New England Wind Integration Study

PAC Meeting December 17, 2008

Bill Henson Senior Engineer, Renewable Resource Integration

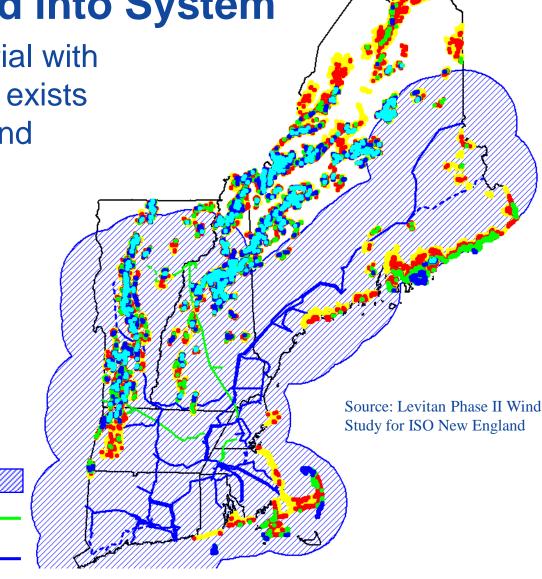
A Wind Integration Study for ISO-NE

Presentation Contents

- Drivers for wind integration study
- Integration challenges
- Goals for wind integration study
- Scope of work for Request for Proposal (RFP) for wind integration study

Drivers for Wind Study: Scope of the Issue

- Wind energy can help to meet Renewable Portfolio Standard targets (from 05/08 PAC)
 - CT: >20% new by 2020
 - MA: 15% new by 2020 +1% per year
 - ME: 10% new (of capacity) by 2017
 - NH: 11% new by 2020
 - RI: 16% by 2019
 - NY: ~5% new by 2013
 - NB: 10% by 2010
- Wind energy can dampen fuel cost uncertainty
- Wind generation is competitive with other new resources
- Wind energy improves fuel diversity
- Wind generation is quick to build


Drivers: Fit Wind into System

Significant wind potential with varying characteristics exists throughout New England

1 meter per second roughly 2.2 mph

Legend Class 7 >8.8 (m/s) Class 6 8-8.8 (m/s) Class 5 7.5-8 (m/s) Class 3 6.4-7 (m/s) 40 Miles 230 kV 345 kV

new england

Drivers: Interregional Wind Integration

- NYISO
 - '04 Studied 3.3 GW of Wind
 - ~5% of Annual Energy (TWh) ~10% of Peak Load
 - 2008 NYISO "gold book"
 - Late '08 8.6 GW Wind in the queue
- Canada
 - Maritimes: '08 study 5.5 to 7.5 GW Wind by 2025
 - ~50% to 70% of TWh ~ 75% to 100% of Peak Load
 - NPCC 2006/2007 Interregional Long Range Adequacy Overview
 - Quebec: 4 GW Wind by 2016
 - ~7% of TWh ~10% of Peak Load
 - NPCC 2006/2007 Interregional Long Range Adequacy Overview

Drivers: Wind in the ISO-NE Queue

	Total
Onshore	3038
Offshore	1259
Total	4297

- Approx 86 MW of wind generation online
- 4,297 MW in the Queue
- Of the 4,297 MW, 852 MW have System Impact Studies and I.3.9 processes complete
- At these levels, we may experience operational issues
- And what more is coming? The Queue keeps growing

Integration Challenges: Operational

- Near-term forecast uncertainty
 - Can cause over/under commitment
- Variability
 - Regulation time-scale
 - May require increased regulation capability
 - Load following time-scale
 - May require additional ramping capability
 - Day ahead time-frame
 - Complicates unit commitment
- Minimum generation issues
 - e.g., spill wind to maintain system security
- Congestion management
 - e.g. ,spill wind to maintain thermal limits

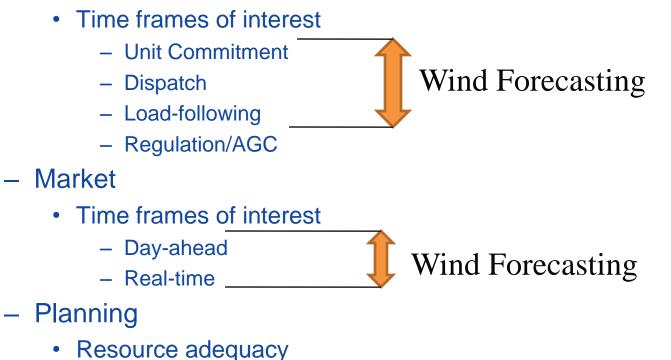
Challenges: Operational (Part 2)

