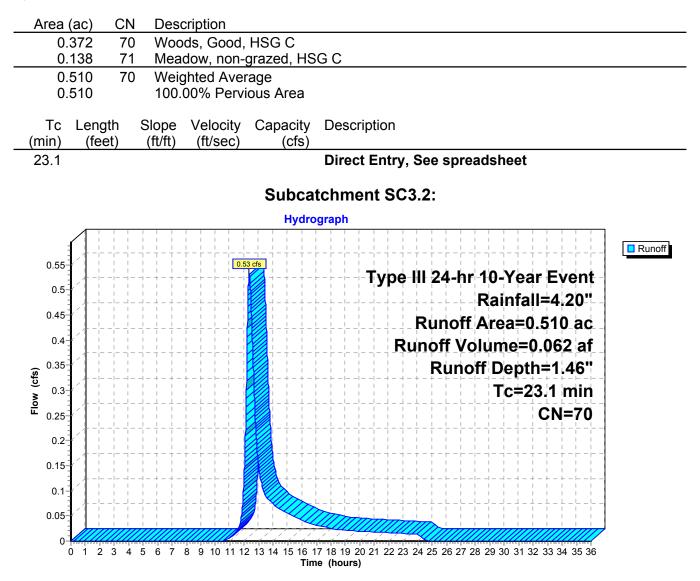
Area (ac) 6.694 0.451 0.061 7.206 7.206 Tc Lengt			
(min) (feet 17.4	t) (ft/ft) (ft/sec) (cfs) Direct Entry, See spreads	heet	
	Subcatchment SC1.9:		
Elow (cts)	Runoff Ard Runoff Volur Runoff Colur Runoff Colur	infall=4.20" ea=7.206 ac me=0.880 af Depth=1.46" Fc=17.4 min CN=70	Runoff

Summary for Subcatchment SC3.1:


Runoff = 10.39 cfs @ 12.43 hrs, Volume= 1.330 af, Depth= 1.74"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Event Rainfall=4.20"

Area	(ac)	CN	Desc	cription		
3.	839	70	Woo	ds, Good,	HSG C	
0.	131	89	Grav	el roads, l	HSG C	
4.	686	77	Woo	ds, Good,	HSG D	
0.4	492	78	Mea	dow, non-g	grazed, HS	SG D
9.	148	74	Weig	phted Aver	age	
9.	148		100.	00% Pervi	ous Area	
_						
Тс	Leng		Slope	Velocity	Capacity	1
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
30.0						Direct Entry, See spreadsheet


Subcatchment SC3.1:

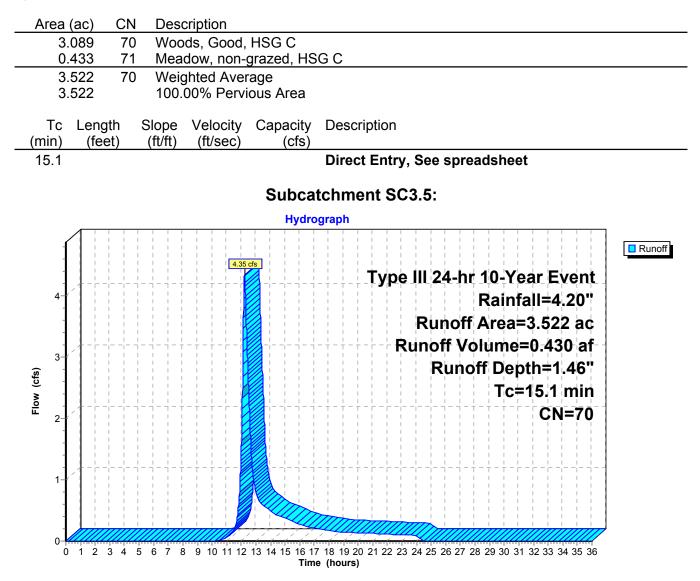
Summary for Subcatchment SC3.2:

Runoff = 0.53 cfs @ 12.35 hrs, Volume= 0.062 af, Depth= 1.46"

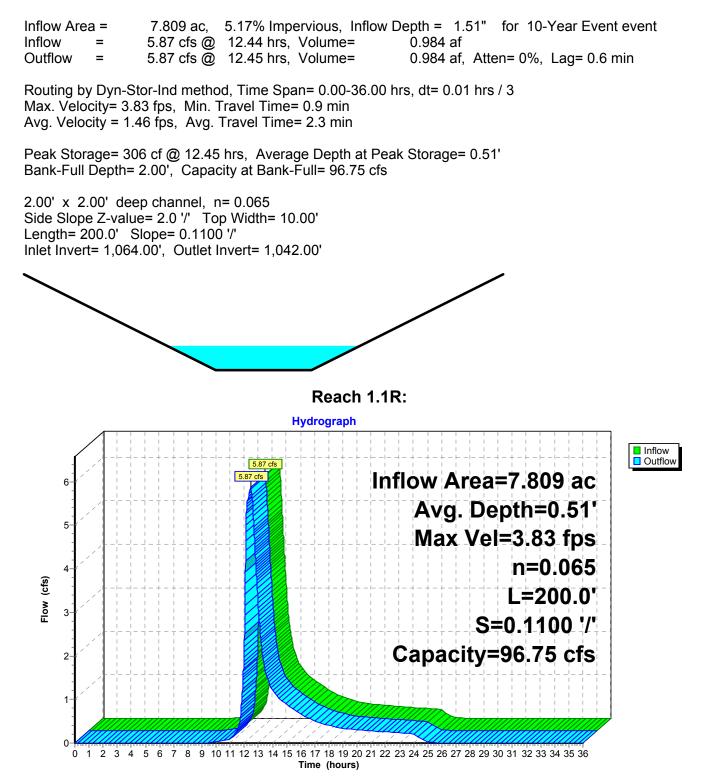
Summary for Subcatchment SC3.3:

Runoff = 9.71 cfs @ 12.40 hrs, Volume= 1.225 af, Depth= 1.46"

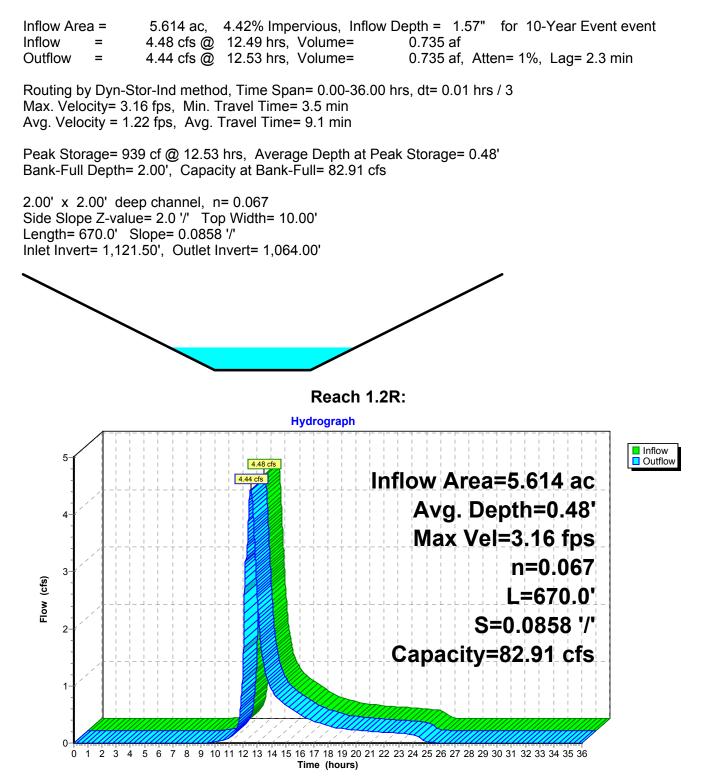
7.0	8.	<u>(ac)</u> 861	<u>CN</u> 70) Woo	cription ds, Good,			
		116	71			grazed, HS	SG C	
		059 036	<u>89</u> 70		vel roads, l ghted Aver			
		036			00% Pervi			
(mi	Tc in)	Leno (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
27	' .4						Direct Entry, See spreadsheet	
						Subca	atchment SC3.3:	
						Hydro	ograph	
	ſ							Runof
	10-				9.71	cfs	Type III 24-hr 10-Year Event	
	9-		' 	-iii 	$-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$		Rainfall=4.20"	
	8-	⊢ - / 	 	- + + + + + + + + + + + + +	-+-+-+-+		Runoff Area=10.036 ac	
	7-7	/		$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$	$-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$		Runoff Volume=1.225 af	
(s	6	/ - <u>-</u> -					Runoff Depth=1.46"	
Flow (cfs)	-	/					Tc=27.4 min -	
Flo	5-						CN=70	
	4							
	3-							
	2		'' 					
	1	/ /	 _		- + - + - + - 1 1 1 1 1 1			
	-		· ·			<u></u>		


Summary for Subcatchment SC3.4:

Runoff = 5.81 cfs @ 12.27 hrs, Volume= 0.614 af, Depth= 1.46"


0.	.217 .777 .033	89	Mea Grav	/el roads, l	grazed, HS HSG C	G C				
	.027 .027	70) vvei 100.	ghted Aver 00% Pervi	age ous Area					
Tc (min)		ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	n			
17.9						Direct En	try, See spre	eadsheet		
					Subca	tchment	SC3.4:			
	_				Hydro	graph				
Flow (cfs)					1 1 1 1 -1 2 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ty	Runoff V	Rainfal f Area=5 olume=0 off Depti	l=4.20" .027 ac).614 af	Runo
MO 3-									CN=70	
2-										
- 1 -								$\overline{T} = \overline{T} = \overline{T} = \overline{T} = \overline{T} = \overline{T}$		

Summary for Subcatchment SC3.5:

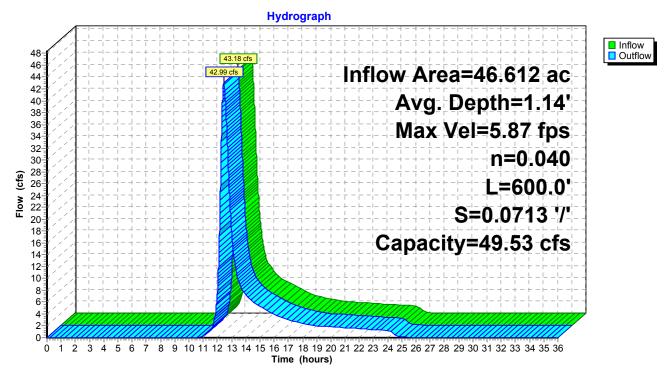

Runoff = 4.35 cfs @ 12.22 hrs, Volume= 0.430 af, Depth= 1.46"

Summary for Reach 1.1R:

Summary for Reach 1.2R:

Summary for Reach 1.3R: Stream at Culvert Inlet

Inflow Area = 46.612 ac, 0.00% Impervious, Inflow Depth = 1.47" for 10-Year Event event Inflow = 43.18 cfs @ 12.45 hrs, Volume= 5.720 af Outflow = 42.99 cfs @ 12.46 hrs, Volume= 5.720 af, Atten= 0%, Lag= 1.0 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 5.87 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.20 fps, Avg. Travel Time= 4.5 min


Peak Storage= 4,393 cf @ 12.46 hrs, Average Depth at Peak Storage= 1.14' Defined Flood Depth= 3.00', Capacity at Flood Depth= 277.60 cfs Bank-Full Depth= 1.19', Capacity at Bank-Full= 49.53 cfs

Custom cross-section, Length= 600.0' Slope= 0.0713 '/' (101 Elevation Intervals) Constant n= 0.040 Mountain streams Inlet Invert= 1,242.00', Outlet Invert= 1,199.19'

‡

Offset (feet)	Elevation (feet)	Chan.Depth (feet)
0.00	1,200.38	0.00
2.19	1,200.00	0.38
3.65	1,199.58	0.80
5.00	1,199.19	1.19
6.99	1,199.47	0.91
10.46	1,200.00	0.38
17.14	1,200.38	0.00

Depth (feet)	End Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.28	0.4	3.0	249	1.09
0.39	0.8	4.1	480	2.65
0.81	3.4	8.4	2,034	18.29
1.19	8.2	17.4	4,931	49.53

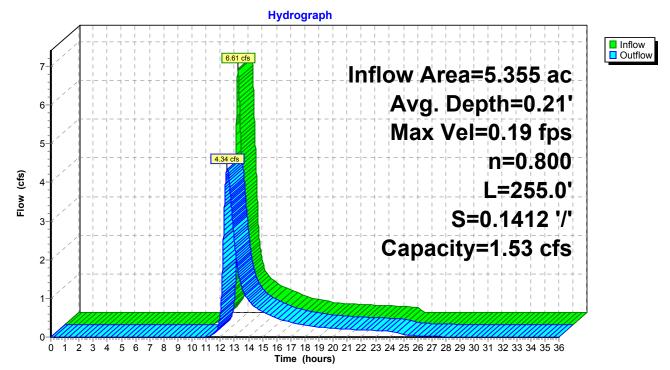
Reach 1.3R: Stream at Culvert Inlet

Summary for Reach 1.4R: From Level Spreader

 Inflow Area =
 5.355 ac,
 0.00% Impervious, Inflow Depth =
 1.53" for 10-Year Event event

 Inflow =
 6.61 cfs @
 12.26 hrs, Volume=
 0.684 af

 Outflow =
 4.34 cfs @
 12.50 hrs, Volume=
 0.683 af, Atten= 34%, Lag= 14.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.19 fps, Min. Travel Time= 22.1 min Avg. Velocity = 0.05 fps, Avg. Travel Time= 78.7 min

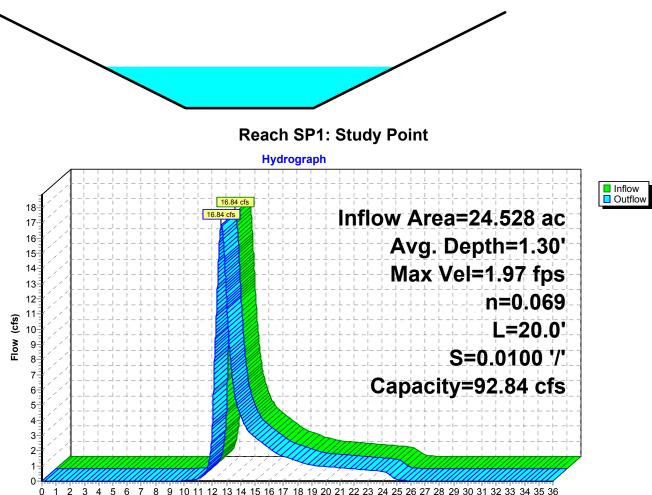
Peak Storage= 5,737 cf @ 12.50 hrs, Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.10', Capacity at Bank-Full= 1.53 cfs

100.00' x 0.10' deep channel, n= 0.800 Side Slope Z-value= 50.0 '/' Top Width= 110.00' Length= 255.0' Slope= 0.1412 '/' Inlet Invert= 1,258.00', Outlet Invert= 1,222.00'

Reach 1.4R: From Level Spreader

Summary for Reach SP1: Study Point

 Inflow Area =
 24.528 ac, 2.13% Impervious, Inflow Depth = 1.43" for 10-Year Event event


 Inflow =
 16.84 cfs @
 12.63 hrs, Volume=
 2.932 af

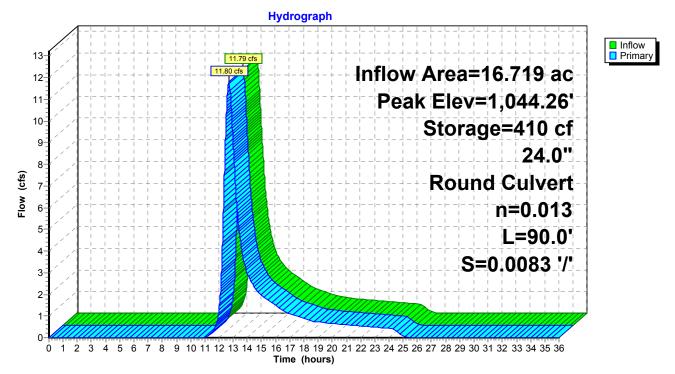
 Outflow =
 16.84 cfs @
 12.64 hrs, Volume=
 2.932 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.97 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.68 fps, Avg. Travel Time= 0.5 min

Peak Storage= 171 cf @ 12.64 hrs, Average Depth at Peak Storage= 1.30' Bank-Full Depth= 3.00', Capacity at Bank-Full= 92.84 cfs

4.00' x 3.00' deep channel, n= 0.069 Side Slope Z-value= 2.0 '/' Top Width= 16.00' Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 1,042.00', Outlet Invert= 1,041.80'

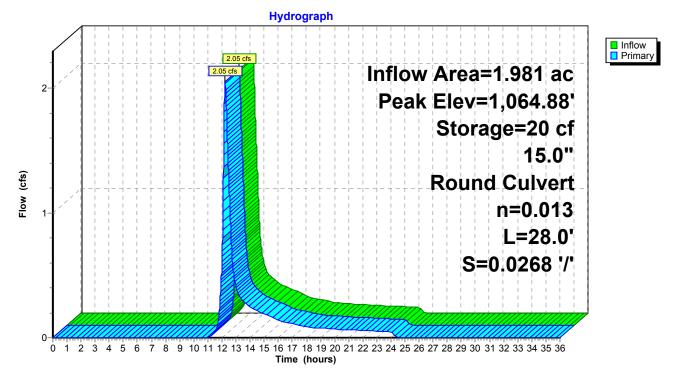
Summary for Pond 1P: SD-1


Inflow Area =	16.719 ac,	0.71% Impervious, Inflo	w Depth = 1.40" for 10-Year Event ever	nt
Inflow =	11.79 cfs @	12.71 hrs, Volume=	1.948 af	
Outflow =	11.80 cfs @	12.72 hrs, Volume=	1.948 af, Atten= 0%, Lag= 0.5 min	
Primary =	11.80 cfs @	12.72 hrs, Volume=	1.948 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,044.26'@ 12.70 hrs Surf.Area= 331 sf Storage= 410 cf Flood Elev= 1,047.00' Surf.Area= 1,575 sf Storage= 2,345 cf

Plug-Flow detention time= 0.8 min calculated for 1.948 af (100% of inflow) Center-of-Mass det. time= 0.7 min (898.9 - 898.2)

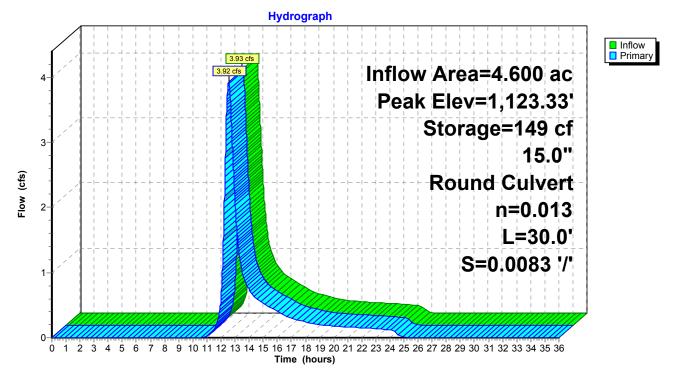
Volume	Inv	ert Avai	il.Storage	Storage Descripti	ion		
#1	1,042.0	00'	2,345 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)
Elevatio (fee 1,042.0 1,044.0 1,046.0 1,047.0	t) 00 00 00	Surf.Area (sq-ft) 65 290 665 1,575	Perim. (feet) 35.0 70.0 105.0 180.0	Inc.Store (cubic-feet) 0 328 929 1,088	Cum.Store (cubic-feet) 0 328 1,258 2,345	Wet.Area (sq-ft) 65 376 894 2,601	
Device	Routing	In	vert Outl	et Devices			
#1	#1 Primary 1,042.00' 24.0" Round SD-1 L= 90.0' CPP, projecting, no headwall, Ke= 0.900 Outlet Invert= 1,041.25' S= 0.0083 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior						


Primary OutFlow Max=11.80 cfs @ 12.72 hrs HW=1,044.26' TW=1,043.29' (Dynamic Tailwater) **1=SD-1** (Inlet Controls 11.80 cfs @ 3.75 fps) Pond 1P: SD-1

Summary for Pond 2P: SD-2

Inflow Area = Inflow = Outflow = Primary =	2.05 cfs @ 2.05 cfs @	12.23 hrs 12.23 hrs	pervious, Inflow D s, Volume= s, Volume= s, Volume=	0.210 af	10-Year Event event 0%, Lag= 0.0 min				
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,064.88' @ 12.23 hrs Surf.Area= 34 sf Storage= 20 cf								
Center-of-Mass d	et. time= 0.3	min (875.2	,						
Volume Inv	ert Avail.	Storage Storage	Storage Descriptior	1					
#1 1,064.	00'	195 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)				
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
1,064.00	12	15.0	0	0	12				
1,066.00	80	35.0	82	82	106				
1,067.00	150	50.0	113	195	216				
Device Routing	Inve	ert Outlet	t Devices						
#1 Primary	1,064.0	L= 28 Outlet	Round SD-2 .0' CPP, projecting t Invert= 1,063.25' 013 Corrugated PE	S= 0.0268 '/' Cc=					

Primary OutFlow Max=2.05 cfs @ 12.23 hrs HW=1,064.88' TW=1,064.49' (Dynamic Tailwater) **1=SD-2** (Outlet Controls 2.05 cfs @ 3.13 fps) Pond 2P: SD-2



Summary for Pond 3P: SD-3

Inflow Area =	4.600 ac,		· · ·		r 10-Year Event event
Inflow =	3.93 cfs @	12.53 h	rs, Volume=	0.562 af	
Outflow =	3.92 cfs @	12.56 h	rs, Volume=	0.562 af. Atten=	0%, Lag= 1.5 min
Primary =			rs, Volume=	0.562 af	eve, Edg Hermin
Tilliary –	0.02 013 @	12.00 11		0.002 ai	
Bouting by Dyn	Stor Ind moth	ad Time ($S_{non-0.00.26.00}$ h	$r_{0} dt = 0.01 hr_{0} / 2$	
0, ,			Span= 0.00-36.00 h		
Peak Elev= 1,12	3.33 @ 12.56	nrs Sun	f.Area= 180 sf Stor	age= 149 cf	
0			lated for 0.561 af (1	00% of inflow)	
Center-of-Mass	det. time= 0.8	min (886	5.1 - 885.3)		
Maluna In		~ '			
Volume In	vert Avail.	Storage	Storage Description	n	
					d below (Recalc)
-		666 cf	Custom Stage Da		below (Recalc)
					below (Recalc) Wet.Area
#1 1,122	.00'	666 cf	Custom Stage Da	ta (Irregular) Listed	Wet.Area
#1 1,122 Elevation (feet)	.00' Surf.Area (sq-ft)	666 cf Perim. (feet)	Custom Stage Da Inc.Store (cubic-feet)	ta (Irregular) Listed Cum.Store	Wet.Area (sq-ft)
#1 1,122 Elevation (feet) 1,122.00	.00' Surf.Area (sq-ft) 55	666 cf Perim. (feet) 30.0	Custom Stage Da Inc.Store (cubic-feet) 0	ta (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 55
#1 1,122 Elevation (feet) 1,122.00 1,124.00	.00' Surf.Area (sq-ft) 55 270	666 cf Perim. (feet) 30.0 70.0	Custom Stage Da Inc.Store (cubic-feet) 0 298	ta (Irregular) Listed Cum.Store (cubic-feet) 0 298	Wet.Area (sq-ft) 55 389
#1 1,122 Elevation (feet) 1,122.00	.00' Surf.Area (sq-ft) 55	666 cf Perim. (feet) 30.0	Custom Stage Da Inc.Store (cubic-feet) 0	ta (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 55
#1 1,122 Elevation (feet) 1,122.00 1,124.00	.00' Surf.Area (sq-ft) 55 270 475	666 cf Perim. (feet) 30.0 70.0 90.0	Custom Stage Da Inc.Store (cubic-feet) 0 298	ta (Irregular) Listed Cum.Store (cubic-feet) 0 298	Wet.Area (sq-ft) 55 389

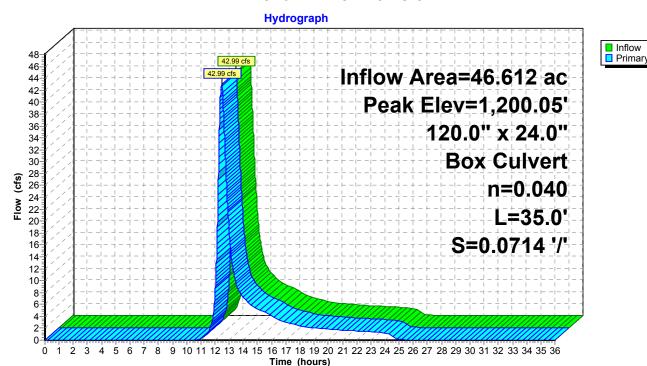
viceRoutingInvertOutlet Devices#1Primary1,122.00'**15.0" Round SD-3**
L= 30.0' CPP, projecting, no headwall, Ke= 0.900
Outlet Invert= 1,121.75' S= 0.0083 '/' Cc= 0.900
n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=3.92 cfs @ 12.56 hrs HW=1,123.33' TW=1,121.97' (Dynamic Tailwater) **1=SD-3** (Inlet Controls 3.92 cfs @ 3.20 fps) Pond 3P: SD-3

Summary for Pond 4P: Box Culvert

 Inflow Area =
 46.612 ac, 0.00% Impervious, Inflow Depth = 1.47" for 10-Year Event event

 Inflow =
 42.99 cfs @
 12.46 hrs, Volume=
 5.720 af


 Outflow =
 42.99 cfs @
 12.46 hrs, Volume=
 5.720 af, Atten= 0%, Lag= 0.0 min

 Primary =
 42.99 cfs @
 12.46 hrs, Volume=
 5.720 af

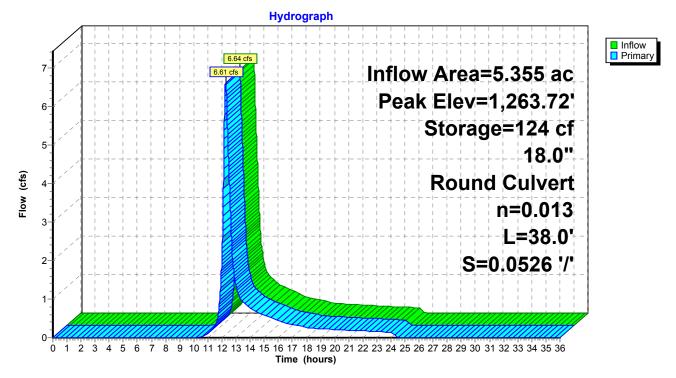
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,200.05' @ 12.46 hrs Flood Elev= 1,200.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	1,199.00'	120.0" W x 24.0" H Box SD-4 L= 35.0' Box, headwall w/3 rounded edges, Ke= 0.200 Outlet Invert= 1,196.50' S= 0.0714 '/' Cc= 0.900 n= 0.040 Mountain streams

Primary OutFlow Max=42.98 cfs @ 12.46 hrs HW=1,200.05' (Free Discharge) **1=SD-4** (Inlet Controls 42.98 cfs @ 4.11 fps)

Pond 4P: Box Culvert

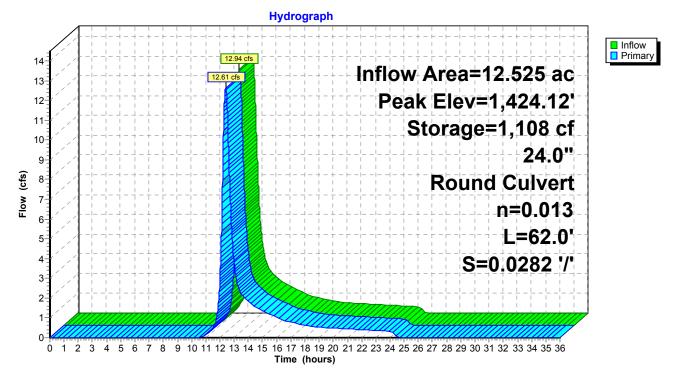
Summary for Pond 5P: SD-5


Inflow Area =	5.355 ac,	0.00% Impervious, Inflow D	epth = 1.53" for 10-Year Event event
Inflow =	6.64 cfs @	12.25 hrs, Volume=	0.684 af
Outflow =	6.61 cfs @	12.26 hrs, Volume=	0.684 af, Atten= 0%, Lag= 0.7 min
Primary =	6.61 cfs @	12.26 hrs, Volume=	0.684 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,263.72' @ 12.26 hrs Surf.Area= 154 sf Storage= 124 cf Flood Elev= 1,266.00' Surf.Area= 525 sf Storage= 859 cf

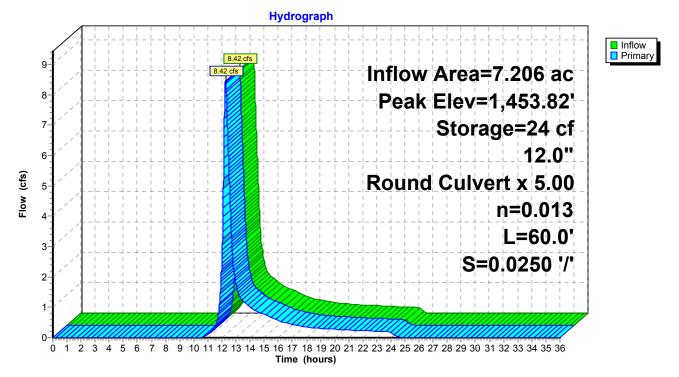
Plug-Flow detention time= 0.3 min calculated for 0.684 af (100% of inflow) Center-of-Mass det. time= 0.3 min (865.4 - 865.1)

Volume	Inv	ert Avai	I.Storage	Storage Descript	ion		
#1	1,262.	00'	859 cf	Custom Stage D)ata (Irregular) Lis	ted below (Recald	;)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,262.0 1,264.0 1,266.0	00	15 190 525	15.0 60.0 100.0	0 172 687	0 172 859	15 294 828	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	1,262	L= 38 Outle	et Invert= 1,260.00	ing, no headwall,)' S= 0.0526 '/' (PE, smooth interic	Cc= 0.900	


Primary OutFlow Max=6.61 cfs @ 12.26 hrs HW=1,263.72' TW=1,258.16' (Dynamic Tailwater) **1=SD-5** (Inlet Controls 6.61 cfs @ 3.74 fps) Pond 5P: SD-5

