

ADAM M. DUMVILLE
Direct Dial: 603.230.4414
Email: adam.dumville@mclane.com
Admitted in NH and MA
11 South Main Street, Suite 500
Concord, NH 03301
T 603.226.0400
F 603.230.4448

Via Electronic Mail and Hand Delivery

December 1, 2016

New Hampshire Site Evaluation Committee Pamela G. Monroe, Administrator 21 South Fruit Street, Suite 10 Concord, NH 03301

Re: SEC Docket No. 2015-04: Public Service Company of New Hampshire d/b/a Eversource Energy for a New 115 kV Transmission Line from Madbury Substation to Portsmouth Substation – Characterization of Sediment Quality Along Little Bay Crossing, Durham to Newington, NH.

Dear Ms. Monroe:

Enclosed for filing in the above-captioned docket, please find a report completed by Normandeau Associates on behalf of the Applicant in support of their Application for a Certificate of Site and Facility, titled *Characterization of Sediment Quality Along Little Bay Crossing, Durham to Newington, NH*.

Please contact me directly should you have any questions.

Sincerely,

Adam M. Dumville

adam Dill

AMD: Enclosure

cc: Distribution List (via e-mail)

Dori Wiggin, NH Department of Environmental Services (via e-mail) Owen David, NH Department of Environmental Services (via e-mail)

Public Service of New Hampshire Seacoast Reliability Project

Characterization of Sediment Quality Along Little Bay Crossing

Durham to Newington, NH

Presented To:

Public Service Company of New Hampshire 780 North Commercial Street Manchester, NH 03101

Submitted: December 1, 2016

Submitted By:

Normandeau Associates, Inc. 25 Nashua Road Bedford, NH 03110

www.normandeau.com

Table of Contents

			Pag	e
PAGE	1			
EXEC	UTIV	VE SUN	MMARY	3
1.0	INT	RODU	CTION4	1
2.0	MET	rhods	5	5
	2.1	SEDIM	ENT COLLECTION	5
	2.2	SAMPI	LE HANDLING AND ANALYSIS	5
3.0	RES	ULTS		•
	3.1	FIELD	CHARACTERIZATION OF SEDIMENT CORES)
	3.2	Anal	YTICAL RESULTS9)
		3.2.1	Physical Characteristics10)
	3.3	META	LS10)
	3.4	ORGA	NIC COMPOUNDS1	
		3.4.1	Polycyclic Aromatic Hydrocarbons (PAHs)13	
		3.4.2	Polychlorinated Byphenyls (PCBs)13	
		3.4.3	Total Petroleum Hydrocarbons (TPH)13	
		3.4.4	Dioxins/Furans	4
		3.4.5	Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS)	4
4.0	CON	NCLUS	IONS14	1
5.0	REF	ERENC	CES	2
APPE	ENDI	X A: EC	COLOGICAL RISK ANALYSIS	
APPE	ENDI	X B: VI	BRACORE BORING LOGS	
APPE	ENDI	X C: Al	NALYTICAL RESULTS	

List of Tables

	Page
Table 1.	Proposed sampling parameters, testing limits and analytical methods for sediments along SRP cable route in Little Bay
Table 2.	Qualitative description of sediments along cable route from vibracore collections, September 2016. 9
Table 3.	Physical characteristics of sediments along the SRP cable route in Little Bay
Table 4.	Concentration (mg/kg [ppm]) of metals in sediments along the SRP cable route in Little Bay
Table 5.	Concentration (µg/kg [ppb]) of Polycyclic Aromatic Hydrocarbons (PAHs) along the SRP cable route in Little Bay
Table 6.	Concentration (µg/kg [ppb]) of Polychlorinated Biphenyls (PCBs) in sediments along the SRP cable route in Little Bay
Table 7.	Concentration (µg/kg [ppm]) of Total Petroleum Hydrocarbons (TPH) in sediments along the SRP cable route in Little Bay
Table 9.	Concentration (ng/g [ppb]) of Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) in sediments along the SRP cable route in Little Bay
Table 8.	Concentration (pg/g [pptr]) of Dioxins/Furans in sediments along the SRP cable route in Little Bay
	List of Figures
	Page
Figure 1.	Seacoast Reliability Project Location Map
Figure 2.	Sediment Sampling Locations
Figure 3.	National Coastal Condition Assessment Sampling Locations, 2000-2010. Source: http://www.epa.gov/emap/nca/html/data/index.html

Executive Summary

Public Service Company of New Hampshire d/b/a Eversource Energy (PSNH) is proposing to construct a new 115 kilovolt (kV) transmission line between the existing Madbury and Portsmouth substations. The Seacoast Reliability Project (SRP) would be located in the Towns of Madbury, Durham and Newington as well as the City of Portsmouth, in Strafford and Rockingham Counties, New Hampshire. The 12.9-mile long project would begin at the existing PSNH Madbury Substation in Madbury, traversing Durham, crossing approximately 0.9 miles of Little Bay via an underwater cable into Newington, and then continuing east before ending in Portsmouth. The entire project lies within existing electric corridor on land, and a mapped cable corridor across Little Bay. The proposed cable installation methods in Little Bay include jet plowing and hand jetting, and will necessarily disturb sediments and suspe101nd them into the water column.

Previous testing of surface sediments by USEPA indicated that sediment quality in Little Bay is good. However, in response to concerns regarding the potential increased exposure risk resulting from the dispersal of possible sediment-borne contaminants in the Great Bay system, Eversource conducted sediment testing along the cable route. Sediments along the proposed cable crossing were sampled to the planned burial depth where possible using a vibratory sampler. At several locations, the presence of stiff, naturally occuring clay ("native" or "parent" material) several feet below the substrate surface prevented penetration of the sampler to the full planned depth. In shallow portions of the route where cable burial is planned to be 3.5 feet, four-foot deep cores were collected, homogenized, and analyzed for chemical constituents. Where the cable will cross the channel, burial will be to 8 feet. When cores penetrated greater than 4 feet, the upper 4 feet of sediments was separated from the lower section and the two portions were analyzed separately.

All samples were analyzed for typical dredge material analytes (grain size, total organic carbon (TOC), a suite of metals, specific PAHs, and specific PCBs) as well as total petroleum hydrocarbons (TPH), dioxins/furans, and perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Results were compared to existing data on sediment contaminants in Little Bay and to available screening criteria that were developed based on biological responses to exposure. Grain size, TOC, metal, PAH, and PCB concentrations had all been studied in Little Bay during the US EPA National Coastal Condition Assessment (NCCA) program. Results of the site-specific survey were consistent with the NCCA data and were all below levels of environmental concern with the exception of arsenic. Arsenic was slightly higher than the lowest screening level value, but within the range of concentrations observed in Little Bay in the NCCA program. The NCCA program also included bioassay testing and determined that exposure to sediments from Little Bay resulted in no significant difference in mortality compared to reference sediments.

TPH, PFOA, and PFOS results all fell below detection limits in every sample. Dioxins/furans occurred in most samples but at very low levels, never exceeding the screening guidelines. As discussed in Appendix A, the results of the sediment testing were examined in the context of ecological risk. This analysis concluded that there is no potential for ecological effects from constituents of potential concern in the sediments that will be disturbed during cable installation, including metals, PAHs, PCBs, PFCs, dioxins and furans.

Grain size data were consistent with the values used during the sediment plume modeling that predicted the potential to exposure Great Bay Estuary resources to suspended sediments during cable installation using jet plow and hand jetting. Coupled with the high quality of the sediments in terms of contaminants, this consistency indicates that impacts to bay resources as a result of cable installation will be minimal.

1.0 Introduction

Public Service Company of New Hampshire d/b/a Eversource Energy (PSNH) is proposing to construct a new 115 kilovolt (kV) transmission line between their existing Madbury and Portsmouth substations to enhance the electric reliability in the seacoast region. The Seacoast Reliability Project (SRP) would be located in the Towns of Madbury, Durham and Newington as well as the City of Portsmouth, in Strafford and Rockingham Counties, New Hampshire. The SRP is proposed to be approximately 12.9 miles long including a 0.9-mile crossing under Little Bay (Figure 1). The cable crossing will directly affect a corridor approximately 90 feet wide within a charted Cable Area approximately 1,000 feet wide.

The SRP will cross under Little Bay by being buried 3.5-8 feet in the substrate using jet plow and hand jet technology. For this crossing, the transmission line will be necessarily split into three cables to maintain the required transmissivity for the reliability project.

Sediments along the route for the SRP submarine cables across Little Bay will be fluidized during installation via jet plow technology. Some of this material will be suspended and transported away from the cable route as modeled by RPS ASA (2015). The model predicts that sediments will remain in the water column for a limited duration (up to several hours) before being redeposited and that the exposure of sensitive receptors (e.g., shellfish beds; aquaculture facilities; eelgrass) will be limited at most, although Eversource acknowledges that conditions during installation may differ somewhat from the assumptions used in the modeling. In order to gain a more complete understanding of the potential exposure risk to natural resources, Normandeau tested the sediments along the route for contaminants.

Normandeau has been the lead environmental consultant for Eversource for the SRP since 2013. Normandeau has been responsible for characterizing environmental conditions and evaluating impacts from construction and operation of the SRP. Normandeau's staff have extensive experience sampling marine sediments and interpreting results of contaminant testing. GEI contributed to the development of testing requirements and interpretation of the results through their expertise in ecological risk assessment and sediment remedial investigations.

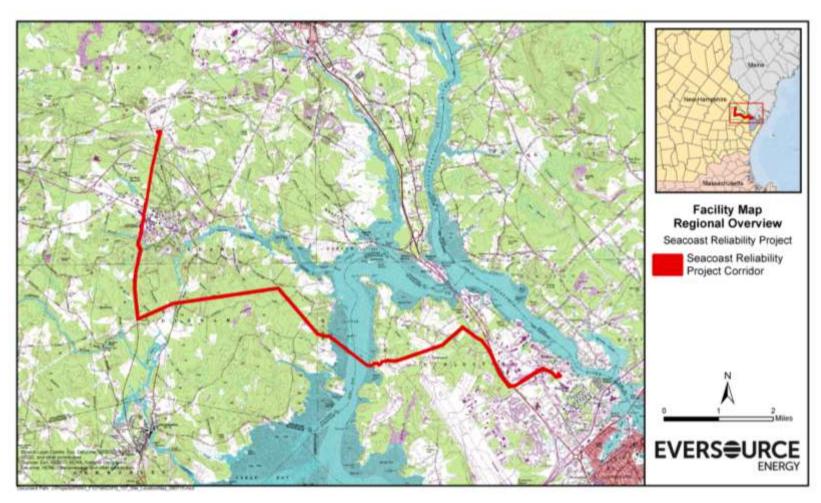


Figure 1. Seacoast Reliability Project Location Map.

2.0 Methods

This section describes the methods used to investigate estuarine sediments along the Little Bay crossing. The sampling and testing plan were provided to USACE and NH DES for concurrence prior to collection of sediments.

2.1 Sediment Collection

Twelve sampling locations were allocated along the cable corridor (Figure 2) in proportion to the two cable burial depths (3.5 ft. and 8 ft.) with the goal of collecting sediment cores to the full burial depth at each location. Collections were made using a Rossfelder Model P-3, low frequency vibro-percussive vibracore. Coring tubes were 3-inch diameter semi-rigid Cellulose Acetate Butyrate (CAB) tubes with disposable stainless steel core catchers riveted to the tube. The use of CAB tubes allows samples to be collected without an outer housing or core barrel that needs to be decontaminated between sample locations. At each sampling location, up to three attempts were made to achieve collection of a full length core.

Sampling locations were documented using a Trimble GeoXT GPS with an accuracy of <1-meter.

In areas where the cable will be buried to 3.5 ft, the uppermost 4 ft portion of each core was characterized. In areas where cable burial will be 8 ft., the core was divided into upper (top 4 ft) and lower segments. Each core was examined for evidence of stratification within each segment to determine whether further separation for chemical testing was necessary. No stratification was evident so no additional subsampling was done. Each segment identified for chemical analysis was placed into a disposable aluminum container, homogenized with disposable aluminum utensils and then subsamples were placed into containers provided by the analytical laboratories. Separate equipment was used for homogenizing each sample to eliminate the risk of cross-contamination.

2.2 Sample Handling and Analysis

Samples were stored in containers provided by the laboratories on wet ice until delivery to the analytical laboratory. Each sediment sample was tested for the parameters shown on Table 1 which were taken from the recommended testing limits outlined in the Regional Implementation Manual (RIM; U.S. EPA and U.S. Army corps of Engineers 2004), a document that delineates how estuarine and marine sediments being proposed for dredging and aquatic disposal should be tested for contaminants. In addition to the parameters required by the RIM, samples were tested for total petroleum hydrocarbon (TPH) in response to a request by NHDES; dioxins/furans in response to concern that these compounds had been detected in the past in the estuary and tributaries; and, perfluoro compounds (PFCs) in response to concern that contaminants occurring in groundwater at the adjacent Pease Superfund site could have been transported to the estuary. Results were compared to available regulatory criteria or guidelines as described in Section 3.2.

GEI reviewed the results in the context of ecological risk. Their analytical approach is described in Appendix A1.

Figure 2. Sediment Sampling Locations

Table 1. Proposed sampling parameters, testing limits and analytical methods for sediments along SRP cable route in Little Bay.

Analytical Laboratory	Parameter	RIM Testing Limit (dry weight)	Analytical Method
Alpha Analytical	Arsenic	0.4 ppm	6020A
	Cadmium	0.07 ppm	6020A
	Chromium	0.5 ppm	6020A
	Copper	0.5 ppm	6020A
	Lead	0.5 ppm	6020A
	Mercury	0.02 ppm	EPA 7474
	Nickel	0.5 ppm	6020A
	Zinc	1.0 ppm	6020A
	Polycyclic Aromatic Hydrocarbons (PAHs)	10 ppb	8270D-SIM
	Polychlorinated Biphenyls (PCBs)	1 ppb	8270D-SIM
	Total Organic Carbon	0.1%	9060A
	Percent Water	1.0%	2540G
	Grain Size Distribution – wet sieve	Sieve Nos. 4, 10, 40, 60, 200	ASTM D422
	Total Petroleum Hydrocarbons	10,000 ppm ^a	8015C
Cape Fear Analytical	Dioxins/Furans	1 ppt (tetra), 5 ppt (octa) ^b	EPA 1613B
Vista Analytical	Perflouro Compounds (PFCs)	6 ppb ^b	Modified EPA 537

^aNH DES criterion for remediation of contaminated soils

^bno regulatory criteria available; recommendation by GEI based on ecorisk evaluation (Appendix A)

3.0 Results

3.1 Field Characterization of Sediment Cores

Sediment boring logs are provided in Appendix B and are summarized in Table 2.

Table 2. Qualitative description of sediments along cable route from vibracore collections, September 2016.

Zone	Station	Penetration Depth	Core Recovery Actual/Planned	Sediment Description
Tidal	C-1	51"	50"/48"	Fine grained saturated clay with trace sand, uniform
Flat (west)	C-2	60"	59"/48"	throughout
	C-3	60"	58"/48"	
	C-4	58"	55"/48"	
	C-5	55"	54"/48"	
Western Slope	C-6	66"	63"/96"	Upper 48": fine grained saturated clay with trace sand, uniform throughout
				Below 48": fine grained saturated clay with trace sand, uniform throughout
Channel	C-7	60"	55"/96"	Upper 12": saturated clay with sand, uniform throughout
				Below 12": fine grained saturated clay, uniform throughout
	C-8	38"	36"/96"	Upper 19": uniform fine sand
				Below 19": uniform saturated clay
	C-9	15"	14"/96"	Upper 9": medium sand
				Below 9": uniform saturated clay with sand
	C-10	24"	23"/96"	Fine sand, uniform
Eastern	C-11	94"	89"/96"	Upper 14": silt with sand
Slope				Below 14": uniform saturated clay
Welsh Cove	C-12	37"	36"/48"	Uniform saturated clay with sand

The planned sampling depth of four feet was achieved at Stations C-1, C-2, C-3, C-4, and C-5. At Station C-12, the corer penetrated to just over 3 feet because of the density of the clay substrate. It was not possible to collect the full planned length of eight foot cores at Stations C-6 through C-10, likely because of the density of the underlying clay substrate at these stations. Retrieval at C-11 was close to the planned length of eight feet.