- Coordination with other Balancing Areas
 - Share the variability (and reduce overall variability)
- Spinning reserve
 - Usually no effect requirement typically based on large generators/tie-lines
 - Unless loss of wind (or forecast error) exceeds 2nd largest contingency
- Non-spin reserve
 - High wind cutout can cause loss of generation on the order of approximately 25% wind plant output per hour
 - Wind variability may increase non-spin reserve requirements

Challenges: Markets & Planning

•	Markets	Over-commitment	Under-commitment
		Inefficient use of resources May depress LMPs May raise NCPC (uplift)	Can increase price volatility

- Real-time vs. Day-ahead
- Do we need to increase operating reserve requirements?
- What are the effects of increased reserve requirements?
- What are the effects of virtual bids?
- Planning
 - Still issues with regard to resource adequacy
 - What is Effective Load Carrying Capacity (ELCC) for wind?
 - System wide, Zonal, Per generator (incremental)?
 - Is there an effective way to plan including wind on a probabilistic or an energy basis?


Challenges: Recent Examples

- BPA water spilling (06/30/2008)
 - Communication issues high wind/low load
- ERCOT low frequency event (02/26/08)
 - Wind forecast/control room integration unanticipated wind loss
- Denmark high wind cut-out (01/08/05)
 - Forecast failure/High wind cutout Hurricane causes loss of 2,000 MW (83%) over 6 hours
- Other events
 - Swinging LMPs: NY
 - High up ramps

The Goals of a Wind Integration Study

- Primarily to quantify the anticipated effects
 - Operational

Goals (Part 2) of Wind Study

- What are the system operational effects vs. amount of wind penetration
- Are there thresholds e.g., hockey stick or plateaus?
- What can be done to facilitate wind?
- How does ISO-NE plan for large amounts of wind?
- What are the ISO-NE specific challenges?
- What if other system parameters change substantially?
 - DR, PHEVs, storage
 - Wind patterns, wind turbine improvements
 - Load forecast (increases/decreases)
 - Fuel prices

Why do another study?

- Wind system interaction is region specific
 - Depends on wind patterns
 - Depends on installed generation
 - Depends on load patterns
- Wind technology is continually advancing
 - Turbine and plant design
 - Forecasting
 - Integration
- Other specific issues for NE
 - Offshore
 - Windy neighbors
 - Market system
 - Near the end of the Eastern Interconnect

Scope of Work

- Wind Integration Survey
- Interconnection Requirements for Wind
- Build New England Wind Resource Area (NEWRA) models
- Scenario Development/Analysis
- Scenario Simulation

Wind Integration Survey

- Review existing/contemporaneous studies
 - NYSERDA, Excel/Minnesota, CAISO/CEC, ERCOT, etc.
- Study the integration experiences of others
 - In addition to above, Red Electrica (Spain), Denmark, etc.
- Identify lessons learned
 - Find input/output relationships
 - · How well do the studies predict the observations
 - Identify the most useful tools in integration
 - Identify other lessons learned (surprises?)
- Focus on aspects that are relevant to ISO-NE
 - Offshore, Windy Neighbors, Technology advances, Market, etc.

Interconnection Requirements

Make specific recommendations:

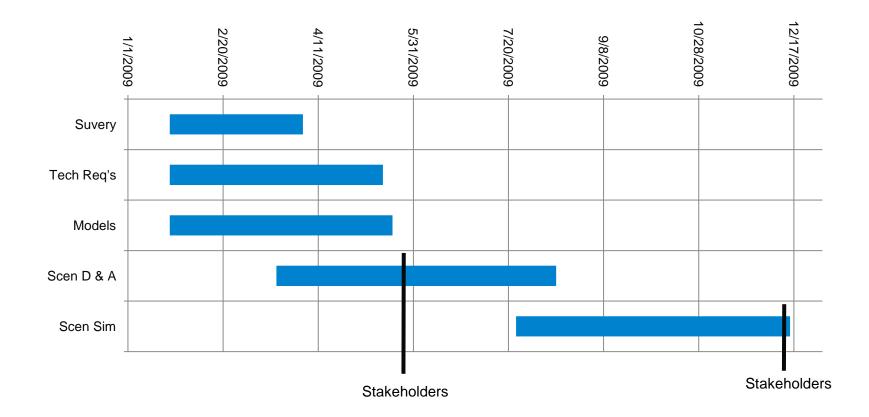
- Grid support functions
 - Low Voltage Ride Through (LVRT), Voltage/VAR Control
 - Blackstart coordination, Possible participation in AGC
- "Best of" Effective Load Carrying Capacity
 - Per wind plant, zonal, system wide
- Data/Telemetry requirements
 - Required inputs (for control and forecasting)
 - Wind data (wind speed, etc.) and Non-wind data (MW, MVAR, etc.)
 - Granularity
 - Time (update rate) and Spatial (per turbine, plant wide, up to regional)
- Wind Forecasting
 - Forecast responsibility (e.g., in-house vs. plant operator)
 - Control Room integration