Summary for Pond 6P: SD-6

Inflow Area = Inflow = Outflow = Primary =	12.94 cfs @ 12.61 cfs @) 12.35 hr) 12.40 hr	npervious, Inflow De s, Volume= s, Volume= s, Volume=	1.529 af	10-Year Event event 3%, Lag= 3.2 min	
			Span= 0.00-36.00 hr Area= 1,219 sf Sto			
Center-of-Mass	det. time= 1.1	min (875.		,		
Volume Inv	/ert Avail.	Storage	Storage Description			
#1 1,422	.00'	5,794 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,422.00	75	55.0	0	0	75	
1,424.00	1,100	390.0	975	975	11,946	
1,426.00	4,025	975.0	4,819	5,794	75,506	
Device Routing Invert Outlet Devices						
#1 Primary	1,422.	00' 24.0''	Round SD-6			
5		L= 62	2.0' CPP, projecting	a, no headwall. Ke	= 0.900	
			t Invert= 1,420.25'			
			013 Corrugated PE			
Primary OutFlow Max=12.61 cfs @ 12.40 hrs $HW=1.424.11'$ (Free Discharge)						

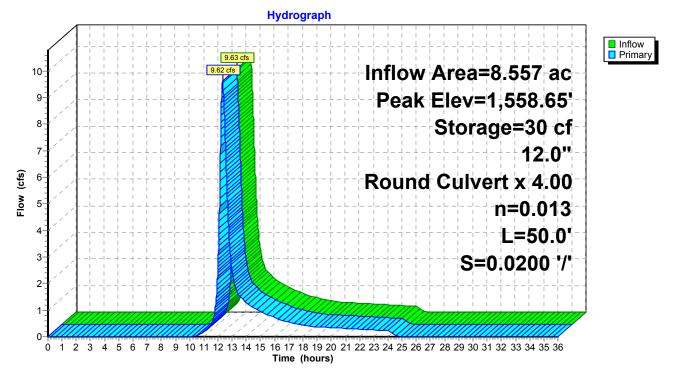

Primary OutFlow Max=12.61 cfs @ 12.40 hrs HW=1,424.11' (Free Discharge) **1=SD-6** (Inlet Controls 12.61 cfs @ 4.01 fps) Pond 6P: SD-6

Summary for Pond 7P: SD-7-11

Inflow Area = Inflow = Outflow = Primary =	8.42 cfs @ 8.42 cfs @) 12.25 hi) 12.25 hi	mpervious, Inflow [rs, Volume= rs, Volume= rs, Volume=	0.880 af	10-Year Event event 0%, Lag= 0.0 min	
			Span= 0.00-36.00 h f.Area= 46 sf Stora	nrs, dt= 0.01 hrs / 3 age= 24 cf		
	ention time= 0.2 s det. time= 0.1		lated for 0.880 af (.2 - 868.1)	100% of inflow)		
Volume	nvert Avail	.Storage	Storage Description	n		
#1 1,45	53.00'	273 cf	Custom Stage Da	ata (Irregular)Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,453.00	15	15.0	0	0	15	
1,454.00	55	30.0	33	33	73	
1,456.00	200	60.0	240	273	306	
Device Routi	ng Inv	ert Outle	et Devices			
#1 Prima	ary 1,453.	00' 12.0'	" Round SD-7 X 5	.00		
				ng, no headwall, Ke		
				_S= 0.0250 '/' Cc=	0.900	
n= 0.013 Corrugated PE, smooth interior						
Primary OutFlow Max=8.42 cfs @ 12.25 hrs HW=1,453.82' (Free Discharge)						

Pond 7P: SD-7-11

Summary for Pond 8P: SD-12-15


Inflow Area =	8.557 ac,	0.00% Impervious, Inflow D	epth = 1.53" for 10-Year Event event
Inflow =	9.63 cfs @	12.33 hrs, Volume=	1.093 af
Outflow =	9.62 cfs @	12.33 hrs, Volume=	1.093 af, Atten= 0%, Lag= 0.1 min
Primary =	9.62 cfs @	12.33 hrs, Volume=	1.093 af

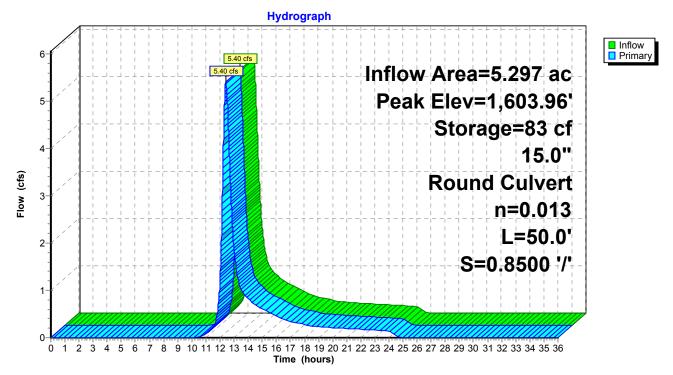
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,558.65' @ 12.33 hrs Surf.Area= 54 sf Storage= 30 cf

Plug-Flow detention time= 0.1 min calculated for 1.093 af (100% of inflow) Center-of-Mass det. time= 0.1 min (869.4 - 869.4)

Volume	Inv	ert Avail.	Storage	Storage Description	n		
#1	1,557.	50'	798 cf	Custom Stage Da	ta (Irregular)Listed	d below (Recalc)	
Elevatio (fee 1,557.5 1,558.0 1,560.0	et) 50 00 00	Surf.Area (sq-ft) 10 20 175	Perim. (feet) 10.0 18.0 55.0	Inc.Store (cubic-feet) 0 7 169	Cum.Store (cubic-feet) 0 7 177	Wet.Area (sq-ft) 10 29 256	
1,562.0	00	470	85.0	621	798	619	
Device	Routing	Inv	ert Outle	t Devices			
#1 Primary 1,557.50' 12.0'' Round SD-12 X 4.00 L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Outlet Invert= 1,556.50' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior							
- ·			c - 40 - 0			`	

Primary OutFlow Max=9.62 cfs @ 12.33 hrs HW=1,558.65' (Free Discharge) ☐ 1=SD-12 (Inlet Controls 9.62 cfs @ 3.06 fps) Pond 8P: SD-12-15

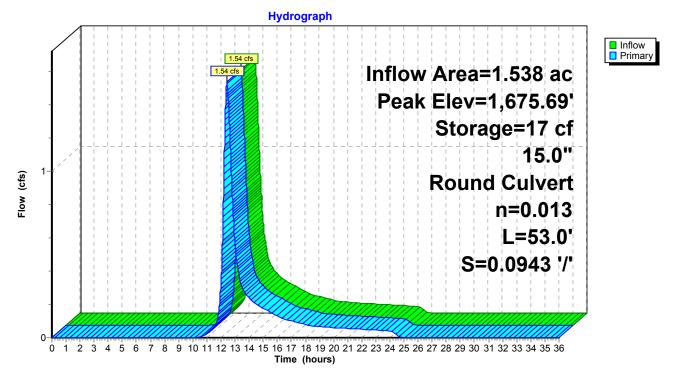
Summary for Pond 9P: SD-16


Inflow Area =	5.297 ac,	0.00% Impervious, Inflow De	epth = 1.53" for 10-Year Event event
Inflow =	5.40 cfs @	12.40 hrs, Volume=	0.677 af
Outflow =	5.40 cfs @	12.42 hrs, Volume=	0.677 af, Atten= 0%, Lag= 1.1 min
Primary =	5.40 cfs @	12.42 hrs, Volume=	0.677 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,603.96'@ 12.42 hrs Surf.Area= 88 sf Storage= 83 cf Flood Elev= 1,606.00' Surf.Area= 210 sf Storage= 378 cf

Plug-Flow detention time= 0.2 min calculated for 0.676 af (100% of inflow) Center-of-Mass det. time= 0.2 min (874.8 - 874.6)

Volume	Inv	ert Avail	.Storage	Storage Descripti	on		
#1	1,602.0	00'	378 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc	2)
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,602.00 1,604.00 1,606.00	0	10 90 210	12.0 40.0 65.0	0 87 292	0 87 378	10 137 371	
Device	Routing	١n	vert Outle	et Devices			
#1	Primary	1,602.	L= 5 Outle	" Round SD-16 0.0' CPP, project et Invert= 1,559.50 .013 Corrugated F)' S= 0.8500 '/' C	Cc= 0.900	


Primary OutFlow Max=5.40 cfs @ 12.42 hrs HW=1,603.96' (Free Discharge) ☐ 1=SD-16 (Inlet Controls 5.40 cfs @ 4.40 fps) Pond 9P: SD-16

Summary for Pond 10P: SD-17

Inflow Area = Inflow = Outflow = Primary =	1.54 cfs @ 1.54 cfs @	12.43 hr 12.43 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume=	0.196 af	10-Year Event event 0%, Lag= 0.2 min				
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,675.69' @ 12.43 hrs Surf.Area= 43 sf Storage= 17 cf								
Center-of-Mass d			ated for 0.196 af (10 9 - 875.7)	00% of inflow)					
Volume Inv	ert Avail.	Storage	Storage Description	ו					
#1 1,675.	00'	295 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)				
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
1,675.00	10	10.0	0	0	10				
1,676.00	65	35.0	33	33	102				
1,678.00	210	60.0	261	295	314				
Device Routing	Inve	ert Outle	t Devices						
#1 Primary	1,675.0	L= 53 Outle	' Round SD-17 3.0' CPP, projecting t Invert= 1,670.00' 013 Corrugated PE	S= 0.0943 '/' Cc=					

Primary OutFlow Max=1.54 cfs @ 12.43 hrs HW=1,675.69' (Free Discharge) **1=SD-17** (Inlet Controls 1.54 cfs @ 2.23 fps) Pond 10P: SD-17

Summary for Pond 11P: SD-18

Inflow Area =	9.148 ac,	0.00% Impervious, In	flow Depth = 1.74"	for 10-Year Event event
Inflow =	10.39 cfs @	12.43 hrs, Volume=	1.330 af	
Outflow =	9.81 cfs @	12.53 hrs, Volume=	1.330 af, Atte	en= 6%, Lag= 5.9 min
Primary =	9.81 cfs @	12.53 hrs, Volume=	1.330 af	-

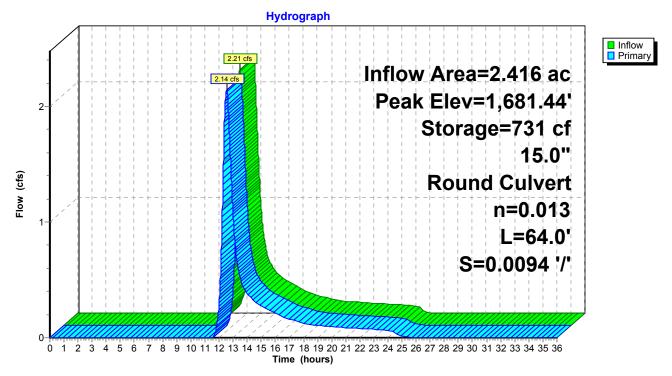
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,639.36'@ 12.53 hrs Surf.Area= 4,572 sf Storage= 3,794 cf

Plug-Flow detention time= 10.3 min calculated for 1.330 af (100% of inflow) Center-of-Mass det. time= 10.2 min (878.8 - 868.6)

Volume	Inv	ert Avai	I.Storage	Storage Descript	ion		
#1	1,638.	00'	46,536 cf	Custom Stage E)ata (Irregular) List	ted below (Recalc)	1
Elevatior (feet 1,638.00 1,640.00 1,642.00 1,643.00))))	Surf.Area (sq-ft) 1,320 6,760 16,100 17,840	Perim. (feet) 200.0 450.0 535.0 560.0	Inc.Store (cubic-feet) 0 7,378 22,195 16,963	Cum.Store (cubic-feet) 0 7,378 29,573 46,536	Wet.Area (sq-ft) 1,320 14,268 21,003 23,249	
-	<u>Routing</u> Primary		5.00' 36.0 L= 8 Outle	et Invert= 1,628.00	ting, no headwall,)' S= 0.1250 '/' (PE, smooth interio	Cc= 0.900	

Primary OutFlow Max=9.81 cfs @ 12.53 hrs HW=1,639.36' (Free Discharge) **1=SD-18** (Inlet Controls 9.81 cfs @ 3.14 fps)

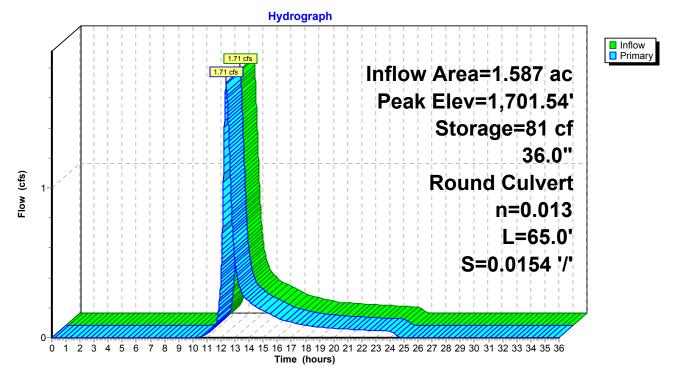
Hydrograph InflowPrimary 10.39 cfs Inflow Area=9.148 ac 11 9.81 cfs 10-Peak Elev=1,639.36' 9-Storage=3,794 cf 8-36.0" 7 Flow (cfs) **Round Culvert** 6 n=0.013 5-L=80.0' 4 S=0.1250 '/' 3-2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)


Pond 11P: SD-18

Summary for Pond 12P: SD-19

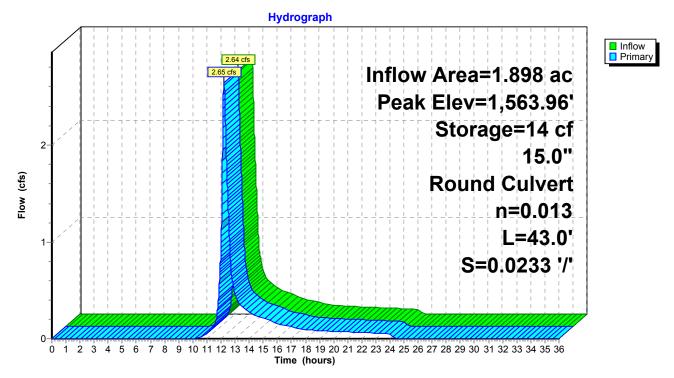
Inflow Area = Inflow = Outflow = Primary =	2.21 cfs @ 2.14 cfs @	12.47 hrs 12.54 hrs	npervious, Inflow D s, Volume= s, Volume= s, Volume=	0.295 af	10-Year Event event 3%, Lag= 4.1 min
0, ,			pan= 0.00-36.00 hr Area= 1,096 sf Sto	-	
Center-of-Mass of	det. time= 9.5	min (890.			
Volume Inv	vert Avail.	Storage	Storage Descriptior		
#1 1,680.	.00' 1	1,535 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,680.00	100	45.0	0	0	100
1,682.00	1,780	510.0	1,535	1,535	20,644
.,	.,		.,	.,	
Device Routing	j Inve	ert Outle	t Devices		
#1 Primary	/ 1,680.6	60' 15.0"	Round SD-19		
	.,		.0' CPP, projecting	n no headwall Ke	= 0.900
			t Invert= 1,680.00'		
			013 Corrugated PE		0.000
		11- 0.0			
Primary OutFlow	w Max=2.14 c	fs @ 12.54	4 hrs HW=1,681.44	l' (Free Discharge)

1=SD-19 (Inlet Controls 2.14 cfs @ 2.46 fps)


Pond 12P: SD-19

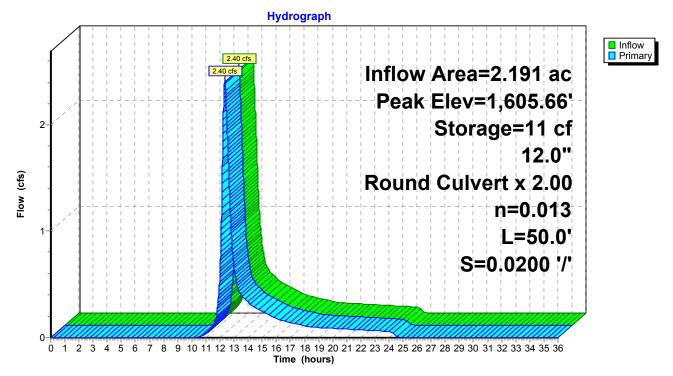
Summary for Pond 13P: SD-20

Inflow Area = Inflow = Outflow = Primary =	1.71 cfs @ 1.71 cfs @ 1.71 cfs @	12.35 hrs, 12.37 hrs, 12.37 hrs,	Volume= Volume= Volume=	0.203 af 0.203 af, Atten= 0 0.203 af	10-Year Event event %, Lag= 0.9 min
Routing by Dyn- Peak Elev= 1,70				rs, dt= 0.01 hrs / 3 rage= 81 cf	
Plug-Flow detent Center-of-Mass of				00% of inflow)	
Volume Inv	vert Avail.	Storage St	orage Descriptio	n	
#1 1,701	.00'	7,277 cf C ı	ustom Stage Da	ta (Irregular)Listed I	pelow (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,701.00	50	25.0	0	0	50
1,702.00	625	105.0	284	284	880
1,704.00	7,675	440.0	6,993	7,277	15,419
Device Routing	g Inv	ert Outlet [Devices		
#1 Primary	/ 1,701.(L= 65.0 Outlet I	nvert= 1,700.00'	ig, no headwall, Ke= S= 0.0154 '/' Cc= E, smooth interior	
Primary OutFlor				4' (Free Discharge))


Pond 13P: SD-20

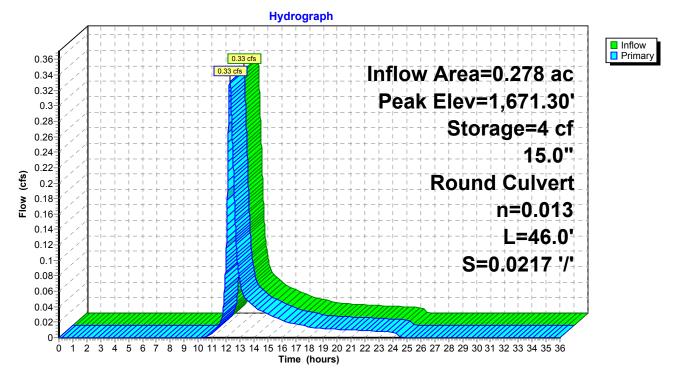
Summary for Pond 14P: SD-21

Inflow Area = Inflow = Outflow = Primary =	2.64 cfs @ 2.65 cfs @	12.21 hr 12.21 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume=	0.253 af	10-Year Event event 0%, Lag= 0.1 min
			Span= 0.00-36.00 hr Area= 19 sf Stora.		
Center-of-Mass c			ated for 0.253 af (1 0 - 859.8)	00% of inflow)	
Volume Inv	ert Avail.	Storage	Storage Description	า	
#1 1,563.	00'	153 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,563.00	10	10.0	0	0	10
1,564.00	20	20.0	15	15	38
1,566.00	135	50.0	138	153	219
Device Routing	Inve	ert Outle	t Devices		
#1 Primary	1,563.0	L= 43	Round SD-21 3.0' CPP, projecting t Invert= 1 562 00'	g, no headwall, Ke S= 0.0233 '/' Cc=	

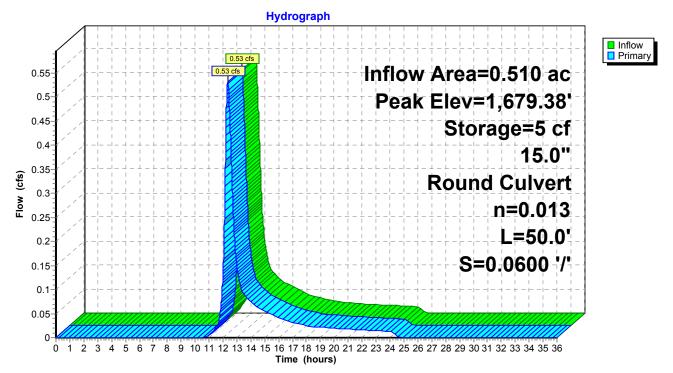

Primary OutFlow Max=2.64 cfs @ 12.21 hrs HW=1,563.96' (Free Discharge) **□1=SD-21** (Inlet Controls 2.64 cfs @ 2.63 fps) Pond 14P: SD-21

Summary for Pond 15P: SD-22-23

Inflow Area = Inflow = Outflow = Primary =	2.40 cfs @ 2.40 cfs @	12.35 hrs 12.35 hrs	pervious, Inflow D , Volume= , Volume= , Volume=	0.280 af	10-Year Event event 0%, Lag= 0.1 min	
			oan= 0.00-36.00 hr Area= 25 sf Stora			
Center-of-Mass d	et. time= 0.1	min (870.8				
Volume Inv	ert Avail.	Storage S	Storage Description	า		
#1 1,605.	00'	205 cf (Custom Stage Dat	t a (Irregular) Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,605.00	10	10.0	0	0	10	
1,606.00	35	25.0	21	21	55	
1,608.00	165	50.0	184	205	222	
Device Routing	Inve	ert Outlet	Devices			
#1 Primary	1,605.0	L= 50. Outlet	Invert= 1,604.00'	2 .00 g, no headwall, Ke: S= 0.0200 '/' Cc= c, smooth interior		


Primary OutFlow Max=2.40 cfs @ 12.35 hrs HW=1,605.66' (Free Discharge) **1=SD-22** (Inlet Controls 2.40 cfs @ 2.18 fps) Pond 15P: SD-22-23

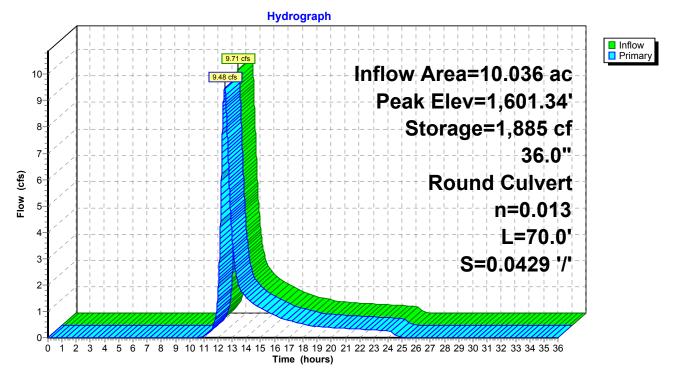
Summary for Pond 16P: SD-24


Inflow Area = Inflow = Outflow = Primary =	0.33 cfs @ 0.33 cfs @	12.27 hrs 12.28 hrs	pervious, Inflow De , Volume= , Volume= , Volume=	epth = 1.53" for 0.036 af 0.036 af, Atten= (0.036 af	10-Year Event event 0%, Lag= 0.1 min
			oan= 0.00-36.00 hr Area= 16 sf Stora		
Center-of-Mass	let. time= 0.4	min (867.2	,		
Volume Inv	/ert Avail.	Storage S	Storage Description	1	
#1 1,671	.00'	201 cf (Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,671.00	10	10.0	0	0	10
1,672.00	35	25.0	21	21	55
1,674.00	160	50.0	180	201	222
Device Routing	ı Inve	ert Outlet	Devices		
#1 Primary		L= 46.		g, no headwall, Ke S= 0.0217 '/' Cc=	

Primary OutFlow Max=0.33 cfs @ 12.28 hrs HW=1,671.30' (Free Discharge) **1=SD-24** (Inlet Controls 0.33 cfs @ 1.47 fps) Pond 16P: SD-24

Summary for Pond 17P: SD-25

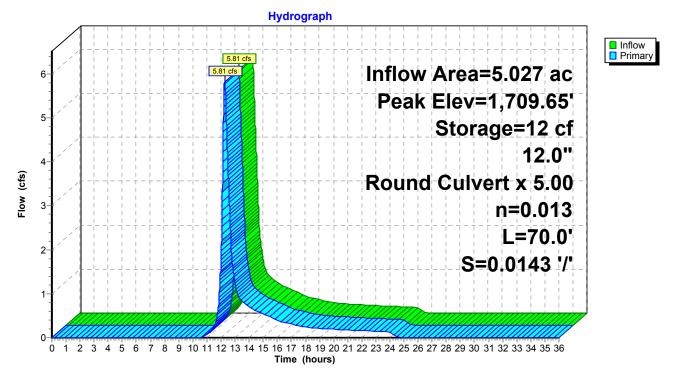
Primary OutFlow Max=0.53 cfs @ 12.35 hrs HW=1,679.38' (Free Discharge) **1=SD-25** (Inlet Controls 0.53 cfs @ 1.66 fps) Pond 17P: SD-25



Summary for Pond 18P: SD-26

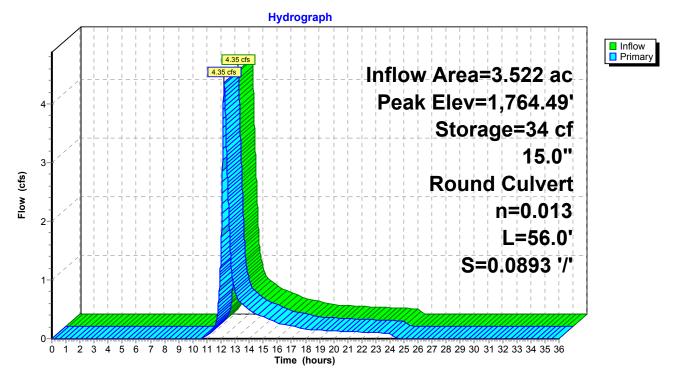
Inflow Area = Inflow = Outflow = Primary =	10.036 ac, 9.71 cfs @ 9.48 cfs @ 9.48 cfs @	12.40 h 12.47 h	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	1.225 af	10-Year Event event 2%, Lag= 4.0 min
			Span= 0.00-36.00 hr f.Area= 2,680 sf St		
Plug-Flow deter Center-of-Mass			lated for 1.225 af (1 .8 - 877.4)	00% of inflow)	
Volume Ir	nvert Avail.	Storage	Storage Description	า	
		Storage 9,543 cf			below (Recalc)
					below (Recalc) Wet.Area
#1 1,60	0.00'	9,543 cf	Custom Stage Dat	t a (Irregular) Listed	
#1 1,60 Elevation	0.00' Surf.Area	9,543 cf Perim.	Custom Stage Dat	t a (Irregular) Listed Cum.Store	Wet.Area
#1 1,60 Elevation (feet)	0.00' Surf.Area (sq-ft)	9,543 cf Perim. (feet)	Custom Stage Dat Inc.Store (cubic-feet)	t a (Irregular) Listed Cum.Store (cubic-feet)	Wet.Area (sq-ft)

Device Routing Invert Outlet Devices	
#1 Primary 1,600.00' 36.0'' Round SD-26 L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Outlet Invert= 1,597.00' S= 0.0429 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior	


Primary OutFlow Max=9.48 cfs @ 12.47 hrs HW=1,601.34' (Free Discharge) -1=SD-26 (Inlet Controls 9.48 cfs @ 3.11 fps) Pond 18P: SD-26

Summary for Pond 19P: SD-27-31

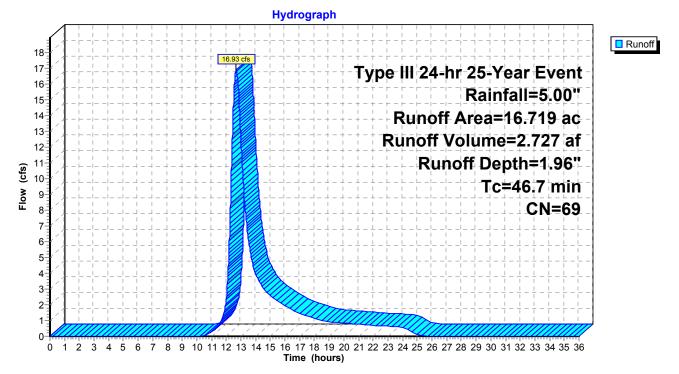
Inflow Area = Inflow = Outflow = Primary =	5.81 cfs @ 5.81 cfs @	12.27 hr 12.27 hr	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.614 af	10-Year Event event 0%, Lag= 0.0 min
			Span= 0.00-36.00 hi Area= 27 sf Stora		
Center-of-Mass c	let. time= 0.1	min (868			
Volume Inv	<u>ert</u> Avail.	Storage	Storage Description	า	
#1 1,709.	00'	214 cf	Custom Stage Dat	ta (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,709.00	10	10.0	0	0	10
1,710.00	40	25.0	23	23	55
1,712.00	165	55.0	191	214	262
Device Routing	Inv	ert Outle	et Devices		
#1 Primary	1,709.0		' Round SD-27 X 5		
				g, no headwall, Ke=	
			-	S= 0.0143 '/' Cc=	0.900
		n= 0.	013 Corrugated PE	, smooth interior	
		c = 40 = 0			,


Primary OutFlow Max=5.81 cfs @ 12.27 hrs HW=1,709.65' (Free Discharge) ☐ 1=SD-27 (Inlet Controls 5.81 cfs @ 2.16 fps) Pond 19P: SD-27-31

Summary for Pond 20P: SD-32

Inflow Area = Inflow = Outflow = Primary =	4.35 cfs @ 4.35 cfs @	12.22 hi 12.23 hi	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.430 af	10-Year Event event 0%, Lag= 0.2 min
0, ,			Span= 0.00-36.00 hr Area= 43 sf Stora	-	
Center-of-Mass of	let. time= 0.2	min (866	,		
Volume Inv	vert Avail.	Storage	Storage Description	ו	
#1 1,763	.00'	158 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>
1,763.00	10	10.0	0	0	10
1,764.00	25	20.0	17	17	38
1,766.00	130	50.0	141	158	219
Device Routing	l Inve	ert Outle	et Devices		
#1 Primary	y 1,763.0	L= 56 Outle	' Round SD-32 6.0' CPP, projecting at Invert= 1,758.00' 013 Corrugated PE	S= 0.0893 '/' Cc=	

Primary OutFlow Max=4.35 cfs @ 12.23 hrs HW=1,764.49' (Free Discharge) **1=SD-32** (Inlet Controls 4.35 cfs @ 3.54 fps) Pond 20P: SD-32


Summary for Subcatchment SC1.1:

Runoff = 16.93 cfs @ 12.66 hrs, Volume= 2.727 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Event Rainfall=5.00"

_	Area	(ac)	CN	Desc	cription		
	13.	069	70	Woo	ds, Good,	HSG C	
	2.	462	71	Mea	dow, non-g	grazed, HS	SG C
	0.	118	98	Pave	ed roads w	/curbs & se	ewers, HSG C
*	1.	070	55	Yard	stone, HS	SG C	
	16.	719	69	Weig	ghted Aver	age	
	16.	601		99.2	9% Pervio	us Area	
	0.	118		0.71	% Impervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	46.7						Direct Entry, See spreadsheet

Subcatchment SC1.1:

Summary for Subcatchment SC1.10:

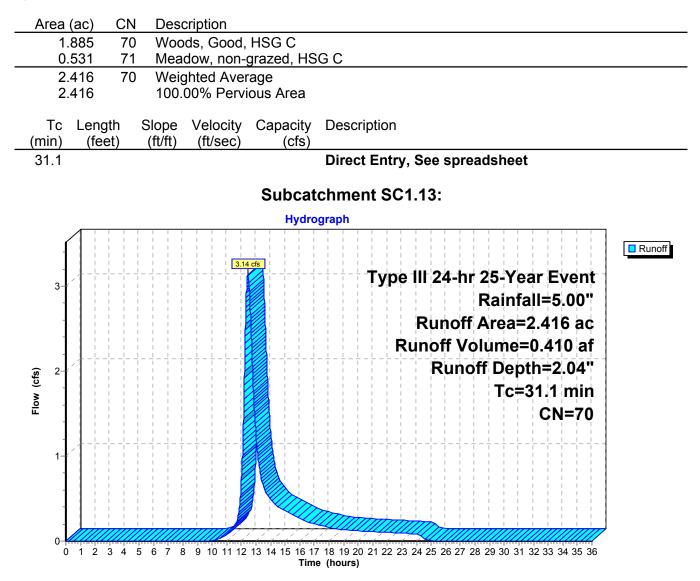
Runoff = 13.55 cfs @ 12.32 hrs, Volume= 1.509 af, Depth= 2.12"

1.567 7 0.498 8	 Woods, Goo Meadow, not Gravel roads Weighted Av 100.00% Pet 	n-grazed, HS s, HSG C rerage	G C	
Tc Length (min) (feet)	Slope Velocit (ft/ft) (ft/sec	y Capacity	Description	
21.8			Direct Entry, See spreadsheet	
		Subcat	chment SC1.10:	
		Hydro	ograph	
(sp) MOH		1 1 1 1 1 1 1 1 1 1 1 1 1 1 3.55 cfs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type III 24-hr 25-Year Event RainfalI=5.00" Runoff Area=8.557 ac Runoff Volume=1.509 af Runoff Depth=2.12" Tc=21.8 min CN=71	Runoff

Summary for Subcatchment SC1.11:

Runoff = 7.62 cfs @ 12.39 hrs, Volume= 0.934 af, Depth= 2.12"

0.17889Gravel roads, HSG C5.29771Weighted Average5.297100.00% Pervious Area	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	
27.4	Direct Entry, See spreadsheet
Subca	tchment SC1.11:
Hydr	rograph
8 7 6 6 7 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Type III 24-hr 25-Year Event Rainfall=5.00" Runoff Area=5.297 ac Runoff Volume=0.934 af
(st. 5-1	Runoff Depth=2.12"
A	Tc=27.4 min CN=71
$3\frac{1}{2} + \frac{1}{2} + 1$	


Summary for Subcatchment SC1.12:

Runoff = 2.17 cfs @ 12.42 hrs, Volume= 0.271 af, Depth= 2.12"

Area (ac)CNDescription0.91670Woods, Good, HSG0.54771Meadow, non-graze0.07589Gravel roads, HSG1.53871Weighted Average1.538100.00% Pervious ATcLengthSlopeVelocityCap(min)(feet)(ft/ft)28.6	ed, HSG C C
Su	ubcatchment SC1.12:
	Hydrograph
(g) Mol 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Type III 24-hr 25-Year Event Rainfall=5.00" Runoff Area=1.538 ac Runoff Volume=0.271 af Runoff Depth=2.12" Tc=28.6 min CN=71

Summary for Subcatchment SC1.13:

Runoff = 3.14 cfs @ 12.47 hrs, Volume= 0.410 af, Depth= 2.04"

Summary for Subcatchment SC1.14:

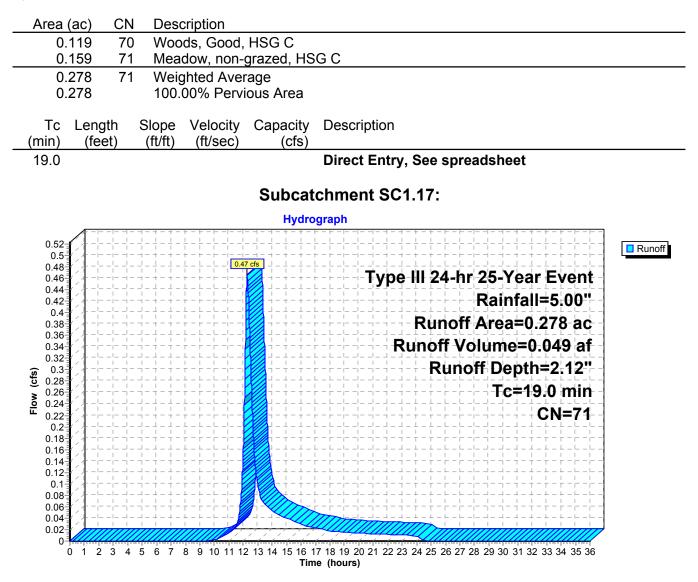
Runoff = 2.41 cfs @ 12.35 hrs, Volume= 0.280 af, Depth= 2.12"

24.1 Direct Entry, See spreadsheet Subcatchment SC1.14: Hydrograph	0 0 1	.623 .888 .076	70 Woo 71 Mea 89 Grav 71 Weig 100.	cription ods, Good, dow, non- <u>vel roads, I</u> ghted Aver 00% Pervi Velocity (ft/sec)	grazed, HS <u>HSG C</u> age	G C Description
Hydrograph Type III 24-hr 25-Year Event Rainfall=5.00" Runoff Area=1.587 ac Runoff Volume=0.280 af Runoff Depth=2.12" Tc=24.1 min		(1001)	(1010)	(10000)	(0.0)	Direct Entry, See spreadsheet
Type III 24-hr 25-Year Event Rainfall=5.00" Runoff Area=1.587 ac Runoff Volume=0.280 af Runoff Depth=2.12" Tc=24.1 min					Subcat	chment SC1.14:
2- 2- 2- 2- 3- 2- 3- 2- 2- 2- 2- 2- 3- 2- 2- 3- 2- 3- 2- 3- 2- 3- 2- 3- 2- 3- 2- 3- 2- 3- 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3					Hydro	ograph
	-				- - - - - 1 1 1 1 1 1 1 1 1 <th>Rainfall=5.00" Runoff Area=1.587 ac Runoff Volume=0.280 af Runoff Depth=2.12" Tc=24.1 min</th>	Rainfall=5.00" Runoff Area=1.587 ac Runoff Volume=0.280 af Runoff Depth=2.12" Tc=24.1 min

Summary for Subcatchment SC1.15:

Runoff = 3.70 cfs @ 12.20 hrs, Volume= 0.348 af, Depth= 2.20"

Area (ac)CNDescription0.80670Woods, Good, HS0.95571Meadow, non-gras0.13789Gravel roads, HS1.89872Weighted Average	zed, HSG C G C
1.898 100.00% Pervious	s Area
Tc Length Slope Velocity Ca (min) (feet) (ft/ft) (ft/sec)	apacity Description (cfs)
14.5	Direct Entry, See spreadsheet
S	Subcatchment SC1.15:
	Hydrograph
4- 3- 3- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4	Type III 24-hr 25-Year Event Rainfall=5.00" Runoff Area=1.898 ac Runoff Volume=0.348 af Runoff Depth=2.20"
(9) NOL 1 1 1 1 1 1 1 1 1 1 1 1 1	Tc=14.5 min CN=72
0 1 2 3 4 5 6 7 8 9 10 11 12 13 ⁻	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)


Summary for Subcatchment SC1.16:

Runoff = 3.38 cfs @ 12.34 hrs, Volume= 0.386 af, Depth= 2.12"

Area (ac) CN Description	
1.222 70 Woods, Good, HSG C 0.864 71 Meadow, non-grazed, HSG C	
0.105 89 Gravel roads, HSG C	
2.19171Weighted Average2.191100.00% Pervious Area	
Tc Length Slope Velocity Capacity Descr (min) (feet) (ft/ft) (ft/sec) (cfs)	iption
	t Entry, See spreadsheet
Subcatchme	nt SC1.16:
Hydrograph	
(g) 2	Type III 24-hr 25-Year Event Rainfall=5.00" Runoff Area=2.191 ac Runoff Volume=0.386 af Runoff Depth=2.12"
Sg: 2- I = 1 I = 1 I = 1 </td <th>Tc=23.2 min CN=71</th>	Tc=23.2 min CN=71
0 <mark>////////////////////////////////////</mark>	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

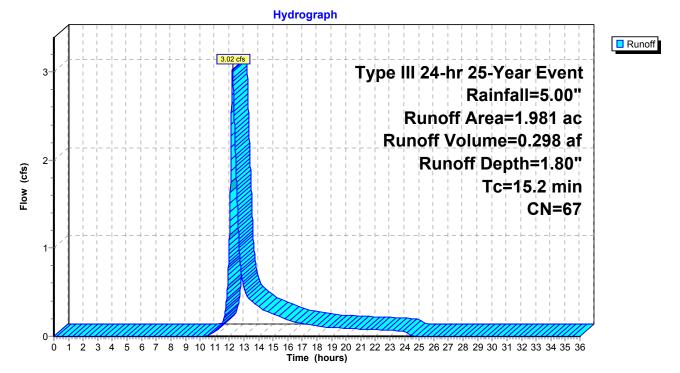
Summary for Subcatchment SC1.17:

Runoff = 0.47 cfs @ 12.27 hrs, Volume= 0.049 af, Depth= 2.12"

Summary for Subcatchment SC1.2:

Runoff = 0.73 cfs @ 12.09 hrs, Volume= 0.052 af, Depth= 2.89"

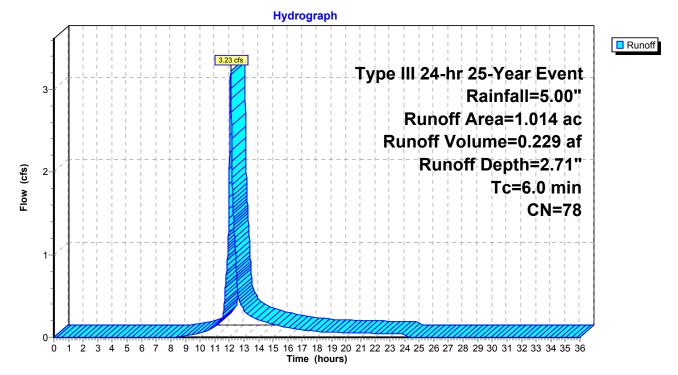
			ed roads, l dow, non-	grazed, HS	SG C	
		30 Weig	ghted Avei	age		
	144 070		9% Pervio			
0.	070	32.1	1% imper	vious Area		
Тс	Length	Slope	Velocity	Capacity	Description	
min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry, Minimum	
				Subca	tchment SC1.2:	
				Hydro	graph	
0.8-						Runof
0.75	/ 		+ - + -			
0.7-	21-6-6				Type III 24-hr 25-Year Event	
0.65-					Rainfall=5.00"	
0.6					Runoff Area=0.214 ac	
0.55 0.5-					Runoff Volume=0.052 af	
			$\begin{array}{cccc} + & - & + & - & - & - - & - \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1$		Runoff Depth=2.89"	
80 0.45 0.45 0.4-					Tc=6.0 min	
0.35					CN=80	
0.3						
0.25						
0.2-		$-\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$				
0.15						
0.1- 0.05-						
0.05			mm			


Summary for Subcatchment SC1.3:

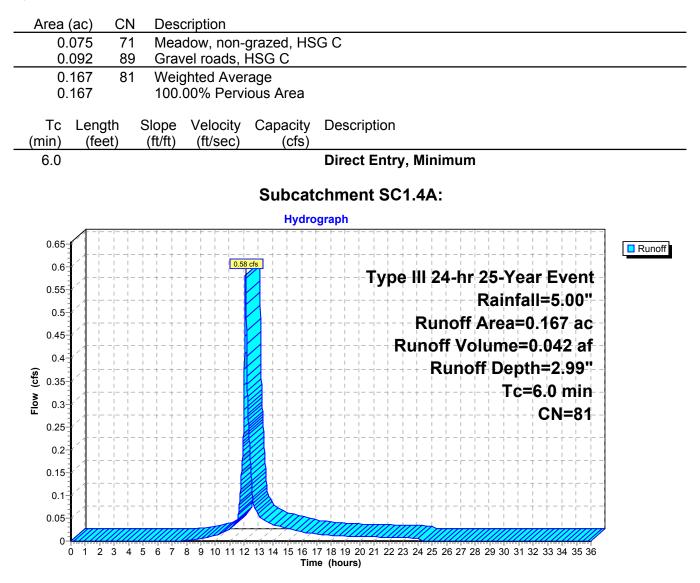
Runoff = 3.02 cfs @ 12.22 hrs, Volume= 0.298 af, Depth= 1.80"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Event Rainfall=5.00"

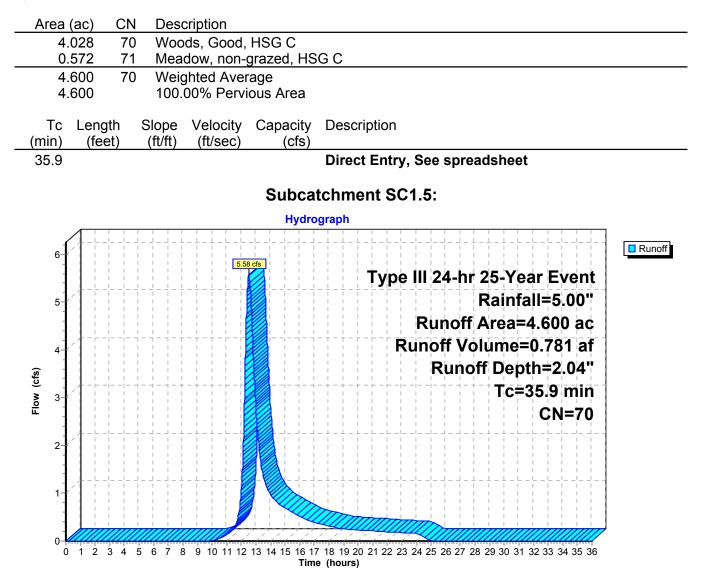
	Area	(ac)	CN	Desc	cription		
	0.	681	70	Woo	ds, Good,	HSG C	
	0.	665	71	Mea	dow, non-	grazed, HS	GC
*	0.	549	55	Yard	stone, HS	SG C	
	0.	086	98	Roof	s, HSG C		
	1.	981	67	Weig	phted Aver	age	
	1.	895		95.6	, 6% Pervio	us Area	
	0.	086		4.34	% Impervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	15.2						Direct Entry, See spreadsheet


Subcatchment SC1.3:

Summary for Subcatchment SC1.4:


Runoff = 3.23 cfs @ 12.09 hrs, Volume= 0.229 af, Depth= 2.71"

	Area	(ac)	CN	Desc	cription			
	0.	275	70	Woo	ds, Good,	HSG C		
	0.	445	71	Mea	dow, non-g	grazed, HS	GC	
*	0.	248	98	Pave	ed roads, F	ISG C		
	0.	046	89	Grav	vel roads, l	HSG C		
	1.	014	78	Weig	ghted Aver	age		
	0.	766		75.5	4% Pervio	us Area		
	0.248 24.46% Impervious Area							
	Тс	Leng		Slope	Velocity	Capacity	Description	
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0 Direct Entry, Minimum							
						Subca	tchment SC1.4:	


Summary for Subcatchment SC1.4A:

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 0.042 af, Depth= 2.99"

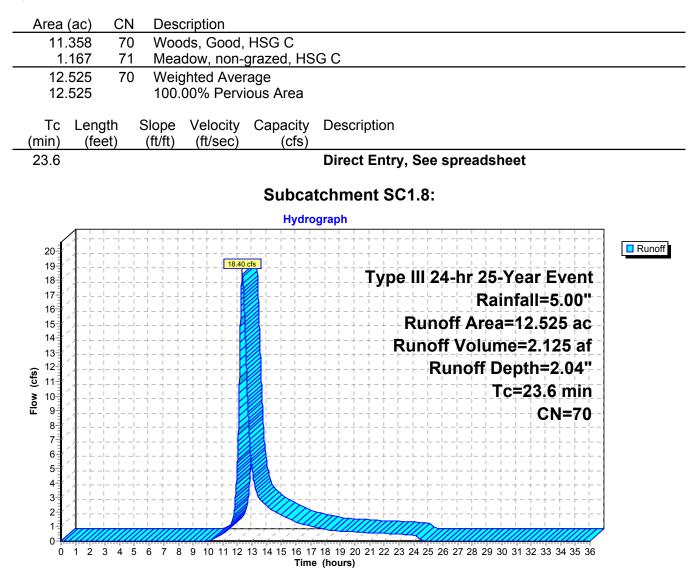
Summary for Subcatchment SC1.5:

Runoff = 5.58 cfs @ 12.52 hrs, Volume= 0.781 af, Depth= 2.04"

Summary for Subcatchment SC1.6:

Runoff = 55.23 cfs @ 12.42 hrs, Volume= 7.001 af, Depth= 2.04"

39.420 70 Woods, Good, HSG C 0.285 89 Gravel roads, HSG C		
1.552 71 Meadow, non-grazed, H	ISG C	
41.257 70 Weighted Average 41.257 100.00% Pervious Area		
41.237 100.00% Pervious Area		
Tc Length Slope Velocity Capacity		
(min) (feet) (ft/ft) (ft/sec) (cfs		
29.1	Direct Entry, See spreadsheet	
Subc	atchment SC1.6:	
Hyd	rograph	
60- + - + -		Runoff
55	Type III 24-hr 25-Year Event	
50 50	Rainfall=5.00"	
45	Runoff Area=41.257 ac	
40	Runoff Volume=7.001 af	
	Runoff Depth=2.04"	
(s) 35-2 1 </td <td>Tc=29.1 min</td> <td></td>	Tc=29.1 min	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	


Summary for Subcatchment SC1.7:

Runoff = 9.36 cfs @ 12.25 hrs, Volume= 0.944 af, Depth= 2.12"

0.	.216 89 .625 71	Meadow	oads, HSG , non-graze		2				
	.355 71 .355		d Average Pervious	Area					
Tc (min)	Length (feet)		locity Ca _l t/sec)	oacity De (cfs)	escriptio	on			
17.2				Di	rect Er	ntry, See sp	readshee	et	
			S	ubcatch	ment	SC1.7:			
				Hydrograp	oh				1
Flow (cfs)			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Runo Runoff	Rain ff Area /olume noff Der	ear Event fall=5.00" =5.355 ac =0.944 af oth=2.12" =17.2 min CN=71	Runof
4-7 3-7 1-7 1-7									

Summary for Subcatchment SC1.8:

Runoff = 18.40 cfs @ 12.35 hrs, Volume= 2.125 af, Depth= 2.04"

Summary for Subcatchment SC1.9:

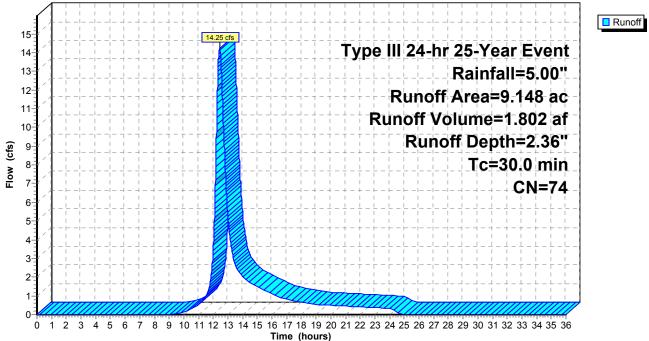
Runoff = 12.01 cfs @ 12.24 hrs, Volume= 1.223 af, Depth= 2.04"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Event Rainfall=5.00"

71								
A	rea (ac)	CN	Desc	ription				
	6.694 70 Woods, Good, HSG C							
	0.451	71			grazed, HS	SG C		
	0.061	89	Grav	el roads,	HSG C			
	7.206	70		hted Ave				
	7.206		100.0	00% Perv	ious Area			
	Tc Lenç iin) (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
17	7.4					Direct Entry, See spreadsheet		
					Subca	atchment SC1.9:		
					Hydro	ograph		
		-		- + - + - + - + -				
	13	 -		- + - + - + 12.01	cfs -		Runoff	
	12					Type III 24-hr 25-Year Event		
	11	- !!!				Rainfall=5.00"		
	10					Runoff Area=7.206 ac		
	9					Runoff Volume=1.223 af		
	8-1	- -	· -¦¦¦ ·					
ifs)		_				Runoff Depth=2.04"		
Flow (cfs)	7-1					Tc=17.4 min		
Flo	6					CN=70		
	5							
			·	- + - + - + -				
	3-1	, , , , , , , , , , , , , , , , , , ,	·					
	- T - I - I	i i i	1 I İ					
	2							

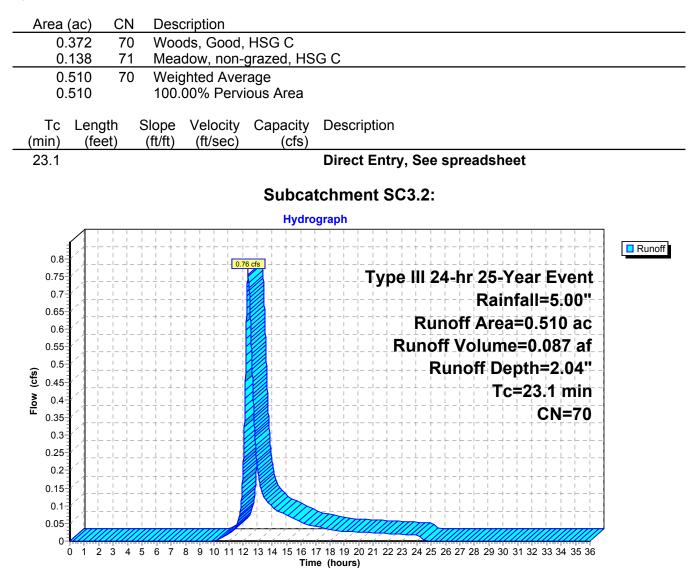
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Summary for Subcatchment SC3.1:

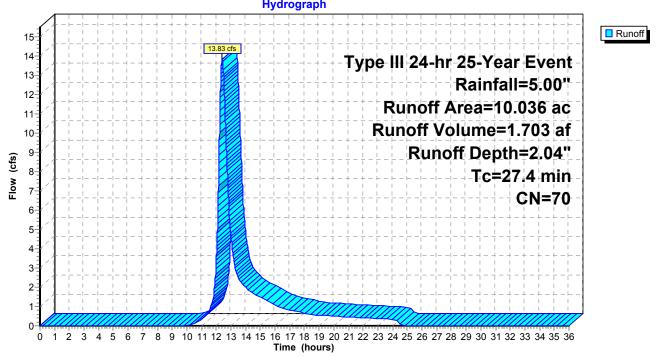

Runoff = 14.25 cfs @ 12.43 hrs, Volume= 1.802 af, Depth= 2.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Event Rainfall=5.00"

Area	(ac)	CN	Desc	cription		
3.	839	70	Woo	ds, Good,	HSG C	
0.	131	89	Grav	vel roads, l	HSG C	
4.	686	77	Woo	ds, Good,	HSG D	
0.	492	78	Mea	dow, non-g	grazed, HS	G D
9.	148	74	Weig	ghted Aver	age	
9.	9.148 100.00% Pervious Area					
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
30.0						Direct Entry, See spreadsheet


Subcatchment SC3.1:

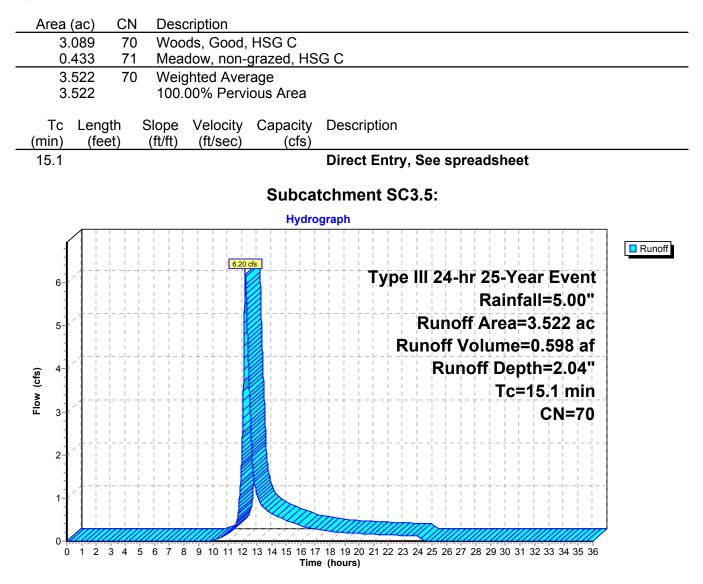
Summary for Subcatchment SC3.2:


Runoff = 0.76 cfs @ 12.34 hrs, Volume= 0.087 af, Depth= 2.04"

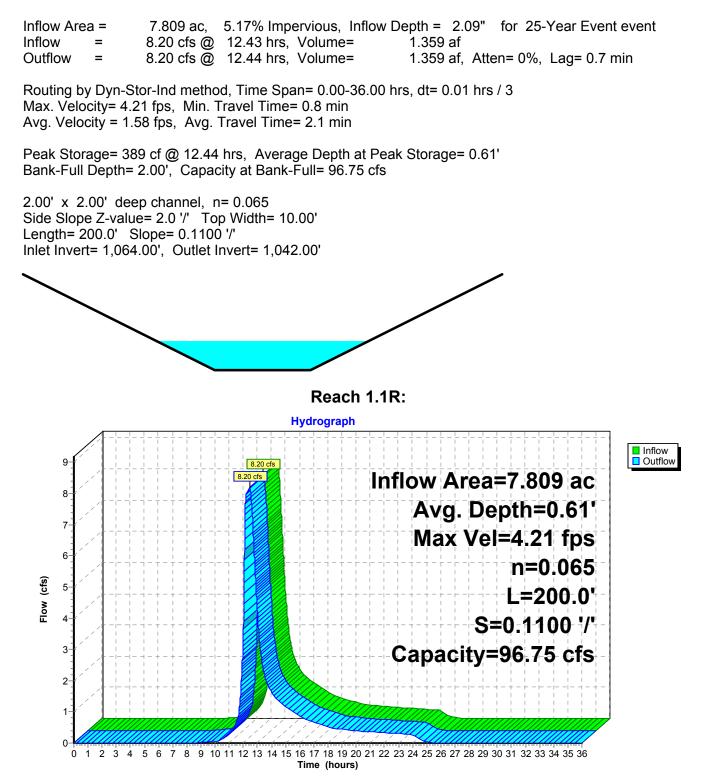
Summary for Subcatchment SC3.3:

Runoff = 13.83 cfs @ 12.39 hrs, Volume= 1.703 af, Depth= 2.04"

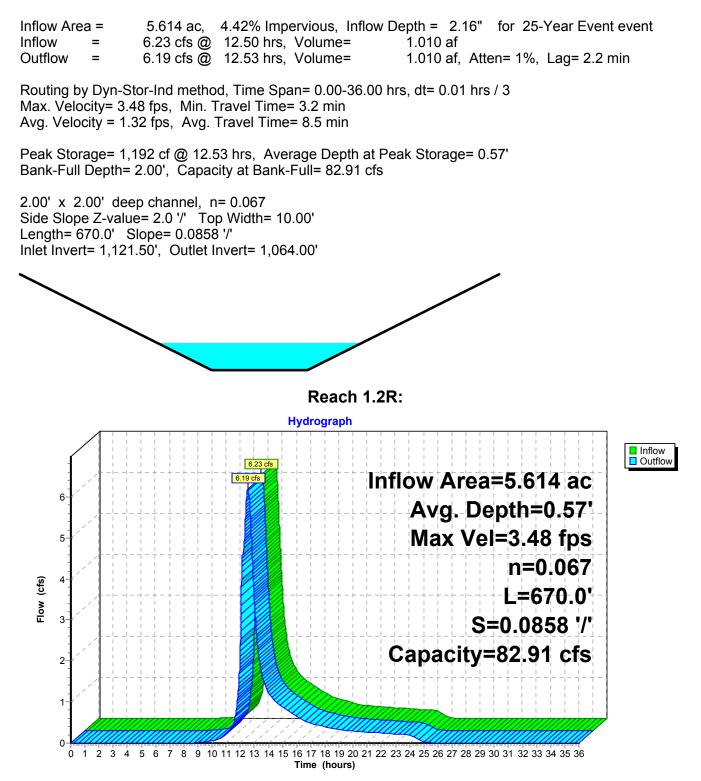
Area (a	ic) CN	Des	cription							
8.86	61 70	Woo	Woods, Good, HSG C							
1.11	16 71	Mea	dow, non-	grazed, HS	GC					
0.05	59 89	Grav	vel roads, l	HSG C						
10.03	36 70	Wei	ghted Aver	rage						
10.03	36	100.	00% Pervi	ous Area						
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
27.4					Direct Entry, See spreadsheet					
Subcatchment SC3.3:										


Summary for Subcatchment SC3.4:

Runoff = 8.27 cfs @ 12.26 hrs, Volume= 0.853 af, Depth= 2.04"


0.777 71 Meadow, non-grazed 0.033 89 Gravel roads, HSG (5.027 70 Weighted Average	
5.027 100.00% Pervious A	rea
Tc Length Slope Velocity Capa min) (feet) (ft/ft) (ft/sec)	acity Description (cfs)
17.9	Direct Entry, See spreadsheet
Su	bcatchment SC3.4:
	Hydrograph
9-1	
8	Type III 24-hr 25-Year Event Rainfall=5.00"
7 1 1 1 1 1 1 1 1 1 1 1 1 1	Runoff Area=5.027 ac
	Runoff Volume=0.853 af
$ \begin{array}{c} \mathbf{f}_{1} \\ \mathbf{f}_{2} \\ \mathbf{f}_{3} \\ f$	Runoff Depth=2.04" Tc=17.9 min
$ \begin{array}{c} \mathbf{A} \\ \mathbf$	CN=70

Summary for Subcatchment SC3.5:

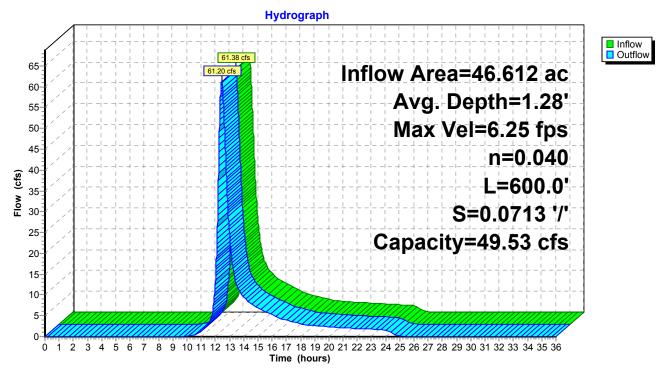

Runoff = 6.20 cfs @ 12.22 hrs, Volume= 0.598 af, Depth= 2.04"