Cores from Stations C-6, C-7, and C-11 were split into upper (top four feet) and lower (below four feet) segments for physical and chemical analyses.

3.2 Analytical Results

Complete analytical laboratory results are provided in Appendix A. Review of the laboratory report showed that each of the analytical laboratories involved used the requested methods and met the appropriate detection limits. Quality control testing (matrix spike [MS] and matrix spike duplicates [MSD], equipment blanks) results were within acceptable ranges for most analytes. Although the MS/MSD for some compounds are outside of control limits, the laboratory control sample and duplicate can be relied upon to demonstrate accuracy in the results. Additional discussion of analytical quality control testing is included in Appendix A1.

Analysis of grain size, TOC, metals, PAHs, and PCBs is typically required for dredging projects. Additional analytes were included in this assessment to address potential local concerns:

- Total petroleum hydrocarbon Requested by DES
- Dioxins/furans Surface Water Quality Status data (EPA 2008) indicated that dioxins were present in portions of the upper Great Bay Estuary and tributaries
- PFCs present in groundwater at Pease

3.2.1 Physical Characteristics

Grain size and TOC results are provided in Table 3. As previous information has indicated, sediments along the western tidal flat (Stations C-1 thorugh C-5) and the western slope of the channel (Station C-6) were primarily fine grained (70-90% silt + clay particles). Within the channel (Stations C-7 through C-10) and the eastern channel slope (Station C-11), sediments contained higher proportions of sand (34-92%). Sediments at Station C12 were about 49% fines. These grain size conditions were consistent with the values reported in Normadeau (2016) and used for the sediment plume modeling in RPS ASA (2016).

TOC provides an indication of the organic content of the sediments that is a combination of both naturally occurring compounds (e.g., from decomposition of organisms) and organic pollutants. TOC was highest (>1%) in the sediments on the western tidal flat and western slope, consistent with the higher proportion of fine-grained sediments. With one exception (C-8), TOC was <1%. These relatively low values suggest low likelihood of highly elevated organic contamination.

3.3 Metals

Inorganic metals in marine sediments can occur naturally at low levels or at elevated levels as a result of anthropogenic sources (U.S. EPA 2007a). Concentrations of metals along the cable route are shown in Table 4 in comparison to the Effects Range-Low (ER-L) and Effects-Range Median (ER-M) screening levels used by NOAA (2008). ER-L and ER-M values were derived for a wide range of inorganic and organic chemicals by examining biological responses to different chemical concentrations. ER-Ls are defined as the 10th percentile value on an ordered list of concentrations in sediment found in the literature that co-occur with any biological effect. Concentrations lower than the ER-L value represent a minimal-effects range in which biological effects would rarely be observed. ER-M values are defined as the 50th percentile concentration; biological effects are possible at environmental concentrations falling between the ER-L and ER-M values (NOAA 2008).

Arsenic concentrations ranged from 6.06 to 11.7 mg/kg, similar to the values previously observed in surface sediments in Little Bay during US EPA's National Coastal Condition Assessment program (Figure 3) where concentrations averaged 6.66 mg/kg and ranged from 2 to 10.8 mg/kg. In 2016, when deep sediments are included, the average concentration along the cable route was 8.35 mg/kg, slightly higher than ER-L level (8.2 mg/kg) but well below the ER-M value (70 mg/kg). When only the upper layer is considered, the average arsenic concentration was 7.99 mg/kg, below the ER-L. Spatially, arsenic levels exceeded the ER-L at Stations C-1 through C-4, C-6 (both upper and lower layers), and the lower layer at C-11. Arsenic is a naturally occurring metal in New England sediments and the range

observed along the cable route is not uncommon. As Ayotte et al. (2012) discussed, weathering of bedrock in southeastern New Hampshire has contributed arsenic to groundwater so it is reasonable to assume that the same process could be a natural source of arsenic to the estuary sediments. Given that the arsenic concentrations found along the cable route are mostly below or only slightly above the ER-L, it is likely that these concentrations reflect local natural background levels.

No other metal tested occurred at levels higher than the ER-L and the range of concentrations in the 2016 fell within the range observed by US EPA.



Figure 3. National Coastal Condition Assessment Sampling Locations, 2000-2010. Source: http://www.epa.gov/emap/nca/html/data/index.html

3.4 Organic Compounds

3.4.1 Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are frequently found in marine sediments. Typical routes of entry are petroleum spills or air emissions of combustion by-products (Appendix A1). PAHs were below the detection limit in both layers at Station C-6, the lower layer at Stations C-7 and C-11, and the upper layer at Stationc C-9 and C-10 (Table 5). Low concentrations of one or more PAHs were present in the remaining samples, (Table 5). Medium (MMW) and high molecular weight (HMW) PAHs were observed more frequently than low molecular weight (LMW) PAHs. Total PAH concentrations ranged from 50-211 ng/g compared to 229-1479 ng/g in the NCCA Little Bay samples. Similarly, total LMW PAHs ranged from 18-53 ng/g compared to 23-270 ng/g in the NCCA samples; total HNW PAHs ranged from 23-144 ng/g compared to NCCA's 191-1038 ng/g.

Along the proposed cable route, total PAH, total LMW PAH, and total HMW PAH concentrations were each more than an order of magnitude lower than the respective ER-Ls, indicating that PAHs are unlikely to have detrimental effects on the biology of the Little Bay sediments.

3.4.2 Polychlorinated Byphenyls (PCBs)

PCBs have not been used in the US since the late 1970s but they are extremely stable compounds and persist in the environment (Appendix A2). PCBs were not detected in most samples with the exception of the deeper layer at Station C-7 (Table 6). The USACE Regional Implementation Manual protocol requires that total PCBs be estimated by doubling the sum of 18 specific PCB congeners, using one half the method detection limit (MDL) for congeners whose values were below the MDL. Using this approach, the total PCBs in samples from along the cable route ranged from 10.6 to 15.1 ug/kg. Of note is that the one sample that contained detectable levels of any PCB congeners fell in the middle of that range. This range of concentrations is higher than that observed in the NCCA data (0 to 7.5 ug/kg), but that may be an artifact of the summation using half the detection limit. Concentrations in both data sets are below the ER-L for total PCBs.

3.4.3 Total Petroleum Hydrocarbons (TPH)

As described in Appendix A1, TPHs include a wide variety of hydrocarbon compounds. The RIM does not require testing for TPH, but NH DES requested this analysis. NH DES encountered an unexpected pocket of petroleum-contaminated sediments in one of the tributaries to Great Bay on a previous project, and felt that it could serve as an indicator of a similar condition along the cable route. Detection limits for TPH ranged from 39 to 54 mg/kg (ppm). TPH was not detected in any sample (Table 7). NH DES has established a clean-up criterion for contaminated soils of 10,000 mg/kg (ppm; or $10 \times 10^6 \text{ µg/kg}$). Concentrations of TPH in Little Bay sediments along the cable route were more than two orders of magnitude below that standard. While NH DES's clean-up criterion is not based on ecological risk, GEI pointed out (Appendix A1) that PAHs are typically the TPH components with the highest toxicity. As PAHs were well below levels of concern, it is unlikely that any other component of TPH would be of ecological concern either.

3.4.4 Dioxins/Furans

Dioxins and furans are widespread in the environment because a major source of these compounds is combustion and they are often distributed through atmospheric transport. Along the cable route, one to four dioxin/furan compounds were detected in most samples (Table 8). The most commonly occurring compound was 1,2,3,4,6,7,8,9-OCDD, a breakdown product of other dioxin compounds; it was present in 11 of the 15 samples. NOAA's SQuiRTs tables do not provide screening values for total dioxins/furans in marine sediments. The Canadian Council for the Ministers of the Environment (2004) have, however, established a Toxicity Equivalency (TEQ) value of 0.85 ng/kg that was developed using a similar approach to ER-L. The TEQ for a sample is a weighted toxicity value calculated by multiplying the concentration of individual dioxin/furan compounds by their relative (compared to the most toxic compound 2,3,7,8-TCDD) toxicity (the toxicity equivalency factor or TEF) and summing over all compounds. The compound that had the highest concentration in samples along the cable route, 1,2,3,4,6,7,8,9-OCDD has the lowest TEF of the dioxin compounds (DioxinFacts.org, 2016). When calculated based on only the detected compounds (ND=0), total concentrations of dioxin/furans were below the TEQ in all samples.

3.4.5 Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS)

PFOA and PFOS have been reported in groundwater at Pease Air Force Base. Given that there is a potential hydrologic link to the project area via groundwater and tributaries, there is a concern that these compounds could have accumulated in sediments or porewater along the cable route. Neither compound occurred above detection limits (1.83 to 2.00 ng/kg) in any sample collected in September 2016 (Table 9). There are no US screening criteria available for these compounds. There are no other data available from the Great Bay estuary for comparison. GEI evaluated existing data and aqueous criteria for PFOA/PFOS in Appendix A2 and concluded that the European proposed Probable No Effect Concentration (PNEC) of 6.7 μ g/kg in marine sediments is very protective. It is unlikely that sediment-borne PFOA or PFOS poses a risk to organisms in the vicinity of the cable crossing in Little Bay.

4.0 Conclusions

Sediments were collected in September 2016 along the planned cable route in Little Bay to be tested for chemical constituents that are indicative of anthropogenic pollution. These constituents included contaminants typically associated with industrialized marine harbors (metals, PAHs, PCBs) as well as total petroleum hydrocarbons, dioxins/furans, and perfluoro compounds that are not typically tested for in projects disturbing sediments, but could occur in the Project area due to surrounding conditions. Testing was conducted following established analytical protocols. Several important observations emerged.

 Sediment grain size to cable burial depth observed in 2016 is consistent with the information used to conduct the sediment plume modeling predicting the behavior of sediments suspended during the cable installation

- Metals were present in all samples, but concentrations were below NOAA screening criteria (ER-L) for sediment concentrations indicative of biological effects, with the exception of arsenic
- Arsenic levels in several samples slightly exceeded the NOAA ER-L screening
 criterion but were well below the ER-M criterion, so by definition, has the possibility
 of having a biological effect. However, arsenic levels fell within the range of
 concentrations found in Little Bay by USEPA between 2000 and 2010, for which
 bioassay testing indicated no adverse biological effects.
- Concentrations of PAH compounds were low or below detection limits and total PAH concentrations were lower than observed by USEPA within Little Bay. Total PAH, total LMW PAH, and total HMW PAH concentrations were below NOAA screening criteria (ER-L).
- Concentrations of PCB congeners were low or below detection limits. No previous data are available for PCBs in Little Bay, but total PCB concentrations were uniformly below NOAA screening criteria (ER-L).
- Dioxins/furans were present in low concentrations in many samples. The TEQ provides a weighted summation of dioxins/furans representing a potential toxicity level. Although neither NH nor US have developed guidelines for dioxins/furans, the Canadian Council for the Ministers of the Environment (2004) has.
 Concentrations of dioxins/furans along the cable route were all below the Canadian TEQ ND=0 guidelines.
- Perfluoro compounds were below detection limits in all samples and are below the proposed European PNEC.

GEI evaluated the sediment chemistry results in terms of potential ecological risk. This analysis is incorporated as Appendix A. GEI determined that all of the analytes except arsenic uniformly occurred at levels below concentrations identified as likely to cause toxic effects in marine sediments. Arsenic was only slightly above the lowest screening criterion (ER-L) and was consistent with levels reported elsewhere in Little Bay. GEI concluded, therefore, that dispersion of sediments into other areas of Little Bay would pose no ecological risk.

In 2007, USEPA (2007b) characterized sediment quality in Little Bay as "good" (the highest rating possible) based on a combination of sediment chemistry and bioassay testing that revealed no significant mortality among test organisms exposed to bay sediments. Given that contaminant levels are within the ranges observed by USEPA, it can be concluded that the quality of sediments along the cable route also meet the EPA characterization as good.

SRP Sediment Characterization in Little Bay 120116.docx

Table 3. Physical characteristics of sediments along the SRP cable route in Little Bay

																NCAA
Station	C1	C2	C3	C4	C5	C6	C6	C7	C7	C8	C9	C10	C11	C11	C12	Range
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48	
Grain Size																
% Total Gravel	0.2	0.2	0.1	0	0.6	0.2	0	0.1	0	0.6	2.3	0.1	1.1	0	2.2	
% Coarse Sand	1.5	1.4	0.7	3.2	2	1.3	0.6	0.7	0.1	0.4	3.4	0.4	1.7	1.3	2.1	
% Medium Sand	3.4	4.7	2.3	7.1	4	4	2.9	4.3	7.3	8.8	31.6	1.7	5.9	4.3	7.1	
% Fine Sand	6	8	8.2	16.3	24.3	13.1	5.9	44.9	36.7	66	34	91.6	35.8	12.6	39.2	
% Total Fines	88.9	85.7	88.7	73.4	69.1	81.4	90.6	50	55.9	24.2	28.7	6.2	55.5	81.8	49.4	
Total Organic Carbon (mean %)	1.635	1.54	1.38	1.165	1.11	1.165	1.28	0.718	0.661	1.057	0.10	0.194	0.795	0.936	0.531	0.55-2.35
Moisture %	41.3	38.9	36.9	35.1	31.7	32.4	35.3	28	29.1	29.7	18.3	21.1	31.4	33.2	24.6	

Table 4. Concentration (mg/kg [ppm]) of metals in sediments along the SRP cable route in Little Bay

																	ER-	NCCA
Station	C1	C2	C3	C4	C 5	C6	C6	C 7	C 7	C 8	C9	C10	C11	C11	C12	ER-L	M	Range
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48			
Arsenic, Total	10.7	10.4	9.94	8.54	7.05	9.14	11.7	7.17	6.88	6.56	6.4	6.56	7.39	10.8	6.06	<i>8</i> .2	70	2-10.8
Cadmium, Total	0.187	0.188	0.185	0.154	0.157	0.13	0.112	0.064	0.057	0.114	0.022	0.035	0.082	0.083	0.089	1.2	960	0.12-
																		0.325
Chromium,	36.9	29.9	32.5	22.2	20.6	22.4	25.4	16.7	18	13.7	17.4	10.9	22.8	22.7	16.8	81	370	21-95
Total																		
Copper, Total	10.5	9.54	9.79	7.49	6.61	9.15	10.2	6.02	7.35	6.04	7.64	2.46	8.19	9.21	5.51	31	270	4-16.8
Lead, Total	11.7	7.49	8.36	5.13	4.8	6.03	5.46	4.07	3.91	4.4	5.39	2.88	9.39	4.8	4.6	46.7	218	22.2-
																		43.4
Mercury, Total	0.033	0.025	0.041	< 0.017	0.016	< 0.018	< 0.021	< 0.017	< 0.015	< 0.014	< 0.013	< 0.015	< 0.018	< 0.017	0.019	0.15	0.71	0.04-
																		0.149
Nickel, Total	17.9	17.2	15.8	14.1	12.7	15.6	18.2	11.5	13.2	9.43	13.2	6.17	14.1	16.5	10.7	20.9	51.6	6-18.9
Zinc, Total	58.2	54.6	52	43.3	52.8	47.2	54.2	34.5	38.6	36.2	44.7	30.9	45.6	49.3	26.8	150	410	28-82.5

ER-L = Effects Range Low = 10th percentile on an ordered list of concentrations in sediment found in the literature that co-occur with any biological effect; concentrations lower than the ER-L value represent a minimal-effects range in which effects would be rarely observed ER-M = effects Range Median = 50th percentile; concentrations equal to and above the ER-L, but below the ER-M represent a possible-effects range

Table 5. Concentration (µg/kg [ppb]) of Polycyclic Aromatic Hydrocarbons (PAHs) along the SRP cable route in Little Bay