Build NEWRA Models

- Mesoscale wind model
 - Simplified computational fluid dynamics model
 - Nested grid of wind speed, direction, etc.
 - Typically ten-minute time resolution
 - Multi-year to capture El Nino effects
 - Offshore & parts of neighboring systems
- Wind Plant Model
 - Translate the wind speeds to power out
 - Place the plants in locations of interest
- Develop dynamic "historical" simulations
- ISO-NE obtains the ability to use the models
 - Possible use in wind forecast/control room integration
 - Possible links to ISO-NE production system (offline)

Scenario Development/Analysis

- Develop/ refine wind plant scenarios
 - 2015: 1 to 5 GW nameplate
 - Based on Queue resources
 - 2020: ~ 8 GW nameplate (~ 15% of TWh)
 - (ISO-NE Scenario Analysis: scenario 6)
 - 2020: ~12 GW nameplate (20% of TWh)
- Analyze variability using wind and load data
- Identify transmission constraints (for wind)
- Develop ELCC methodology for wind in New England
- Identify requirements for
 - Load following
 - Regulation
 - Reserves



Scenario Simulation

- Use the scenarios
- Simulation between wind and power system
 - Identify effects of/on
 - Wind power forecasting
 - Unit commitment
 - Load Following, Regulation, and Reserve capability of online gen
 - Emissions
 - LMPs
 - Suggest and investigate facilitation measures
 - Market/Operational changes (e.g., more frequent inter-area exchanges)
 - Storage
 - Demand Response

Project Timeline

New England Wind Integration Study PAC Meeting -- 12/17/2008 © 2008 ISO New England Inc.

Questions?

New England Wind Integration Study

Bill Henson whenson@iso-ne.com (413) 540-4716

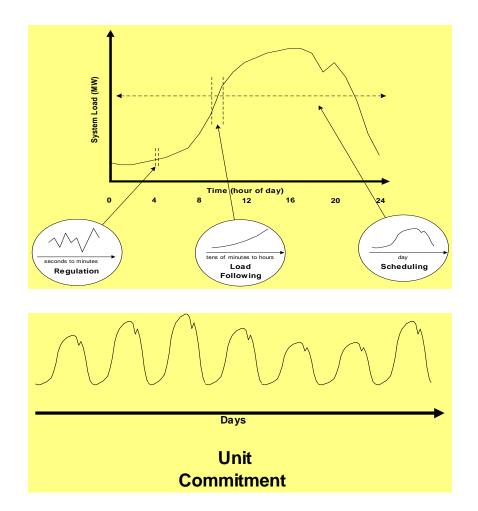
New England Wind Integration Study PAC Meeting -- 12/17/2008 © 2008 ISO New England Inc.

Additional Info Slides

- Wind is different for large scale generation
- Selected other wind integration studies
- Time frames of wind generation's impact
- Wind resource map of New England
- Wind resource map of Northeastern America
- High wind cutout

Wind is Novel for Large-Scale Generation

- Variable and somewhat unpredictable generation
 - Semi-dispatchable: down, not up (caveat)
 - Doesn't usually correlate well with use pattern
 - Forecast accuracy improves as time horizon shrinks
- Locationally constrained
 - Can't ship the wind in
 - Often best resources are distant from load centers
- Young technology
 - Evolving grid-awareness/support
 - Power electronics (on most machines) make them very flexible
- Small unit size (in MW)
 - Distributed Generation ~15 MW a handful of turbines
 - Wind "farms" up to say 1 GW tens to hundreds of turbines