Summary for Reach 1.1R:

Summary for Reach 1.2R:

Summary for Reach 1.3R: Stream at Culvert Inlet

Inflow Area = 46.612 ac, 0.00% Impervious, Inflow Depth = 2.05" for 25-Year Event event Inflow = 61.38 cfs @ 12.44 hrs, Volume= 7.945 af Outflow = 61.20 cfs @ 12.45 hrs, Volume= 7.945 af, Atten= 0%, Lag= 1.1 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 6.25 fps, Min. Travel Time= 1.6 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 4.3 min


Peak Storage= 5,875 cf @ 12.45 hrs, Average Depth at Peak Storage= 1.28' Defined Flood Depth= 3.00', Capacity at Flood Depth= 277.60 cfs Bank-Full Depth= 1.19', Capacity at Bank-Full= 49.53 cfs

Custom cross-section, Length= 600.0' Slope= 0.0713 '/' (101 Elevation Intervals) Constant n= 0.040 Mountain streams Inlet Invert= 1,242.00', Outlet Invert= 1,199.19'

‡

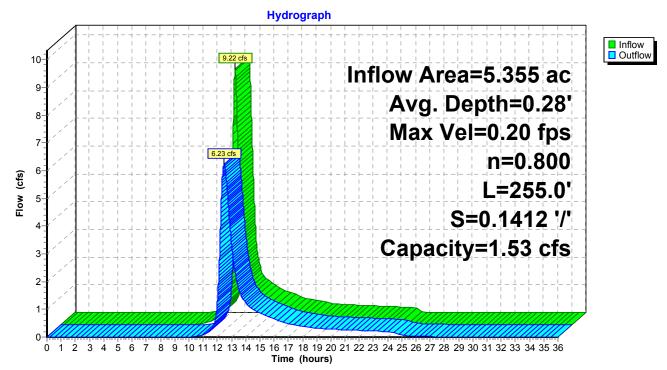
Offset (feet)	Elevation (feet)	Chan.Depth (feet)
0.00	1,200.38	0.00
2.19	1,200.00	0.38
3.65	1,199.58	0.80
5.00	1,199.19	1.19
6.99	1,199.47	0.91
10.46	1,200.00	0.38
17.14	1,200.38	0.00

Depth (feet)	End Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.28	0.4	3.0	249	1.09
0.39	0.8	4.1	480	2.65
0.81	3.4	8.4	2,034	18.29
1.19	8.2	17.4	4,931	49.53

Reach 1.3R: Stream at Culvert Inlet

Summary for Reach 1.4R: From Level Spreader

Inflow Area =5.355 ac,0.00% Impervious,Inflow Depth =2.12"for 25-Year Event eventInflow =9.22 cfs @12.27 hrs,Volume=0.944 afOutflow =6.23 cfs @12.48 hrs,Volume=0.944 af,Atten= 32%,Lag= 12.7 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.20 fps, Min. Travel Time= 20.9 min Avg. Velocity = 0.06 fps, Avg. Travel Time= 71.9 min

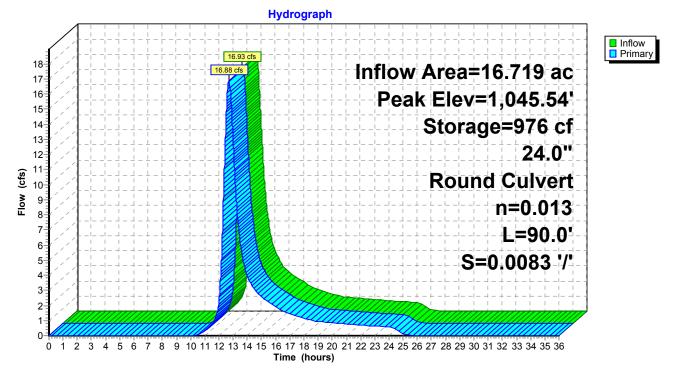
Peak Storage= 7,806 cf @ 12.48 hrs, Average Depth at Peak Storage= 0.28' Bank-Full Depth= 0.10', Capacity at Bank-Full= 1.53 cfs

100.00' x 0.10' deep channel, n= 0.800 Side Slope Z-value= 50.0 '/' Top Width= 110.00' Length= 255.0' Slope= 0.1412 '/' Inlet Invert= 1,258.00', Outlet Invert= 1,222.00'

Reach 1.4R: From Level Spreader

Summary for Reach SP1: Study Point

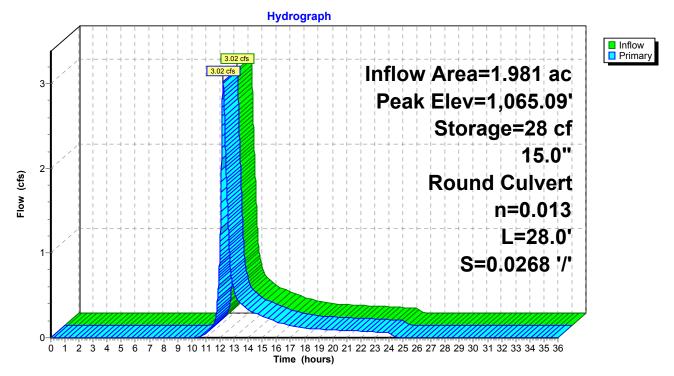
Summary for Pond 1P: SD-1


Inflow Area =	16.719 ac,	0.71% Impervious, Inflow [Depth = 1.96"	for 25-Year Event event
Inflow =	16.93 cfs @	12.66 hrs, Volume=	2.727 af	
Outflow =	16.88 cfs @	12.72 hrs, Volume=	2.727 af, Atte	en= 0%, Lag= 3.2 min
Primary =	16.88 cfs @	12.72 hrs, Volume=	2.727 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,045.54' @ 12.71 hrs Surf.Area= 565 sf Storage= 976 cf Flood Elev= 1,047.00' Surf.Area= 1,575 sf Storage= 2,345 cf

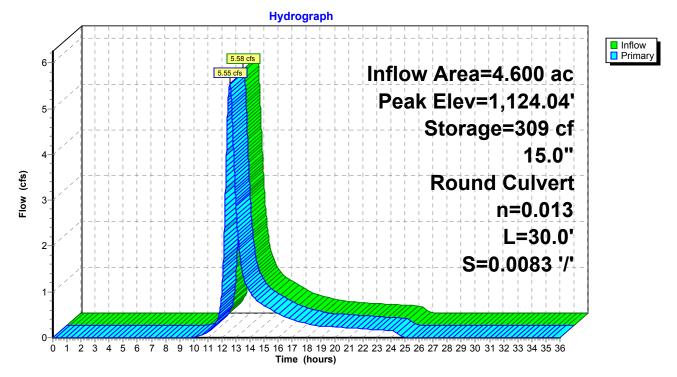
Plug-Flow detention time= 0.7 min calculated for 2.726 af (100% of inflow) Center-of-Mass det. time= 0.8 min (888.7 - 888.0)

Volume	Inv	ert Avai	il.Storage	Storage Descript	ion		
#1	1,042.	00'	2,345 cf	Custom Stage D)ata (Irregular) Lisi	ted below (Recald	:)
Elevatio (fee 1,042.0 1,044.0 1,046.0 1,047.0	t) O O O	Surf.Area (sq-ft) 65 290 665 1,575	Perim. (feet) 35.0 70.0 105.0 180.0	Inc.Store (cubic-feet) 0 328 929 1,088	Cum.Store (cubic-feet) 0 328 1,258 2,345	Wet.Area (sq-ft) 65 376 894 2,601	
Device	Routing	In	vert Outl	et Devices			
#1	Primary 1,042.00' 24.0" Round SD-1 L= 90.0' CPP, projecting, no headwall, Ke= 0.900 Outlet Invert= 1,041.25' S= 0.0083 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior						


Primary OutFlow Max=16.88 cfs @ 12.72 hrs HW=1,045.54' TW=1,043.54' (Dynamic Tailwater) **1=SD-1** (Inlet Controls 16.88 cfs @ 5.37 fps) Pond 1P: SD-1

Summary for Pond 2P: SD-2

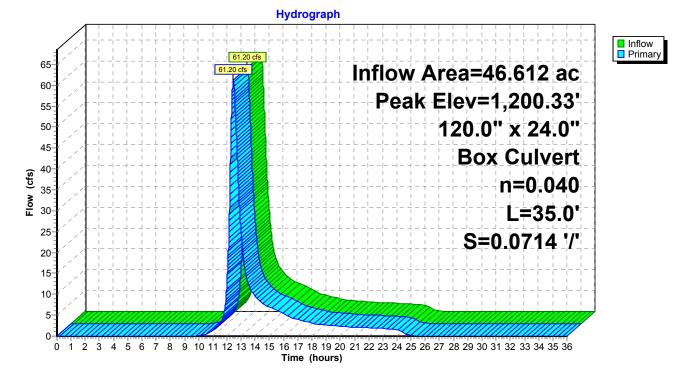
Inflow Area = 1.981 ac, 4.34% Impervious, Inflow Depth = 1.80" for 25-Year Event event Inflow = 3.02 cfs @ 12.22 hrs, Volume= 0.298 af Outflow = 3.02 cfs @ 12.22 hrs, Volume= 0.298 af, Atten= 0%, Lag= 0.2 min Primary = 3.02 cfs @ 12.22 hrs, Volume= 0.298 af								
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,065.09' @ 12.22 hrs Surf.Area= 42 sf Storage= 28 cf								
Plug-Flow detention time= 0.3 min calculated for 0.298 af (100% of inflow) Center-of-Mass det. time= 0.3 min (864.3 - 864.0)								
Volume Inve	ert Avail.	Storage	Storage Descriptior	า				
#1 1,064.0)0'	195 cf (Custom Stage Dat	ta (Irregular)Listed	below (Recalc)			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
1,064.00	12	15.0	0	0	12			
1,066.00	80	35.0	82	82	106			
1,067.00	150	50.0	113	195	216			
Device Routing	Inve	ert Outlet	Devices					
#1 Primary	1,064.0	00' 15.0''	Round SD-2					
-		L= 28.	.0' CPP, projecting	g, no headwall, Ke=	= 0.900			
	Outlet Invert= 1,063.25' S= 0.0268 '/' Cc= 0.900							
		n= 0.0	13 Corrugated PE	E, smooth interior				


Primary OutFlow Max=3.02 cfs @ 12.22 hrs HW=1,065.09' TW=1,064.60' (Dynamic Tailwater) **1=SD-2** (Inlet Controls 3.02 cfs @ 2.66 fps) Pond 2P: SD-2

Summary for Pond 3P: SD-3

Inflow Area = 4.600 ac, 0.00% Impervious, Inflow Depth = 2.04" for 25-Year Event event Inflow = 5.58 cfs @ 12.52 hrs, Volume= 0.781 af Outflow = 5.55 cfs @ 12.56 hrs, Volume= 0.781 af, Atten= 1%, Lag= 2.4 min Primary = 5.55 cfs @ 12.56 hrs, Volume= 0.781 af							
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,124.04' @ 12.56 hrs Surf.Area= 277 sf Storage= 309 cf							
Plug-Flow detention time= 0.9 min calculated for 0.781 af (100% of inflow) Center-of-Mass det. time= 0.8 min (876.2 - 875.4)							
Volume Inv	ert Avail.S	Storage	Storage Description	1			
#1 1,122.	00'	666 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
1,122.00	55	30.0	0	0	55		
1,124.00	270	70.0	298	298	389		
1,125.00	475	90.0	368	666	656		
Device Routing	Inve	rt Outle	et Devices				
#1 Primary 1,122.00' 15.0" Round SD-3 L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Outlet Invert= 1,121.75' S= 0.0083 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior							

Primary OutFlow Max=5.55 cfs @ 12.56 hrs HW=1,124.04' TW=1,122.07' (Dynamic Tailwater) **□1=SD-3** (Inlet Controls 5.55 cfs @ 4.52 fps) Pond 3P: SD-3



Summary for Pond 4P: Box Culvert

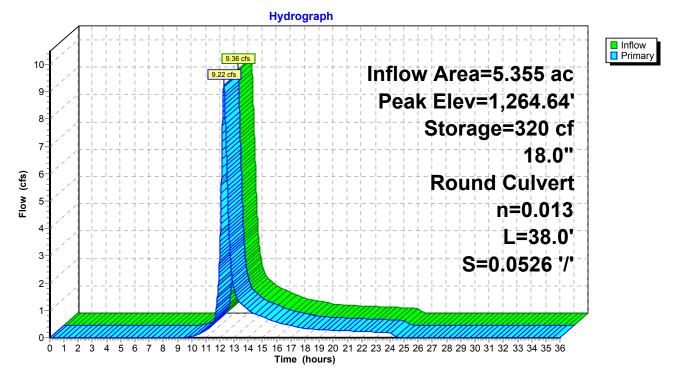
Inflow Area = 46.612 ac, 0.00% Impervious, Inflow Depth = 2.05" for 25-Year Event event Inflow 61.20 cfs @ 12.45 hrs, Volume= 7.945 af = Outflow 61.20 cfs @ 12.45 hrs, Volume= 7.945 af, Atten= 0%, Lag= 0.0 min = Primary = 61.20 cfs @ 12.45 hrs, Volume= 7.945 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,200.33' @ 12.45 hrs Flood Elev= 1,200.38' Device Routing Invert Outlet Devices #1 1.199.00' 120.0" W x 24.0" H Box SD-4 Primary L= 35.0' Box, headwall w/3 rounded edges, Ke= 0.200

Outlet Invert= 1,196.50' S= 0.0714 '/' Cc= 0.900 n= 0.040 Mountain streams

Primary OutFlow Max=61.19 cfs @ 12.45 hrs HW=1,200.32' (Free Discharge) 1=SD-4 (Inlet Controls 61.19 cfs @ 4.62 fps)

Pond 4P: Box Culvert

Summary for Pond 5P: SD-5


Inflow Area =	5.355 ac,	0.00% Impervious, Inflow D	Pepth = 2.12" for 25-Year Event event
Inflow =	9.36 cfs @	12.25 hrs, Volume=	0.944 af
Outflow =	9.22 cfs @	12.27 hrs, Volume=	0.944 af, Atten= 1%, Lag= 1.5 min
Primary =	9.22 cfs @	12.27 hrs, Volume=	0.944 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,264.64' @ 12.27 hrs Surf.Area= 278 sf Storage= 320 cf Flood Elev= 1,266.00' Surf.Area= 525 sf Storage= 859 cf

Plug-Flow detention time= 0.3 min calculated for 0.944 af (100% of inflow) Center-of-Mass det. time= 0.3 min (855.8 - 855.5)

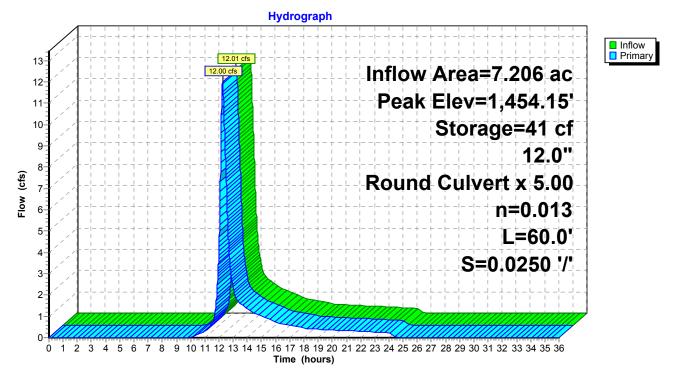
Volume	Inv	ert Avai	l.Storage	Storage Description	on		
#1	1,262.	00'	859 cf	Custom Stage Da	ata (Irregular) List	ted below (Recald)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,262.0 1,264.0 1,266.0	00	15 190 525	15.0 60.0 100.0	0 172 687	0 172 859	15 294 828	
Device	Routing	In	vert Outle	t Devices			
#1	Primary	1,262	L= 38 Outle	' Round SD-5 3.0' CPP, projecti t Invert= 1,260.00 013 Corrugated P	' S= 0.0526 '/' (Cc= 0.900	

Primary OutFlow Max=9.22 cfs @ 12.27 hrs HW=1,264.63' TW=1,258.22' (Dynamic Tailwater) **1=SD-5** (Inlet Controls 9.22 cfs @ 5.22 fps) Pond 5P: SD-5

Summary for Pond 6P: SD-6

Inflow Area = Inflow = Outflow = Primary =	18.40 cfs @ 16.99 cfs @	2 12.35 hi 2 12.44 hi	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	2.125 af	25-Year Event event 3%, Lag= 5.5 min
			Span= 0.00-36.00 hi Area= 2,370 sf St		
Center-of-Mass of	let. time= 1.4	min (865	,		
Volume Inv	vert Avail.	Storage	Storage Description	า	
#1 1,422.	00'	5,794 cf	Custom Stage Dat	ta (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,422.00	75	55.0	0	0	75
1,424.00	1,100	390.0	975	975	11,946
1,426.00	4,025	975.0	4,819	5,794	75,506
Device Routing	Inv	ert Outle	et Devices		
#1 Primary	[,] 1,422.0	00' 24.0'	' Round SD-6		
		L= 62	2.0' CPP, projecting	g, no headwall, Ke=	= 0.900
		Outle	et Invert= 1,420.25'	S= 0.0282 '/' Cc=	0.900
		n= 0.	013 Corrugated PE	, smooth interior	
	NA 40.00	(O (0			,

Primary OutFlow Max=16.99 cfs @ 12.44 hrs HW=1,425.02' (Free Discharge) **1=SD-6** (Inlet Controls 16.99 cfs @ 5.41 fps)


Hydrograph InflowPrimary 20 18.40 cfs Inflow Area=12.525 ac 19-18-16.99 cfs Peak Elev=1,425.02' 17 16 Storage=2,712 cf 15 14-24.0" 13 12 11 10 9 **Round Culvert** n=0.013 8-L=62.0' 7-6 S=0.0282 '/' 5 4-3-2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 6P: SD-6

Summary for Pond 7P: SD-7-11

Inflow Area = Inflow = Outflow = Primary =	12.01 cfs @ 12.00 cfs @	12.24 hr 12.25 hr	npervious, Inflow De rs, Volume= rs, Volume= rs, Volume=	1.223 af	25-Year Event event 0%, Lag= 0.3 min
			Span= 0.00-36.00 hrs Area= 63 sf Storag		
Center-of-Mass	det. time= 0.1	min (858.		,	
-			Storage Description		
#1 1,453	.00'	273 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
1,453.00	15	15.0	0	0	15
1,454.00	55	30.0	33	33	73
1,456.00	200	60.0	240	273	306
Device Routing	g Inv	ert Outle	et Devices		
#1 Primary	/ 1,453.0	00' 12.0'	' Round SD-7 X 5.0	0	
	, ,		0.0' CPP, projecting		= 0.900
			et Invert= 1,451.50'		
			013 Corrugated PE		
Primary OutFlo	w Max=12.00	cfs @ 12	25 hrs HW=1 454 1	5' (Free Discharg	e)

Primary OutFlow Max=12.00 cfs @ 12.25 hrs HW=1,454.15' (Free Discharge) **1=SD-7** (Inlet Controls 12.00 cfs @ 3.05 fps) Pond 7P: SD-7-11

Summary for Pond 8P: SD-12-15

Inflow Area =	8.557 ac,	0.00% Impervious, Inflo	ow Depth = 2.12"	for 25-Year Event event
Inflow =	13.55 cfs @	12.32 hrs, Volume=	1.509 af	
Outflow =	13.55 cfs @	12.32 hrs, Volume=	1.509 af, Atte	en= 0%, Lag= 0.4 min
Primary =	13.55 cfs @	12.32 hrs, Volume=	1.509 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,559.29' @ 12.32 hrs Surf.Area= 102 sf Storage= 79 cf

Plug-Flow detention time= 0.2 min calculated for 1.509 af (100% of inflow) Center-of-Mass det. time= 0.1 min (859.8 - 859.7)

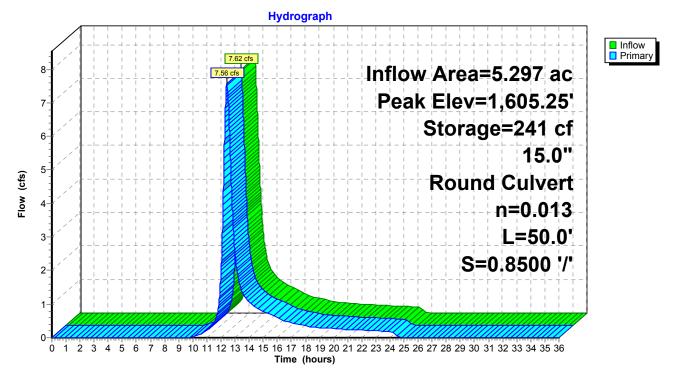
Volume	Inv	ert Avail.	Storage	Storage Descriptior	า		
#1	1,557.	50'	798 cf	Custom Stage Dat	ta (Irregular)Listed	l below (Recalc)	
Elevatio (fee 1,557.5 1,558.0 1,560.0 1,562.0	50 50 00 00	Surf.Area (sq-ft) 10 20 175 470	Perim. (feet) 10.0 18.0 55.0 85.0	Inc.Store (cubic-feet) 0 7 169 621	Cum.Store (cubic-feet) 0 7 177 798	Wet.Area (sq-ft) 10 29 256 619	
Device #1	Routing Primary		50' 12.0"	t Devices Round SD-12 X 4 .0' CPP, projecting		e= 0.900	
				t Invert= 1,556.50' 013 Corrugated PE	, smooth interior	= 0.900	

Primary OutFlow Max=13.55 cfs @ 12.32 hrs HW=1,559.29' (Free Discharge) **□ 1=SD-12** (Inlet Controls 13.55 cfs @ 4.31 fps)

Hydrograph Inflow
 Primary 15 13.55 cfs 13.55 cfs Inflow Area=8.557 ac 14 13 Peak Elev=1,559.29' 12 Storage=79 cf 11 10-12.0" 9-Flow (cfs) Round Culvert x 4.00 8-7n=0.013 6-L=50.0' 5-S=0.0200 '/' 4 3-2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 8P: SD-12-15

Summary for Pond 9P: SD-16


Inflow Area =	5.297 ac,	0.00% Impervious, Inflow D	Pepth = 2.12" for 25-Year Event event
Inflow =	7.62 cfs @	12.39 hrs, Volume=	0.934 af
Outflow =	7.56 cfs @	12.43 hrs, Volume=	0.934 af, Atten= 1%, Lag= 2.0 min
Primary =	7.56 cfs @	12.43 hrs, Volume=	0.934 af

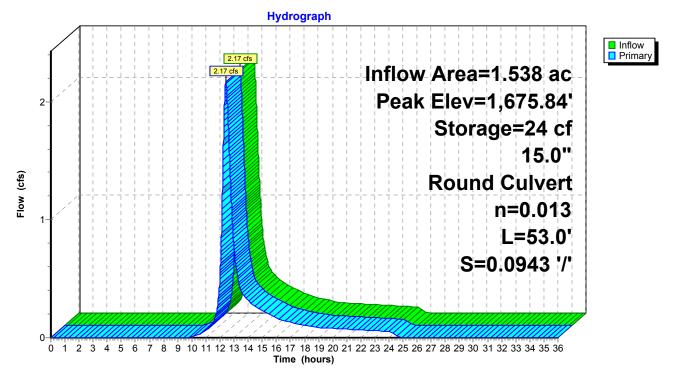
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,605.25'@ 12.43 hrs Surf.Area= 159 sf Storage= 241 cf Flood Elev= 1,606.00' Surf.Area= 210 sf Storage= 378 cf

Plug-Flow detention time= 0.3 min calculated for 0.934 af (100% of inflow) Center-of-Mass det. time= 0.2 min (865.2 - 864.9)

Volume	Inv	ert Avail	.Storage	Storage Descriptio	n		
#1	1,602.	00'	378 cf	Custom Stage Da	i ta (Irregular) Liste	d below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,602.0 1,604.0 1,606.0	00	10 90 210	12.0 40.0 65.0	0 87 292	0 87 378	10 137 371	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	1,602	L= 50 Outle	' Round SD-16 D.0' CPP, projectin et Invert= 1,559.50' 013 Corrugated PI	S= 0.8500 '/' Co		

Primary OutFlow Max=7.56 cfs @ 12.43 hrs HW=1,605.25' (Free Discharge) **1=SD-16** (Inlet Controls 7.56 cfs @ 6.16 fps) Pond 9P: SD-16

Summary for Pond 10P: SD-17


Inflow Area =	1.538 ac,	0.00% Impervious, Inflow [Depth = 2.12"	for 25-Year Event event
Inflow =	2.17 cfs @	12.42 hrs, Volume=	0.271 af	
Outflow =	2.17 cfs @	12.42 hrs, Volume=	0.271 af, Atte	en= 0%, Lag= 0.2 min
Primary =	2.17 cfs @	12.42 hrs, Volume=	0.271 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,675.84' @ 12.42 hrs Surf.Area= 53 sf Storage= 24 cf

Plug-Flow detention time= 0.2 min calculated for 0.271 af (100% of inflow) Center-of-Mass det. time= 0.2 min (866.3 - 866.0)

Volume	Inv	ert Avail.	Storage	Storage Description	n		
#1	1,675.	00'	295 cf	Custom Stage Da	ata (Irregular)Liste	d below (Recalc)	
Elevatic (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,675.0	00	10	10.0	0	0	10	
1,676.0	00	65	35.0	33	33	102	
1,678.0	00	210	60.0	261	295	314	
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	1,675.0	00' 15.0'	" Round SD-17			
			L= 5	3.0' CPP, projectir	ng, no headwall, K	e= 0.900	
				et Invert= 1,670.00' .013 Corrugated P		= 0.900	
	O. 451	· Max-0 17 a		0 hrs 1 110/-1 675 0	Al (Erec Dischar		

Primary OutFlow Max=2.17 cfs @ 12.42 hrs HW=1,675.84' (Free Discharge) -1=SD-17 (Inlet Controls 2.17 cfs @ 2.47 fps) Pond 10P: SD-17

Summary for Pond 11P: SD-18

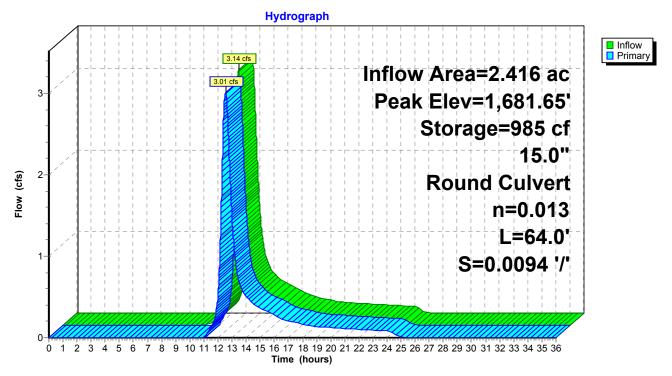
Inflow Area =	9.148 ac,	0.00% Impervious,	Inflow Depth = 2.36	6" for 25-Year Event event
Inflow =	14.25 cfs @	12.43 hrs, Volume=	= 1.802 af	
Outflow =	13.39 cfs @	12.53 hrs, Volume=	= 1.802 af, <i>i</i>	Atten= 6%, Lag= 5.8 min
Primary =	13.39 cfs @	12.53 hrs, Volume=	= 1.802 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,639.63' @ 12.53 hrs Surf.Area= 5,419 sf Storage= 5,099 cf

Plug-Flow detention time= 9.5 min calculated for 1.802 af (100% of inflow) Center-of-Mass det. time= 9.4 min (869.1 - 859.7)

Volume	Inv	ert Avail	.Storage	Storage Descripti	on		
#1	1,638.	00' 4	46,536 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevatio (fee 1,638.0 1,640.0 1,642.0 1,643.0	et) 00 00 00	Surf.Area (sq-ft) 1,320 6,760 16,100 17,840	Perim. (feet) 200.0 450.0 535.0 560.0	Inc.Store (cubic-feet) 0 7,378 22,195 16,963	Cum.Store (cubic-feet) 0 7,378 29,573 46,536	Wet.Area (sq-ft) 1,320 14,268 21,003 23,249	
Device	Routing	,		et Devices	10,000	20,210	
#1	Primary	1,638	L= 8 Outle	" Round SD-18 0.0' CPP, project et Invert= 1,628.00 .013 Corrugated F)' S= 0.1250 '/' (Cc= 0.900	

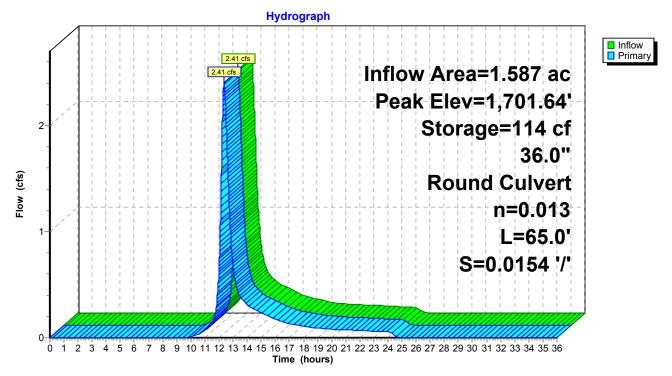
Primary OutFlow Max=13.39 cfs @ 12.53 hrs HW=1,639.62' (Free Discharge) **□ 1=SD-18** (Inlet Controls 13.39 cfs @ 3.43 fps) Pond 11P: SD-18



Summary for Pond 12P: SD-19

Inflow Area = Inflow = Outflow = Primary =	3.14 cfs @ 3.01 cfs @	12.47 hrs, 12.54 hrs,	pervious, Inflow D Volume= Volume= Volume=	0.410 af	25-Year Event event 4%, Lag= 4.4 min		
0, ,	Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,681.65' @ 12.54 hrs Surf.Area= 1,331 sf Storage= 985 cf						
Plug-Flow detention time= 12.9 min calculated for 0.407 af (99% of inflow) Center-of-Mass det. time= 8.5 min(879.4 - 870.9)							
Volume Inv	vert Avail.	Storage S	torage Descriptior	ו			
#1 1,680.	.00'	1,535 cf C	ustom Stage Dat	a (Irregular)Listed	below (Recalc)		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>		
1,680.00	100	45.0	0	0	100		
1,682.00	1,780	510.0	1,535	1,535	20,644		
Device Routing	l Inve	ert Outlet	Devices				
#1 Primary	[,] 1,680.6	60' 15.0''	Round SD-19				
-		L= 64.0)' CPP, projecting	g, no headwall, Ke	= 0.900		
		Outlet	Invert= 1,680.00'	S= 0.0094 '/' Cc=	0.900		
			13 Corrugated PE				
Primary OutElo	Primary OutFlow Max=3.01 cfs @ 12.54 hrs HW=1,681.65' (Free Discharge)						
		15 @ 12.04	1115 1100 - 1,001.00	(i i ee Discharge)		