Station	C1	C2	C3	C4	C5	C6	C6	C 7	C 7	C8	C9	C10	C11	C11	C12	ER-L	ER-M	NCCA Range
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48			
Naphthalene	<8.37	<7.88	<7.63	<7.13	<7.22	<7.37	<7.6	<6.51	<7.04	<6.76	<5.87	<6.25	<7.21	<6.85	<6.48	160	2,100	
Acenaphthylene	<8.37	<7.88	<7.63	<7.13	<7.22	<7.37	<7.6	<6.51	<7.04	11	<5.87	<6.25	<7.21	<6.85	<6.48	44	640	
Acenaphthene	<8.37	<7.88	18.4	<7.13	<7.22	<7.37	27.5	<6.51	<7.04	11	< 5.87	<6.25	<7.21	<6.85	<6.48	16	500	
Fluorene	<8.37	<7.88	<7.63	<7.13	<7.22	<7.37	<7.6	<6.51	<7.04	13	<5.87	<6.25	<7.21	<6.85	6.75	19	540	
Phenanthrene	8.4	<7.88	13.5	<7.13	<7.22	<7.37	<7.6	6.97	<7.04	9.37	<5.87	<6.25	10.7	<6.85	11.9	240	1,500	
Anthracene	<8.37	<7.88	9.28	<7.13	<7.22	<7.37	<7.6	<6.51	<7.04	<6.76	< 5.87	<6.25	<7.21	<6.85	<6.48	85.3	245	
Fluoranthene	17.4	10.4	39.4	8.65	12.8	<7.37	<7.6	18.9	<7.04	10.1	< 5.87	<6.25	20.4	<6.85	19.7	600	5,100	
Pyrene	16.4	11.7	36.6	8.86	11.8	<7.37	<7.6	17.9	<7.04	10.2	<5.87	<6.25	28.6	<6.85	20.7	665	2,600	
Benz(a)anthracene	9.65	<7.88	19.8	<7.13	9.22	<7.37	<7.6	17.2	<7.04	<6.76	<5.87	<6.25	16.4	<6.85	14.1	261	1,600	
Chrysene	9.46	<7.88	21.4	<7.13	7.71	<7.37	<7.6	15.5	<7.04	<6.76	<5.87	<6.25	14.8	<6.85	14.8	384	2,800	
Benzo(b) fluoranthene	11.6	<7.88	22.6	<7.13	7.35	<7.37	<7.6	10.8	<7.04	<6.76	<5.87	<6.25	19.6	<6.85	13.8	na	na	
Benzo(k) fluoranthene	10.2	<7.88	20.2	<7.13	<7.22	<7.37	<7.6	12.6	<7.04	<6.76	<5.87	<6.25	19	<6.85	13.8	na	na	
Benzo(a) pyrene	11.6	<7.88	23.4	<7.13	8.55	<7.37	<7.6	15.3	<7.04	<6.76	< 5.87	<6.25	22.6	<6.85	16.8	430	1,600	
Indeno(1,2,3-cd) Pyrene	9.3	<7.88	16.5	<7.13	<7.22	<7.37	<7.6	7.44	<7.04	<6.76	<5.87	<6.25	18.8	<6.85	11.4	na	na	
Dibenz(a,h) anthracene	<8.37	<7.88	<7.63	<7.13	<7.22	<7.37	<7.6	<6.51	<7.04	<6.76	<5.87	<6.25	<7.21	<6.85	<6.48	63.4	260	
Benzo(ghi) perylene	9.2	<7.88	16	<7.13	<7.22	<7.37	<7.6	6.67	<7.04	<6.76	<5.87	<6.25	19.3	<6.85	11	na	na	
Total PAHs*	138.32	77.26	272.34	67.42	93.53	58.96	84.5	148.81	56.32	98.47	46.96	50	211.83	54.8	170.95	4,022	44,792	229.26-1,479.4
Total LMW PAHs	29.325	23.64	52.625	21.39	21.66	22.11	46.5	23.245	21.12	51.13	17.61	18.75	28.725	20.55	31.61	552	3,160	23.4-270
Total MMW PAHs	33.8	22.1	76	17.51	24.6	7.37	7.6	36.8	7.04	20.3	5.87	6.25	49	6.85	40.4	na	na	
Total HMW PAHs	75.195	31.52	143.715	28.52	47.27	29.48	30.4	88.765	28.16	27.04	23.48	25	134.105	27.4	98.94	1,700	9,600	191.1-1,029.7

*total PAHs calculated using half of detection limit na = not available

Table 6. Concentration (µg/kg [ppb]) of Polychlorinated Biphenyls (PCBs) in sediments along the SRP cable route in Little Bay

Station	C1	C2	C3	C4	C5	C6	C6	C7	C7	C8	C9	C10	C11	C11	C12	ER-L	ER-M
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48		
Cl2-BZ#8*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	1.1	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl3-BZ#18*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	1.16	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl3-BZ#28*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl4-BZ#44*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl4-BZ#49	< 0.837	<0.788	< 0.763	<0.713	<0.722	<0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
Cl4-BZ#52*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl4-BZ#66*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	<0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
C15-BZ#87	< 0.837	< 0.788	< 0.763	<0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
Cl5-BZ#101*	< 0.837	<0.788	< 0.763	<0.713	<0.722	<0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
Cl5-BZ#105*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl5-BZ#118*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
Cl6-BZ#128*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl6-BZ#138*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl6-BZ#153*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl7-BZ#170*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl7-BZ#180*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl7-BZ#183	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl7-BZ#184	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl7-BZ#187*	< 0.837	< 0.788	< 0.763	< 0.713	< 0.722	< 0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	< 0.721	< 0.685	< 0.648		
Cl8-BZ#195*	< 0.837	<0.788	< 0.763	<0.713	<0.722	<0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
C19-BZ#206*	< 0.837	<0.788	< 0.763	<0.713	< 0.722	<0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
Cl10-BZ#209*	< 0.837	< 0.788	< 0.763	<0.713	<0.722	<0.737	< 0.76	< 0.651	< 0.704	< 0.676	< 0.587	< 0.625	<0.721	< 0.685	< 0.648		
Total PCBs*	15.066	14.184	13.734	12.834	12.996	13.266	13.68	11.718	13.524	12.168	10.566	11.25	12.978	12.33	11.664	22.7	180

^{*} Per the RIM, total PCBs are to be estimated based on the following: Total = 2 X [sum of 18 NOAA summation congeners indicated with a *]. For values below the MDL, use one half the MDL; for values between the MDL and the RL use estimated values.

SRP Sediment Characterization in Little Bay 120116.docx

Table 7. Concentration (mg/kg [ppm]) of Total Petroleum Hydrocarbons (TPH) in sediments along the SRP cable route in Little Bay

Station	C1	C2	C3	C4	C5	C6	C6	C7	C7	C8	C9	C10	C11	C11	C12
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48
TPH															
TPH mg/kg (ppm) ^a	<53.5	<54	<51.8	<50.5	<48.4	<48.7	<53.2	<45.9	<45.9	<47	<39	<41.1	<47.8	<43.6	<47.8

^aAlpha Analytical reported the data as μg/kg (parts per billion); data converted to mg/kg (parts per million to conform with NHDES criterion

Table 9. Concentration (ng/g [ppb]) of Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) in sediments along the SRP cable route in Little Bay

Station	C1	C2	C3	C4	C5	C6	C6	C7	C7	C8	C9	C10	C11	C11	C12
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48
PFOA (ng/g)	<1.91	<1.91	<1.94	<1.92	<1.94	<2.00	<1.93	<1.95	<1.87	<1.85	<1.97	<1.83	<1.95	<1.95	<1.98
PFOS (ng/g)	<1.91	<1.91	<1.94	<1.92	<1.94	<2.00	<1.93	<1.95	<1.87	<1.85	<1.97	<1.83	<1.95	<1.95	<1.98

SRP Sediment Characterization in Little Bay 120116.docx

Table 8. Concentration (pg/g [pptr]) of Dioxins/Furans in sediments along the SRP cable route in Little Bay

Station	C1	C2	C3	C4	C5	C6	C6	C7	C7	C8	C9	C10	C11	C11	C12
Depth (inches)	0-48	0-48	0-48	0-48	0-48	0-48	48-61	0-48	48-54	0-48	0-48	0-48	0-48	48-89	0-48
2,3,7,8-TCDD	< 0.972	< 0.952	< 0.942	< 0.934	< 0.942	< 0.949	< 0.937	< 0.932	< 0.912	< 0.896	< 0.913	< 0.966	< 0.93	< 0.943	< 0.981
1,2,3,7,8-PeCDD	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
1,2,3,4,7,8-HxCDD	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
1,2,3,6,7,8-HxCDD	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
1,2,3,7,8,9-HxCDD	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
1,2,3,4,6,7,8-HpCDD	7.41	<4.76	<4.71	<4.67	5.54	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	8.87	11.6	<4.72	30.5
1,2,3,4,6,7,8,9-OCDD	84.9	<33.7	<9.42	30.7	62.7	98.2	<9.37	<36.9	60.6	23.0	14.8	135	334	35.0	410
2,3,7,8-TCDF	< 0.972	< 0.952	< 0.942	< 0.934	< 0.942	< 0.949	< 0.937	< 0.932	< 0.912	< 0.896	< 0.913	< 0.966	< 0.93	< 0.943	< 0.981
1,2,3,7,8-PeCDF	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
2,3,4,7,8-PeCDF	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
1,2,3,4,7,8-HxCDF	<4.86	<4.76	<4.71	<4.67	<4.71	<4.74	<4.68	<4.66	<4.56	<4.48	<4.57	<4.83	< 4.65	<4.72	<4.91
1,2,3,6,7,8-HxCDF	<4.86	<4.76	<4.71	<4.67	<4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
2,3,4,6,7,8-HxCDF	<4.86	<4.76	<4.71	<4.67	<4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
1,2,3,7,8,9-HxCDF	<4.86	<4.76	<4.71	<4.67	<4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
1,2,3,4,6,7,8-HpCDF	<4.86	<4.76	<4.71	<4.67	<4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	7.19
1,2,3,4,7,8,9-HpCDF	<4.86	<4.76	<4.71	<4.67	<4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
1,2,3,4,6,7,8,9-OCDF	< 9.72	< 9.52	< 9.42	< 9.34	< 9.42	< 9.49	< 9.37	< 9.32	< 9.12	< 8.96	< 9.13	< 9.66	< 9.30	< 9.43	15.7
Total Tetrachlorodibenzo-	< 0.972	< 0.952	< 0.942	< 0.934	< 0.942	< 0.949	< 0.937	< 0.932	< 0.912	< 0.896	< 0.913	0.97	< 0.93	< 0.943	< 0.981
p-dioxin															
Total Pentachlorodibenzo-	< 4.86	< 4.76	< 4.71	< 4.67	< 4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
p-dioxin															
Total Hexachlorodibenzo-	< 4.86	< 4.76	< 4.71	< 4.67	< 4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	5.77	< 4.72	16.4
p-dioxin															
Total Heptachlorodibenzo-	17.7	< 4.76	< 4.71	< 4.67	13.2	5.28	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	26.9	41.4	< 4.72	81.6
p-dioxin															
Total	< 0.972	< 0.952	< 0.942	< 0.934	< 0.942	< 0.949	< 0.937	< 0.932	< 0.912	< 0.896	< 0.913	< 0.966	< 0.93	< 0.943	< 0.981
Tetrachlorodibenzofuran															
Total	< 4.86	< 4.76	< 4.71	< 4.67	< 4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
Pentachlorodibenzofuran															
Total	< 4.86	< 4.76	< 4.71	< 4.67	< 4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	< 4.91
Hexachlorodibenzofuran															
Total	< 4.86	< 4.76	< 4.71	< 4.67	< 4.71	< 4.74	< 4.68	< 4.66	< 4.56	< 4.48	< 4.57	< 4.83	< 4.65	< 4.72	17.3
Heptachlorodibenzofuran															
TEQ WHO2005 ND=0a	0.0995	0.0101	0.00	0.00921	0.0743	0.0295	0.00	0.0111	0.0182	0.00689	0.00445	0.129	0.217	0.0105	0.504
TEQ WHO2005 ND=0.5b	5.62	5.44	5.37	5.33	5.42	5.44	5.34	5.33	5.22	5.12	5.21	5.61	5.50	5.39	6.05

^aTEQ ND=0 is a weighted toxicity value calculated by multiplying the concentration of individual dioxin/furan compounds detected in the sample by their relative (compared to the most toxic compound 2,3,7,8-TCDD) toxicity (the toxicity equivalency factor or TEF) and summing over all compounds detected.

^bTEQ ND=0.5 is a weighted toxicity value calculated by multiplying the concentration of individual dioxin/furan compounds in the sample by their relative (compared to the most toxic compound 2,3,7,8-TCDD) toxicity (the toxicity equivalency factor or TEF) and summing over all compounds detected, using one half of the detection limit as the concentration for compounds not detected.

5.0 References

- Ayotte, J.D., Cahillane, Matthew, Hayes, Laura, and Robinson, K.W., 2012, Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011: U.S. Geological Survey Scientific Investigations Report 2012–5156, 25 p., at http://pubs.usgs.gov/sir/2012/5156/.
- Canadian Council for the Ministers of the Environment. 2004. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans (PCDD/Fs). Ceqg-rcqe.ccme.ca/download/en/245.
- DioxinFacts.org. 2016. TEQ vs. TM-17. Accessed at: http://dioxinfacts.org/tri_dioxin_data/teq_tm17/index.html
- NOAA. 2008. SQuiRTs Screening Quick Reference Tables. Access at: http://response.restoration.noaa.gov/sites/default/files/SQuiRTs.pdf
- Normandeau. 2016. Public Service of New Hampshire Seacoast Reliability Project Madbury, Durham, Newington & Portsmouth, NH Natural Resources.
- RPS ASA 2016. Modeling Sediment Dispersion from Cable Burial for Seacoast Reliability Project, Little Bay, New Hampshire. Prepared for Normandeau Associates, Inc, Bedford, NH. Prepared by RPS ASA, 55 Village Square Drive, South Kingstown, RI.
- PREP (Piscataqua Regional Estuaries Partnership). 2012. Environmental Data Report. Technical Support Document for the 2013 State of Our Estuaries Report. 287 p.
- PREP (Piscataqua Regional Estuaries Partnership). 2013. State of Our Estuaries 2013. 48 p.
- Trowbridge, P. 2009. Environmental Indicators Report. Piscataqua Region Estuaries Partnership. 174 p.
- U.S. EPA (U.S. Environmental Protection Agency). 2007a. Framework for Metals Risk Assessment. EPA 120/R-07/001, March 2007
- U.S. EPA. 2007b. National Estuary Program Coastal Condition Report. Chapter 3: Northeast National Estuary Program Coastal Condition, New Hampshire Estuaries Program. 6 p.
- U.S. EPA. 2008. Surface Water Quality Status (September 2008), Greenland, NH. http://www.greenland-nh.com/Documents/Hazard%20Mitigation%20Documents/Map4_Greenland_NH.pd
- U.S. EPA New England and U.S. Army Corps of Engineers, New England District. 2004.

 Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters. 54 p.

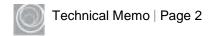
Appendices

Appendix A1 - Technical Memorandum

Review of ecological risk implications of SRP sediment analytical data

Executive Summary

This memorandum provides an opinion on whether potential remobilization of sediment from the planned activities may be of an ecological concern to the benthic biota of Little Bay, New Hampshire, based on the results of the Characterization of Sediment Quality of which this memorandum is an appendix.


Based on the reported sediment chemical concentrations in the data set, it is our scientific opinion that there is no potential for ecological effects from constituents of potential concern in the sediment including PAHs, PCBs, PFCs, dioxins and furans, and metals. The only metal which slightly exceeds the strictest screening criteria is arsenic, but its distribution appears within the range of naturally occurring arsenic in the area, and remobilization would not result in any appreciable increase in concentrations or potential adverse effects.

We conclude that the planned activities would have negligible impact to Little Bay biota from the perspective of potential ecological toxic impacts.