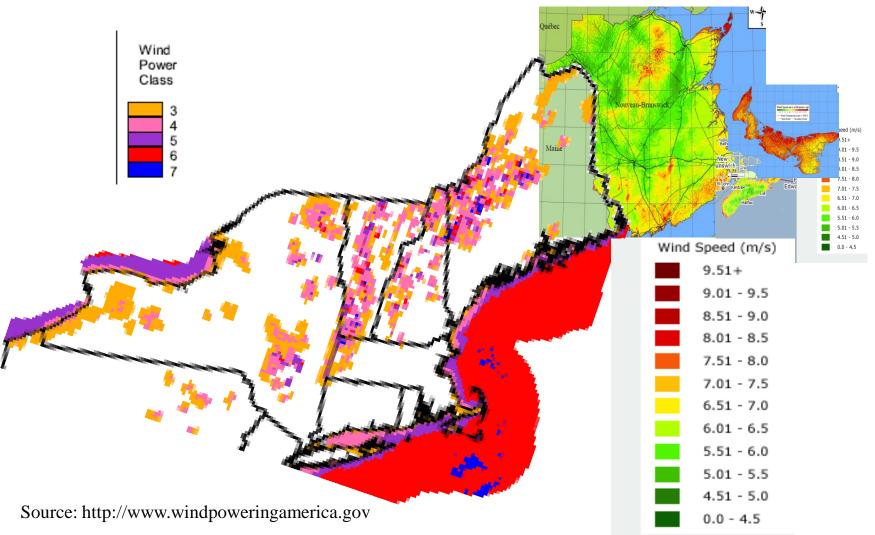
Other Studies

Region	Year	Penetration	
Minnesota/MISO	2004	15% - 25% Energy	
Germany/Dena	2005	<20% Energy	
NYISO	2005	10% Capacity	
Colorado/Xcel	2006	10% - 20% Capacity	
CAISO/CEC	2007	<20% - <33% Energy	
ERCOT	2008	8% - 23% Capacity	
Ireland/All Island	2008	23% - 59% Capacity	
EWITS/JCSP	2008-2009	20% - 30% Energy	
NERC IVGTF	2008-2009	N/A	

Time Frames of Wind Impact

- Typical U.S. terminology
 - Regulation -- seconds to a few minutes -- similar to variations in customer demand
 - Load-following -- tens of minutes to a few hours -demand follows predictable patterns, wind less so
 - Scheduling and commitment of generating units -- hours to several days -- wind forecasting capability?
 - Capacity value (planning): based on reliability metric (ELCC=effective load carrying capability)

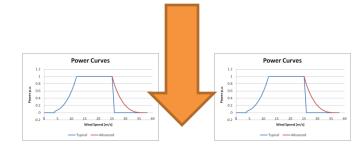
Source: www.neo.ne.gov/renew/wind-working-group/milligan_wind-integration-nppd.ppt

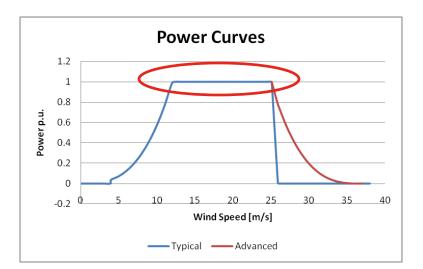

NE Has Significant Wind Potential

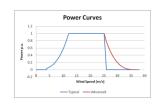
			Average Annual Wind Speed]
	Class Rating	MW	m/s	mph]
he has a hard the hard the hard	Class 7 🔵	1,833	>8.8	>19.7	
	Class 6 🔵	3,120	8.0 - 8.8	17.9 –19.7	
Company (Class 5 🔸	5,229	7.5 – 8.0	16.8—17.9	
	Class 4 鱼	10,170	7.0 – 7.5	15.7—16.8	
<u>↓</u>	Class 3 😐	26,772	6.4 – 7.0	14.3—15.7	
	Total	47,124		Ν	MWH

LEVITAN & ASSOCIATES, INC

North Eastern American Wind Resource

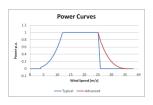



Source: http://www0.umoncton.ca/chairedd/atlas_eoliens.html



New England Wind Integration Study PAC Meeting -- 12/17/2008 © 2008 ISO New England Inc.


High Wind Cutout



New England Wind Integration Study PAC Meeting -- 12/17/2008 © 2008 ISO New England Inc.