1=SD-19 (Inlet Controls 3.01 cfs @ 2.75 fps)


Pond 12P: SD-19

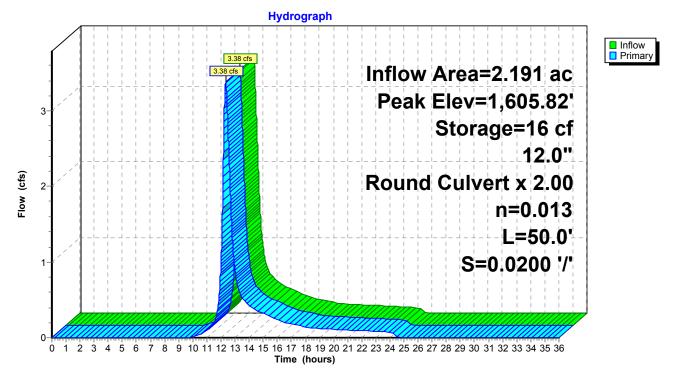
Summary for Pond 13P: SD-20

Outflow =	= 2.41 cfs @ = 2.41 cfs @	12.35 h 12.36 h	mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume=	0.280 af	25-Year Event event 0%, Lag= 0.8 min	
			Span= 0.00-36.00 h f.Area= 347 sf Sto	nrs, dt= 0.01 hrs / 3 prage= 114 cf		
Plug-Flow detention time= 1.1 min calculated for 0.280 af (100% of inflow) Center-of-Mass det. time= 1.1 min (862.9 - 861.9)						
Volume	Invert Avai	I.Storage	Storage Description	on		
#1 1	,701.00'	7,277 cf	Custom Stage Da	ata (Irregular)Listed	below (Recalc)	
			-			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,701.00	50	25.0	0	0	50	
1,702.00	625	105.0	284	284	880	
1,704.00	7,675	440.0	6,993	7,277	15,419	
,	,		-,	,	-, -	
Device Ro	buting In	vert Outle	et Devices			
#1 Primary 1,701.00' 36.0" Round SD-20 L= 65.0' CPP, projecting, no headwall, Ke= 0.900 Outlet Invert= 1,700.00' S= 0.0154 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior						
Primary OutFlow Max=2.41 cfs @ 12.36 hrs HW=1,701.64' (Free Discharge)						

Pond 13P: SD-20

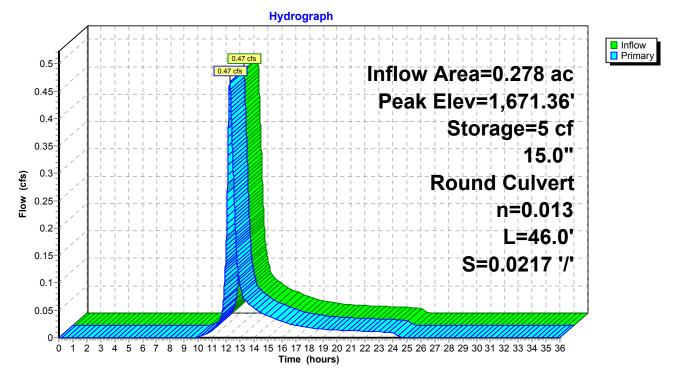
Summary for Pond 14P: SD-21

Inflow Area = Inflow = Outflow = Primary =	3.70 cfs @ 3.70 cfs @	12.20 hrs 12.21 hrs	pervious, Inflow D s, Volume= s, Volume= s, Volume=	0.348 af	25-Year Event event 0%, Lag= 0.3 min	
			pan= 0.00-36.00 hr Area= 29 sf Stora			
Plug-Flow detention time= 0.2 min calculated for 0.348 af (100% of inflow) Center-of-Mass det. time= 0.2 min(850.6 - 850.4)						
Volume Inve	ert Avail.S	storage S	Storage Descriptior	ו		
#1 1,563.0	00'	153 cf (Custom Stage Dat	a (Irregular)Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,563.00	10	10.0	0	0	10	
1,564.00	20	20.0	15	15	38	
1,566.00	135	50.0	138	153	219	
Device Routing	Device Routing Invert Outlet Devices					
#1 Primary	1,563.0	0' 15.0''	Round SD-21			
,		L= 43	.0' CPP, projecting	g, no headwall, Ke	= 0.900	
				S= 0.0233 '/' Cc=		
		n= 0.0	13 Corrugated PE	, smooth interior		
Primary OutElow May=2.70 of @ 12.21 bro HW=1.564.25' (Erec Discharge)						


Primary OutFlow Max=3.70 cfs @ 12.21 hrs HW=1,564.25' (Free Discharge) -1=SD-21 (Inlet Controls 3.70 cfs @ 3.01 fps) Pond 14P: SD-21

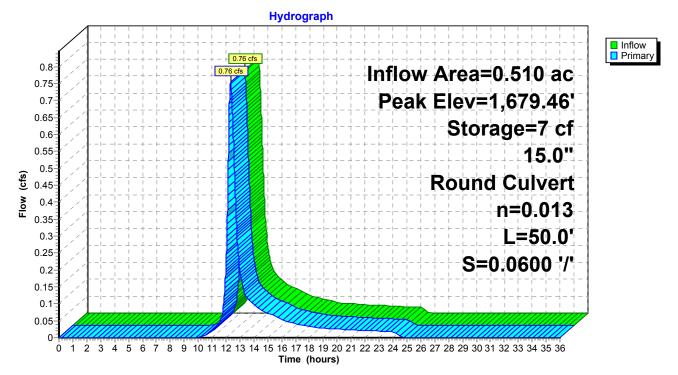
Summary for Pond 15P: SD-22-23

Outflow	= 3.38 cfs = 3.38 cfs	 12.34 hi 12.34 hi 	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.386 af	25-Year Event event 0%, Lag= 0.1 min			
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,605.82' @ 12.34 hrs Surf.Area= 30 sf Storage= 16 cf							
Plug-Flow detention time= 0.1 min calculated for 0.386 af (100% of inflow) Center-of-Mass det. time= 0.1 min (861.2 - 861.0)								
Volume	Invert Ava	il.Storage	Storage Description	ו				
#1 ´	1,605.00'	205 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
1,605.00	10	10.0	0	0	10			
1,606.00	35	25.0	21	21	55			
1,608.00	165	50.0	184	205	222			
Device Ro	outing II	nvert Outle	et Devices					
#1 Pr	imary 1,60		' Round SD-22 X 2					
	L= 50.0' CPP, projecting, no headwall, Ke= 0.900							
			Outlet Invert= 1,604.00' S= 0.0200 '/' Cc= 0.900					
			-		0.900			
			et Invert= 1,604.00' 013 Corrugated PE		0.900			


Primary OutFlow Max=3.38 cfs @ 12.34 hrs HW=1,605.82' (Free Discharge) **□1=SD-22** (Inlet Controls 3.38 cfs @ 2.44 fps) Pond 15P: SD-22-23

Summary for Pond 16P: SD-24

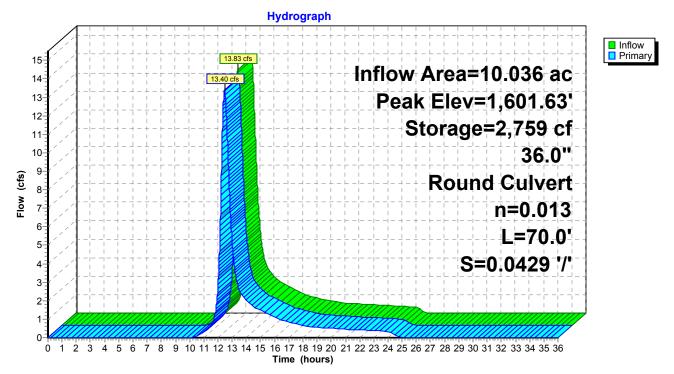
Inflow Area = Inflow = Outflow = Primary =	0.47 cfs @ 0.47 cfs @	2 12.27 hr 2 12.27 hr	npervious, Inflow De rs, Volume= rs, Volume= rs, Volume=	epth = 2.12" for 0.049 af 0.049 af, Atten= 0 0.049 af	25-Year Event event 0%, Lag= 0.1 min
			Span= 0.00-36.00 hrs Area= 17 sf Storag		
Plug-Flow detention time= 0.4 min calculated for 0.049 af (100% of inflow) Center-of-Mass det. time= 0.4 min (857.5 - 857.1)					
			Storage Description		
#1 1,671.	00'	201 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
1,671.00	10	10.0	0	0	10
1,672.00	35	25.0	21	21	55
1,674.00	160	50.0	180	201	222
DeviceRoutingInvertOutlet Devices#1Primary1,671.00' 15.0'' Round SD-24 L= 46.0'CPP, projecting, no headwall, Ke= 0.900					
			et Invert= 1,670.00'		0.900
		n= 0.	013 Corrugated PE	, smooth interior	
Primary OutFlow Max=0.47 cfs @ 12.27 hrs HW=1.671.36' (Free Discharge)					


Primary OutFlow Max=0.47 cfs @ 12.27 hrs HW=1,671.36' (Free Discharge) -1=SD-24 (Inlet Controls 0.47 cfs @ 1.61 fps) Pond 16P: SD-24

Summary for Pond 17P: SD-25

Inflow Area = Inflow = Outflow = Primary =	0.76 cfs @ 0.76 cfs @	12.34 hi 12.34 hi	npervious, Inflow De rs, Volume= rs, Volume= rs, Volume=	0.087 af	25-Year Event event 0%, Lag= 0.1 min	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,679.46' @ 12.34 hrs Surf.Area= 20 sf Storage= 7 cf						
Plug-Flow detention time= 0.3 min calculated for 0.087 af (100% of inflow) Center-of-Mass det. time= 0.3 min (863.8 - 863.5)						
Volume Inv	ert Avail.	Storage	Storage Description			
#1 1,679.0	00'	305 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,679.00	10	10.0	0	0	10	
1,680.00	35	35.0	21	21	102	
1,682.00	290	115.0	284	305	1,069	
Device Routing	Inv	ert Outle	et Devices			
#1 Primary	1,679.0	00' 15.0'	' Round SD-25			
•		L= 50	0.0' CPP, projecting	g, no headwall, Ke=	= 0.900	
			et Invert= 1,676.00'			
			013 Corrugated PE			
Drimon (AutElaus Max-0.70 at $=$ 12.24 bro $\pm 100 = 1.070$ 401 (Erec Discharge)						

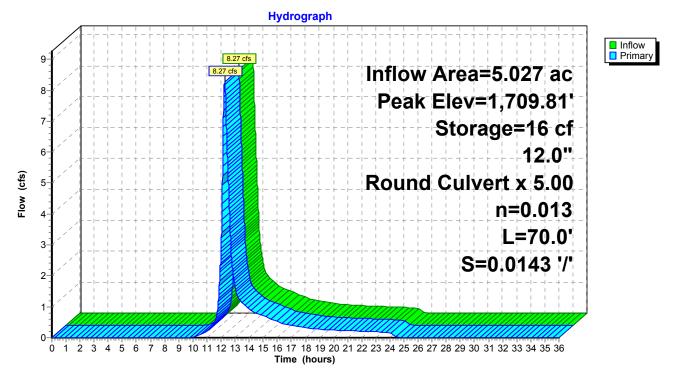
Primary OutFlow Max=0.76 cfs @ 12.34 hrs HW=1,679.46' (Free Discharge) **□1=SD-25** (Inlet Controls 0.76 cfs @ 1.83 fps) Pond 17P: SD-25



Summary for Pond 18P: SD-26

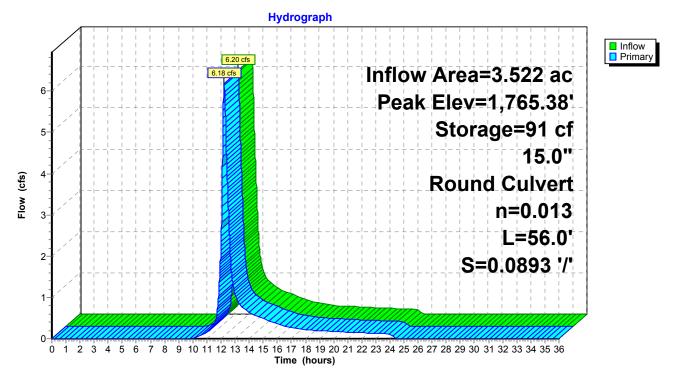
Inflow Area =	10.036 ac,	0.00% Impervious, Inflow	Depth = 2.04" for	25-Year Event event		
Inflow =	13.83 cfs @	12.39 hrs, Volume=	1.703 af			
Outflow =	13.40 cfs @	12.46 hrs, Volume=	1.703 af, Atten=	3%, Lag= 4.3 min		
Primary =	13.40 cfs @	12.46 hrs, Volume=	1.703 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 1,601.63' @ 12.46 hrs Surf.Area= 3,404 sf Storage= 2,759 cf						
Plug-Flow detention time= 4.2 min calculated for 1.703 af (100% of inflow) Center-of-Mass det. time= 4.1 min (871.6 - 867.5)						
	مسلم المراجع					

Volume	Inv	ert Avai	I.Storage	Storage Description	on		
#1	1,600.	00'	9,543 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
1,600.0 1,602.0 1,603.0	0	450 4,475 6,200	100.0 360.0 375.0	0 4,229 5,314	0 4,229 9,543	450 9,979 10,930	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	1,600		" Round SD-26			
L= 70.0' CPP, projecting, no headwall, Ke= 0.900							
Outlet Invert= 1,597.00' S= 0.0429 '/' Cc= 0.900							
			n= 0	0.013 Corrugated P	PE, smooth interior		
Duine e m	0.4510.0	Max-12 4	0	16 hrs 100/-1 601	621 (Erec Discho		


Primary OutFlow Max=13.40 cfs @ 12.46 hrs HW=1,601.63' (Free Discharge) **1=SD-26** (Inlet Controls 13.40 cfs @ 3.43 fps) Pond 18P: SD-26

Summary for Pond 19P: SD-27-31

Inflow Area = Inflow = Outflow = Primary =	8.27 cfs @ 8.27 cfs @	12.26 hi 12.26 hi	rs, Volume= rs, Volume=	0.853 af	25-Year Event event 0%, Lag= 0.1 min
			Span= 0.00-36.00 hrs f.Area= 33 sf Storage		
Plug-Flow detention time= 0.1 min calculated for 0.853 af (100% of inflow) Center-of-Mass det. time= 0.1 min (858.7 - 858.7)					
Volume Inv	vert Avail.	Storage	Storage Description		
#1 1,709	.00'	214 cf	Custom Stage Data	(Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,709.00	10	10.0	0	0	10
1,710.00	40	25.0	23	23	55
1,712.00	165	55.0	191	214	262
Device Routing	l Inv	ert Outle	et Devices		
#1Primary1,709.00'12.0"Round SD-27 X 5.00L= 70.0'CPP, projecting, no headwall, Ke= 0.900Outlet Invert= 1,708.00'S= 0.0143 '/'Cc= 0.900n= 0.013Corrugated PE, smooth interior					
Primary OutElow Max-8 27 cfs @ 12.26 brs $HW=1.700.81^{\circ}$ (Free Discharge)					


Primary OutFlow Max=8.27 cfs @ 12.26 hrs HW=1,709.81' (Free Discharge) 1=SD-27 (Inlet Controls 8.27 cfs @ 2.42 fps) Pond 19P: SD-27-31

Summary for Pond 20P: SD-32

Inflow Area = Inflow = Outflow = Primary =	6.20 cfs @ 6.18 cfs @	12.22 hr 12.23 hr	npervious, Inflow De s, Volume= s, Volume= s, Volume=	0.598 af	25-Year Event event 0%, Lag= 0.8 min
			pan= 0.00-36.00 hr Area= 89 sf Storag		
Plug-Flow detention time= 0.2 min calculated for 0.597 af (100% of inflow) Center-of-Mass det. time= 0.2 min (856.3 - 856.1)					
Volume Inv	ert Avail.	Storage	Storage Description		
#1 1,763.	00'	158 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
1,763.00	10	10.0	0	0	10
1,764.00	25	20.0	17	17	38
1,766.00	130	50.0	141	158	219
Device Routing Invert Outlet Devices					
#1Primary1,763.00'15.0"Round SD-32L= 56.0'CPP, projecting, no headwall, Ke= 0.900Outlet Invert= 1,758.00'S= 0.0893 '/'Cc= 0.900n= 0.013Corrugated PE, smooth interior					
Primary OutFlow May=6 17 cfs @ 12 23 hrs HW=1 765 38' (Free Discharge)					

Primary OutFlow Max=6.17 cfs @ 12.23 hrs HW=1,765.38' (Free Discharge) 1=SD-32 (Inlet Controls 6.17 cfs @ 5.03 fps) Pond 20P: SD-32

STATE OF MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

J FLIAS BALDACCI COVERNOR

June 5, 2008

Roy Koster Central Maine Power 83 Edison Drive Augusta, ME 04336

RE: DEP Stormwater Management Regulations and how they apply to Central Maine Power Company Substations and Switchyards

Dear Mr. Koster:

I am writing to provide clarification on how substations and switchyards designed by Central Maine Power Company (CMP) can meet DEP Stormwater Management rules, Chapter 500 and the Site Location of Development Law. This letter supersedes a previous DEP letter on this subject dated February 29, 2008 and is a follow-up to further discussions between CMP and DEP staff.

Based on the report prepared by John Simon of Balance Engineering, dated March 8, 2008, regarding the stormwater runoff coefficient at CMP substations and switchyards, the required gravel fill and surface nature of these structures performs differently than most common construction practices and a modeling variance will be allowed for CMP substations and switchyards as follows:

When Flooding Standard requirements apply to a CMP project, modeling must demonstrate that peak runoff from the substation structure does not exceed predevelopment flow rates at the property line. Because of the permeability plus storage within the gravel fill and roughness of the crushed rock surface, the curve number (CN) specified in John Simon's report (March 2008) may be used for the substation area. As reported, a CN of 55 may be used for substations and switchyards that are built on areas that are mapped as HSG "A", "B", and "C", and a CN of 60 must be used when the area is mapped as HSG "D" for the HydroCAD model. However, all impervious surfaces will have to be added for an averaged curve number.

The General Standards of Chapter 500 (water quality) will be considered as met by the CMP substation/switchyard design specifications as long as the structure includes the typical CMP substation profile overlaying the natural ground surface. The soil layers within the CMP substation profile consist of 4 inches of crushed stone, 50:50 mix of 1.5"

USTA

ATE HOUSE STATION USTA, MAINE 04333-0017 287-7688 FAX: (207) 287-7826 BANGOR, MAINE 04401 BLDG., HOSPITAL ST.

BANGOR 106 HOGAN ROAD

PORTLAND 312 CANCO ROAD PORTLAND, MAINE 04103 (207) 941-4570 FAX: (207) 941-4584 (207) 822-6300 FAX: (207) 822-6303 (207) 764-0477 FAX: (207) 76

PRESOUE ISLE 1235 CENTRAL DRIVE, SKYW PRESQUE ISLE, MAINE 04765

DAVIE CON

et www.maine.pouidep

printed on a

and 0.75" diameter stone overlaying 18 inches or more of gravel fill, MDOT 703.06 Type A. Saturation within the granular fill will detain and provide treatment for the one-inch design standard under that requirement. Groundwater can never be any higher than 18 inches below the top of the gravel fill. Other treatment considerations will need to be provided for all impervious structures anticipated on the substation and switchyard and for the roadway.

The <u>Basic Standards</u> of Chapter 500 (erosion and sedimentation control, inspection and maintenance, and housekeeping) will be met by the standard CMP substation and switchyard design specification and erosion control/construction plan as developed by CMP for each Stormwater Management application. These are minimum erosion control measures that will need to be maintained until the site is fully stabilized. However, based on site and weather conditions during construction, additional erosion control measures may be needed.

While there are several ways to approach the design standards discussed above, these must be considered the minimum requirements in meeting the Stormwater Management and Site Location of Development Laws. However, in some situations where the local hydrology and site conditions warrant more resource protection, additional BMPs may be required. Also, the access drive and associated roadside swales are included in the disturbed area for permitting purposes and the treatment of these areas must be addressed separately from the substation or switchyard and be treated with standard practices. The natural hydrology of these areas will need to be maintained and will have to meet all applicable standards as established in Chapter 500 (page 11, Section 5).

I hope this addresses your request and will make the DEP permitting process more straight forward. If you have further questions, please contact Marianne Hubert at (207) 287-4140.

Sincerely,

Don Witherill, Director Watershed Management Division Bureau of Land and Water Quality

Cc: Marianne Hubert, PE, DEP program manager Andy Fisk, DEP L&W Bureau Director Dan Butler, PE, TRC Gerry Mirabile, CMP Exhibit 6

NHB Letter of 8/3/11

NEW HAMPSHIRE NATURAL HERITAGE BUREAU

DRED - Division of Forests & Lands PO Box 1856 -- 172 Pembroke Road, Concord, NH 03302-1856 (603) 271-2214

То:	Josh Brown, TRC Solutions
From:	Melissa Coppola, NHB-Environmental Information Specialist
Date:	August 3, 2011
Subject:	Antrim Rare Plant Surveys

Thanks for sending the natural community mapping for the proposed Antrim Wind Site. We recommend that you reconsider the classification of the area currently mapped as *high elevation spruce fir forest*. This community is known to occur from 2500 to 4000 feet elevation, well above the elevation of this site.

Based on the information provided we suggest targeting the following rare plant species in the communities listed below.

- rich red oak rocky woods

 sickle-pod (Boechera canadensis)
 smooth rock cress (Boechera laevigata)
 Carolina cranesbill (Geranium carolinianum)
 climbing fumitory (Adlumia fungosa)
- *hemlock beech oak pine forest* small whorled pogonia (*Isotria medeoloides*)
 - *red oak pine rocky ridge* Douglas' knotweed (*Polygonum douglasii*) Smooth sandwort (*Minuartia glabra*)
- *red spruce swamp* green adder's mouth (*Malaxis unifolia*)

Should you have any further questions, contact me at 603-271-2215 ext. 323 or at Melissa.Coppola@dred.state.nh.us.

Memo

To: James Kenworthy, Eolian Renewable Energy, LLC 55 Fleet St. Portsmouth, NH 03801

From: Melissa Coppola, NH Natural Heritage Bureau

Date: 3/22/2010 (valid for one year from this date)

cc[.] Kim Tuttle

Re: Review by NH Natural Heritage Bureau NHB File ID: NHB10-0644 Project type: Roads, Driveways, Bridges: Road construction, etc.

Town: Antrim Location: Tax Maps: 212-030, 212-027, 212-034, 211-004, 235-014

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

Comments: NHB has concerns about potential impacts to the exemplary natural community. Please send detailed site plans to <u>mcoppola@dred.state.nh.us</u> for further review.

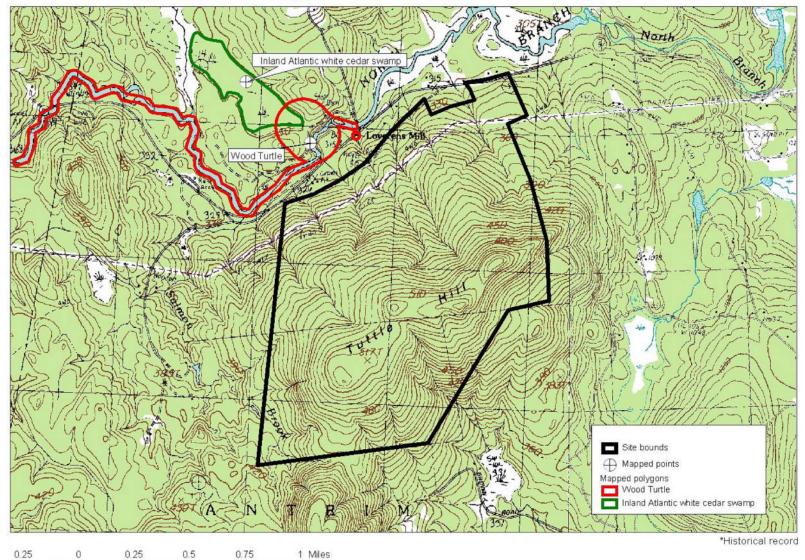
Natural Community	State ¹	Federal	Notes
Inland Atlantic white cedar swamp	7	J	Changes to the hydrology of the wetland are the greatest threat facing the cedar swamp. Damming which causes pooling for extended periods can flood and drown existing trees, and drainage that results in lower water levels can lead to invasion by other species that can out compete and eventually eliminate Atlantic white cedar trees. Increased nutrient input from stormwater runoff could also deleteriously impact this acidic, low-nutrient plant community.
Vertebrate species	State ¹	Federal	Notes
Wood Turtle (Glyptemys insculpta)	SC		Contact the NH Fish & Game Dept (see below).

¹Codes: "E" = Endangered, "T" = Threatened, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.

Contact for all animal reviews: Kim Tuttle, NH F&G, (603) 271-6544.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. For some purposes, including legal requirements for state wetland permits, the fact that no species of concern are known to be present is sufficient. However, an on-site survey would provide better information on what species and communities are indeed present.

NHB10-0644


1:24000

NH NATURAL HERITAGE BUREAU

Known locations of rare species and exemplary natural communities

Note: Mapped locations are not always exact. Occurrences that are not in the vicinity of the project are not shown.

New Hampshire Natural Heritage Bureau - Community Record

Inland Atlantic white cedar swamp

Legal Status	Conservation Status
Federal: Not listed	Global: Not ranked (need more information)
State: Not listed	State: Critically imperiled due to rarity or vulnerability
Description at this L	ocation
Conservation Rank:	Excellent quality, condition and lanscape context ('A' on a scale of A-D).
Comments on Rank:	This site is probably the best, largest and most viable remaining cedar swamp in the western part of the state. It should remain among the highest conservation priorities in the state.
Detailed Description:	2006: Community observed and photographed. 2004: Community observed and photographed. 1993: <i>Chamaecyparis thyoides</i> (Atlantic white cedar) is the dominant tree with both <i>Acer rubrum</i> (red maple) and <i>Picea rubens</i> (red spruce) present in abundance. <i>Picea mariana</i> (black spruce) is scattered and less abundant. Occasionally, <i>Pinus strobus</i> (white pine) and <i>Betula alleghaniensis</i> (yellow birch) are also found. Dominant shrub species are <i>Gaylussacia baccata</i> (black huckleberry), <i>Nemopanthus mucronatus</i> (mountain holly), <i>Ilex laevigata</i> (smooth winterberry), and <i>Kalmia angustifolia</i> (sheep laurel). Common boreal components present are <i>Chamaedaphne calyculata</i> (leather-leaf), <i>Gaultheria</i> <i>hispidula</i> (creeping snowberry), and <i>Ledum groenlandicum</i> (Labrador-tea). The herbaceous layer is fairly abundant, although richness is somewhat limited. <i>Osmunda cinnamomea</i> (cinnamon fern), <i>Aralia nudicaulis</i> (wild sarsaparilla), <i>Maianthemum canadense</i> (Canada mayflower), <i>Sarracenia purpurea</i> (pitcher-plant) and <i>Carex trisperma</i> (three-seeded sedge) are commonly present. Sphagnum species are abundant. 1990: Has <i>Chamaecyparis</i> <i>thyoides</i> (Atlantic white cedar) to 14 inches dbh and a few larger individuals, abundant in areas away from streams. <i>Picea mariana</i> (black spruce), <i>Picea rubens</i> (red spruce), <i>Abies</i> <i>balsamea</i> (balsam fir), and <i>Acer rubrum</i> (red maple) also occur. Lesser amounts of <i>Pinus</i> <i>strobus</i> (white pine).
General Area:	1993: Soil type is a mucky peat, with the peat deposits averaging <1 meter. The soil is permanently saturated with a couple of obvious watercourses present. The pH of the groundwater is quite acidic with a range of 3.8-4.0. 1990: Purest and largest cedar around open black spruce bog (90 percent, 10-14 inches average range). Other areas 50-80 percent. Basin is surrounded by gradually sloping uplands which are punctuated by a number of small cliffs. 1961 (Baldwin): a fairly large boggy swamp with <i>Chamaecyparis thyoides</i> (Atlantic white cedar). Contains 6 stands of cedar.
General Comments:	1997: New community boundaries mapped based on 1993 field work. 1990: Encroaching urban development.
Management	-
Comments:	
Location	

Survey Site Name:Loverens Mill Cedar SwampManaged By:Loverens Mill Preserve						
County:HillsboroughTown(s):AntrimSize:51.3 acres	USGS quad(s): Lat, Long: Elevation:	Stoddard (4307211) 430433N, 0720142W 1080 feet				
Precision: Within (but not necessarily restricted	l to) the area indi	cated on the map.				
ections: From Hillsboro, take Rte. 9 south ca. 5 miles south to Holmes Hill Road. Turn right (north) onto Holmes Hill. Park on the right immediately after crossing the bridge over the river, at the TNC preserve sign kiosk. After ca. 900 feet there will be a gravel road on the left. This is the trailhead. Take the marked trail on this road, up past the old mill, and look for a turnoff to the right. Procee down this trail (N-NW). The cedar swamp is at the bottom of the basin, to the north.						

Dates documented

First reported: 1961

Last reported: 2006-06-13

Kimball, Ben, et al. 2006. Field visit to Loverens Mill Cedar Swamp Preserve on June 13.

Sperduto, D. & N. Ritter. 1994. Altantic White Cedar Wetlands of New Hampshire. Environmental Protection Agency, Boston, MA.