1. Introduction

This Technical Memorandum presents an ecological evaluation of the results of the *Characterization of Sediment Quality Along Little Bay Crossing* (hereafter "Characterization Report") conducted as part of the Public Service Company of New Hampshire Seacoast Reliability Project. The goal of the review is to provide a brief summary review focused on potential ecological risks associated with the sediment data.

This review is an initial screening level review which means that the site data are compared to the most stringent applicable and relevant screening criteria. If the media concentrations do not exceed the screening criteria, it can be concluded there is no cause for further concern. If the media concentrations do exceed the screening criteria, it is necessary to consider the distribution and frequency of exceedances, as well as comparing the observed values to typical or background values to determine if there is any potential for unacceptably increased risk. If such potential is found site specific evaluations of nature and extent may be called

for, applying site specific ecological risk data. This review focuses on the initial screening-level evaluation only.

2. Measured Sediment Concentrations

The sediment samples considered in this review are summarized in Table 2 of the Characterization Report. Table 1 of the same report presents the analytes considered. Samples were collected from the 0 to 48-inch depth interval for all locations along the transect, while additional samples at the depth interval > 48 inches were collected at 3 locations with sufficient penetration (C6 on the western slope, C7 in the channel, and C11 on the eastern slope).

Results are presented in Tables 3 (physical characteristics), Table 4 (metals), Table 5 (PAHs), Table 6 (PCBs), Table 7 (TPH), Table 8 (dioxins and furans), and Table 9 (PFOA and PFOS).

Data qualifiers were identified in the laboratory data report. Most of the qualifiers are related to the sample matrix spike(MS)/matrix spike duplicate (MSD). The recovery or precision issues in the MS/MSD are likely attributable to non-homogeneity in the sample matrix. Although the MS/MSD for some compounds are outside of control limits, the laboratory control sample and duplicate can be relied upon to demonstrate accuracy in the results. The laboratory data report can be found Appendix C of the Characterization Report.

3. Conceptual Site Model

An important first step for any risk evaluation is to develop a conceptual site model (CSM) to better focus the analysis. A CSM is a logical framework to summarize the expected movement of potential toxicants and the subsequent exposures to these toxicants by biota. For this evaluation, the CSM assumes:

- Potential chemical constituents of concern may be present in the sediment in the path of the planned excavation
- The planned activity will result in a remobilization of sediment. Chemical constituents contained in the sediment may be redeposited within or outside of the footprint of the excavation
- This evaluation does not review the modeled transport of sediment but considers the reported concentrations in sediment versus ecological benchmarks

- From an ecological standpoint, the relevant portion of the estuarine sediments of concern to this risk evaluation is the biologically active zone of the sediment column. The biologically active zone is typically defined by the availability of oxygen for biological activity, and generally comprises the top 12 inches or less. Deeper sediments generally are not biologically available unless they are brought to the surface by disturbances. As the project will potentially cause remobilization of such deeper sediment, all sediment from all depths should be considered in this evaluation.
- The primary exposures of ecological concern are benthic macroinvertebrates which
 inhabit the surface sediments in Little Bay. These organisms include animals that
 feed on or in the sediment and either ingest or directly contact sediment. In addition,
 sedentary filter-feeding organisms such as oysters could potentially be exposed to
 contaminants adsorbed to sediment particles mobilized during cable installation
- The constituents of potential concern include substances that may be naturally occurring or contaminants from anthropogenic activities (USEPA 2007). Naturally occurring toxicants such as metals are ubiquitous at low concentrations, and are not necessarily contaminants unless anthropogenic activities have increased their concentrations above both background levels and toxicological levels of concern. Organic constituents of potential concern are generally but not always of anthropogenic origin. For this evaluation the following groups were considered: PAHs, dioxins and furans, PCBs, TPH and PFCs.

4. Ecotoxicological Review

The primary basis of our review was the comparison of sediment chemical concentrations to published sediment quality "guidelines" or "criteria." Sediment criteria generally consist of two concentrations or levels, the lowest of which represents a low level screening value which denotes a "safe" level, and the highest of which is a probable or median effect level denoting concentrations above which ecological risk is likely. In the grey zone in between the threshold and probable effect level site specific considerations of background levels, bioavailability and sensitivity of the local biota will determine if there is any ecological concern.

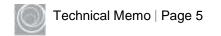
In general, there are few jurisdictions with promulgated sediment criteria. Sediment evaluations therefore are based on readily available benchmarks for various effects derived from scientific data by agencies and scientists. For many potential contaminants there are generally accepted benchmarks with applicability in the US (e.g., metals, PAHs, PCBs). However, for others no consensus values have been developed, and comparison criteria need to be developed from review of the scientific literature (e.g., PFCs). For some, such as TPH there are little data available and the potential risk from TPH needs to be evaluated through other means.

4.1 Metals

Metals are a natural component of rock and soil, but environmental media may be enriched from discharges or deposition from many anthropogenic sources. The sediment Characterization Report compared the observed metals values to the marine Effects Range Low (ER-L) and Effects Range – Median (ER-M) values originally developed by Long and Morgan (1990) for NOAA and recommended for use by NOAA, USGS, and EPA for marine and estuarine sediments. Many states and several EPA regions have adopted these values as guidelines and benchmarks for marine sediment. As noted in the sediment Characterization Report, the ER-L is the concentration below which there is less than 10% chance to see an adverse effect a "threshold effect" value), while the ER-M is the concentration at which there is a 50% chance to see adverse effects (a "probable effect" value).

All samples for the evaluated metals in sediment are well below their threshold levels (ER-L) and of no further ecological concern except in the case of arsenic. In the case of arsenic, about half of the samples exceed the ER-L threshold value by small amounts, although none approach the ER-M probable effect value. Arsenic is discussed further in Section 4.1.1.

Threshold Effect **Probable Effect** Maximum Conclusion ER-L ER-M detected value Arsenic 8.2 mg/kg70 mg/kg11.7 mg/kg See below 4.2 mg/kgCadmium 1.2 mg/kg0.19 mg/kgNo concern 370 mg/kg 36.9 mg/kg Chromium 81 mg/kg No concern 270 mg/kg Copper 31 mg/kg 10.5 mg/kg No concern 46.7 mg/kg218 mg/kg 11.7 mg/kg Lead No concern Mercury 0.15 mg/kg0.71 mg/kg0.04 mg/kgNo concern 20.9 mg/kg 51.6 mg/kg Nickel 18.2 mg/kg No concern Zinc 150 mg/kg 410 mg/kg 58.2 mg/kg No concern


Table 1 Evaluation of metals

4.1.1 Further evaluation of arsenic

Some arsenic results exceeded the threshold level ER-L, and as a result arsenic cannot be fully eliminated from further consideration based on screening alone.

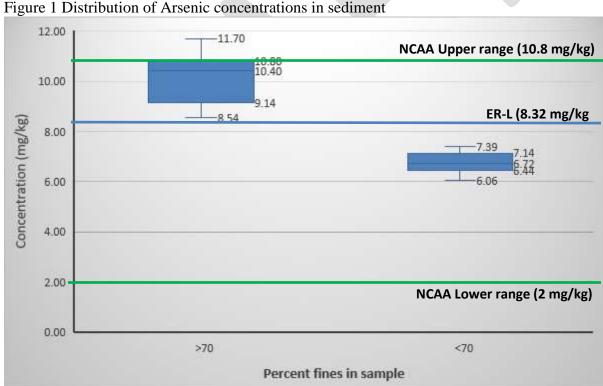

Arsenic concentrations ranged from 6.1 to 11.7 mg/kg. Almost half (47%) exceeded the ER-L of 8.2. The average for all arsenic was 8.35, almost coincident with the ER-L.

Figure 1 presents a diagram of the distribution of samples in relation to (a) the ER-L and (b) the US EPA National Coastal Condition Assessment program (NCAA) range of typical values for Little Bay. The samples are divided in two groups – one group showing those samples with > 70 % fines, i.e. the very silty ones, and (b) one group with samples of <70% fines, i.e. less silty samples.

The diagram shows that the exceedances of the arsenic are entirely in the high (i.e. >70%) fines sediment. This suggests that unconsolidated sediment has a slightly higher arsenic content than the coarser material.

The range of arsenic values reported by NCAA in surface sediments is 2 to 10.8 mg/kg. All the SRP samples except one are within this range and, thus, are considered to be consistent with typical or background values. The single sample that exceeds the range, at 11.7 mg/kg, is the deeper sample at C6. Because the bulk of the samples are within the typical ranges that pertain throughout Little Bay per the NCAA, there is little or no potential for redistribution of these sediments significantly increasing surface concentrations or in other ways resulting in surface sediment conditions being different from the current. Therefore, we conclude that the arsenic present in the samples is consistent with typical values for the area, do not represent levels of concern, and of no further concern to ecological receptors present in Little Bay.

The numbers on the box diagram indicate concentrations for the maximum value, the 75th percentile, the mean,

the 25th percentile and the minimum value, respectively.

4.2 PAHs

PAHs originate from either petrogenic (i.e., hydrocarbons and petroleum) or pyrogenic (i.e. byproducts of combustion) sources. Some PAHs can be produced naturally from burning and some biological processes, but the bulk of the of PAHs in the environment are the result of anthropogenic discharges, spills, or deposition. PAHs (and other neutral organics) in aquatic systems are considered to have an additive mode of action to aquatic biota where the effect of a mixture is the additive effect of each component, which is based on the so-called "narcosis model" (USEPA 2003). Therefore, PAH benchmarks are defined for summed groups of PAHs. There are benchmarks for total PAHs (the sum of all the PAHs), as well as for the sum of the lighter PAHs (the low molecular weight PAHs, or LMW PAH) and for the heavier PAHs (the high molecular weight PAHs, or HMW PAHs). There are (ER-L) and (ER-M) values for these categories, which were applied in the Characterization Report:

Table 2 Evaluation of PAHs

	Threshold Effect	Probable Effect	Maximum	Conclusion
	ER-L	ER-M	detected value	
LMW PAHs	552 μg/kg	3,160 µg/kg	53 μg/kg	No concern
HMW PAHs	1,700 µg/kg	9,600 µg/kg	144 μg/kg	No concern
Total PAHs	4,022 μg/kg	44,792 µg/kg	272 μg/kg	No concern

There are also ER-L and ER-M for individual PAHs which were presented in the report as well, although these are of lower reliability due to the additive effect of PAHs which typically occur as mixtures.

Trace levels of a number of PAHs were detected in many samples. This is not unusual in areas adjacent to areas of anthropogenic activities, where PAHs may derive from hydrocarbon spills and releases and via deposition of pyrogenic PAHs from emissions to air from burning of fuels.

All PAHs are well below their threshold effect levels, and thus are of no further ecological concern.

4.3 PCBs

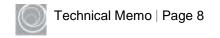
PCBs are anthropogenic contaminants previously in widespread industrial uses, most prominently in electrical transformers. Their use has been discontinued but residual contamination still exists. This value sums the detected congeners and assumes that non-detected congeners are present at ½ their detection limit. This implies that even if no PCBs are actually detected, there will be an assumption of some low level presence. As noted in the Characterization Report, only one sample had detected PCBs (C7 had detections of PCB 8 and 18). Otherwise all were non-detect.

There are established ER-L and ER-M values for total PCBs, which were used in the sediment Characterization Report. The sum of detected and non-detected congeners is well below of the threshold value and thus of no further concern.

Table 3 Evaluation of PCBs

	Threshold Effect	Probable Effect	Maximum value	Conclusion
	ER-L	ER-M	(including non-	
			detects)	
Total PCBs	22.7 μg/kg	180 μg/kg	15.1 μg/kg	No concern

4.4 TPH


Total Petroleum Hydrocarbons is a measure of the mixture of up to hundreds of hydrocarbons that make up petroleum products. The chemical composition of these mixtures vary depending on the source of the TPH. For example, light hydrocarbons like gasoline has a very different profile than heavier hydrocarbons such as heating oil. Therefore, it is difficult to define concentration levels for screening, as toxicity is highly dependent on chemical composition. For this reason, no toxicologically-based sediment screening level for TPH is available.

To indirectly address TPH, a common approach is to consider the content of components of known toxicity in the TPH, such as the PAHs. PAHs are usually present in TPH mixtures. If PAHs are not a concern (as concluded in Section 4.3), then it is unlikely that TPH is of any ecological concern at this site. No TPH was detected, and the PAHs are well below their levels of concern. Therefore, we conclude that TPH is of no further ecological concern.

4.5 Dioxins and Furans

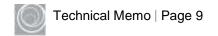
Dioxins and furans are persistent and bioaccumulative substances that are an unwanted byproduct of some industrial processes such as pesticide manufacturing and chlorine bleaching They also can derive from combustion from anthropogenic sources as well as natural sources such as forest fires and volcanic eruptions, Dioxins and furans exist as various congeners of different levels of chlorination. The most toxic and bioavailable dioxin is 2,3,7,8-tetrachloro dibenzodioxin (2,3,7,8-TCDD). Dioxins and furans with more chlorines are less toxic and available, although they tend to be more persistent in the environment.

To address the differences in toxicity, a toxicity equivalency factor (TEF) is applied to each congener. The TEF (WHO 2005) converts each congener concentration to a 2,3,7,8-TCDD toxic equivalent, and the resulting sum of dioxins are expressed as TCDD Toxic Equivalents (TEQ). For example, OCDD has a toxicity 1/1000 of that of 2,3,7,8-TCDD thereby resulting in much lower TEQs.

There are no ER-L or ER-M values for dioxins and furans in common usage in the US. To provide a basis for ecological evaluation, this evaluation considers the equivalent Canadian criteria (CCME 2004). Canada has developed values analogous to the ER-L and ER-M using similar principles which are encoded in Canadian regulations. These values are the ISQG (Interim Sediment Quality Guideline) and PEL (Probable Effect Level) which are analogous to the ER-L and ER-M, and based on Canadian regulatory precedent should be considered as conservative values.

Table 5 Evaluation of dioxins and furans

	Threshold Effect	Probable Effect	Maximum	Conclusion
	Canada ISQG	Canada PEL	TEQ	
TEQ			0.5 ng/kg	No concern
(detects only)				
TEQ	0.85 ng/kg	21.5 ng/kg	6.1 ng/kg	See discussion
(ND at ½				below
detection limit)				


The dioxin and furan results are reported in two ways:

- The TEQ calculated from detected congeners only. This sum assumes non-detected congeners are absent. This will underestimate the total, as several other congeners are likely to be present at sub-detection limit levels
- The TEQ calculated from detected congeners plus non-detected congeners assumed to be present at ½ their reported detection limit. This will overestimate the total, as one would in real world samples not expect to see all or even most congeners present as high as ½ the DL

Consequently, the true TEQ is likely much closer to the TEQ based on detects only, rather than to the ND= ½ detection limit assumption.

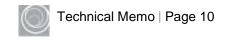
In the Little Bay samples detected dioxins and furans consist almost entirely of hepta- and octachlorinated dioxins and furans. Samples dominated by these highly chlorinated and recalcitrant forms indicate residual degraded dioxins/furans. Their equivalent TEQs are low (maximum observed concentration at 0.5 ng/kg), however, and do not translate into toxic amounts. When all congeners are assumed to be present at ½ their detection limits the apparent concentration jumps to 6.1 ng/kg at location C12, which is above the threshold level, although below the probable effect level (PEL). This is largely due to the higher toxicity factors for the tetra- and penta-chloro dioxins and furans which are least likely to be present. Even a sample with no detected dioxins and furans, such as location C3 has a non-detected TEQ of 5.3 ng/kg which exceeds the threshold screening level (ISQG) but is still well below the PEL.

The detection limits reported for this study are consistent with standard detection limits for dioxin and furan chemical analysis in soil and sediment, and are viewed as adequate to draw conclusions about analytical data.

Considering the above, the true TEQ is likely slightly higher than the reported TEQ based on ND=0, but would not approach the TEQ implied by assuming all non-detects are present at ½ their detection limit. Therefore, we conclude that there is no further concern from dioxins and furans in these sediments.

