3 MW PLATFORM

Wind. It means the world to us.™
Are you looking for the maximum return on your investment in wind energy?

Wind energy means the world to us. And we want it to mean the world to our customers, too, by maximising your profits and strengthening the certainty of your investment in wind power.

That’s why, together with our partners, we always strive to deliver cost-effective wind technologies, high quality products and first class services throughout the entire value chain. And it’s why we put so much emphasis on the reliability, consistency and predictability of our technology.

These aren’t idle words. We have over 30 years’ experience in wind energy. During that time, we’ve delivered more than 155 GW of installed capacity and we currently monitor over 24,000 wind turbines across the globe. Tangible proof that Vestas is the right partner to help you realise the full potential of your wind site.

What is the 3 MW platform?
Our 3 MW platform has been optimised to 3.3 MW. The latest editions to the 3 MW platform are based on the proven and reliable technology of the V112-3.0 MW® turbine. After only three years on the market, the V112-3.0 MW® already has an installed base of more than 1.5 GW.

Ideal for all wind classes
Our 3 MW platform is designed for a range of wind conditions, onshore and offshore enabling you to mix turbines across your site or portfolio of sites, delivering industry-leading reliability, serviceability and exceptional energy capture wherever they are located. The combination of high returns and low risk has already made the 3 MW platform an industry favourite with more than 3 GW sold since 2010.

You can choose from four turbines on the 3MW platform:
- V112-3.3 MW™ - IEC IIA (Onshore)
- V112-3.3 MW™ - IEC IB (Onshore and offshore)
- V117-3.3 MW™ - IEC IIA (Onshore)
- V126-3.3 MW™ - IEC IIIA (Onshore)

Rotor diameters range from 112 to 126 metres and the rated output power is 3300 kW. Using a number of well proven technologies, among others a full-scale converter providing excellent energy yield in all wind and weather conditions.

By adding the V117-3.3 MW® to the platform and increasing the nominal power by 10% across the entire platform, it delivers even more energy production and a stronger business case.

The 3 MW platform combines Vestas’ proven track record with our continuous efforts to improve and optimise our products, making it the obvious choice for customers looking to combine reliability with performance.

Main features of the 3 MW platform:
- Power system updated to 3.3 MW
- Standard operating temperature range from -20°C to +45°C with de-rating above 30°C
- Load carrying structure, drivetrain, pitch and yaw system optimised for higher loads

Are you looking for the maximum return on your investment in wind energy?
3.3 MW

Our engineers have increased the nominal power by 10% across the entire platform optimizing your energy production significantly.
How does our technology generate more energy?

More power for every wind site
All turbines of the 3 MW platform have an increased nominal power and are available with several noise modes to meet most site-specific sound level restrictions with an optimised production.

The power system enables superior grid support. What’s more, it is capable of maintaining production across severe drops in grid voltage, while simultaneously minimising tower and foundation loads. It also allows rapid down-rating of production to 20 per cent.

With a full-scale converter, the 3 MW platform meets even the most challenging grid requirements, in almost any corner of the world.

Proven technologies - from the company that invented them
The 3MW platform is a low-risk choice. It is based on the proven technologies that underpin the +55,000 Vestas turbines installed around the world. Using the best features from across the range, as well as some of the industry’s most stringently tested components and systems, the platform’s reliable design minimises downtime – helping to give you the best possible return on your investment.

With an operating range that covers all wind classes, our 3 MW platform delivers unrivalled energy production. The proven blade technology from the V112-3.0 MW™ is used on the new V112-3.3 MW™ and on the V117-3.3 MW™. The industry known structural shell blades are used on the V126-3.3 MW™.

Reliable and robust
The Vestas Test Centre is unrivalled in the wind industry. We test most nacelle components using Highly Accelerated Life Testing (HALT) to ensure reliability. For critical components, HALT identifies potential failure modes and mechanisms. Specialised test rigs ensure strength and robustness for the gearbox, generator, yaw and pitch system, lubrication system and accumulators.