New Hampshire Natural Heritage Bureau - Animal Record

Wood Turtle (*Glyptemys insculpta*)

Federal: Not listed State: Global: Apparently secure but with cause for concern State: Pescription at this Location Conservation Rank: Not ranked Comments on Rank: Detailed Description: 2008: Area 11603: 1 adult seen.2006: Area 11693: 1 adult seen.2005: Area 12135: 1 adult seen.2002: Area 12069: 1 observed. General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Comments: Management Everens Mill Managed By: Survey Site Name: Loverens Mill Nature Conservancy #2 County: Hillsborough USGS quad(s): Stoddard (4307211) Town(s): Antrim Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented Elevation: First reported: 2002-07-28 Last reported:	Legal Status	Conservation Status
Description at this Location Conservation Rank: Not ranked Comments on Rank: Not ranked Detailed Description: 2008: Area 11603: 1 adult seen.2006: Area 11693: 1 adult seen.2005: Area 12135: 1 adult seen.2002: Area 12069: 1 observed. General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Management Comments: Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Stoddard (4307211) Town(s): Antrim Lat, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp.		11 5
Conservation Rank: Not ranked Comments on Rank: 2008: Area 11603: 1 adult seen.2006: Area 11693: 1 adult seen.2005: Area 12135: 1 adult seen.2002: Area 12069: 1 observed. General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Comments: Management County: Hillsborough Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Stoddard (4307211) Town(s): Antrim Size: 84.4 acres Elevation: Precision: Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp.	State: SC	State: Rare or uncommon
Comments on Rank: Detailed Description: 2008: Area 11603: 1 adult seen.2006: Area 11693: 1 adult seen.2005: Area 12135: 1 adult seen.2002: Area 12069: 1 observed. General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Comments: Management Comments: Survey Site Name: Location Survey Site Name: Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Size: 84.4 acres Elevation: Precision: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp.	Description at this Loca	ation
Detailed Description: 2008: Area 11603: 1 adult seen.2006: Area 11693: 1 adult seen.2005: Area 12135: 1 adult seen.2002: Area 12069: 1 observed. General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Comments: Encertion Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Stodard (4307211) Town(s): Antrim Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented Elevation:	Conservation Rank: N	lot ranked
seen.2002: Area 12069: 1 observed. General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Comments: Management Elevation Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 USGS quad(s): County: Hillsborough Ital, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	Comments on Rank:	
General Area: 2005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002: Area 12069: Near cedar swamp. General Comments: Management Comments: Management Elevation Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Stodard (4307211) Town(s): Town(s): Antrim Size: 84.4 acres Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented Loverens Mill Road.2002: Area 12069: Loverens Mill property	1	
Management Comments: Location Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough Loverens Mill Conservancy #2 County: Hillsborough Elevation: Lat, Long: Size: 84.4 acres Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	General Area: 2	005: Area 12135: Crossing highway towards North Branch of Contoocook River.2002:
Comments: Location Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Stoddard (4307211) Town(s): Antrim Lat, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	General Comments:	
Location Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Town(s): Antrim Lat, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented		
Survey Site Name: Loverens Mill Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Town(s): Antrim Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	Comments:	
Managed By: The Nature Conservancy #2 County: Hillsborough USGS quad(s): Stoddard (4307211) Town(s): Antrim Lat, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented Value	Location	
County: Hillsborough USGS quad(s): Stoddard (4307211) Town(s): Antrim Lat, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented Value	2	
Town(s): Antrim Lat, Long: Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	Managed By: The	Nature Conservancy #2
Size: 84.4 acres Elevation: Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	County: Hillsborough	USGS quad(s): Stoddard (4307211)
Precision: Within (but not necessarily restricted to) the area indicated on the map. Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented		
Directions: 2008: Area 11603: TNC property at Loverens Mill Road.2002: Area 12069: Loverens Mill property near trail to cedar swamp. Dates documented	Size: 84.4 acres	Elevation:
near trail to cedar swamp. Dates documented	Precision: Within (b	but not necessarily restricted to) the area indicated on the map.
First reported: 2002-07-28 Last reported: 2008-06-01	Dates documented	
	First reported: 200	12-07-28 Last reported: 2008-06-01

Exhibit 7

Photographs Representative of the Site

PHOTOGRAPHS REPRESENTATIVE OF THE SITE

Typical Tuttle Hill scene near WTG 2.

Typical Tuttle Hill scene near WTG 3.

Typical Tuttle Hill scene near WTG 5.

Typical Tuttle Hill scene near WTG 8.

Typical Willard Mt. scene near WTG 9.

Typical Willard Mt. scene near WTG 10.

Exhibit 8

Site Specific Soil Survey Waiver Request

Waiver Request

Site Specific Soil Mapping

1509.03 (a) (4)

The New Hampshire Code of Administrative Rules, Chapter Env-Wq 1500 "Alteration of Terrain", Part Env-Wq 1504 "Plans and Calculations", Section Env-Wq 1504.09 (b) (2)b requires that a site-specific soil map be prepared in accordance with the Society of Soil Scientists of Northern New England (SSSNNE) Special Publication No. 3, Site-Specific Soil Mapping Standards for New Hampshire and Vermont, December 2006, for all proposed areas of disturbance.

1509.03 (a) (5)

The applicant is requesting a waiver of this rule as a result of a conversation with NHDES staff during the Alteration of Terrain (AoT) permit pre-application meeting. This waiver has been granted in the past for similar projects. According to the document referenced above, "Site specific soil mapping is conducted for very intensive land uses requiring very detailed information about soils, generally in small areas. ... The information can be used in planning individual building sites, experimental agricultural plots, and other uses requiring detailed and precise knowledge of the soils and their variability."

The proposed project is linear in nature, essentially a four (4) mile long crushed stone roadway that will connect ten (10) wind turbine generator sites. The project site lies predominantly along the top of a ridge, and straddles four (4) expansive, largely undeveloped watersheds. An examination of the Natural Resources Conservation Service (NRCS) Medium Intensity Soil Survey of Hillsborough County, NH indicates that the majority of the project will be built on Hydrologic Soil Group C soils. A relatively short length of road will be built on HSG D soils, through an area of ledge and outcrop. No infiltration BMPs are proposed for the stormwater management system. In addition, sensitive areas such as streams, wetlands and vernal pools have been mapped and are shown on the site plans. This is not the type of project for which a site-specific soil map is intended, nor would the information produced by such a study provide any real benefit. That level of detail is not required.

1509.03 (a) (6)

The waiver will not be temporary.

1509.03 (a) (7)

As an alternative to a site-specific soil map, the site plans have been prepared using delineations from the NRCS Medium Intensity Soil Survey obtained from the Web Soil Survey website.

1509.03 (a) (8)

The applicant believes that having the waiver granted will meet the criteria in Env-Wq 1509.04 for the following reasons:

1. "Granting the request will not result in an adverse impact on the environment, public health, public safety, or abutting properties that is more significant than that which would result from complying with the rule."

Environmentally sensitive areas such as streams, wetlands and vernal pools have already been mapped in the project area, so no adverse impacts to the environment are anticipated as a result of the waiver. Due to the nature of the project, the waiver will have no bearing on public health and safety. The impact on abutting properties as a result of the proposed land use will not change as a result of the intensity of the soil study.

- 2. "One or more of the following are satisfied:
 - *a. Granting the request is consistent with the intent and purpose of the rule being waived; or*
 - b. Strict compliance with the rule will provide no benefit to the public or the environment."

The applicant believes that both conditions are satisfied. In particular, strict compliance with the rule will provide no benefit to the public or the environment. The purpose of the waiver request is to allow the project to be based on a less intensive soil study, not to waive the requirement completely. NRCS soil surveys are commonly used as a basis for projects of this nature. In addition, sensitive areas such as streams, wetlands and vernal pools have already been mapped in the vicinity of the project. Therefore, a site-specific soil survey will not provide any additional benefit to the public or the environment.

Exhibit 9

Inspection and Maintenance Manual

ANTRIM WINDPARK PROJECT

POST-CONSTRUCTION STORMWATER MANAGEMENT INSPECTION & MAINTENANCE PLAN

The Antrim Windpark, including the 34.5kV collector substation and Operation and Maintenance facility, will be solely-owned, operated, and maintained by Antrim Wind Energy LLC, of Portsmouth New Hampshire. The 115kV substation will be owned, operated, and maintained by Public Service of New Hampshire (PSNH).

Antrim Wind Energy has designated the following individual(s) as the party responsible for inspection and maintenance of the stormwater management facilities:

Name:	John B. Kenworthy
Address:	Antrim Wind Energy, LLC 155 Fleet Street Portsmouth, New Hampshire, 03801
E-mail:	generate@eolian-energy.com
Phone:	(603) 570-4842

Facilities to be Maintained

The stormwater management facilities to be maintained at the Antrim Windpark include:

- Permanent access road;
- Substations and associated swales, bioretention systems, and stabilized slopes;
- Forested and meadow buffers;
- Treatment swales;
- Conveyance swales;
- Permanent check dams
- Culverts with inlet and outlet protection;
- Revegetated areas and embankments.

General Inspection and Maintenance Requirements

Generally, the proposed facility will be operated and maintained in a manner consistent with good utility practices, including annual (at minimum) on-site inspections and maintenance of stormwater management system components, as needed. A post-construction maintenance and inspection log is provided.

Maintenance issues associated with specific areas and facilities at the windpark are identified in the following paragraphs.

Substation Yard Area

The substation yard and surrounding area will be inspected twice annually (at minimum). Any signs of existing or developing erosion, rutting, trash, or unwanted vegetation will be removed/repaired as needed. Vegetated areas will be mowed as needed.

Access Roadway

The access roadway will typically require little on-going maintenance, due to the limited use by heavy vehicles.

The roadway will be inspected annually (at minimum), and signs of existing or developing erosion, rutting, trash or unwanted vegetation will be removed/repaired as needed.

Revegetated Areas and Embankments

Revegetated areas and embankments will be inspected annually (at minimum) for signs of existing or developing erosion, rutting, trash, vegetation loss, or unwanted vegetation. Meadow areas will be mowed as needed to maintain a healthy stand of vegetation. Debris and accumulated sediment will be removed as needed. Any eroded areas will be repaired and replanted with vegetation similar to the surrounding area. The source of the erosion problem shall be identified and eliminated.

Bioretention Systems

The bioretention systems will be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in 24 hours. Maintenance or rehabilitation shall be performed as needed. Trash and debris shall be removed at each inspection.

System drawdown time shall be inspected annually (at minimum). If the system does not drain within 72 hours following a rainfall event, then a qualified professional will assess the condition of the facility to determine measures required to restore filtration function, including but not limited to removal of accumulated sediments or reconstruction of the filter media. Vegetation shall be inspected annually and maintained in a healthy condition. Pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species shall be performed as needed.

Vegetated Buffers

Small Pervious Area Buffers

Small pervious area buffers are located adjacent to several of the permanent crane pad areas, and are designated as "WTG-_".

The buffers will be inspected annually (at minimum) for signs of erosion, sediment buildup, or vegetation loss. Meadow buffers will be mowed as needed to maintain a healthy stand of vegetation. Debris and accumulated sediment will be removed as needed. Any eroded areas will be repaired and replanted with vegetation similar to the remaining buffer. The source of the erosion problem shall be identified and eliminated.

Roadway Buffers

Roadway buffers are located adjacent to the access road.

The buffers will be inspected annually (at minimum) for signs of erosion, sediment buildup, or vegetation loss. Meadow buffers will be mowed as needed to maintain a healthy stand of vegetation. Forested buffers will be maintained in an undisturbed condition, unless erosion occurs. Debris and accumulated sediment will be removed as needed. Any eroded areas will be repaired and replanted with vegetation similar to the remaining buffer. The source of the erosion problem shall be identified and eliminated.

Ditch Turnout Buffers

Ditch turnout buffers are located adjacent to the access road, and begin at a stone berm level spreader.

The buffers will be inspected annually (at minimum) for signs of erosion, sediment buildup, or vegetation loss. Forested buffers will be maintained in an undisturbed condition, unless erosion occurs. Debris and accumulated sediment will be removed as needed. Any eroded areas will be repaired and replanted with vegetation similar to the remaining buffer. The source of the erosion problem shall be identified and eliminated.

The stone berm level spreaders will be inspected annually (at minimum) for accumulation of sediment and debris, and for signs of erosion within the approach channel, spreader channel, or down-slope of the spreader. Debris will be removed whenever observed during inspection. Sediment will be removed when accumulation exceeds 25% of spreader channel depth. Vegetated areas will be mowed annually (at minimum), or as required to control growth of woody vegetation. Stone berm material will be replaced/level spreader will be repaired as needed. Spreader shall be reconstructed if down-slope channelization

indicates that the spreader is not level or that discharge has become concentrated, and corrections cannot be made through minor regrading.

Treatment Swales

Treatment swales are located adjacent to the access road, and are designated as "SW-_".

Treatment swales will be inspected annually (at minimum) for signs of erosion, sediment accumulation, vegetation loss, and presence of invasive species. Swales will be mowed as needed. Vegetation shall not be cut shorter than 4 inches. Debris and accumulated sediment shall be removed, and eroded areas repaired, as needed. Invasive species and dead vegetation shall be removed when encountered.

Conveyance Swales

Conveyance swales are located directly adjacent to the access road. The site has both vegetated and riprap swales.

Conveyance swales will be inspected annually (at minimum) for signs of erosion, sediment accumulation, and condition of the surface lining. Repairs, including stone or vegetation replacement, will be made as needed. Vegetated swales will be mowed annually (at minimum) or as needed. Vegetation shall not be cut shorter than 4 inches. Debris and accumulated sediment shall be removed, and eroded areas repaired, as needed.

Conveyance swales that do not discharge via a culvert have been provided with outlet protection in the form of a plunge pool or permanent check dam. Outlet protection will be inspected annually (at minimum) for damage or deterioration. Repairs, including rebuilding or stone replacement, will be made immediately. Debris and accumulated sediment will be removed as needed.

Culverts

Culverts will be inspected annually (at minimum) for signs of blockage, damage or deterioration. Debris and accumulated sediment shall be removed as needed. Repairs to inlet and outlet protection, including rebuilding or stone replacement, will be made immediately.

Antrim Wind Park						
Storm	water Man	agement Syst	em Inspecti	on & Maintenance Log		
	Minimum Inspection Frequency Maintenanc e Frequency		Inspector Initials and Date			
				Inspector Comments		
Revegetated Areas and Embankments:						
Inspect all revegetated areas and embankments for erosion, rutting, trash, vegetation loss, or unwanted vegetation	Annual					
Mow meadow areas to maintain vegetation		As Needed				
Remove debris and accumulated sediment		As Needed				
Repair eroded areas, replant vegetation, identify and eliminate source of erosion	As Needed					
Conveyance Swales:						
Inspect drainage swales for evidence of erosion, sediment accumulation, woody vegetation, and condition of surface lining	Annual					
Inspect plunge pools and permanent check dams	Annual					
Control vegetated growth and woody vegetation		As Needed				
Remove accumulated sediment/debris; repair eroded areas		As Needed				
Mow vegetated swales (no shorter than 4")		As Needed				
Clean out any accumulation of sediment within the plunge pool and riprap aprons		As Needed				
Repair/rebuild plunge pools/check dams		As Needed				
Culverts:						
Inspect culvert inlet, outlet, and structure	Annual					
Remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit		As Needed				
Repair any erosion damage at the culvert's inlet and outlet		As Needed				

Alteration of Terrain Permit Application – Antrim Windpark Project

Antrim Wind Park							
	Stormwater N	lanagement Syst	tem Inspection	n & Maintenance Log			
	Sch	edule					
	Minimum Inspection Frequency	Maintenance	Inspector Initials and Date	Inspector Comments			
Access Roadway:	L		L				
Inspect access road surfaces and shoulders for erosion, false ditches, and excess accumulation of sand that could impede water flow.	Annual						
Correct any erosion/rutting, remove trash and unwanted vegetation		As Needed					
Substation Yard Area:							
Inspect for existing or developing erosion, rutting, trash, and unwanted vegetation.	Annual						
Correct any erosion/rutting and/or remove trash and unwanted vegetation.		As Needed					
Bioretention Systems							
Inspect for proper functioning and any accumulated trash and debris	Semi- Annual/ following any rainfall above 2.5 inches/24 hrs.						
Inspect drawdown time and state of vegetation	Annual						
Contact qualified professional if drawdown time exceeds 72 hours		As Needed					
Maintain vegetation; prune, remove dead/diseased vegetation, remove invasive species		As Needed					

	Antrim Wind Park						
	Stormwater Management System Inspection & Maintenance Log						
	Minimum Inspection Frequency Maintenance		Inspector Initials and Date	Inspector Comments			
Inspect for signs of erosion, sediment buildup, or vegetation loss	Annual						
Mow meadow buffers		As Needed					
Remove debris and accumulated sediment		As Needed					
Repair eroded areas and replant; identify and eliminate source of erosion problem		As Needed					
Roadway Buffers							
Inspect for signs of erosion, sediment buildup, or vegetation loss	Annual						
Mow meadow buffers		As Needed					
Remove debris and accumulated sediment		As Needed					
Repair eroded areas and replant; identify and eliminate source of erosion problem		As Needed					
Ditch Turnout Buffers							
Inspect for signs of erosion, sediment buildup, or vegetation loss	Annual						
Remove debris and accumulated sediment		As Needed					
Repair eroded areas and replant; identify and eliminate source of erosion problem		As Needed					
Inspect stone berm level spreaders for erosion, sediment buildup, debris		As Needed					
Remove debris		As Needed					

	Alteration of Terrain Permit Application – Antrim Windpark Project					
	Antrim Wind Park					
Storn	Stormwater Management System Inspection & Maintenance Log					
	Sche	edule				
	Minimum Inspection Frequency	Maintenance	Inspector Initials and Date	Inspector Comments		

	Minimum Inspection Frequency	Maintenanc	Initials and Date	Inspector Comments
Ditch Turnout Buffers (cont'd)				
		When		
		accumulation		
Remove sediment		exceeds 25%		
Keniove seament		of spreader		
		channel		
		depth		
Mow vegetated areas/control woody growth		Annual		
now vegetated areas control woody growth		(min.)		
Repair/replace stone berm material		As Needed		
Reconstruct spreader		As Needed		
Treatment Swales				
Inspect for erosion, sediment accumulation,	Annual			
vegetation loss, and invasive species	Annual			
Mow swale not less than 4"		As Needed		
Remove debris and accumulated sediment		As Needed		
Remove invasive species and dead vegetation		As Needed		

Maintenance Notes:

Exhibit 10

Pre-Application Meeting Minutes

Meeting Minutes

Project:	Antrim Wind Energy, LLC Wind Power Project		
TRC Project No.:	186317	Prepared by:	Patrick Martin, P.E TRC
Meeting Date:	November 1, 2011	Date Prepared:	November 15, 2011
Participants:	Craig Rennie - NHDES David Keddell - ACOE John Soininen - Eolian Drew Kenworthy - Eolian Josh Brown - TRC Patrick Martin, P.E TRC		
Purpose:	Antrim Wind Project NHDES Alteration	on of Terrain Pre-A	Application Meeting

The following are the meeting notes from the stormwater pre-application meeting held at the NHDES offices on November 1, 2011. It is our understanding that the general discussion items listed below will be used as the basis for the design and permitting of this project.

General Items

TRC presented a plan of the project that showed the project area on a watershed level. The plan included existing features such as contours, wetlands and vernal pools, roads and structures, and soils identified by hydrologic soil group. The plan also showed the proposed roadway alignment and turbine locations.

- The applicant will need to file a Site Specific Soil Mapping Waiver request in order to base the design on the NRCS Medium Intensity Soil Survey information currently shown on the plan.
- NHDES does not consider an open-graded crushed rock road surface a type of permeable pavement. Additional water quality treatment measures will be required to address the runoff from these road surfaces.
- Instead of using riprap, slopes steeper than 3:1 can be vegetated if stabilized with erosion control blankets.
- NHDES encourages the use of stone mattresses (permeable subgrade) in roadway construction where possible. Where culverts are required, avoid concentration of flows as much as possible by using more culverts than typical to dissipate flow and minimize altering preconstruction conditions.
- Runoff quantity control will not likely be an issue given the small amounts of new impervious area to be created in large watersheds. TRC will prepare a runoff curve number (CN) comparison of the pre- and post-development conditions for review.

- The Anti-degradation Rules included in the New Hampshire Stormwater Manual, Volume 1, Chapter 5 can be disregarded. TRC will refer to the New Hampshire Code of Administrative Rules, specifically Chapter Env-Wq 1500 – Alteration of Terrain, for stormwater management design guidance.
- Stream rules will apply at all watercourse crossings, including the use of open-bottom culverts. Maintain connectivity between vernal pools and wetlands to the greatest extent practicable.
- Culverts for amphibian migration in upland areas between vernal pools and nearby wetlands should be considered.
- Post construction restoration of temporary road widths and cut/fill slopes will include soil/mulch placement and seeding.
- Plans need to show all temporary impact zones including staging and stockpile areas.

Respectfully Submitted,

Patrick M Martin, P.E. Civil Engineer - TRC Exhibit 11

Property Owner Information and Agreements

Antrim Wind Park Property Owners

Last Name	First Name	Мар	Lot(s)	Address 1	Address 2	Town	State	Zip Code
Ott	Mike	212	027; 030; 034	354 Keene Road	P.O. Box 160	Antrim	NH	04330
Whittemore	Paul J.	236	002	15 Dartmouth Drive	P.O. Box 528	Auburn	NH	03032
Cotran	Steven R.	236	001	26 McIntosh Lane		Bedford	NH	03110
c/o Charles Bean III	Antrim Limited Partnership	235	014	477 Washington Street		Norwood	MA	02062
Paul and Helen								
Whittemore,								
Trustees	Whittemore Trust	239	001	P.O. Box 528		Auburn	NH	03032

ENV. JACK KENWORTHY EOLIAN RENEWABLE ENERGY LLC 155 FLEET OT PORTSMOUTH NN 03801-4050

Doc # 1104944 Jan 26, 2011 12:13 PM Book 8288 Page 0340 Page 1 of 9 Register of Deeds, Hillsborough County Camela O Caughtin

ANTRIM WIND ENERGY LLC (ANTRIM, NH – TAX MAP #236 /PARCEL #002-000 – PAUL WHITTEMORE

EXHIBIT C MEMORANDUM OF LEASE

PARTIES TO LEASE:

LESSOR Paul and Helen Whittemore c/o Paul Whittemore P.O. Box 528 Auburn, NH 03032

LESSEE

Antrim Wind Energy LLC c/o Eolian Renewable Energy 155 Fleet Street Portsmouth, New Hampshire 03801

Lessor is the owner of that certain real property described in <u>Exhibit A</u> attached hereto ("Lessor's Land"). Lessor leases to Lessee all or a portion of Lessor's Property as depicted on the map attached hereto as <u>Exhibit B</u> (the "Leased Premises"), together with the non-exclusive right of ingress to and egress from Windpower Facilities (defined in the Lease) located on the Leased Premises, adjoining properties and elsewhere over and across the Leased Premises and Lessor's Land by means of existing roads and lanes, if any, or otherwise by such route or routes as Lessee may construct from time to time.

Lease shall be for an initial term of twenty-five (25) years and shall commence on the Effective Date.

Lessee shall have the option to renew the Lease for one additional twenty-five (25) year term.

PREMISES:

TERM OF LEASE:

EXTENSION TERM:

022307

DATED at AUSURN NH .

this <u>6</u> day of January, 2011.

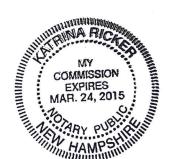
By: Mame: Paul WI Its: Owner/Self

STATE OF NEW HAMPSHIRE

COUNTY OF HOCKING HAM

) ss.:

On this $\underline{(e^{\dagger h})}$ day of January 2011, before me, the undersigned, a Notary Public in and for said State, personally appeared Paul Whittemore, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument.


DATED at Portsmorth $\frac{1}{100}$ this $\frac{1}{100}$ day of January 2011. By: Its

STATE OF NEW HAMPSHIRE

) ss.:

COUNTY OF ROCKINGHAM

On this 4 day of January, 2011, before me, the undersigned, a Notary Public in and for said State, personally appeared John Kenworthy, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument.

23

EXHIBIT A to Memorandum of Lease

0009937

2000 FEB 24 AM 9: 22

WARRANTY DEED

KNOW ALL MEN BY THESE PRESENTS:

I, MARVIN W. CUDDIHY, a/k/a Marvin Cuddihy, an

unremarried widow, of 19 Davisville Road, Wilton, in

the County of Hillsborough and State of New Hampshire,

for consideration paid,

That

grants to PAUL WHITTEMORE and CAROLE WHITTEMORE, husband and

wife, both of 29 Sagharbor Drive, Auburn, in the County of Rockingham and the State of New Hampshire, and HELEN WHITTEMORE, of P. O. Box 242, Antrim, in the County of Hillsborough and State of New Hampshire, all as joint tenants with rights of survivorship,

with WARRANTY covenants,

Two certain tracts or parcels of land with the buildings thereon, if any, situated in Antrim, in the County of Hillsborough and State of New Hampshire, bounded and described as follows:

TRACT I

Beginning at the Northeast corner of the tract at land now or formerly of John B. Jameson; thence Westerly by said Jameson land along the stone wall to land formerly of Helen C. Thayer; thence Southerly along a stone wall adjoining land of said Thayer to a stake and stones at land now or formerly of John B. Jameson; thence Easterly along said Jameson land to stone wall at a corner of land now or formerly of said Jameson and land now or formerly of John Cuddihy; thence Northerly along land of said Cuddihy and Jameson along stone wall to the point of beginning.

Containing thirty (30) acres, more or less, and being known as the Nesmith Pasture.

DEPARTMENT OF REVENUE ADMINISTRATION		REAL ESTATE TRANSFER TAX		
THOUSAND	HUNDRED	AND 00 DOLLA		
02/24/2000	421757	\$ *****600.00		

The above premises are subject however to a right of way and privilege of roadway being built to land now or formerly of Helen C. Thayer or her heirs, executors or assigns, of thirty (30) feet in width at such point as possible for best construction, all as set forth in deed of Helen C. Thayer to John Cuddihy, dated August 6, 1914 and recorded in Volume 723, Page 336, of the Hillsborough County Registry of Deeds.

TRACT II

Beginning at the Southwest corner of the premises at land now or formerly of one Harrington; thence Northerly by said Harrington land to land formerly of Alfred G. Holt, now or formerly of Arthur F. Holt and Gladys H. Warner; thence Easterly by land of said Holt-Warner to land now or formerly of Alvin Brown; thence Southerly by said Brown land and land formerly of James W. Jameson and of John Cuddihy to land now or formerly of R. B. Harrington; thence Westerly by said Harrington land to the place of beginning.

Containing one hundred ten (110) acres, more or less, and being known as the Mountain Pasture.

Meaning and intending to convey the same premises conveyed to Marvin Cuddihy and Sarah Cuddihy, as joint tenants with rights of survivorship, by deed of Alice E. Cuddihy, Mary I. Boynton and Matthew N. Cuddihy, dated October 12, 1965 and recorded in Volume 1853, Page 26, of the Hillsborough County Registry of Deeds. The said Sarah J. Cuddihy died on December 16, 1979 and her death certificate is to be recorded with the Hillsborough County Registry of Deeds. The grantor herein derives his title as surviving joint tenant.

This conveyance is made subject to Current Use Classification recorded in Volume 3696, Page 136, of the Hillsborough County Registry of Deeds.

And I, Marvin W. Cuddihy, and unremarried widow, release to said Grantees my rights of Homestead and other interests in said premises.

Dated this $14^{\frac{1}{14}}$ day of January, 2000. Marvin W. Cuddihy

STATE OF NEW HAMPSHIRE

County of Hillsborough

The foregoing instrument was acknowledged before me this $\frac{1}{14}$ day of January, 2000, by MARVIN W. CUDDIHY,

Name Lar Title /

My Commission Expires: 12/20/2000

Doc # 1019268 Apr 29, 2010 2:41 PM Book 8199 Page 0260 Page 1 of 3 Register of Deeds, Hillsborough County Carmela O Caugelin

#11 Blodgett, Makechnie & Lawrence

QUITCLAIM DEED

I, CAROLE WHITTEMORE, single woman, of Auburn, County of Rockingham and State of New Hampshire, for consideration paid, grant to PAUL J. WHITTEMORE, of 29 Sagharbor Drive (with a mailing address of P. O. Box 528), Town of Auburn, County of Rockingham and State of New Hampshire 03032-0528, and HELEN M. WHITTEMORE, of Brimstone Corner Road (with a mailing address of P. O. Box 242), Town of Antrim, County of Hillsborough and State of New Hampshire 03440-0242, as joint tenants with rights of survivorship, with **QUITCLAIM covenants**, all my right, title and interest in

Two certain tracts or parcels of land, with the buildings thereon, if any, situate in the Town of **Antrim**, in the County of Hillsborough and State of New Hampshire, bounded and described as follows:

Tract I

Beginning at the northeast corner of the tract at land now or formerly of John B. Jameson; thence running

WESTERLY by land of said Jameson along the stone wall to land formerly of Helen C. Thayer; thence running

SOUTHERLY by a stone wall adjoining land of said Thayer to a stake and stones at land now or formerly of John B. Jameson; thence running

EASTERLY by land of said Jameson to a stone wall at a corner of land now or formerly of said Jameson and land now or formerly of John Cuddihy; thence running

NORTHERLY by land of said Cuddihy and Jameson along a stone wall to the point of beginning.

Containing thirty (30) acres, more or less, and being known as the Nesmith Pasture.

BLODGETT, MAKECHNIE & LAWRENCE, P.L.L.C. - ATTORNEYS AT LAW - PETERBOROUGH, NH 03458-0574

ANTRIM WIND ENERGY LLC (ANTRIM, NH – TAX MAP #236 /PARCEL #002-000 – PAUL WHITTEMORE

Book 8199 Page 0261 Page 2 of 3

The above premises are subject however to a right of way and privilege of roadway being built to land now or formerly of Helen C. Thayer or her heirs, executors or assigns, of thirty (30) feet in width at such point as possible for best construction, all as set forth in deed of Helen C. Thayer to John Cuddihy, dated August 6, 1914 and recorded in the Hillsborough County Registry of Deeds at Volume 723, Page 336.

Tract II

Beginning at the southwest corner of the premises at land now or formerly of one Harrington; thence running

NORTHERLY by land of said Harrington to land now or formerly of Arthur F. Holt and Gladys H. Warner; thence running

EASTERLY by land of said Holt-Warner to land now or formerly of Alvin Brown; thence running

SOUTHERLY by land of said Brown and land formerly of James W. Jameson and of John Cuddihy to land now or formerly of R. B. Harrington; thence running

WESTERLY by land of said Harrington to the place of beginning.

Containing one hundred ten (110) acres, more or less, and being known as the Mountain Pasture.

Meaning and intending to convey the grantor's interest in the premises conveyed to Paul Whittemore, Carole Whittemore and Helen Whittemore by deed of Marvin W. Cuddihy, dated January 14, 2000, recorded in the Hillsborough County Registry of Deeds at Book 6211, Page 1465.

The premises are conveyed subject to the notice of current use classification filed by the Town of Antrim in the Hillsborough County Registry of Deeds at Book 3696, Page 136.