4.6 PFCs

PFCs are persistent and bioaccumulative, and have been detected in environmental media and tissues even in remote areas far from locations of their use. PFCs are industrial chemicals used in paper and textile treatment, production of fluoropolymers, cosmetics and insecticides formulations. A primary use has been in fire-fighting foams. They enter the environment via direct and indirect emission sources such as manufacturing processes, leaching from commercial products containing PFCs, and releases to water bodies.


In the present case it is known that PFCs have been used at nearby facilities, and those facilities may have been a source to potential impacts to water and sediment in Little Bay. Analysis of the two most prominent PFCs, PFOA (perfluorooctanoic acid) and PFOS (perfluorooctanesulfonate) was therefore conducted on the sediment samples collected from Little Bay.

The fate, transport and toxicity of PFCs remains poorly understood, and applicable benchmarks for evaluation of waters and especially sediment are not widely adopted or developed. To allow a preliminary evaluation of any detected PFCs in these samples, a review of scientific literature with a focus on the toxicity of PFCs to sediment-dwelling organisms was conducted for this evaluation and is included as Appendix A2.

There are few sediment based sediment quality criteria in existence for PFCs, such as the UK proposed values presented here. Our review revealed that some jurisdictions (e.g. Canada) do not think it possible to derive a reliable sediment benchmark. This is because the polar and surfactant-like properties of PFCs point to a preference to partitioning to the water phase within the pore water/sediment system, and to migrate relatively freely in and out of the sediment compartment. However, the bulk sediment analysis conducted on the sediment captures the presence of PFCs even if present in the pore water phase, although the exact partitioning factor is unclear. The benchmarks used in this evaluation incorporate the partitioning between pore water and sediment for typical sediments.

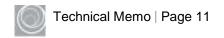
The review in Appendix A2 identified a threshold level for marine sediment of $6.7 \mu g/kg$ and $67 \mu g/kg$ for freshwater sediment for PFOS. This value was adopted by several European jurisdictions as benchmarks. The sediment values are uncertain yet conservative and were derived from water based toxicity data and extrapolated to sediment assuming the "worst case" observed partitioning to sediment from water.

The large difference between the benchmarks for marine and freshwater sediment is due to the variable results of the limited toxicity data that are currently available. One group of

organisms, the marine and estuarine mysid shrimp, appear more sensitive to PFOS than other organisms resulting in a lower threshold value.

Most of the available toxicity literature focuses on PFOS. PFOA is considered considerably less toxic, and certainly less bioaccumulative and separate benchmarks for it have not been reviewed.

Because these benchmarks are high level indicators of potential concern and not well established, as a secondary line of evidence Appendix A2 reviewed "typical" concentrations in sediment around the world. There are no readily available data from the NE Atlantic coastal region, and examples were derived from coastal and inland water studies in Asia, Europe, Canada, and the US. This review suggests that concentrations $< 2-3 \mu g/kg$ can be considered typical of sediment in populated areas, while concentrations $> 10 \mu g/kg$ are usually only observed in areas of evident impact such as harbors and polluted lakes.


Table 6 Evaluation of PFCs

	Toxicity threshold,	Concentrations in	Maximum	Conclusion
	preliminary	sediments	value in	
	(Denmark and UK)	worldwide (see	Little Bay	
		App. C2)	samples	
PFOS	6.7 µg/kg (marine)	$< 2-3 \mu g/kg -$	$< 2 \mu g/kg$	No concern
	(67 μg/kg in other	typical		
	areas)	>10 µg/kg -		
PFOA	Likely > 10 times	impacted	$< 2 \mu g/kg$	No concern
	higher than PFOS			
	(based on water			
	toxicity)			

There were no detections of PFOA or PFOS in any sample. The detection limits are all $< 2~\mu g/kg$, which is below the preliminary screening benchmark and lower than typical sediment values. Therefore, because PFCs were not detected using methods with sufficiently low detection limits with respect to ecological effects data, we conclude that there is no potential for ecological effects from PFCs in these sediments.

5. Summary

This memorandum provides an opinion on whether potential remobilization of sediment from the planned activities may be of an ecological concern to the biota of Little Bay, New Hampshire, based on the results of the Characterization of Sediment Quality of which this memorandum is an appendix.

Based on the reported sediment chemical concentrations in the data set, it is our scientific opinion that there is no potential for ecological effects from constituents of potential concern in the sediment including PAHs, PCBs, PFCs, dioxins and furans, and metals. The only metal which slightly exceeds the strictest screening criteria is arsenic, but its distribution appears within the range of naturally occurring arsenic in the area, and remobilization would not result in any appreciable increase in concentrations or potential adverse effects.

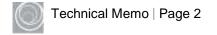
We conclude that the planned activities would have negligible impact to Little Bay from the perspective of potential ecological toxic impacts.

6. References

- CCME 2004. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Polychlorinated Dibenzo-p-dioxins and Polychlorinated dibenzofurans (PCDD/Fs). Canadian Council of Ministers of the Environment.
- Long E.R., L.G. Morgan, 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. National Oceanic and Atmospheric Administration. Seattle, Washington. 1990
- USEPA 2003. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013, November 2003

USEPA 2007. Framework for Metals Risk Assessment. EPA 120/R-07/001, March 2007

Appendix A2 - Technical Memorandum


PFOA and PFOS in sediment

Executive Summary

In the absence of established criteria for the screening of perfluorinated compounds (PFCs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in sediment, we conducted a literature review of existing scientific data on (a) the typical values observed in natural sediment worldwide, and (b) thresholds of ecological toxicity of sediment-associated PFCs. Sufficient information is available to provide a preliminary interpretation of sediment concentrations of potential ecological concern. These values are sufficient to screen out areas of no concern, but are subject to substantial uncertainties that need to be considered if the values are exceeded.

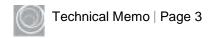
The following evaluation benchmarks are suggested as values to determine if there could be a potential concern. The aquatic toxicity of PFOA is at minimum 10 times lower than for PFOS, and sediment benchmarks would be expected to be commensurately higher than for PFOS.

	Limit	Concentrations	Comments
	Consistent with	< 4 μg/kg	Even remote areas often have
Sediment typical	typical background in		measurable concentrations, usually
	developed areas		but not always < 1 μg/kg
concentrations	Some impact likely	> 10 μg/kg	Frequently measured in harbors and
(PFOS and PFOA)	present		polluted lakes and rivers
	Significant impact	> 100 μg/kg	Observed near PFC manufacture and
	likely present		release locations
	Lowest (strictest)	6.7 μg/kg PFOS	Recommended value in UK and
Sadiment Tayisity	Probable No Effect		Denmark in marine areas, based on
Sediment Toxicity Benchmark	Concentration (PNEC)		the most sensitive marine organism
(PFOS)	Alternate PNEC	67 μg/kg PFOS	Recommended value in UK and
(F1 O3)			Denmark for freshwater sediment. In
			line with toxicity for most organisms

1. Introduction

This memorandum presents a high level summary of the occurrence and ecotoxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in sediment, the two most prevalent perfluorinated compounds (PFCs), in support of the evaluation of potential impacts resulting from aspects of the Eversource Energy Seacoast Reliability Project (SRP) in Little Bay. The need is founded on the fact that established sediment criteria are lacking for these and other PFCs.

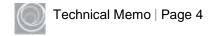
Our objective is to provide a high level framework for interpreting concentrations of PFCs that may be present in sediment, and that may end up being mobilized by the planned SRP activities. To this end it focuses on two issues: (1) What information is available on expected concentrations in sediment based on studies elsewhere, and (2) What information is available on expected ecotoxicity of sediment associated PFCs. This information could be applied as an initial comparison standard to any site specific data.


PFCs are industrial chemicals that are widely distributed and persistent in the environment. For over 50 years, they have been used in numerous applications including paper and textile treatment, production of fluoropolymers, cosmetics, and insecticide formulations. A primary use has been in fire-fighting foams. They enter the environment via direct and indirect emission sources such as manufacturing processes, leaching from commercial products containing PFCs, and releases to water bodies.

This evaluation focuses on both PFOA and PFOS. These two are the most prevalent of the PFCs, partly due to their more common use and also because biogeochemical processes often end up producing particularly PFOA as a breakdown product. Typically PFOA and PFOS together form the overwhelming bulk of the PFCs present, although the relative contribution of PFOA and PFOS across all media varies widely for reasons that do not appear to be clearly elucidated.

2. Measured Sediment Concentrations

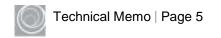
No data specific to the area or even region appear to be available. To provide a framework and context for concentrations that could reasonably be expected, a literature search was done. While actual data are limited, many studies have been conducted worldwide over the last decades evaluating PFCs in sediment. Some of these are summarized here in order to provide a framework for what concentrations of PFOA and PFOS might be expected in the local environment.


Note that sediment concentrations discussed here are sometimes reported in the literature as dry weight (dw), sometimes as wet weight (ww), and sometimes the source does not specify which one. The benchmarks will be presented on a dry weight basis. Where data are reported

as wet weight, the corresponding dry weight in silty sediment can be roughly approximated as twice the wet weight (i.e., the water content of silty sediment is around 50 percent, while sandy sediment has lower water content).

Table 1 – Typical PFC sediment concentrations

Geography	Comments	Sources
Marine and estuarine	PFOA=0.06-0.63 μg/kg ww (but up to	Houde et al. 2006, Higgins
sediments – US	10.7 in Port St Lucie);	et al. 2006, 3M 2001
(Charleston, Sarasota,	PFOS= nd – 3.1 μg/kg ww	
SB Bay, Port St Lucie		
Marine and estuarine	In undisturbed tidal flats in Japan:	Alzaga et al. 2005, Nakata
sediments - other	PFOA= up to 1.1 μg/kg ww	et al. 2006. Nakata et al. in
	PFOS=up to 0.14 μg/kg ww	Japan also evaluated co-
	In Barcelona Harbor 8-12 μg/kg ww	located biota and found
	PFOA	high elevations in
		lugworms but minimal
		uptake in clams.
	Baltic Sea: PFOS=0.02-2.4 μg/kg;	Theobald et al. 2011
	PFOA: 0.06-1.6 μg/kg	
FW sediments – Great	L. Ontario up to 12 μg/kg dw PFOS in	EC 2013
Lakes	recent sediment (mean 10 μg/kg),	
	but dropping to <1 in sediments	
	dated to 1980 or before. Other Great	
	Lakes have lower concentrations (0.9	
	to 2.2 μg/kg) PFOS. Harbors were	
	similar.	
FW sediments –	In most cases PFOS < 1 μg/kg, but 2	EC 2013
Canadian lakes	μg/kg at a lake in an industrial area.	
FW sediments – US	Measured values across multiple	3M 2001
cities	sites 0.2 – 0.8 μg/kg.	
	Streams in SF Bay have range of nd-	
	0.23 μg/kg PFOA and nd-1.3 μg/kg	
	PFOS.	
International surveys	PFOA: 2.0 – 3.1 μg/kg in Europe	James et al. 2009
	Netherlands: nd-24 μg/kg dw PFOA,	Schrap et al. 2004
	nd-47 μg/kg dw PFOS	
	Scandinavia: nd up to 392 μg/kg	Kallenborn et al. 2005.
	PFOA and nd up to 892 PFOS.	These elevated values may
		be associated with
		industrial outfalls
3M facility, Tennessee	Near outfall: PFOA mean 2740 μg/kg,	3M 2001


R.	up to 13300 μg/kg.	Co-located studies on fish
	At other locations: Mean < 0.5-3.5,	and clams indicated
	ranging up to 9.1 μg/kg	elevated concentrations in
		fish, but not in clams.

A review of the selected reports above allows the following conclusions:

- Trace levels of PFOA and PFOS are almost ubiquitous in sediment. In fact, studies in Canadian Arctic lakes distant from sources (Stock et al. 2007) have revealed elevated concentrations (surprisingly, up to 85 µg/kg dw) although more typically are <1 µg/kg dw). Measurable concentrations may be expected in most sediments, especially in urbanized areas. The presence of trace levels of PFCs in sediment is not necessarily an indication of site related contamination.
- Data from marine / estuarine environments is fairly limited. Open water and tidal flat samples were found to be 1 μg/kg (for PFOA and PFOS both) or less in tidal flats in Japan, and up to 2.4 μg/kg ww in the Baltic Sea which is a heavily industrialized region. In US harbors we see concentrations typically at 1 μg/kg or less, but ranging up to 3.1 μg/kg ww PFOS in San Francisco Bay.
- Available freshwater data is more extensive. The Great Lakes are fairly well studied and have PFOS concentrations ranging from 0.9 to 2.2 μ g/kg. However, L. Ontario is an outlier, with concentrations ranging up to 12 μ g/kg. In US rivers and lakes observed concentrations typically are the <2 μ g/kg range.
- Heavily impacted sediments do exist. In Europe concentrations in the hundreds of ppb have been reported for both PFOS and PFOA in Scandinavia, and up to 24 μ g/kg PFOA and 47 μ g/kg PFOS in the Netherlands. Studies conducted at the 3M PFC manufacturing facility in Decatur show sediment concentrations near the outfall averaging 2,740 μ g/kg PFOS but ranging as high as 13,400 μ g/kg. However, other areas nearby in the Tennessee River do not exceed 9.1 μ g/kg PFOS and average in the <0.5 to 2.4 μ g/kg range.

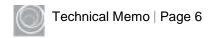
To summarize the limited amount of available data it is reasonable to consider that PFOS or PFOA concentrations around 1-3 μ g/kg ww (which translates into approximately 2-5 μ g/kg dw) can probably be considered normal and consistent with area wide contamination in today's world. Sediments impacted by PFCs would be expected to present concentrations exceeding 10 μ g/kg. Heavily impacted sites will have values in the hundreds of ppb.

This brief and high level survey provides a conceptual framework for interpretation of sediment PFOA and PFOS data. It does not address issues related to the stability or mobility

of these materials in the sediment. Co-located data collected world-wide indicates a strong correlation between sediment and surface water, implying considerable sediment to water interchange. This is consistent with the chemical characteristics of the PFCs, which are polar and have surfactant properties, which reduces the affinity of PFCs to partition to the sediment compartment.

3. Ecotoxicological Sediment Evaluation Criteria

3.1 Existing Criteria


There are few established sediment criteria for protection of ecological resources, none in the USA.

Norway currently has a marine sediment Probable No Effect Concentration (PNEC) of 15 mg/kg for PFOA and 6.7 mg/kg for PFOS. Norway is considering a drastic reduction to a PNEC of 2 μ g/kg for PFOS, which would establish a limit close to typical anthropogenic background. It is unclear how these were derived.

Denmark and the UK (EA 2004) have issued a proposed PNEC of $67 \mu g/kg$ for freshwater sediment and $6.7 \mu g/kg$ for marine sediment, extrapolating to sediment from water only PNECs of 25 $\mu g/L$ for freshwater and 2.5 $\mu g/L$ for marine water. PNECs are calculated using highly conservative assumptions, and therefore are expected to be generally protective. This is based on available aquatic chronic data for fish, invertebrates and plants, converted to sediment basis by applying a K_d =8.7 l/kg. Zareitelabad et al. (2013) reports sediment K_d values for PFOS around 7.4-7.5 in US sediment, but ranging from 0.1 to 10 for PFOA indicating different fate dynamics. Note that PFCs are not expected to follow organic carbon equilibrium partitioning (i.e., based on K_{ow} and K_{oc} as is the case for non-polar organics) so the partitioning coefficient K_d needs to be an empirical sediment to water partitioning value. The reason for the much lower benchmark in marine situations is the high ecotoxicological sensitivity of (marine) mysid shrimp, which show an apparent sensitivity to PFCs an order of magnitude higher than other organisms.

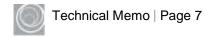
Canada and the EU both conclude there is insufficient information to derive sediment criteria from the water criteria. The EU notes that the adsorption and desorption of PFCs from sediment to/from water is rapid and not governed by organic carbon. Adsorption/desorption is also considered independent of inorganic composition. Conditions for equilibrium are therefore unknown and a PNEC is not achievable.

As a preliminary screening value either the European marine preliminary PNEC (6.7 μ g/kg) or the freshwater preliminary PNEC (67 μ g/kg) can be applied, keeping in mind the large

uncertainty resulting from assumptions when converting aquatic toxicity endpoints to a sediment value.