Our quality-control system ensures that each component is produced to design specifications and performs at site. We systematically monitor measurement trends that are critical to quality, locating defects before they occur.
Options available for the 3 MW platform

An option is an extra feature that can be added to the turbine to suit a project’s specific needs. By adding options to the standard turbine, we can enhance the performance of the wind power project and facilitate a shorter permitting cycle at restricted sites. The options can even be a decisive factor in realizing your specific project, and the business case certainty of the investment.

Here is a list of the options available for the 3 MW platform:

- Condition Monitoring System
- Service personnel lift
- Aviation lights
- Aviation markings on the blades
- Low temperature operation to -30°C
- Ice detection
- Fire Suppression
- Shadow detection
- Increased Cut-In
- Obstacle Collision Avoidance System (OCAS™)

Life testing

The Vestas Test Centre has the unique ability to test complete nacelles using technologies like Highly Accelerated Life Testing (HALT). This rigorous testing of new components ensures the reliability of the 3 MW platform.
Knowledge about wind project planning is key

Getting your wind energy project up and operating as quickly as possible is fundamental to its long-term success. One of the first and most important steps is to identify the most suitable location for your wind power plant. Vestas’ SiteHunt® is an advanced analytical tool that examines a broad spectrum of wind and weather data to evaluate potential sites and establish which of them can provide optimum conditions for your project.

In addition, SiteDesign® optimises the layout of your wind power plant. SiteDesign® runs Computational Fluid Dynamics (CFD) software on our powerful in-house supercomputer Firestorm to perform simulations of the conditions on site and analyse their effects over the whole operating life of the plant. Put simply, it finds the optimal balance between the estimated ratio of annual revenue to operating costs over the lifetime of your plant, to determine your project’s true potential and provide a firm basis for your investment decision.

Advanced monitoring and real-time plant control

All our wind turbines can benefit from VestasOnline® Business, the latest Supervisory Control and Data Acquisition (SCADA) system for modern wind power plants.

This flexible system includes an extensive range of monitoring and management functions to control your wind power plant. VestasOnline® Business enables you to optimise production levels.
The Vestas Performance and Diagnostics Centre monitors more than 24,000 turbines worldwide. We use this information to continually develop and improve our products and services.

Surveillance, maintenance and service
Operating a large wind power plant calls for efficient management strategies to ensure uninterrupted power production and to control operational expenses. We offer 24/7 monitoring, performance reporting and predictive maintenance systems to improve turbine performance and availability. Predicting faults in advance is essential, helping to avoid costly emergency repairs and unscheduled interruptions to energy production.

Our Condition Monitoring System (CMS) assesses the status of the turbines by analysing vibration signals. For example, by measuring the vibration of the drive train, it can detect faults at an early stage and monitor any damage. This information allows pre-emptive maintenance to be carried out before the component fails, reducing repair costs and production loss.

Additionally, our Active Output Management® (AOM) concept provides detailed plans and long term agreements for service and maintenance, online monitoring, optimisation and troubleshooting. It is possible to get a full scope contract, combining your turbines’ state-of-the-art technology with guaranteed time or energy-based availability performance targets, thereby creating a solid base for your power plant investment. The Active Output Management® agreement provides you with long term and financial operational peace of mind for your business case.
V112-3.3 MW™ IEC IB

Facts & figures

POWER REGULATION
- Pitch regulated with variable speed

OPERATING DATA
- **Rated power**: 3,300 kW
- **Cut-in wind speed**: 3 m/s
- **Cut-out wind speed**: 25 m/s
- **Re-cut-in wind speed**: 23 m/s
- **Wind class**: IEC IB
- Standard operating temperature range from -20°C to +45°C with de-rating above 30°C

SOUND POWER
- (Noise modes dependent on site and country)

ROTOR
- **Rotor diameter**: 112 m
- **Swept area**: 9,852 m²
- **Air brake**: full blade feathering with 3 pitch cylinders