This conveyance is exempt from the New Hampshire real estate transfer tax under the provisions of RSA 78-B:2,XIII as a transfer pursuant to a decree of divorce issued by the Merrimack Superior Court, Docket Number 07-M-0495 on July 10, 2007, and under the provisions of RSA 78-B:2,IX.

Signed this 21st day of April, 2009. Carole J. Whitemore

2

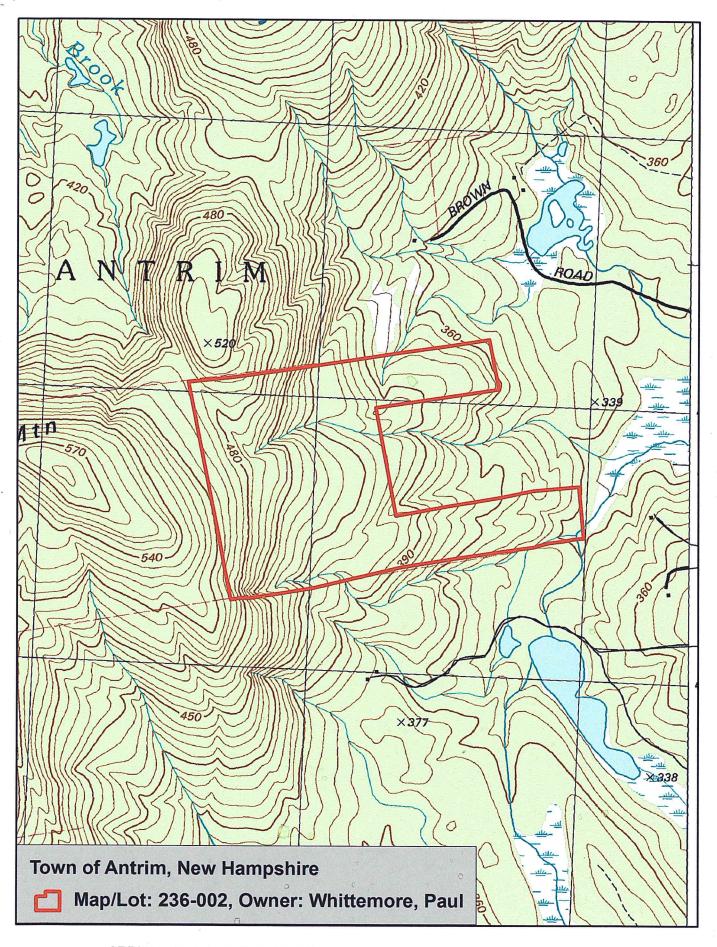
BLODGETT, MAKECHNIE & LAWRENCE, P.L.L.C. - ATTORNEYS AT LAW - PETERBOROUGH, NH 03458-0574

ANTRIM WIND ENERGY LLC (ANTRIM, NH – TAX MAP #236 /PARCEL #002-000 – PAUL WHITTEMORE

Book 8199 Page 0262 Page 3 of 3

STATE OF NEW HAMPSHIRE COUNTY OF ROCKINGHAM

The foregoing instrument was acknowledged before me this $\frac{21}{2009}$ day of ______, 2009, by Carole Whittempre.


1 Notary the Peace Public/Justice of 30/2013 $\frac{C}{Printed}$ Theos 1 AROL Expiration Date

CAROL A. THEOS, Justice of the Peace My Commission Expires January 30, 2013

3

BLODGETT, MAKECHNIE & LAWRENCE, P.L.L.C. - ATTORNEYS AT LAW - PETERBOROUGH, NH 03458-0574

ORIGINAL NOT SUITABLE FOR PROPER REPRODUCTION

•

SHORT FORM OPTION AGREEMENT

1

Dr. Lyle J. Micheli and Mrs. Anne J. Micheli, whose mailing address is 319 Longwood Avenue, Boston, MA 02155 ("Grantor") and **Antrim Wind Energy LLC** a Delaware limited liability company having a mailing address at c/o Eolian Renewable Energy, LLC, 155 Fleet Street, Portsmouth, New Hampshire 03801 ("Grantee"), have entered into an option agreement dated September 8, 2011 (the "Option").

1. <u>Grant of Option</u>. For valuable consideration, Grantor has granted to Grantee the exclusive right and option to purchase an Easement encumbering the premises situated in the Town of Antrim, Hillsborough County, New Hampshire, being more particularly described in **Exhibit A** attached hereto (the "Property"), subject to the terms and conditions contained in this Option. The easement (the "Easement") shall be in the form attached hereto as **Exhibit B**.

2. <u>Expiration Date</u>. This Option shall expire two (2) years from the date hereof at 5:00 p.m. in the time zone in which the Property is located. For additional consideration, Grantee may postpone the expiration of this Option for an additional period of two (2) years.

3. <u>Exercise of Option</u>. This Option may be exercised by Grantee by giving written notice thereof to Grantor prior to the expiration of this Option.

4. <u>Easement</u>. Within thirty (30) days after the exercise of this Option, Grantor shall execute and deliver to Grantee an original of the Easement.

5. <u>Due Diligence Inspections</u>. Grantee, its agents, contractors, and subcontractors, may enter upon the Property at reasonable times prior to exercise of this Option, and prior to the granting of the Easement, in order to inspect the Property and/or to perform surveys and other physical inspections (collectively, the "Due Diligence Inspections"); provided, however, that the Grantee shall not perform any physical alterations to the Property without the written permission of the Grantor. In the event Grantee determines, in its sole discretion, that any one or more of the Due Diligence Inspections is not acceptable to Grantee, then Grantee may terminate this Option and be relieved of its obligations hereunder.

6. <u>Failure to Exercise</u>. In the event Grantee fails to exercise this Option before its

expiration for any reason other than a default by Grantor, this option shall terminate, and none of the parties hereto shall have any further rights, claims, or obligations with respect to this Option.

8. <u>Assignment</u>. Grantee shall have the right to assign its rights and obligations under this Option without the consent of Grantor. All acts performable by Grantee under this Option may be performed by any assignee. Any assignment shall be in writing, acknowledged, and recorded in the Registry of Deeds in the county where the property is located. Such assignment shall relieve Grantee from the obligations of this Option.

9. <u>Licenses and Permits</u>. Grantor agrees that during the term of this Option, Grantee may attempt to obtain any licenses and/or permits relating to the Property which Grantee finds necessary or desirable for its contemplated use of the Property, and Grantor shall cooperate with Grantee in obtaining the same, at no expense to Grantor.

10. <u>Notice</u>. All notices pursuant to this Option shall be in writing and shall be delivered by hand, mailed overnight courier or by certified mail, postage prepaid, return receipt requested, to the following addresses:

- To the Grantor(s):
 Dr. and Mrs. Lyle J. Micheli
 319 Longwood Avenue
 Boston, MA 02155
- (ii) To the Grantee(s): Antrim Wind Energy LLC
 c/o Eolian Renewable Energy, LLC
 155 Fleet Street
 Portsmouth, New Hampshire 03801
 Attention: Jack Kenworthy

with a copy to:

Jeffrey T. Selser, Esq. Verrill Dana LLP One Portland Square Portland, Maine 04101

Notices shall be deemed given on the date mailed, or, if hand delivered, on the date of delivery. Either party may, by such manner of notice, substitute persons or addresses for notice other than those listed above.

11. <u>Miscellaneous</u>. This Option shall be binding upon and inure to the benefit of Grantor and Grantee, their successors and assigns. This Option is, and shall be, governed in all respects (including validity, construction, interpretation, and effect) by the laws of the State of New Hampshire, without giving effect to its principles or rules of conflict of laws to the extent that such principles or rules would require or permit the application of the laws of another

jurisdiction. Should any provision of this Option for any reason be declared invalid or unenforceable, such decision shall not affect the validity or enforceability of any other provisions of this Option, which shall remain in full force and effect. This Option shall be recorded in the Registry of Deeds in the County in which the Property is located.

IN WITNESS WHEREOF, Grantor and Grantee have executed or caused this instrument to be executed as of the date first above written.

WITNESS:

GRANTOR(s)

DR. LYLE MICHELI

Cristina Murphy

20202 By

MRS. ANNE J. MICHELI

Cuistura C Murphy

By: Une Michili

WITNESS:

12 Kickr

GRANTEE ANTRIM WIND ENERGY LLC

By: Name: John B. Kenworthy Its. Executive Officer

STATE OF <u>Massa Chusef</u> County of <u>Suffer</u>, S

September 16 , 2011

Then personally appeared the above-named Lyle Micheli in his/her capacity as owner/joint tenant of the Property and acknowledged the foregoing instrument to be his/her free act and deed.

100009

Before me,

otary Public

JILL E. MUISE Notary Public COMMONWEALTH OF MASSACHUSETTS My Commission Expires July 20, 2018

STATE OF Magachuatte County of SUHTOP, SS

(Saptember 16 , 2011

Then personally appeared the above-named Anne J. Micheli in his/her capacity as owner/joint tenant of the Property and acknowledged the foregoing instrument to be his/her free act and deed.

Unne J. Micheli

Mrs. Anne J. Micheli

Before me Notary Public

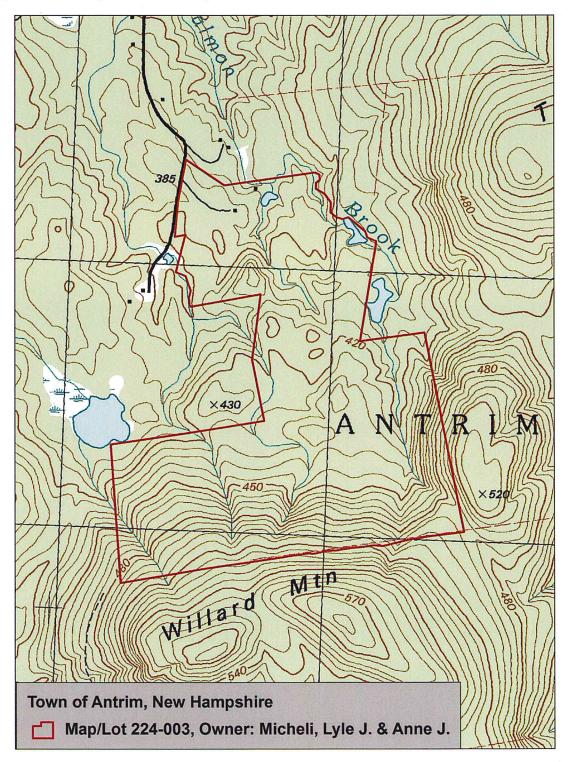
JILL E. MUISE Notary Public COMMONWEALTH OF MASSACHUSETTS My Commission Expires July 20, 2018

-5-

STATE OF NEW HAMPSHIRE County of <u>Rockingha</u>rss

8____, 2011

Then personally appeared the above-named John B. Kenworthy in his/her capacity as Executive Officer of Antrim Wind Energy LLC and acknowledged the foregoing instrument to be his/her free act and deed in said capacity and the free act and deed of Antrim Wind Energy, LLC.


John B. Kenworthy

Before me, la INC Notary Public

Exhibit A Property Description and Map

A certain lot or parcel of land situated off Salmon Brook Road in the Town of Antrim, County of Hillsborough, and State of New Hampshire, more particularly described in the deed dated December 6 1996 and recorded at the Hillsborough County Registry of Deeds in Book 5774, Page 1777 and depicted on the map below.

Exhibit B Form of Easement

C

.

EASEMENT

THIS EASEMENT is made by Dr. Lyle J. Micheli and Mrs. Anne J. Micheli (collectively, "<u>Grantor</u>"), the owner(s) of a certain lot or parcel of land situated off Salmon Brook Road in the Town of Antrim, County of Hillsborough, and State of New Hampshire, more particularly described in the deed dated December 6 1996 and recorded at the Hillsborough County Registry of Deeds in Book 5774, Page 1777 (hereinafter referred to as the "<u>Servient Land</u>").

WHEREAS, Antrim Wind Energy LLC a Delaware limited liability company having a mailing address at c/o Eolian Renewable Energy, LLC, 155 Fleet Street, Portsmouth, New Hampshire 03801 ("<u>Grantee</u>"), plans to construct and operate a wind power project, including wind turbine generators and towers and related equipment, facilities, infrastructure and substructures (hereinafter referred to as the "<u>Wind Power Project</u>"), on lands near the Servient Land, including (without limitation) the lands described on the attached <u>Exhibit A</u>; and

WHEREAS, the Wind Power Project will emit sound including at levels that may exceed applicable state or local maximum sound level limits for the Servient Land, and may cast shadows onto or produce a shadow flicker effect at the Servient Land;

Now, THEREFORE, for good and valuable consideration received, Grantor hereby grants an easement to Grantee for: (a) the right to have sound generated from the Wind Power Project impact the Servient Land and exceed otherwise applicable state or local maximum sound level limits applicable to locations on the Servient Land; (b) the right to cast shadows or shadow flicker from the Wind Power Project onto the Servient Land; and (c) the right to locate turbines closer than any minimum distance setback requirement to structures or property lines, including the right to have the blades of wind turbines overhang the Servient land;

This Easement shall expire on the earlier to occur of (a) fifty years after the date hereof, or (b) the date on which the Wind Power Project is fully decommissioned and has been abandoned or surrendered by Grantee (or its successors and/or assigns, as the case may be).

This Easement shall extend to, be binding upon and shall inure to the benefit of heirs, personal representatives, successors and assigns of the parties hereto. The burden of the easement hereby granted shall run with the Servient Land, until it expires as set forth above. The benefit of the easement hereby granted is not appurtenant to any particular property, but shall be transferable in whole or in part, and may be sold, leased, assigned, pledged, and mortgaged by Grantee, it being the intent of the parties that such benefit may be transferred to any successors or assignees of Grantee that own or operate the Wind Power Project, as it may be modified, divided or expanded.

As a condition of the grant of this Easement, Grantee agrees to indemnify, defend, and hold Grantor harmless from and against any and all damage, loss, claim, liability, or expense of any kind arising from any claim of bodily injury and/or physical or property damage of any kind present by third parties, and physical damage to or destruction of the Servient Land caused by Wind Power Project, except to the extent arising from the negligence or willful misconduct of Grantor.

The benefit of the easement hereby granted may be enforced by Grantee, its successors and assigns, by any appropriate legal or equitable remedy. In the event that Grantee, its successors or assigns, shall bring an action against Grantor, its successors or assigns, by reason of a breach or violation of this Easement by Grantor, its successors and assigns, the substantially prevailing party in such action shall be entitled to recover their reasonable attorneys' fees and court costs incurred in such action from the substantially non-prevailing party. WITNESS our hands and seals this _____ day of _____, 2011.

In the presence of:

GRANTOR(s)

Print: Dr. Lyle J. Micheli

Print: Mrs. Anne J. Micheli

STATE OF _____ COUNTY OF _____

_____, 20___

Personally appeared the above-named LYLE J. MICHELI and ANNE J. MICHELI and [severally] acknowledged the foregoing instrument to be his/her/their free act and deed.

Before me,

Notary Public Print Name:______ My Commission Expires:______

.....

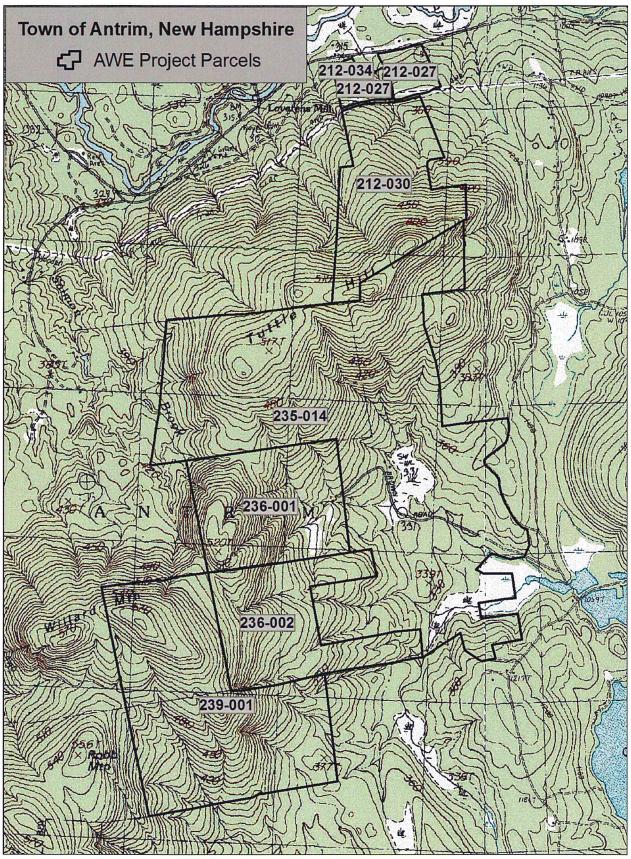


EXHIBIT A Proposed Wind Power Project Lands (not intended to be exhaustive)

Doc # 1028814 Jun 24, 2010 10:40 AM Book 8214 Page 2699 Page 1 of 6 Register of Deeds, Hillsborough County Camela O Caughton

EOLIAN RENEWABLE ENERGY LLC 155 FLEET ST. PORTSMONTH NH 03801 ATTN: JACK KENWORTHY

Antrim Wind (Antrim, NH – Map #212 Lot #'s 212-030-000; 212-027-000; 212-034-000 – Michael J. Ott)

EXHIBIT C MEMORANDUM OF LEASE

PARTIES TO LEASE:

LESSOR Michael J. Ott P.O. Box 160 Antrim, New Hampshire 03440

LESSEE

Antrim Wind Energy LLC c/o Eolian Renewable Energy 155 Fleet Street Portsmouth, New Hampshire 03801

Lessor is the owner of that certain real property described in <u>Exhibit A</u> attached hereto ("Lessor's Land"). Lessor leases to Lessee all or a portion of Lessor's Property as depicted on the map attached hereto as <u>Exhibit B</u> (the "Leased Premises"), together with the non-exclusive right of ingress to and egress from Windpower Facilities (defined in the Lease) located on the Leased Premises, adjoining properties and elsewhere over and across the Leased Premises and Lessor's Land by means of existing roads and lanes, if any, or otherwise by such route or routes as Lessee may construct from time to time.

Lease shall be for an initial term of twenty-five (25) years and shall commence on the Effective Date.

Lessee shall have the option to renew the Lease for one additional twenty-five (25) year term.

PREMISES:

TERM OF LEASE:

EXTENSION TERM:

CONFIDENTIAL

Antrim Wind (Antrim, NH – Map #212 Lot #'s 212-030-000; 212-027-000; 212-034-000 – Michael J. Ott)

DATED at Portsmouth, New Hampshire this 18th day of December 2009.

Antrim Wind Energy LLC By: enworthy Name: John B. Its: Manager

STATE OF NEW HAMPSHIRE ss.: COUNTY OF HILLSBORD Rockingham

On this 18th day of December, 2009, before me, the undersigned, a Notary Public in and for said State, personally appeared John B. Kenworthy, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument.

Commission Expires May Notary Public

DATED at Town Hall , Antrim NH this 24 day of Devember, 2009.

MICHAEL J.H. OTT

By: Name: N Its: Self

Her 1 Name: Michael J. H. Ott

STATE OF NEW HAMPSHIRE ss.: COUNTY OF HILLSBORO

On this 24 day of <u>December</u>, 2009 before me, the undersigned, a Notary Public in and for said State, personally appeared Michael J. H. Ott, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument.

Notary Public

CONFIDENTIAL

EXHIBIT A to MEMORANDUM OF LEASE

6038778

2006 JUN - 2 PM 2: 37

A Lo J Record and return to: Craighead and Martin, PLLC 62 Stark Street Manchester, NH 03101

2520 TS

STATE OF NEW HAMPSHIRE DEPARTMENT ADMINISTRATION HINDRED AND 20 DOLLARS CONSTRUCTION 06/02/2006 VOID IF ANL TERED

WARRANTY DEED

KNOW ALL MEN BY THESE PRESENTS, That, we, John A. Eddy and Laura C. Eddy, husband and wife, both of 763 Templeton Turnpike Road, Fitzwilliam, County of Cheshire, and State of New Hampshire, for consideration paid, grants to Michael James Hutchins Ott, a single person of 493 Ocean Boulevard, #24, Hampton, County of Rockingham, and State of New Hampshire, with Warranty Covenants:

The following four (4) tracts of land situated in Antrim, County of Hillsborough and State of New Hampshire:

Tract 1:

A certain tract of land situated in the northwest part of Antrim in the County of Hillsborough and State of New Hampshire, bounded and described as follows:

Beginning at the Northeast corner of the premises at a stake and stones by an old road leading from near the dwelling formerly occupied by Walter Buchanan to the dwelling of the late William R. Carr; thence

- 1. Westerly by the same old road about 101.5 rods to land formerly owned by the late Hiram Griffin; thence
- 2. Southerly by said Griffin land about 62 rods to the corner of the wall by land of the Steele heirs; thence
- 3. Easterly by said last mentioned land about 94 rods to the corner of the wall by land of the late William R. Carr; thence
- 4. Northerly by said Carr land about 19.5 rods to a stake and stones; thence

ORIGINAL NOT SUITABLE FOR PROPER REPRODUCTION

9-60 9-61 9-64

212 -4 lace BK7685P6086 9-212

9-40-33

9-11-205

9-64-25

5. Easterly by said Carr land about 21.5 rods to a stake and stones; thence

6. Northerly by said Carr land about 49 rods to the first named bound.

Estimated to contain 43 acres, more or less.

Tract 2:

Also another tract of land situated in the northwest part of said Antrim, New Hampshire, bounded and described as follows:

Beginning at the Northeast corner of the premises; thence

- 1. Southerly by land formerly owned by Samuel Tuttle 52 rods; thence
- 2. Westerly by the wall by land formerly owned by Dodge to the Northwest corner of said Dodge land; thence
- 3. Southerly by said Dodge land to land formerly owned by Davis; thence
- 4. Westerly by said Davis land and land formerly owned by Handley to land formerly of Samuel Curtis; thence
- 5. Northerly and Easterly by said Curtis land to land formerly owned by John McClure, et al; thence
- 6. Easterly by said McClure land to land formerly owned by Samuel Weston; thence
- 7. Southerly by said Weston land to land formerly owned by Samuel Tuttle, et al, about 57 rods; thence
- 8. Easterly by said Tuttle land to the point of beginning.

Said to contain 150 acres, more or less.

Tract 3:

A certain tract of land with the buildings thereon, if any, situate in the north part of Antrim, Hillsborough County and State of New Hampshire, bounded and described as follows:

Beginning at the Northwest corner of the premises at a stake and stones by land formerly owned by John Dodge; thence

- 1. Southerly by said Dodge land to the old road leading from the former residence of William R. Carr to the former residence of Samuel Dinsmore, to a stake and stones; thence
- 2. Easterly by said road about 37 rods to stake and stones; thence
- 3. Northerly by land formerly owned by Chandler Boutelle to a stake and stones by land formerly owned by Grafton Curtice; thence
- 4. Westerly by said Curtice land to the bound first mentioned.

Estimated to contain 6.5 acres, more or less, but reserving to the Public Service Company of New Hampshire and those claiming under it, any pole rights it may have acquired.

Tract 4:

Also another tract adjoining the above tract, bounded and described as follows:

Beginning at a bound on the Southerly side of the Keene Road, State Highway, at an old roadway; thence

- 1. Easterly by said Keene Road to land formerly of William M. Conn: thence
- 2. Southerly by wall and said Conn land to land formerly of William Boutelle; thence
- 3. Westerly by said Boutelle land to a stake and stones; thence
- 4. Southerly by said Boutelle land to the Old Town Road; Thence
- 5. Westerly by said Old Road to road first above mentioned; thence
- 6. Northerly by said roadway to the bound of beginning.

Said premises are subject to the rights of the public of the State highway and rights heretofore conveyed to the Public Service Company of New Hampshire.

Subject to current use tax recorded with the said Registry of Deeds at Book 3696, Page 137.

This conveyance of the within described properties are not subject to homestead rights.

Meaning and intending to describe and convey the same premises conveyed to the within grantor by Warranty Deed of Donald H. Hardwick, Sr., dated June 10th, 1999, and recorded at the Hillsborough County Registry of Deeds at Book 6115 Page 1762.

SIGNED this 2nd day of June, 2006.

B A. Eddy

Bv Laura C. Eddy

STATE OF NEW HAMPSHIRE COUNTY OF HILLSBOROUGH

On this 2nd day of June, 2006, personally appeared the above-named John A. Eddy and Laura C. Eddy, known to me (or satisfactorily proven) to be the persons whose names are subscribed to the foregoing instrument, and acknowledged that they executed the same in that capacity, and for the purposes therein contained.

Notary Public/Justice of the Peace My commission expires:_____

BK7685PG086

ENV EOLIAN RENEWAble ENERGY LLC 155 FLEET ST PORTSMOUTH, NH 036 03601-4050

Doc # 1063367 Dec 23, 2010 1:38 PM Book 8277 Page 0354 Page 1 of 4 Register of Deeds, Hillsborough County Bamela O Caughlin

ANTRIM WIND ENERGY (ANTRIM, NH – TAX MAP #236 /PARCEL #001-000 – STEVEN R. COTRAN)

EXHIBIT C MEMORANDUM OF LEASE

PARTIES TO LEASE:

LESSOR Mr. Steven R. Cotran 26 McIntosh Lane Bedford, NH 03110

LESSEE

Antrim Wind Energy LLC c/o Eolian Renewable Energy 155 Fleet Street Portsmouth, New Hampshire 03801

Lessor is the owner of that certain real property described in <u>Exhibit A</u> attached hereto ("Lessor's Land"). Lessor leases to Lessee all or a portion of Lessor's Property as depicted on the map attached hereto as <u>Exhibit B</u> (the "Leased Premises"), together with the non-exclusive right of ingress to and egress from Windpower Facilities (defined in the Lease) located on the Leased Premises, adjoining properties and elsewhere over and across the Leased Premises and Lessor's Land by means of existing roads and lanes, if any, or otherwise by such route or routes as Lessee may construct from time to time.

Lease shall be for an initial term of twenty-five (25) years and shall commence on the Effective Date.

Lessee shall have the option to renew the Lease for one additional twenty-five (25) year term.

PREMISES:

TERM OF LEASE:

EXTENSION TERM:

022307

ANTRIM WIND ENERGY (ANTRIM, NH – TAX MAP #236 /PARCEL #001-000 – STEVEN R. COTRAN)

DATED at Marchister, NH _this <u>21st</u> day of <u>Peurlan</u>, 2010. By: Name: Steven R. Cotran

Its: Self/landowner

STATE OF NEW HAMPSHIRE COUNTY OF Some () ss.:

On this 21° day of December, 2010, before me, the undersigned, a Notary Public in and for said State, personally appeared Steven R. Cotran, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument

Notary Public this $\underline{\mathbf{20}}$ day of DATED at oc/, 2010. By: John B. Kenworthy Nan Its: Manager

STATE OF NEW HAMPSHIRE

) ss.:

COUNTY OF ROCKINGHAM

On this 20th day of December, 2010, before me, the undersigned, a Notary Public in and for said State, personally appeared John B. Kenworthy, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument.

Notary Public Notary Public

OMMISSION EXPIRES ANTRIM WIND ENERGY (ANTRIM, NH - TAX MAP #236 /PARCEL #001-000 - STEVEN R. COTRAN)

EXHIBIT A to Memorandum of Lease

6065402

2006 SEP 13 AM 11:11

Mc Kenney + Bausha 10.39 No to QUITCLAIM DEED KNOW EVERYONE BY THESE PRESENTS

That Diane Cotran, single, of 83 Rosewell Road, Town of Bedford, Hillsborough County, State of New Hampshire, for consideration paid, grants to Steven R. Cotran, single, of 26 McIntosh Lane, Town of Bedford, Hillsborough County, State of New Hampshire, with quitclaim covenants

A certain tract or parcel of land, with the buildings thereon, situated in the Town of Antrim, County of Hillsborough, State of New Hampshire, on Pigeon Mountain, being more particularly bounded and described as follows:

Containing one hundred thirty (130) acres, be the same more or less, and is Lot #21 in the Great right number five, drawn to the original right of Pierce and Moore, bounded on the north by land now or formerly of Artemus Brown, on the east by land now or formerly of George Brown, on the south by land now or formerly of Condry and others, and on the west by Hubbard Lot, so-called.

Meaning and intending to describe and convey the same premises conveyed to Diane Cotran, by Ouitclaim Deed of Steven R. Cotran (a/k/a/ Steven Cotran) dated November 25, 1997 and recorded at Volume 5877, Page 1149, Hillsborough County Registry of Deeds.

This conveyance is made pursuant to the terms of the decree of divorce In the Matter of Steven R. Cotran and Diane M. Cotran, Hillsborough County Superior Court, and is therefore exempt from New Hampshire real estate transfer taxes pursuant to RSA 78-B:2, XIII.

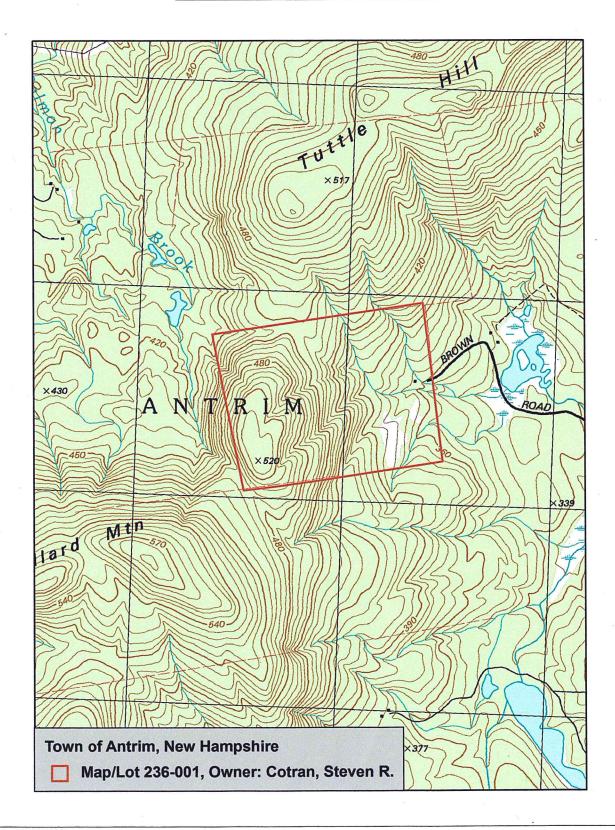
The Grantor releases to the Grantee all rights of homestead and other interests therein.

Dated:

L.S.

State of New Hampshire, County of Hillsborry

137PG | 50


Personally appeared Diane Cotran, known to me, or satisfactorily proven, to be the person whose name is subscribed to the foregoing instrument and acknowledged that s/he executed the same for the purposes therein contained.