3.2 Ecotoxicology

There is only limited toxicological data for sediment biota. Most data for aquatic organisms is based on water exposures. The consensus of these studies is that PFOS and PFOA have low acute toxicities, and reported environmental concentrations except in extreme cases should not be a concern. Chronic toxicities (for fish and aquatic invertebrates) from a small set of studies underlie a lot of the development of criteria for PFOS and PFOA in all jurisdictions.


- For fish the standard No Observed Effect Concentration (NOEC) value is about 300 µg/L (fathead minnows, UK EA 2004). No marine fish data are available.
- For invertebrates the standard NOEC for PFOS is about 7000 μg/L for freshwater Daphnids (UK EA 2004), but the much lower value of 250 μg/L for marine Mysid shrimp (OECD, 2002) which results in the lower marine standard.
- For plants the NOECs are higher: $>3200 \mu g/L$ for marine phytoplankton, and around 3500 $\mu g/L$ for freshwater macrophytes (*Myriophyllum*, Hanson et al. 2005)

The PFOS NOEC for Mysids of 250 μ g/L, the lowest empirical measurement, has then been converted using European methodologies to PNECs, is **36** μ g/L, applying appropriate safety factors (EC 2011).

PFOA is generally considered much less toxic than PFOS, with equivalent toxicities at least an order of magnitude higher. NOEC values were reported in OECD (2006) as 12,500 μ g/L for algae, 20,000 μ g/L for *Daphnia*, and 40,000 μ g/L for fish. No information has been found specific to Mysid shrimp.

A study by Yang et al. (2014) determined a suggested chronic criterion based on USEPA procedures of 250 μ g/L for PFOS and 3,520 μ g/L for PFOA. This indicates that the relative aquatic toxicity of PFOS is at more than 10 times higher than for PFOS. An independent point of comparison can be made from chronic values (ChV) derived from EcoSAR v.11.10 (EPA 2010), a quantitative structure activity relationship (QSAR) analysis procedure from the Office of Pollution Prevention and Toxics (OPPT) of the EPA. This program calculates on the basis of the characteristics of the compounds ChVs for mysids. These are 54 μ g/L for PFOA and 117 μ g/L for PFOS. For freshwater Daphnia the corresponding ChV are 1,485 μ g/L for PFOA and 3,181 μ g/L for PFOS. These values are in broad alignment with the empirical data.

As a result of the physicochemical characteristics of PFOS and PFOA they tend to partition to the water phase, i.e., to both the pore water and the overlying surface water. The mechanisms of partitioning are poorly understood. However, a bulk sediment measurement

for PFCs will include both the mass of PFCs existing in the pore water phase as well as the mass adsorbed to sediment, so will capture the total content of the "bulk sediment" water/sediment system.

The proposed PNEC values for PFOS in sediment are based on measurement in bulk sediment, although they were originally derived from assumed porewater exposure which then is backcalculated to bulk sediment using the estimated sediment to pore water partitioning coefficients. As a result, the sediment PNEC proposed here is representative of the total exposure in sediment, whether to the porewater or the sediment fractions.

3.2.1 Oysters

Oysters are a particular concern for the area as there are oyster farms in the bay. There are limited toxicity data for oysters. Only one direct toxicity test was found, which reported an acute toxicity EC50 of $>3000~\mu g/L$ (Wildlife International 2000 cited in OECD 2002). Applying a safety factor of 100 the NOEC would be $>30~\mu g/L$, or commensurate with the previously described conservative screening level for water, suggesting the sediment value is also protective of oysters

Jeon et al (2010) evaluated bioaccumulation in Pacific oysters and found bioaccumulation factors (BAFs) from all sources to oyster tissue on the order of 10 for PFOA and 100 for PFOS at low salinities (10 ppt), increasing to 20 and 250 respectively at high salinity (34 ppt) when exposed to 10 μ g/L PFOS or PFOA in water and to food items (algae) cultured in PFOS or PFOA. Most of the increase in uptake (80-90%) was due to uptake from diet, with direct water bioconcentration factors (BCFs, i.e. direct uptake from the water column) on the order of 1 – 3 for PFOA and 25 to 80 for PFOS¹. Bioaccumulation potential for PFOS is clearly more significant than for PFOA. These uptake factors suggest that oysters accumulate from their filter feeding— and could result in relatively elevated tissue concentrations from lower water concentrations. This may be a concern for consumption of oysters. Tissue concentrations in oysters have been measured; in Chesapeake Bay PFOS values from 42 to 1225 μ g/kg dw have been found, indicating significant exposure is present (Giesy et al., 2001, Kannan et al 2002). However, So et al. (2006) found low levels in Japanese oysters (<1 to 4 ppb PFOA and 0.6 – 3.8 ppb dw PFOS).

4. Summary

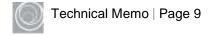
PFCs in sediment are little understood, and subject to considerable uncertainty. Little or no ecotoxicological work in sediment exists. Conclusions about sediment are extrapolated from

¹ BAFs and BCFs are expressed as unitless values indicating the concentration multiplier in tissue relative to the media.

aquatic toxicity data using assumptions about partitioning between sediment and water. As a preliminary sediment screening level based on the scientific literature the following limits for PFOS are suggested. For PFOA the estimated toxicity is at least an order of magnitude lower based on aquatic toxicity differences, but confidence in a corresponding sediment benchmark is low due to the limited understanding of sediment partitioning. However, they are subject to significant uncertainty;

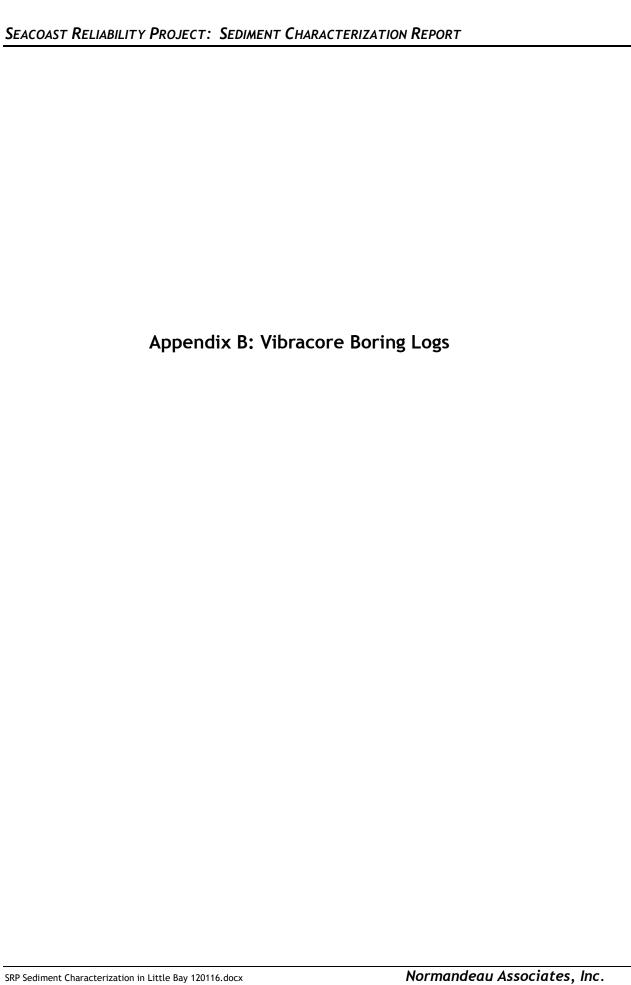
- Lowest limit: $6.7 \mu g/kg$ dw PFOS in marine sediment. This is almost certainly overprotective
- Alternate limit; the freshwater sediment level of 67 μ g/kg dw, while still uncertain, is more in line with most toxicity data.
- For PFOA, preliminary suggested values would be at least 10 times higher, although there is low confidence in this estimate due to the uncertainties about partitioning behavior in sediment and the lack of specific sediment values in the literature.

However, the properties of PFOS and PFOA indicate that their key mode of action is from water (and diet) exposure and not through sediment exposure, and further that there is significant interchange between sediment and surface water resulting in correlated concentrations. The lowest water PNEC is conservatively set at 36 μ g/L for PFOS, although empirical toxicity NOECs are >250 μ g/L (for PFOA limits are considerably higher). These limits are reasonable as preliminary screening values for surface water.


For comparative purposes, and independent of toxicity thresholds, a review of 'typical' concentrations of PFOA and PFOS in sediment world-wide (there being limited regional data) indicates as a starting point of comparison:

- Sediment with less than 4 μg/kg are broadly consistent with anthropogenic background in populated areas and even some remote regions. PFCs at sub-ppb level are generally detectable in even pristine areas.
- Sediment with $>10 \mu g/kg$ are indicators of some impact as seen in some harbors, and polluted lakes and rivers.
- Sediment with >100 μg/kg are associated with locations of industrial manufacture or release of PFCs.
- The relative contribution of PFOS and PFOA to the total PFCs varies considerably, and no pattern emerges.

This information is intended to provide a preliminary interpretive framework for data emerging from site monitoring and sampling.


5. References

3M, 2003. Environmental and Health Assessment of Perfluoroocane sulfonic acid and its. salts. Prepared by 3M Company, with J Moore (Hollyhouse Inc.), J Rodericks and D

- Turnbull (Environ Corp.) and W Warren-Hicks and Colleagues (The Cadmus Group, Inc.). August 2003.
- Alzaga, R., Salgado-Petinal, C., Jover, E., Bayona, J.M. 2005. Development of a Procedure for the Determination of Perfluorocarboxylic Acids in Sediments by Pressurized Fluid Extraction, Headspace Solid-Phase Microextraction Followed by Gas Chromatographic-Mass Spectrometric Determination. *J. Chrom.* **1083**, 1-6.
- Norges Miljodirektorat 2012. PNEC verdier for PFC. Miljodirektoratets veileder TA-3001/2012
- Environment Canada, 2013. Perfluorooctane Sulfonate in the Canadian Environment. Environmental Monitoring and Surveillance in Support of the Chemicals Management Plan. En14-96/2013E-PDF
- Giesy, J. and K. Kannan 2001. Perfluorooctanesulfonate and related fluorochemicals in oyster, *Crassostrea virginica*, from the Gulf of Mexico and Chesapeake Bay. Prepared for 3M, St. Paul, MN. Cited in OECD, 2002.
- Hanson, M., P. Sibley, R. Brain, S. Mabury, and K. Solomon. 2005. Microcosm evaluation of the toxicity and risk to aquatic macrophytes from perfluorooctane sulfonic acids. *Arch. Environm. Contam. Toxicol*. 48: 329-337.
- Houde, M., J. Martin, R. Letcher, R. Solomon, and K. Muir. 2006. Biological Monitoring of polyrfluoroalkyl substances, a review. *Environ. Sci. Technol.* 40: 3463-3473
- Higgins, C. and R. Luthy. 2006. Modeling sorption of anionic surfactants onto sediment materials, an a priori approach for perfluoroalkyl surfactants and linear alkylobenzene sulfonates. *Environ. Sci. Technol.* 41: 3254-3261.
- James A., V. Bonnomet, A. Morin, and B. Fribourg-Blanc. 2009. Implementation of requirements on Priority substances within the Context of the Water Framework Directive. Contract N° 07010401/2008/508122/ADA/D2. Prioritisation process: Monitoring-based ranking., INERIS / IOW: 58.
- Jeon, J., K. Kannan, H. Lim, H. Moon, J. Ra, and S. Kim, 2010. Bioaccumulation of Perfluorochemicals in Pacific Oyster under Different Salinity Gradients. *Environ. Sci. Technol.* 44: 2695-2701
- Kallenborn R, Berger U, Järnberg U, Dam M, Glesne O, Hedlund B, et al. Perfluorinated alkylated substances (PFAS) in the Nordic environment. Nordic Council of Ministers; 2004.
- Kannan, K and Giesy, JP (2002). Global distribution and bioaccumulation of perfluorinated hydrocarbons. Organohalogen Compounds, **59**, 267-270

- Nakata, H., Kannan, K., Nasu, T., Cho, H.S., Takemura, A. 2006. Perfluorinated Contamnants in Sediments and Aquatic Organisms Collected from the Shallow Water and Tidal Flat Areas of the Ariake Sea, Japan: Environmental Fate of Perfluorooctane Sulfonate in Aquatic Ecosystems. *Environ. Sci. Technol.* **40**, 4916-4921.
- OECD, 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its salts. Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, ENV/JM/RD(2002)17/FINAL, 21-Nov-2002.
- Schrap, S., J.Pijnenburg, and R. Geerding. 2004. Geperfluoreerde verbindingen in Nederlands oppervlaktewater. Lelystad, the Netherlands: RIZA/RIKZ. Report no. RIZA-rapport 2004.025
- So M., S. Taniyasu S, P. Lam, G. Zheng, J. Giesy, and N. Yamashita. 2006. Alkaline Digestion and Solid Phase Extraction Method for Perfluorinated Compounds in Mussels and Oysters from South China and Japan. *Archiv. Environ. Contam. Toxicol.* 50:240-248
- Theobald, N., Caliebe, C., Gerwinski, W., Huhnerfuss, H., Lepom, P., 2012. Occurrence of perfluorinated organic acids in the North and Baltic Seas. Part 2: distribution in sediments. Environmental science and pollution research international 19, 313-324.
- UK EA, 2004. Environmental Risk Evaluation Report: Perluorooctane sulphonate (PFOS). Prepared for the United Kingdom Environment Agency by D. Brooke, A. Footitt and T. Nwaogu, ISBN 978-1-84911-124-9
- USEPA, 2011. ECOlogical Structure-Activity Relationship Model (ECOSAR) Class Program, v. 1.1. June 2011.
- Yang, S., RF. Xu, F. Wu, S. Wang and B. Zheng. Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China. *Sci. Total Environment* 470-471: 677-683.
- Zairetalabad, P., J.Siemens, M.Hamer, and W. Amelung. 2013. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface water, sediments, soils and wastewater A review of on concentrations and distribution coefficients. *Chemosphere* 91 (2013): 725-732.