ELECTRICAL
- **Frequency**: 50/60 Hz
- **Converter**: full scale

GEARBOX
- **Type**: two planetary stages and one helical stage

TOWER
- **Hub height**: site specific

HUB DIMENSIONS
- **Max. transport height**: 3.74 m
- **Max. transport width**: 3.75 m
- **Max. transport length**: 5.42 m

BLADE DIMENSIONS
- **Length**: 54.65 m
- **Max. chord**: 4 m

- **Max. weight per unit for transportation**: 70 metric tonnes

TURBINE OPTIONS
- Condition Monitoring System
- Service personnel lift
- Aviation lights
- Aviation markings on the blades
- Low temperature operation to -30°C
- Ice detection
- Fire Suppression
- Shadow detection
- Increased Cut-In
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

![Graph showing annual energy production](image)

Assumptions
- One wind turbine, 100% availability, 0% losses, k factor = 2,
- Standard air density = 1.225, wind speed at hub height
Noise reduced sound power modes are available

Output (kW)

Wind speed (m/s)
V112-3.3 MW™ IEC IIA

Facts & figures

Power Regulation
- Pitch regulated with variable speed

Operating Data
- **Rated power**: 3,300 kW
- **Cut-in wind speed**: 3 m/s
- **Cut-out wind speed**: 25 m/s
- **Re cut-in wind speed**: 23 m/s
- **Wind class**: IEC IIA/DIBt3
- Standard operating temperature range from -20°C to +45°C with de-rating above 30°C

*subject to different temperature options

Sound Power
- (Noise modes dependent on site and country)

Rotor
- **Rotor diameter**: 112 m
- **Swept area**: 9,852 m²
- **Air brake**: full blade feathering with 3 pitch cylinders

Electrical
- **Frequency**: 50/60 Hz
- **Converter**: full scale

Gearbox
- **Type**: two planetary stages and one helical stage

Tower
- **Hub heights**: 84 m (IEC IIA), 94 m (IEC IIA/DIBt3), 119 m (IEC IIIA og DIBt3) and 140 m (IEC IIIA/DIBt2)

Nacelle Dimensions
- **Height for transport**: 3.4 m
- **Height installed (incl. CoolerTop™)**: 6.8 m
- **Length**: 12.8 m
- **Width**: 4.0 m

Hub Dimensions
- **Max. transport height**: 3.74 m
- **Max. transport width**: 3.75 m
- **Max. transport length**: 5.42 m

Blade Dimensions
- **Length**: 54.65 m
- **Max. chord**: 4 m

- **Max. weight per unit for transportation**: 70 metric tonnes

Turbine Options
- Condition Monitoring System
- Service personnel lift
- Aviation lights
- Aviation markings on the blades
- Low temperature operation to -30°C
- Ice detection
- Fire Suppression
- Shadow detection
- Increased Cut-In
- Obstacle Collision Avoidance System (OCAS™)

Annual Energy Production

![Energy Production Graph](image-url)

Assumptions
- One wind turbine, 100% availability, 0% losses, k factor =2
- Standard air density = 1.225, wind speed at hub height
POWER CURVE FOR V112-3.3 MW™ IEC IIA

Noise reduced sound power modes are available.
V117-3.3 MW™ IEC IIA
Facts & figures

POWER REGULATION
Pitch regulated with variable speed

OPERATING DATA
- **Rated power**: 3,300 kW
- **Cut-in wind speed**: 3 m/s
- **Cut-out wind speed**: 25 m/s
- **Re cut-in wind speed**: 23 m/s
- **Wind class**: IEC IIA/DIBt2

Standard operating temperature range from -20°C to +45°C with de-rating above 30°C

*subject to different temperature options

SOUND POWER
(Noise modes dependent on site and country)

ROTOR
- **Rotor diameter**: 117 m
- **Swept area**: 10,751 m²
- **Air brake**: full blade feathering with 3 pitch cylinders

ELECTRICAL
- **Frequency**: 50/60 Hz
- **Converter**: full scale

GEARBOX
- **Type**: two planetary stages and one helical stage

TOWER
- **Hub heights**: 91.5 m (IEC IIA/DIBt3) 116.5 m (IEC IIA/DIBt2)