Before me.

Justice he Peace/Netary Public CATHERINE P. BAUSHA USTICE OF THE PEACE - NEW HAMPSHIRE My Commission Expires February 22, 2011

ANTRIM WIND ENERGY (ANTRIM, NH – TAX MAP #236 /PARCEL #001-000 – STEVEN R. COTRAN)

EXHIBIT B to Memorandum of Lease

Verrill: Dana 490

Doc # 1026732 Jun 11, 2010 12:41 PM Book 8211 Page 1362 Page 1 of 16 Register of Deeds, Hillsborough County Carnela O Caughtin

Antrim Wind (Antrim, NH - Map # 235 Lot # 235-014-000 - Antrim Limited Partnership)

MEMORANDUM OF LEASE

PARTIES TO LEASE:

LESSOR Antrim Limited Partnership

c/o Charles S. Bean III 477 Washington Street Norwood, Massachusetts 02062

LESSEE

Antrim Wind Energy, LLC c/o Eolian Renewable Energy, LLC 155 Fleet Street Portsmouth, New Hampshire 03801

Lessor is the owner of that certain real property described in <u>Exhibit A</u> attached hereto ("Lessor's Land"). Lessor leases to Lessee all or a portion of Lessor's Property as depicted on the map attached hereto as <u>Exhibit B</u> (the "Leased Premises"), together with the non-exclusive right of ingress to and egress from Windpower Facilities (defined in the Lease) located on the Leased Premises, adjoining properties and elsewhere over and across the Leased Premises and Lessor's Land by means of existing roads and lanes, if any, or otherwise by such route or routes as Lessee may construct from time to time.

Lease shall be for an initial term of twenty-five (25) years and shall commence on the Effective Date.

Lessee shall have the option to renew the Lease for one additional twenty-five (25) year term.

PREMISES:

TERM OF LEASE:

EXTENSION TERM:

Confidential

Antrim Wind (Antrim, NH - Map # 235 Lot # 235-014-000 - Antrim Limited Partnership)

Massachusetts this 23rd day of April, 2010. DATED at Norwood ANTRIM LIMITED PARTNERSHIP By: Charles S. Bean ID Its: Manager st it General Partner, Dean Family, LLC

STATE OF MA COUNTY OF Norfolk) ss.:

On this 23.1 day of April, 2010, before me, the undersigned, a Notary Public in and for said State, personally appeared <u>Charles S. Bean 144</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his, signature on the instrument, the individual(s) or the person(s) upon behalf of which the individual acted, executed the instrument.

KAREN ANN KEEFE Notary Public NOTARY PUBLIC COMMONWEALTH OF MASSACHUSETTS My Commission Expires Oct. 8, 2015

Antrim Wind (Antrim, NH – Map # 235 Lot # 235-014-000 – Antrim Limited Partnership)

EXHIBIT A to Memorandum of Lease

See attached deeds

022307

Doc # 1018119 Apr 23, 2010 11:10 AM Book 8197 Page 0116 Page 1 of 5 Register of Deeds, Hillsborough County Carnela O Cauglin

 $C/_{\rm H}$ L-CHIP HIA082547

ENU #290 CUSHING ÉDOLAN PC

514	ALE C	OF NEW H	4.000	SHIRE
DEPARTMENT OF REVENUE ADMINISTRATION		۲		REAL ESTATE TRANSFER TAX
***** Thouse	and	* Hund	red	40 Dollars
04/23/2010	Н	101987	75	AMOUNT \$ ******40.00
	Vā	D IF ALTER	(ED	and the second second

NEW HAMPSHIRE WARRANTY DEED

We, Charles S. Bean, II, Elena A. Bean and Charles S. Bean, III, Trustees of the Antrim Realty Trust, under Declaration of Trust dated December 23, 1994 and recorded with Hillsborough County Registry of Deeds at Book 5608, Page 1532.

For Consideration Paid

Grant to Antrim Limited Partnership, a Limited Partnership organized under the law of the Commonwealth of Massachusetts with a usual place of business of 477 Washington Street, Norwood, Norfolk County, Massachusetts

Two certain tracts of land situated in Antrim, in the County of Hillsborough, State of New Hampshire:

Tract #1:

With the buildings thereon, bounded and described as follows:

Beginning on the east line of the lot on the south side of the highway leading from Gregg's Pond to the Alvin Brown Farm, so called, at an iron pin at the corner of land of John Cuddihy and George P. Hildreth; thence south 86.5 degrees west, 19 rods north 63 degrees west, 25.5 rods by land of said Cuddihy to stake and stones; thence south, 35 degrees west, 30 rods by said Cuddihy's land to stakes and stones; then southeasterly 11 rods and easterly by said Cuddihy's land to land of George P. Hildreth; thence southerly by said Cuddihy's land to land of George P. Hildreth; thence southerly by said Cuddihy's land to a stake and stones on a rock; thence south, 86

degrees east, fifty rods to land of Frank M. Brooks; thence south, 9 degrees west, 5 rods and south, 5.25 degrees west 30 rods by land of said Brooks to the corner of a wall at land of C. H. Bass and being the southeast corner of the premises; thence north 86 degrees west, 41 rods by said Bass land to the corner of the wall; thence 2 degrees west, by the wall 19 rods to a lane; thence westerly and northwesterly by a stone wall at said land against the land of John Cuddihy 46 rods to a stake and stones; thence, 85 degrees west, 46 rods by said Cuddihy's land to stake and stones; thence north 7 degrees east, 37 rods to the corner of a wall; thence north, 87 degrees west, still by land of said Cuddihy 135 rods to the corner of the wall; thence north 6 degrees east, 80 rods by said Cuddihy's land to the corner of a wall at the land of Alvin Brown Estate; thence south 86 degrees east, 89 rods by said Brown land to a corner of the wall; thence north, 3 degrees east, 35 rods by said Brown land to the corner of the wall; thence north, 79.5 degrees west, 30 rods by said Brown land to a stake and stones; thence north, 7 degrees east, 151 rods by land of said Brown, crossing the highway to a corner of the wall; thence north, 84 degrees west, 58 rods by said Brown land to a stake and stones, thence north, 85 degrees west, 151 rods by land of said Alfred G. Holt to a stake and stones; thence north 85 degrees west, 49 rods by land of Eastern Lumber Company to a take and stones, thence north, 20 degrees east, 114 rods by land of W.K. Flint and still further north, 20 degrees east, 84 rods by land of H.W. Dustin to a corner of the wall being the northwest corner of the premises; thence south 81 degrees east, 110 rods to land of H.D. Tudor; thence south 85 degrees east, 107 rods by land of H.D. Tudor to a stone wall; thence south 83 degrees east, 14 rods and south, 80 degrees east, 30 rods by land of W. F. Adams to a stone wall; thence south 83 degrees east 86 rods by land of F.L. Proctor formerly of John E. Tenney to a stake and stones at land of George P. Craig being the northeast corner of the premises; thence south 11 degrees west, 43 rods by said Craig's land to a stake and stones; thence south 3.25 degrees east, 52 rods by said Craig's land to a stake and stones; thence south 2 degrees west, 27 rods by said Craig's land to a stake and stones; thence south 9.5 degrees west, 59 rods by said Craig's land to a stake and stones; thence south, 83.5 degrees east, 68 rods by said Craig's land to a stake and stones at land of Delia Flanders; thence south 7.5 degrees west. 40 rods by said Flanders land to a beech tree marked, at the highway leading from Gregg's Pond to the homestead of George P. Craig, then crossing the highway south, 7 degrees west, 36 rods to a stake and stones on the east side of said "Craig" highway, crossing said highway and continuing southeasterly along some 84 rods to a stone wall at land of George P. Hildreth; thence southerly along said wall 19.5 rods by land of said Hildreth; thence south 33 degrees west, 19 rods to the highway first mentioned opposite the place of beginning and containing 817 acres more or less reserving the Town of Antrim the highway rights as they now exist.

Tract #2:

Located on the northwesterly side of that highway leading from Gregg's Pond to Keene highway known as Route #9, and bounded and described as follows, to wit:

Beginning at the northeasterly corner of the premises at a stake and stones; thence southerly by the highway about forty (40) rods to a stake and stones at land formerly of Artemis Brown; thence northerly by said Brown land about forty (40) rods to land formerly of Caleb Clark to a stake and stones; thence easterly about twenty-five (25) rods to the bound first mentioned. Said premises contains three acres, be the same more or less. This tract adjoins track No. 1.

For grantor's title see deed of Charles S. Bean, II to Charles S. Bean, II, Elena A. Bean and Charles S. Bean, III, Trustees of the Antrim Realty Trust dated December 23, 1994 and recorded at Book 5608, Page 1544.

SIGNATURE PAGE TO FOLLOW

S. BEAN, II, TRUSTEE ELENA A REALTY ANPRIM TRUST

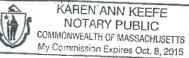
CHA S. BEAN, III, TRUSTEE

COMMONWEALTH OF MASSACHUSETTS

Norfolk, ss.

On this day of 2010, before me, the undersigned Notary Public, personally appeared CHARLES S. BEAN, II, TRUSTEE proved to me through satisfactory evidence of identification which was photo identification personal knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public: KAREN ANN KE My Commission Expi NOTARY PUBLIC COMMONWEALTH OF MASSACHUSETTS My Commission Expires Oct. 8, 2015

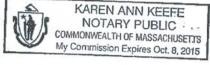

COMMONWEALTH OF MASSACHUSETTS

Norfolk , ss.

On this day of 2010, before me, the undersigned Notary Public, personally appeared ELENA A. BEAN, TRUSTEE proved to me through satisfactory evidence of identification which was photo identification personal knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on the behalf of the Trust.

Notary Public:

My Commission Expires:


COMMONWEALTH OF MASSACHUSETTS

Norfolk , SS.

On this 10 day of 2010, before me, the undersigned Notary Public, personally appeared CHARLES S. BEAN, III, TRUSTEE proved to me through satisfactory evidence of identification which was photo identification personal knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public:

My Commission Expires:

Doc # 1020521 May 6, 2010 11:14 AM Book 8201 Page 0787 Page 1 of 3 Register of Deeds, Hillsborough County Bamela O Caughlin

C/HL-CHIP HIA084205

51	ATE OF NEW HAM	PSHIRE
DEPARTMENT OF REVENUE ADMINISTRATION	C. C. C. C.	REAL ESTATE TRANSFER DAX
***** Thousa	and "Hundred	40 Dollars
05/06/2010	HI020247	AMOUNT 5 ******40.00
	LOUD OF ALL MERCINE	

290 CUSHING + DOLAN

NEW HAMPSHIRE WARRANTY DEED

We, Charles S. Bean, II, Elena A. Bean and Charles S. Bean, III, Trustees of the Antrim Realty Trust, under Declaration of Trust dated December 23, 1994 and recorded with Hillsborough County Registry of Deeds at Book 5608, Page 1532.

For Consideration Paid

Grant to Antrim Limited Partnership, a Limited Partnership organized under the law of the Commonwealth of Massachusetts with a usual place of business of 477 Washington Street, Norwood, Norfolk County, Massachusetts

A certain tract of land situate in the west part of said Antrim, Hillsborough County and State of New Hampshire, containing fifty acres more or less, bounded on the north and west by land formerly of the Steel Heirs; on the south by land formerly owned by George Brown, now owned by Leon A. Bean and Hester Bean and land formerly owned by George P. Craig, now owned by Clark A. Craig and Sue K. Craig; on the east by land formerly owned by Lewis Simonds.

The within described premises were originally owned by John E. Tenney, later by Fred L. Proctor and more lately by Earl Smith and Ruth D. Smith.

For grantors' title see of Charles S. Bean, II a/k/a Charles S. Bean to Charles S. Bean, II, Elena A. Bean and Charles S. Bean, III, Trustees of Antrim Realty Trust dated December 23, 1994 recorded with the Hillsborough County Registry of Deeds at Book 5608, Page 1542.

ANTRIM REALTY TRUS BEAN, TRUS

ÉS S. BEAN, III, TRUSTEE CHARI

COMMONWEALTH OF MASSACHUSETTS

Norfolk .ss.

On this $\frac{1}{2}$ day of $\underline{A\rho}$ 2010, before me, the undersigned Notary Public, personally appeared **CHARLES S. BEAN, II, TRUSTEE** proved to me through satisfactory evidence of identification which was \Box photo identification \Box personal knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public: KAREN ANN KEEFE

My Commission Expire

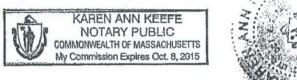
COMMONWEALTH OF MASSACHUSETTS

Norfolk . SS.

On this <u>l(o</u> day of <u>April</u> 2010, before me, the undersigned Notary Public, personally appeared **ELENA A. BEAN**, **TRUSTEE** proved to me through satisfactory evidence of identification which was <u>photo</u> identification <u>personal</u> knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public: My Commission Expires: KAREN ANN KEEFE NOTARY PUBLIC COMMONWEALTH OF MASSACHUSETTS My Commission Expires Oct. 8, 2015

NOTARY PUBLIC COMMONWEALTH, OF MASSACHUSBI My Commission Expires Oct. 8, 29


COMMONWEALTH OF MASSACHUSETTS

Norfolk , ss.

On this <u>16</u> day of <u>April</u> 2010, before me, the undersigned Notary Public, personally appeared **CHARLES S. BEAN, III, TRUSTEE** proved to me through satisfactory evidence of identification which was <u>photo</u> identification <u>personal</u> knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public:

My Commission Expires:

Doc # 1020523 May 6, 2010 11:14 AM Book 8201 Page 0793 Page 1 of 3 Register of Deeds, Hillsborough County Carnela O Cauglin

ST	ATE OF NEW F	AMPSHIRE
DEPARYMENT OF REVENUE ADMINISTRATIO		HEAL ESTATE TRANSFER TAX
	and * Hund	red 40 Dollars
05/06/2010	HI0202	48 \$ ****** 40.00
	VOID JE MITE	

Env 290

CUSHING + DOLAN

NEW HAMPSHIRE WARRANTY DEED

We, Charles S. Bean, II, Elena A. Bean and Charles S. Bean, III, Trustees of the Antrim Realty Trust, under Declaration of Trust dated December 23, 1994 and recorded with Hillsborough County Registry of Deeds at Book 5608, Page 1532.

For Consideration Paid

Grant to Antrim Limited Partnership, a Limited Partnership organized under the law of the Commonwealth of Massachusetts with a usual place of business of 477 Washington Street, Norwood, Norfolk County, Massachusetts

The land with the buildings thereon situated in said Antrim, Hillsborough County, New Hampshire, bounded and described as follows:

Beginning at the northwest corner of the premises at a stake and stones; thence southerly by land of Charles F. Holt and Samuel A. Holt to a stake and stones; thence easterly on land of George Brown to a stake and stones; thence northerly on land of said Brown about forty (40) rods; thence westerly on land of said Brown about forty-one (41). rods; thence northerly on land of said Brown about one hundred forty (140) rods to a stake and stones; thence westerly on land of said Brown to the bounds first mentioned, containing seventy-five (75) acres more or less, excepting however from the above conveyance the sawable timber located upon the above described premises conveyed to Benjamin F. Tenney by said John A. Brown by deed of even date to be recorded herewith.

For grantors' title see deed of Charles S. Bean, II a/k/a Charles S. Bean to Charles S. Bean, II, Elena A. Bean and Charles S. Bean, III Trustees of Antrim Realty Trust dated December 23, 1994 and recorded with Hillsborough County Registry of Deeds at Book 5608, Page 1543.

ANTRIM REALTY TROST CHARLES S. BEAN, II. TRUSTEE ELENA A. BEAN, TRUST

CHARLES S. BEAN, III, TRUSTEE

COMMONWEALTH OF MASSACHUSETTS

Norfolk, ss.

On this $|\ell|$ day of $|\Delta\rho ri|$ 2010, before me, the undersigned Notary Public, personally appeared CHARLES S. BEAN, II, TRUSTEE proved to me through satisfactory evidence of identification which was [] photo identification []personal knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

aren ann

Notary Public: My Commission Expires

KAREN ANN KEEFE NOTARY PUBLIC COMBIOWWEALTH OF MASSACHUSETTS

COMMONWEALTH OF MASSACHUSETTS

Norfolk . ss.

On this <u>lb</u> day of <u>April</u> 2010, before me, the undersigned Notary Public, personally appeared ELENA A. BEAN, TRUSTEE proved to me through satisfactory evidence of identification which was <u>photo</u> identification <u>personal</u> knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public KAREN ANN KEEFE My Commission Expires NOTARY PUBLIC COMMONWEALTH OF MASSACHUSETTS My Commission Expires Oct. 8, 2015

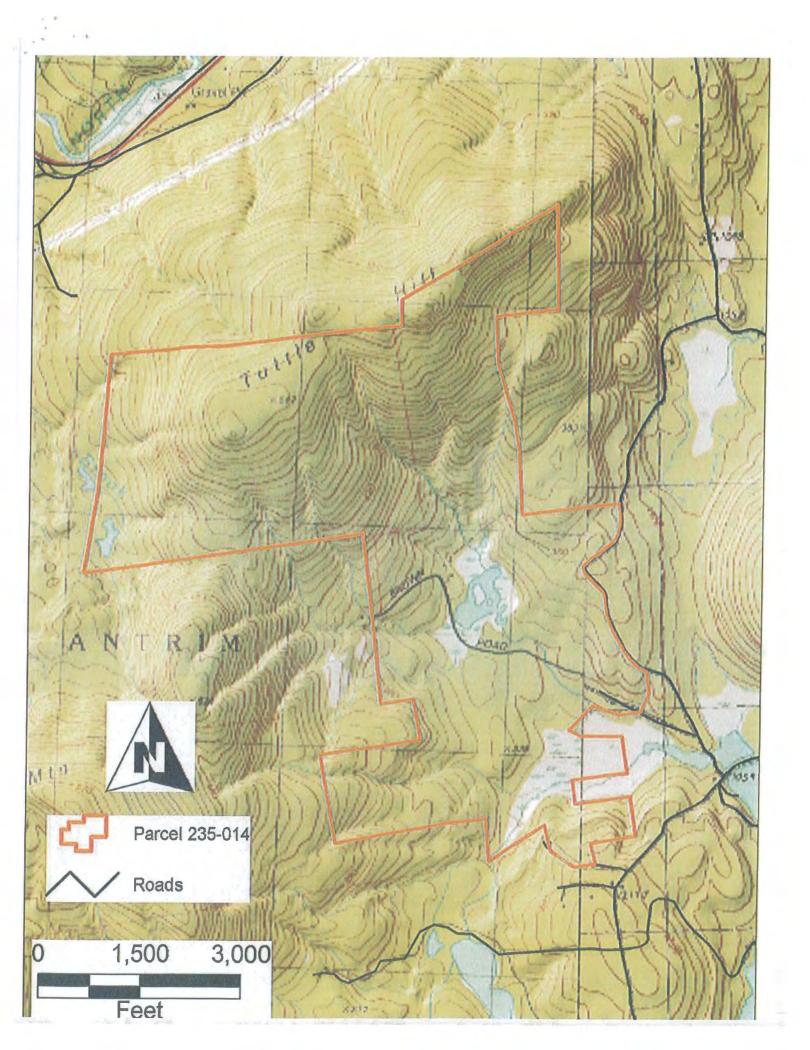
COMMONWEALTH OF MASSACHUSETTS

Norfolk , ss.

On this $\lfloor \oint \\ day of \\ Apr \\ 2010$, before me, the undersigned Notary Public, personally appeared **CHARTES S. BEAN, III, TRUSTEE** proved to me through satisfactory evidence of identification which was \Box photo identification \Box personal knowledge, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that he signed it voluntarily for its stated purposes on behalf of the Trust.

Notary Public:

My Commission Expires:


KAREN ANN KEEFE NOTARY PUBLIC COMMONWEALTH OF MASSACHUSETTS My Commission Expires Oct. 8, 2015

Antrim Wind (Antrim, NH - Map # 235 Lot # 235-014-000 - Antrim Limited Partnership)

EXHIBIT B to Memorandum of Lease

See attached map

. .

Please return to #11 Blodgett, Makechnie & Lawrence

Doc # 1114961 Mar 24, 2011 2:47 PM Book 8304 Page 1113 Page 1 of 6 Register of Deeds, Hillsborough County Camela O Caughlin

ANTRIM WIND ENERGY LLC (ANTRIM, N.H. - TAX MAP #239/PARCEL #001-000-ARTHUR WHITTEMORE, ET. AL., TRUSTEES OF WHITTEMORE TRUST)

MEMORANDUM OF LEASE

PARTIES TO LEASE:

Trustees of the Whittemore Trust c/o Paul J. Whittemore P. O. Box 528 Auburn, New Hampshire 03032-0528

Helen M. Whittemore and Paul J. Whittemore,

LESSEE

LESSOR

Antrim Wind Energy, LLC c/o Eolian renewable Energy 155 Fleet Street Portsmouth, New Hampshire 03801

Lessor is the owner of that certain real property described in <u>Exhibit A</u> attached hereto ("Lessor's Land"). Lessor leases to Lessee all or a portion of Lessor's Property as depicted on the map attached hereto as <u>Exhibit B</u> (the "Leased Premises"), together with the non-exclusive right of ingress to and egress from Windpower Facilities (defined in the Lease) located on the Leased Premises, adjoining properties and elsewhere over and across the Leased Premises and Lessor's Land by means of existing roads and lanes, if any, or otherwise by such route or routes as Lessee may construct from time to time.

Lease shall be for an initial term of twenty-five (25) years and shall commence on the Effective Date.

Lessee shall have the option to renew the Lease for one additional twenty-five (25) year term.

PREMISES:

TERM OF LEASE:

EXTENSION TERM:

CERTIFICATE OF TRUSTEE:

The undersigned Trustees, as Trustees of the Whittemore Trust, under Indenture of Trust dated October 2, 1992, by Arthur F. Whittemore, Helen M. Whittemore and Paul J. Whittemore, and thereto have full and absolute power in said trust agreement to convey any interest in real estate and improvements thereon held in said trust and no purchaser or third party shall be bound to inquire whether the trustees have said power or are properly exercising said power or to see to the application of any trust asset paid to the Trustees for a conveyance thereof.

DATED at

, this <u>Jo</u> day of January, 2011. By:

Name. Paul J. Whittemore Its: Owner/Trustee

By:

Helen M Whitte

Name: Heler M. Whittemore Its: Owner/Trustee

STATE OF NEW HAMPSHIRE COUNTY OF <u>Rochingham</u>

FE32uARYOn this <u>lot</u> day of January, 2011, before me, the undersigned, a Notary Public in and for said State, personally appeared Paul J. Whittemore, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his signature on the instrument, the individual or the person upon behalf of which the individual acted, executed the instrument.

Notary Public/Justice of the Peace SHARON A. MANN Printed Name Expiration

STATE OF AZ-COUNTY OF MARICO FA

On this <u>22</u> day of January, 2011, before me, the undersigned, a Notary Public in and for said State, personally appeared Helen M. Whittemore, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that she executed the same in her capacity, and that by her signature on the instrument, the individual or the person upon behalf of which the individual acted, executed the instrument.

JACK BUDINPELD Notary Public --Arizona Maricopa County Expires 09/19/2013

Notary Public <u>9/19/2013</u> Expiration Date 100m field rinted Name

•	DATED at Portsmouth, New Hampshire this <u>6</u> day of <u>Jenuary</u> , 201
	Antrim Wind Energy LLC By: Name: Jack Kenwordty (Joln) Its: Manager

STATE OF NEW HAMPSHIRE COUNTY OF ROCKINGHAM

On this $\int March$ day of January, 2011, before me, the undersigned, a Notary Public in and for said State, personally appeared Jack Kenworthy, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his signature on the instrument, the individual or the person upon behalf of which the individual acted, executed the instrument.

Notary Public/Justice of the Peace 3 Kicker Printed Name Expiration Date

(Complete)

ANTRIM WIND ENERGY LLC (ANTRIM, NH – TAX MAP #239 /PARCEL #001-000 – ARTHUR WHITTEMORE, ET. AL., TRUSTEES OF WHITTEMORE TRUST)

EXHIBIT A to Memorandum of Lease

354837 93 OCT 13 AM 8: 28

QUITCLAIM DEED

KNOW ALL MEN BY THESE PRESENTS:

That

ARTHUR F. WHITTEMORE and HELEN M. WHITTEMORE, married, of Cuddihee Hill Road, Antrim, County of Hillsborough and State of New Hampshire,

for consideration paid,

grant to ARTHUR F. WHITTEMORE and HELEN M. WHITTEMORE, married, of Cuddihee Hill Road, Antrim, County of Hillsborough and State of New Hampshire, 03440, and PAUL J. WHITTEMORE, married, of 184 Emery Street, Berlin, County of Coos and State of New Hampshire, 03570, as Trustees of the

Whittemore Trust, under Indenture of Trust, dated October

BK5480PG1134

2, 1992,

with QUITCLAIM covenants,

Three certain tracts of land situated in the northwesterly part of Antrim, in the County of Hillsborough and State of New Hampshire, bounded and described as follows:

FIRST: Beginning at the Southeast corner of the premises at a beech tree, marked at the southwest corner of Tenney and Dutton's land; thence westerly, by land of Evans and Hayward to the Worthley pasture; thence northerly by said Worthley pasture to land of Samuel Holt; thence easterly by said Holt's land to land of Tenney and Dutton; thence southerly by said Tenney and Dutton's land to the first named bounds. Estimated to contain one hundred and twenty-one acres (121), more or less.

SECOND: Beginning at the northeast corner of the premises at the northwest corner of land formerly owned by John R. Hills; thence southerly by said land to John Hayward's land; thence westerly by land of said John Hayward and the "Allds Pasture", so-called, to land formerly owned by William Weston, deceased; thence northerly on land formerly owned by said Weston to the "Woodbury Pasture", so-called; thence easterly by said Woodbury Pasture to the bounds first mentioned. Containing one hundred thirteen (113) acres, more or less.

BRIGHTON, FERNALD, TAFT & FALBY - PROFESSIONAL ASSOCIATION - PETERBOROUGH, N. H. 03458-0270

022307

20

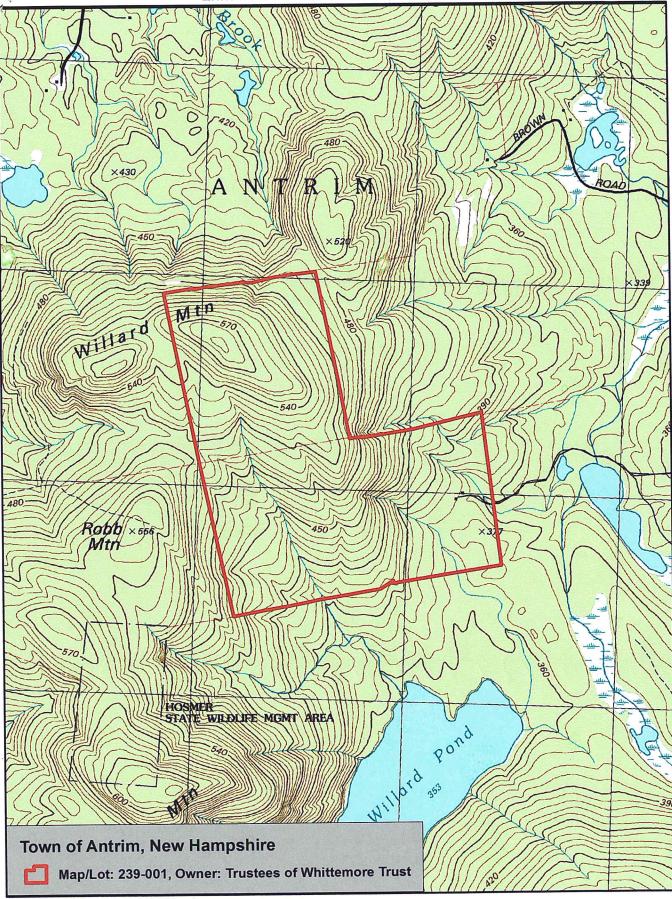
ANTRIM WIND ENERGY LLC (ANTRIM, NH – TAX MAP #239 /PARCEL #001-000 – ARTHUR WHITTEMORE, ET. AL., TRUSTEES OF WHITTEMORE TRUST)

THIRD: Beginning at the northwesterly corner of the premises at the corner of walls running southerly and westerly; thence southerly by land formerly of Lee and Holden to the southwest corner of the premises to land now or formerly of William Weston; thence easterly by land now or formerly of said Weston and land now or formerly of Worthley and Hill to the southeast corner of the premises at the corner of land now or formerly of Samuel Fletcher by the corner of walls; thence northerly by land now or formerly of said Fletcher and land now or formerly of Davis to the northeast corner at land formerly of Darias Hubbard; thence westerly by land formerly of said Hubbard to the bound first mentioned. Containing one hundred twentythree (123) acres, and 36 rods, more or less.

-2-

This conveyance is made subject to all restrictions of record or otherwise, stipulations and agreements made or existing between any predecessor in title in reference to the said premises, so far as said matters concern the premises hereby conveyed.

For title of Arthur F. Whittemore and Helen M. Whittemore, reference is made to the deed from Francis R. Fellows, Ruth M. Fellows and Arthur F. Whittemore to Arthur F. Whittemore and Helen M. Whittemore, dated August 31, 1976 and recorded with the Hillsborough County Registry of Deeds in Book 2483, Page 432.


STONED this 2nd day of October, 1992.

- 1	SIGNED LITE ZING MAY OF OCCODELY 1991	
	STATE OF NEW HAMPSHIRE	
	DEPARTMENT REALESTATE Arthur F. Whittemore	
:	DFVFAULE TRANSFER TAX	1
	ADMINISTRATION	
30	Helen M. Whittemore	
NC	DAY YR. ALLAND A	
10	1393 111111 \$ 40 -	1.0
	V	
		-
- 1	STATE OF NEW HAMPSHIRE	哭
	COUNTY OF HILLSBOROUGH October 2, 1992	S
	and the amount of a mount of a mo	BK 5 4 8
	Before me, the undersigned officer, personally appeared ARTHUR	00
	F. WHITTEMORE and HELEN M. WHITTEMORE, and acknowledged the foregoing	0
	to be their free act and deed.	PG
	In I Ter So Is	
	While the Interest of	
	Notary Public	CO CO
	and the second second second second second second second second second second second second second second second	CT
1	My commission expires:	
	MARK D. FERNALD	
	COMMISSION EXPIRES 6/28/94	
	COMMISSION EXTINC GENER	
		*
	•	
	BRIGHTON, FERNALD, TAFT & FALBY - PROFESSIONAL ASSOCIATION - PETERBOROUGH, N. H. 03458-0270	

022307

21

•