FIELD DATA SI	HEET							Page	1 of 1
Project Name:	Eversource: Seacost Reliabilit	y Proje	ct	,			Proj. #: 2	2860.00	6
Site Name:	Little Bay		***************************************		***************************************		Task #: 05	5	
City:	Newington	State:	N	IH			Date: 09	/20/16	
Field Team Leader(s):	JBS	•	Field	Team S	afety Coor	dinator:	JBS		
Field Crew: CJR, BJA	A, AT		Arriva	l & Dep	arture Tim	es <u>: 12:52</u> -	13:05		
Station ID #: C-1		•	Weat	her: 🔘	Clear	Cloudy	Rain	Other	
Photos: Y N	Roll No./Exposure No.: NA		Wind	Condition	ons (Speed	d/Direction): <u>5MPH SOU</u>	TH	
FIELD DATA									
Water Depth: 2.8	ft. Tide: Ebb 🕻	Floo	a	Low Sla	ack H	ligh Slack	Other _		
PID: N/A	Redox Potential: N/A	pH:	N/A	H	¹² O Temp.	: N/A	Air Temp.:	NA	1
	Coring Time:1 Vibracore / Piston Core / Manual der 7 PVL / Portable Clamp-on / NA	Coring I	Material	CAB /	luminum / SS	3		(OD): 2	
•	Coring Time: Vibracore / Piston Core / Manual der / PVL / Portable Clamp-on / NA		Material	: CAB / A	luminum / SS		Core Receve Core Diameter Replaced: Y	(OD): 2	ft " 3" 4"
	Coring Time: Vibracore / Piston Core / Manual der / PVL / Portable Clamp-on / NA	Coring I	Material	: CAB / A	luminum / SS	3	Core Recove Core Diameter Replaced: Y	(OD): 2	
DGPS DATA Operator: JBS File Name: C-1-1 Lat N: 43.104 Lon / E: 70.868 PDOP of SVs: 10	193072 84827	-	Datum Proj.:			N O	urvey Feet ther		
Ft. Tube Used=5'		- - - -		building	C-	1	island		

FIELD DATA SI	HEEI					Pa	ge 1 of 1
Project Name:	Eversource: Seacost Reliabilit	ty Proje	ect			Proj. #: 22860.	006
Site Name:	Little Bay					Task #: 05	
City:	Newington	State:	NH			Date: 09/20/16	;
Field Team Leader(s):	JBS		Field Team	Safety Coord	inator:	JBS	
Field Crew: CJR, BJA	A, AT		Arrival & Do	eparture Time	s <u>: 13:10-13</u> :	:25	
Station ID #: C-2			Weather: (Clear	Cloudy	Rain Oth	er
Photos: Y N	Roll No./Exposure No.: NA		Wind Cond	litions (Speed/	Direction): 5	5MPH SOUTH	
FIELD DATA							
Water Depth:3.1	ft. Tide: Ebb 🕻	Floo	bd Low	Slack Hi	gh Slack	Other	
PID: N/A	Redox Potential: N/A	pH:	N/A	H ² O Temp.:	N/A	Air Temp.:	NA
SAMPLE/PUSH #1					,		
Core ID#: C-2	Coring Time:1			_		Core Recovery: _	
Sample Method: Ponar	Vibracore / Piston Core / Manual	Coring	Material CAB	Juminum / SS	Cor	re Diameter (OD):	2 3" 4"
Vibracore Type: Rossfeld	der) PVL / Portable Clamp-on / NA		Sampling	Equipment Dec	onned or Rep	placed: 🕜 N	
SAMPLE/PUSH #2	<u> </u>						
Core ID#:	Coring Time:					Core Recovery:	ft
·		Coring				re Diameter (OD):	2" 3" 4"
Vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sampling	Equipment Dec	onned or Rep	placed: Y N	
SAMPLE/PUSH #3 Core ID#:	Coring Time:		Penetratio	n Depth:	ft. (Core Recovery:	ft
Sample Method: Penar7	Vibracore / Piston Core / Manual	Coring	Material: CAB	/ Aluminum / SS	Coi	re Diameter (OD):	2" 3" 4"
Vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sampling	Equipment Dec	onned or Rep	placed: Y N	1
DGPS DATA							
Operator: JBS			Coordinate (Units: Cat/Lor	US Surv	ey Feet	
File Name: C-2-1		-	Datum: WG	SS84 Y	N Othe	:r	
•	425851	_	Proj.: N/A	# 000#4 00 C.	V II		
Lon / E: 70.867 PDOP of SVs: 10	98955		GPS Seriai i	#: 88951-00 Ge	30 XH		
		-					***************************************
COMMENTS / NOTES)			T ,	200000000000000000000000000000000000000		
		-	North	/	isla	and	
	44	-			A STATE OF THE PARTY OF THE PAR	The same of the sa	
		_		_ /			
		•••	,	\checkmark			
		-	Novembronia mon	nicensed /			
		-	yetraxigh);		C-2		
			Keennegaan		4		
		-	brick buildir	na 🗸	7		
			011011 2 211	/			
Ft. Tube Used=5'							

FIELD DATA SI	HEET							Page	1 of 1
Project Name:	Eversource: Seacost Reliabilit	ty Proje	ect				Proj. #: 2	22860.00	6
Site Name:	Little Bay						Task #: 0	5	
City:	Newington	State:	N	ИН			Date: 09	9/20/16	
Field Team Leader(s):	JBS	_	Field	Team S	Safety Coo	ordinator:	JBS		
Field Crew: CJR, BJA	A, AT	-	Arriva	al & Dep	arture Tin	nes <u>: 13:30</u> -	13:45		
Station ID #: C-3			Weat	ther: 🔘	Clear	Cloudy	Rain	Other	
Photos: Y N	Roll No./Exposure No.: NA		Wind	Condition	ons (Spee	ed/Direction): 5-10 MPH :	SOUTH	
FIELD DATA									
Water Depth:4.0	ft. Tide: Ebb	Floo	od)	Low Sla	ack	High Slack	Other _		
PID: N/A	Redox Potential: N/A	pH:	N/A	ŀ	H ² O Temp	o.: N/A	Air Temp.:	: N A	
SAMPLE/PUSH #1									
Core ID#: C-3	Coring Time:		=		-				
		Coring			'		Core Diameter		3") 4"
Vibracore Type: Rossfeld	der) PVL / Portable Clamp-on / NA		Sam	ıpling Eq	uipment D	econned or F	Replaced: 🕎	N	
SAMPLE/PUSH #2				_		_			
Core ID#:	Coring Time:				•	ft.			ft
Sample Method: Ponar / \	Vibracore / Piston Core / Manual	Coring	Material	i: CAB / A	.luminum / S	S (Core Diameter	(OD): 2"	" 3" 4"
Vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sam	ipling Eq	uipment D	econned or F	Replaced: Y	N	
SAMPLE/PUSH #3									
Core ID#:	Coring Time:						Core Recove		
		Coring					Core Diameter		" 3" 4"
vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sam	ıpling Eq	uipment D	econned or F	Replaced: Y	Y N	
DGPS DATA									_
Operator: JBS		-		linate Uni		Lon US Su	-		
File Name: C-3-1		-		n: WGS8	34 Y	N Ot	ther		
Lat N: 43.103 Lon E: 70.866	365618 76674	-	Proj.:		88951-00	C YH			
PDOP of SVs: 9	70074	-	GFUC	ellai #.	88901-00	Geo An			
COMMENTS / NOTES	<u> </u>								
COMMENTATIO	,		7	\wedge	,	- National			
		•	No	rth	/	Contract of the second	island		
		•			/	. And the second second	Total and the second se		
		•			/				
		-		,	\checkmark				
		-		Superior contraction of					
		-				C	J-3		
				laman geranal		-	*	e de la companya de l	
		•	brick	building				and the state of t	
		-		Duna5	/				
Ft. Tube Used=5'		_			1				

FIELD DATA SI	HEEI				Pag	je 1 of 1
Project Name:	Eversource: Seacost Reliabilit	ty Proje	ct		Proj. #: 22860.00)6
Site Name:	Little Bay				Task #: 05	
City:	Newington	State:	NH		Date: 09/20/16	
Field Team Leader(s):	JBS	-	Field Team Safety	Coordinator:	JBS	
Field Crew: CJR, BJA	A, AT	_	Arrival & Departure	Times: 14:00-14:	:15	
Station ID #: C-4		_	Weather: Clear	Cloudy	Rain Other	
Photos: Y N	Roll No./Exposure No.: NA		Wind Conditions (S	peed/Direction): 5	5-10 MPH SOUTH	
FIELD DATA						
•	ft. Tide: Ebb (Floo		•	Other	
	Redox Potential: N/A	pH:	N/A H ² O Te	emp.: N/A	All reliip NA	`
SAMPLE/PUSH #1 Core ID#: C-4	Coring Time:	14:03	Penetration Depth:	58"	Core Recovery:	55"
	Vibracore / Piston Core / Manual					
	der) PVL / Portable Clamp-on / NA				\sim	
SAMPLE/PUSH #2						
***************************************	Coring Time:			The second secon		ft
	Vibracore / Piston Core / Manual	Coring I				." 3" 4"
Vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sampling Equipme	nt Deconned or Rep	olaced: Y N	
SAMPLE/PUSH #3 Core ID#:	Coring Time:		Penetration Depth:	ft. (Core Recovery:	ft
Sample Method: Penal /	Vibracore / Piston Core / Manual	Coring I	Material: CAB / Aluminur	m / SS Cor	re Diameter (OD): 2	." 3" 4"
vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sampling Equipme	nt Deconned or Rep	olaced: Y N	
DGPS DATA						
Operator: JBS		_	Coordinate Units:		•	
File Name: <u>C-4-1</u> at N: 43.103	300157	-	Datum: WGS84 (Proj.: N/A	Y) N Othe	r	
Lon / E:		-	GPS Serial #: 88951	-00 Geo XH		
PDOP of SVs: 9		-				
COMMENTS / NOTES						
		 	North	isla	and	
		-		C-4		
		_	brick building	1		
Ft. Tube Used=5'		_				LA CONTRACTOR DE LA CON

FIELD DATA SI	HEET							Page	1 of 1
Project Name:	Eversource: Seacost Reliabilit	ty Proje	ect		W-1984		Proj. #: 228	860.006	
Site Name:	Little Bay						Task #: 05		
City:	Newington	State:	NH	[Date: 09/2	1/16	
Field Team Leader(s):	JBS		Field To	eam Safe	ety Coordin	ator:	JBS		
Field Crew: CJR, BJA	A, AT	_	Arrival	& Departi	ure Times:	08:25-08	3:40		
Station ID #: C-5		_	Weathe	er: Cle	ar Cl	oudy	Rain	Other _	
Photos: Y N	Roll No./Exposure No.: NA		Wind C	onditions	(Speed/Di	rection):	5-10 MPH WE	EST	
FIELD DATA									
Water Depth: 3.7	ft. Tide: Ebb) Floo	od L	ow Slack	: High	n Slack	Other		
PID: N/A	Redox Potential: N/A	pH:	N/A	H ² O	Temp.:	N/A	Air Temp.:	NA	·····
							Core Recover		54" <u> </u>
Vibracore Type: Rossfeld	der PVL / Portable Clamp-on / NA		Sampl	ling Equip	ment Decon	ned or Re	eplaced: (Y)	N	
SAMPLE/PUSH #2 Core ID#:	Coring Time:		Penetr	ration Dep	th:	ft.	Core Recovery		ft
Sample Method: Ponar /	Vibracore / Piston Core / Manual	Coring	Material: (CAB / Alumi	inum / SS	Co	ore Diameter (O)D): 2"	3" 4"
Vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Samp	ling Equip	ment Decon	ned or Re	eplaced: Y I	Ν	
SAMPLE/PUSH #3 Core ID#:	Coring Time:		Penetr	ration Dept	th:	ft.	Core Recovery	/:	ft
Sample Method: Penal /	Vibracore / Piston Core / Manual	Coring	Material: (CAB / Alumi	inum / SS	Co	ore Diameter (O	D): 2"	3" 4"
vibracore Type: Rossfeld	der / PVL / Portable Clamp-on / NA		Sampl	ling Equip	ment Decon	ned or Re	eplaced: Y	N	
DGPS DATA Operator: JBS File Name: C-5-1 Lat N: 43.102 Lon / E: 70.864 PDOP of SVs: 9	232222 51256	-	Datum: Proj.: N				vey Feet er		
Ft. Tube Used=5'		-	Nart	operator in candidate for the control of the contro	C-5	isl	land		
		-	1		1			-	- 1

Project Name:	Eversource: Seacost Reliabili	ty Proje	ct			Proj. #: 2286	80.006
Site Name:	Little Bay					Task #: 05	
City:	Newington	State:	NH			Date: 09/20	/16
Field Team Leader(s):	JBS	_	Field Team	Safety Coordina	ator:	JBS	
Field Crew: CJR, BJA	, AT	_	Arrival & De	parture Times:	10:00-11:	:15	
Station ID #: C-6		_	Weather:	Clear Clo	oudy	Rain C	Other
Photos: Y N	Roll No./Exposure No.: NA	_	Wind Condit	tions (Speed/Di	rection): N	N/A	
FIELD DATA							
Water Depth: 9.4	ft. Tide: Ebb	Floo	d Low S	Black High	Slack	Other	
PID: N/A	Redox Potential: N/A	pH:	N/A	H ² O Temp.:	N/A	Air Temp.:	NA
	Coring Time: /ibracore / Piston Core / Manual ler PVL / Portable Clamp-on / NA	Coring N	Material CAB /	n Depth:66"_ luminum / SS quipment Deconi	Cor	re Diameter (OD): 23" 4"
SAMPLE/PUSH #2 Core ID#: C-6	Coring Time:1	0:35	Penetration	n Depth: 54" _		Core Recovery	:50"
	/ibracore / Piston Core / Manual ler /) PVL / Portable Clamp-on / NA			luminum / SS quipment Deconi			
	Coring Time:1 /ibracore / Piston Core / Manual ler PVL / Portable Clamp-on / NA	Coring N	Material CAB /	Depth:30"_ luminum / SS quipment Deconi	Cor	re Diameter (OD): 2 3 4"
DGPS DATA Operator: JBS File Name: C-6-1 Lat N: 43.101 Lon / E: 70.8634 PDOP of SVs: 11		- - -	Coordinate Un Datum: WGS Proj.: N/A GPS Serial #:		l Othe	ey Feet r	
C-6-2 N:43.10174205 W: 70.8633803		-	Narth		isla	and	
C-6-3 N: 43.10168208 W: 70.8634023		-	grandativa at at conse	granata			
Used Push #1 for samp	ole	-	brick building	g	► C-6	3	
Ft. Tube Used=9'				government /			
Preparer's Initial: JBS		-	dock	Section and section (section)			