NACELLE DIMENSIONS
- **Height for transport**: 3.4 m
- **Height installed**: 6.8 m
- **Length**: 12.8 m
- **Width**: 4.0 m

HUB DIMENSIONS
- **Max. transport height**: 3.74 m
- **Max. transport width**: 3.75 m
- **Max. transport length**: 5.42 m

BLADE DIMENSIONS
- **Length**: 57.15 m
- **Max. chord**: 4 m

Max. weight per unit for transportation: 70 metric tonnes

TURBINE OPTIONS
- Condition Monitoring System
- Service personnel lift
- Aviation lights
- Aviation markings on the blades
- Low temperature operation to - 30°C
- Ice detection
- Fire Suppression
- Shadow detection
- Increased Cut-In
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions
One wind turbine, 100% availability, 0% losses, k factor = 2,
Standard air density = 1.225, wind speed at hub height
POWER CURVE FOR V117-3.3 MW™ IEC IIA
Noise reduced sound power modes are available
Facts & figures

POWER REGULATION

Pitch regulated with variable speed

OPERATING DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>3,300 kW</td>
</tr>
<tr>
<td>Cut-in wind speed</td>
<td>3 m/s</td>
</tr>
<tr>
<td>Cut-out wind speed</td>
<td>22.5 m/s</td>
</tr>
<tr>
<td>Re-cut-in wind speed</td>
<td>20 m/s</td>
</tr>
<tr>
<td>Wind class</td>
<td>IEC IIIA/DIBt2</td>
</tr>
</tbody>
</table>

Standard operating temperature range from -20°C to +45°C with de-rating above 30°C

*subject to different temperature options

SOUND POWER

(Noise modes dependent on site and country)

Rotor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor diameter</td>
<td>126 m</td>
</tr>
<tr>
<td>Swept area</td>
<td>12,469 m²</td>
</tr>
<tr>
<td>Air brake</td>
<td>full blade feathering with 3 pitch cylinders</td>
</tr>
</tbody>
</table>

ELECTRICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Converter</td>
<td>full scale</td>
</tr>
</tbody>
</table>

GEARBOX

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>two planetary stages and one helical stage</td>
</tr>
</tbody>
</table>

TOWER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub heights</td>
<td>117 m (IEC IIIB)</td>
</tr>
<tr>
<td></td>
<td>137 m (IEC IIIA/DIBt2)</td>
</tr>
</tbody>
</table>

NACELLE DIMENSIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height for transport</td>
<td>3.4 m</td>
</tr>
<tr>
<td>Height installed (incl. CoolerTop*)</td>
<td>6.8 m</td>
</tr>
<tr>
<td>Length</td>
<td>12.8 m</td>
</tr>
<tr>
<td>Width</td>
<td>4.0 m</td>
</tr>
</tbody>
</table>

HUB DIMENSIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. transport height</td>
<td>3.74 m</td>
</tr>
<tr>
<td>Max. transport width</td>
<td>3.75 m</td>
</tr>
<tr>
<td>Max. transport length</td>
<td>5.42 m</td>
</tr>
</tbody>
</table>

BLADE DIMENSIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>62 m</td>
</tr>
<tr>
<td>Max. chord</td>
<td>4 m</td>
</tr>
</tbody>
</table>

Max. weight per unit for transportation 70 metric tonnes

TURBINE OPTIONS

- Condition Monitoring System
- Service personnel lift
- Aviation lights
- Aviation markings on the blades
- Low temperature operation to -30°C
- Ice detection
- Fire Suppression
- Shadow detection
- Increased Cut-In
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

<table>
<thead>
<tr>
<th>Wind Speed m/s</th>
<th>MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td></td>
</tr>
</tbody>
</table>

Assumptions

One wind turbine, 100% availability, 0% losses, k factor =2, Standard air density = 1.225, wind speed at hub height
POWeR CuRVe FOR V126-3.3 MW™ IEC IIIA

Noise reduced sound power modes are available