Field Team Leader(s): JBS Field Team Safety Coordinator: JBS Field Crew: CJR, BJA, AT Station ID #: C-7 Photos: Y N Roll No./Exposure No.: NA Water Depth: 20.0 ft. Tide: Ebb Flood Low Slack High Slack Other PID: N/A Redox Potential: N/A pH: N/A H²O Temp.: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7 Sample Method: Ponar (Vibracore / Piston Core / Manual Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (Vibracore / Piston Core / Manual Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Coring Time: 12:10 Penetration Depth: 15" Core Recovery: 55" Sample Method: Ponar (Vibracore / Piston Core / Manual Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Coring Time: 12:10 Penetration Depth: 15" Core Recovery: 12" Sample Method: Ponar (Vibracore / Piston Core / Manual Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Coring Time: 12:19 Penetration Depth: 58" Core Diameter (OD): 2 3' 4" Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: Y N SAMPLE/PUSH #3 Core ID#: C-7 Coring Time: 12:19 Penetration Depth: 58" Core Recovery: 54" Sample Method: Ponar (Vibracore / Piston Core / Manual Coring Material (AB /) luminum / SS Core Diameter (OD): 2 3' 4" Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: Y N SAMPLE/PUSH #3 Core ID#: C-7 Coring Material (AB /) luminum / SS Core Diameter (OD): 2 3' 4" Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: Y N SAMPLE/PUSH #3 Core Diameter (OD): 2 3' 4" Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: Y N DGPS DATA Pipi: N/A Pipi: N/A	Project Name:	Eversource: Seacost Reliabilit	y Projec	et	Proj. #: 22860.006
Field Team Leader(s): JBS Field Team Safety Coordinator: JBS Field Crew: CJR, BJA, AT Station ID #: C-7 Roll No /Exposure No.: NA Weather: Clear Cloudy Rain Other Photos: Y N Roll No /Exposure No.: NA Wind Conditions (Speed/Direction): N/A Water Depth: 20.0 ft. Tide: Ebb Floor Low Slack High Slack Other PID: N/A Redox Potential: N/A PH: N/A H*O Temp.: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7 Coring Time: 12:02 Penetration Depth: 60" Core Recovery: 55" Sample Method: Ponar (Vibracore) Floor Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N N SAMPLE/PUSH #2 Core ID#: C-7 Coring Time: 12:10 Penetration Depth: 15" Core Recovery: 12" Sample Method: Ponar (Vibracore) Polton Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N N SAMPLE/PUSH #3 Core ID#: C-7 Coring Time: 12:10 Penetration Depth: 15" Core Recovery: 12" Sample Method: Ponar (Vibracore) Po	Site Name:	Little Bay			Task #: 05
Field Crew: CJR, BJA, AT Station ID #; C-7 Photos: Y N Roll No /Exposure No.: NA Wather: Clear Cloudy Rain Other Wind Conditions (Speed/Direction): N/A Water Depth: 20.0 ft. Tide: Ebb Flood Low Slack High Slack Other PID: N/A Redox Potential: N/A pH: N/A H*O Temp: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7 Coring Time: 12:02 Penetration Depth: 60" Core Recovery: 55" Sample Method: Ponar (vibracore) Inston Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #2 Coring Time: 12:10 Penetration Depth: 15" Core Recovery: 12" Sample Method: Ponar (vibracore) Inton Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (vibracore) Jeton Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (vibracore) Jeton Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (vibracore) Jeton Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (vibracore) Jeton Core / Manual Vibracore Type (Rossfelder) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N DGPS DATA Operator: JBS File Name: C-7-1 G7-0.86281317 F0-09 GVS: 9 COMMENTS / NOTES Saved Push # 1 & 3 for sampling but only used #1 for sampling but only used	City:	Newington	State:	NH	Date: 09/20/16
Station ID #: C-7 Photos: Y Roll No./Exposure No.: NA Water Depth: Y Roll No./Exposure No.: NA Wind Conditions (Speed/Direction): N/A Water Depth: 20.0 ft. Tide: Ebb Flood Low Slack High Slack Other PID: N/A Redox Potential: N/A pH: N/A H²O Temp.: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7 Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA SAMPLE/PUSH #2 Core ID#: C-7 Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA SAMPLE/PUSH #3 Core ID#: C-7 Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA Sample Method: Ponar (Vbracore Piston Core / Manual Vbracore Type (Rossfelder) PV/L / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or Replaced: \(\tau \) N Sampling Equipment Deconned or	Field Team Leader(s):	JBS	•	Field Team Safety Coordinator:	JBS
Photos: Y Noll No./Exposure No.: NA Wind Conditions (Speed/Direction): N/A FIELD DATA Water Depth: 20.0 ft. Tide: Ebb Flood Low Slack High Slack Other	Field Crew: CJR, BJA	A, AT		Arrival & Departure Times: 11:55-12	:35
Water Depth: 20.0 ft. Tide: Ebb Flood Low Slack High Slack Other PID: N/A Redox Potential: N/A pH: N/A H²O Temp.: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7	Station ID #: C-7			Weather: Clear Cloudy	Rain Other
Water Depth: 20.0 ft. Tide: Ebb Floor Low Slack High Slack Other PID: N/A Redox Potential: N/A pH: N/A H²O Temp.: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7	Photos: Y N	Roll No./Exposure No.: NA	•	Wind Conditions (Speed/Direction): I	N/A
PID: N/A Redox Potential: N/A pH: N/A H²O Temp.: N/A Air Temp.: NA SAMPLE/PUSH #1 Core ID#: C-7	FIELD DATA				
SAMPLE/PUSH #1 Core ID#: C-7 Sample Method: Ponart (Vibracore) piston Core / Manual Vibracore Type Rossfelder PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sample Method: Ponart (Vibracore) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sample Method: Ponart (Vibracore) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sample Method: Ponart (Vibracore) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sample Method: Ponart (Vibracore) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sample Method: Ponart (Vibracore) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sample Method: Ponart (Vibracore) PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N Sampling Equipment Decon	Water Depth: 20.0	ft. Tide: Ebb	Flood	Low Slack High Slack	Other
Core ID#: C-7	PID: N/A	Redox Potential: N/A	pH:	N/A H ² O Temp.: N/A	Air Temp.: NA
Core ID#: C-7	Core ID#: C-7 Sample Method: Ponar	Vibracore / Piston Core / Manual	Coring N	Material CAB / Juminum / SS Co	re Diameter (OD): 23" 4"
Sample Method: Ponar (biracore) Paton Core / Manual Vibracore Type: Rossfelder PVL / Portable Clamp-on / NA Sampling Equipment Deconned or Replaced: N SAMPLE/PUSH #3 Core ID#: C-7		Coring Time:	12:10	Penetration Depth: 15"	Core Recovery:12"
SAMPLE/PUSH #3 Core ID#: C-7 Coring Time:12:19 Penetration Depth:58" Core Recovery:54" Sample Method: Ponar (Vibracore / Piston Core / Manual Vibracore Type: Rossfelder) PVL / Portable Clamp-on / NA DGPS DATA Operator: JBS File Name: C-7-1 Lat N:43.10111579 Lon / E:70.86251317 PDOP off EVS:9 COMMENTS / NOTES Saved Push # 1 & 3 for sampling but only used #1 for sampling for sampling but only used #1 for sampling f	Sample Method: Ponar	Vibracore / Pston Core / Manual	Coring N	Material CAB / Aluminum / SS Co	re Diameter (OD): 2 3" 4"
Core ID#: C-7	Vibracore Type: Rossfeld	der APVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Re	placed: (Y) N
Operator: JBS Coordinate Units: at/Lon US Survey Feet File Name: C-7-1 Datum: WGS84 Y N Other Lon / E: 70.86251317 Proj.: N/A GPS Serial #: 88951-00 Geo XH COMMENTS / NOTES Saved Push # 1 & 3 for sampling but only used #1 for sampling North brick building C-7 Ft. Tube Used=16'	Core ID#: C-7 Sample Method: Ponar	Vibracore / Piston Core / Manual	Coring M	Material CAB / Muminum / SS Co	re Diameter (OD): 2 3" 4"
Saved Push # 1 & 3 for sampling but only used #1 for sampling North island brick building C-7	Operator: JBS File Name: C-7-1 Lat N: 43.101 Lon / E: 70.862			Datum: WGS84 Y N Othe Proj.: N/A	•
#1 for sampling North island brick building C-7 Ft. Tube Used=16'	COMMENTS / NOTES				
Ft. Tube Used=16'	Saved Push # 1 & 3 for				
The state of the s	Ft Tube Head=16'			brick building C-7	7
			•	dock	

TIEED DATE.	· · · · · · · · · · · · · · · · · · ·			. ugo . o
Project Name:	Eversource: Seacost Reliabili	ty Proje	ct	Proj. #: 22860.006
Site Name:	Little Bay			Task #: 05
City:	Newington	State:	NH	Date: 09/21/16
Field Team Leader(s):	JBS	_	Field Team Safety Coordinator:	JBS
Field Crew: CJR, BJ/	A, AT	- 	Arrival & Departure Times: 09:30-10	:30
Station ID #: C-8		_	Weather: Clear Cloudy	Rain Other
Photos: Y N	Roll No./Exposure No.: NA		Wind Conditions (Speed/Direction):	5-10 MPH WEST
FIELD DATA				
Water Depth:31.0	ft. Tide: Ebb	Floo	d (Low Slack) High Slack	Other
PID: N/A	Redox Potential: N/A	pH:	N/A H ² O Temp.: N/A	Air Temp.: NA
SAMPLE/PUSH #1 Core ID#: C-8	Coring Time:	09:45	Penetration Depth:0"	Core Recovery:0"
Sample Method: Ponar	Vibracore / Diston Core / Manual	Coring I	Material CAB / Juminum / SS Co	re Diameter (OD): 2 3" 4"
Vibracore Type: Rossfe	lder PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Re	placed: Y N
SAMPLE/PUSH #2 Core ID#: C-8	Coring Time:	09:55	Penetration Depth:0"	Core Recovery:0"
Sample Method: Ponar A	Vibracore / Piston Core / Manual	Coring I	Material CAB / Juminum / SS Co	re Diameter (OD): 3 4"
Vibracore Type: Rossfe	lder PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Re	placed: N
SAMPLE/PUSH #3 Core ID#: C-8	Coring Time:	10:05	Penetration Depth: 0"	Core Recovery:0"
Sample Method: Ponar	Vibracore / Piston Core / Manual	Coring I	Material CAB / Numinum / SS Co	re Diameter (OD): 2 3" 4"
Vibracore Type: Rossfe	lder / PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Re	placed: (Y) N
DGPS DATA				
Operator: JBS		-	Coordinate Units: (at/Lon US Surv	•
File Name: <u>C-8-1</u>	045022	-	Datum: WGS84 (Y) N Othe	PF
	015022 068765	-	Proj.: N/A GPS Serial #: 88951-00 Geo XH	
PDOP of SVs: 8		-	or o condin. cooo i co coo xiii	
COMMENTS / NOTES	3			
Push 1 layed over due		-	August a section of the section of t	Signature of the contract of t
Push 2 layed over due		_	North / isl	and
Push 3 layed over due	to hard bottom	-		on programme control and other lands of a section of the control o
		_		
			ľ	
		-		C-8
		-	(Saurescappostanical)	•
		-	brick building	
Ft. Tube Used=24'		_		
Preparer's Initial: JBS				

Eversource: Seacost Reliability Project

FIELD DATA SHEET

Project Name:

Page 2 of 2

Proj. #: 22860.006

Site Name:	Little Bay		Task i	#: 05
City:	Newington	State:	NH Date:	09/21/16
Field Team Leader(s):	JBS		Field Team Safety Coordinator: JBS	
Field Crew: CJR, BJA	 АТ	-	Arrival & Departure Times: 12:45-13:15	
Station ID #: C-8		-	Weather: Clear Cloudy Rain	Other
Photos: Y N	Roll No./Exposure No.: NA		Wind Conditions (Speed/Direction): 5-10 M	PH NW
FIELD DATA				
Water Depth: 33.4	ft. Tide: Ebb	Floo	d Low Slack High Slack Oth	ner
PID: N/A	Redox Potential: N/A	pH:	N/A H ² O Temp.: N/A Air Te	mp.: NA
SAMPLE/PUSH #4 Core ID#: C-8	Coring Time:	12:50	Penetration Depth:12" Core F	Recovery:10"
Sample Method: Ponar	Vibracore / Piston Core / Manual	Coring N	Material CAB / Juminum / SS Core Diam	neter (OD): 2 3" 4"
Vibracore Type: Rossfeld	der) PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Replaced:	(A) N
SAMPLE/PUSH #5 Core ID#: C-8	Coring Time:	13:00	Penetration Depth:38" Core F	Recovery: 36"
Sample Method: Ponar /	Vibracore / Piston Core / Manual	Coring N	Material CAB / Juminum / SS Core Diam	neter (OD): 2"3" 4"
Vibracore Type: Rossfeld	der APVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Replaced:	Ø N
SAMPLE/PUSH #3 Core ID#:	Coring Time:	······	Penetration Depth: Co	re Recovery:
Sample Method: Ponar /	Vibracore / Piston Core / Manual	Coring I	Material: CAB / Aluminum / SS Core Diam	neter (OD): 2" 3" 4"
Vibracore Type. Rossfeld	der / PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or Replaced:	Y N
DGPS DATA Operator: JBS File Name: C-8-1a Lat N: 43.100 Lon F: 70.861	045758 38433		Coordinate Units: at/Lon US Survey Feet Datum: WGS84 Y N Other Proj.: N/A GPS Serial #: 88951-00 Geo XH	
PDOP or SVs: 10	00-100		G. C.	
COMMENTS / NOTES Re-located C-8 per Sa		-	North island C-8 brick building C-8A	
Ft. Tube Used=16' TC	OTAL USED AT C-8= 40'	•		
Preparer's Initial: JBS				

FIELD DATA S	HEET			Page 1 of 1
Project Name:	Eversource: Seacost Reliabili	ty Proje	ct	Proj. #: 22860.006
Site Name:	Little Bay			Task #: 05
City:	Newington	State:	NH	Date: 09/21/16
Field Team Leader(s):	JBS	_	Field Team Safety Coordinator:	JBS
Field Crew: CJR, BJA	۹, AT	•••	Arrival & Departure Times: 11:25	5-11:50
Station ID #: C-9		_	Weather: Clear Cloudy	Rain Other
Photos: Y N	Roll No./Exposure No.: NA		Wind Conditions (Speed/Direction	n): 10-15 MPH WEST
FIELD DATA				
Water Depth:29.0_	ft. Tide: Ebb	Floor	d Low Slack High Slac	k Other
PID: N/A		pH:	N/A H ² O Temp.: N/A	A Air Temp.: NA
SAMPLE/PUSH #1 Core ID#: C-9	Coring Time:	11:35	Penetration Depth: 0"	Core Recovery:0"
Sample Method: Ponar	Vibracore / Piston Core / Manual	Coring N	Material CAB / Iuminum / SS	Core Diameter (OD): 2 3" 4"
Vibracore Type: Rossfel	der PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or	r Replaced: (Y) N
SAMPLE/PUSH #2 Core ID#: C-9	Coring Time:	11:40	Penetration Depth: 0"	Core Recovery:0"
Sample Method: Ponar /	Vibracore / Piston Core / Manual	Coring N	Material CAB / Aluminum / SS	Core Diameter (OD): 4"
Vibracore Type: Rossfel	der / PVL / Portable Clamp-on / NA		Sampling Equipment Deconned or	r Replaced: (Y) N
		Coring N	Penetration Depth: 15" Material CAB / Numinum / SS Sampling Equipment Deconned o	Core Diameter (OD): 2 3" 4"
DGPS DATA				
Operator: JBS			Coordinate Units: (at/Lon) US	Survey Feet
File Name: C-9-1		- -		Other
Lat N: 43.09		_	Proj.: N/A	
Lon / E: 70.859 PDOP of SVs: 10	<u>'34893</u>	-	GPS Serial #: 88951-00 Geo XH	
COMMENTS / NOTES	>	- - - -	North	C-9
Ft. Tube Used=8'				
Preparer's Initial: JBS				

Project Name:	Eversource: Seacost Reliabilit	y Proje	ct				Proj. #: 228	60.006
Site Name:	Little Bay						Task #: 05	
City:	Newington	State:	N	Н			Date: 09/21	/16
Field Team Leader(s):	JBS		Field	Feam Saf	ety Coordina	ator:	JBS	
Field Crew: CJR, BJA	A, AT	_	Arriva	& Depar	ture Times:	12:05-12	:27	
Station ID #: C-10			Weath	ier: Cl	ear Clo	oudy	Rain (Other
Photos: Y N	Roll No./Exposure No.: NA	-	Wind	Condition	s (Speed/Di	rection):	10-15 MPH NV	V
FIELD DATA								
Water Depth:18.5_	ft. Tide: Ebb	Floo	d	Low Slac	k High	Slack	Other	
PID: N/A	Redox Potential: N/A	рН:	N/A	H ² (O Temp.:	N/A	Air Temp.:	NA
	Coring Time: Vibracore / Piston Core / Manual der N PVL / Portable Clamp-on / NA	Coring I	Material	CAB / Jur	ninum / SS	Co	Core Recovery re Diameter (OI placed:	0): 23" 4"
SAMPLE/PUSH #5 Core ID#: C-10	Coring Time:	12:20	Pene	etration De	epth:24"_			r: 23"
Vibracore Type: Rossfeld	der APVL / Portable Clamp-on / NA		Sam	oling Equip	oment Decon	ned or Re	placed: 🕥 N	
SAMPLE/PUSH #3 Core ID#:	Coring Time:			netration [Core Reco	•
	Vibracore / Piston Core / Manuel	Coring					re Diameter (OI	•
Vibracore Type. Rossfeld	der / PVL / Portable Clamp-on / NA		Sam	oling Equip	oment Decon	ned or Re	placed: Y	N
DGPS DATA Operator: JBS File Name: C-10-1 Lat N: 43.098 Lon / E: 70.857 PDOP of SVs: 9	352463 90776	- - -	Datum Proj.:			N Othe	vey Feet	
COMMENTS / NOTES								
Hard refusal on both p	ushes	- - - -	No brick t	rth		isl	C-10	
Ft. Tube Used=8'		_						
Preparer's Initial: JBS								

FIELD DATA 5	HEEI						Page 1 of 1
Project Name:	Eversource: Seacost Reliabili	ty Proje	ct			Proj. #: 22	860.006
Site Name:	Little Bay					Task #: 05	
City:	Newington	State:	NH			Date: 09/2	:1/16
Field Team Leader(s):	JBS	_	Field Team S	Safety Coor	dinator:	JBS	
Field Crew: CJR, BJA	4, AT	_	Arrival & Dep	oarture Time	es: 08:56-0 9):15	
Station ID #: C-11		_	Weather:	Clear	Cloudy	Rain	Other
Photos: Y N	Roll No./Exposure No.: NA		Wind Conditi	ions (Speed	/Direction):	5-10 MPH WI	EST
FIELD DATA							
Water Depth: 13.5	ft. Tide: Ebb	Floo	d Low S	lack H	igh Slack	Other	~~~
PID: N/A	Redox Potential: N/A	pH:	N/A	H ² O Temp.:	N/A	Air Temp.:	NA
SAMPLE/PUSH #1 Core ID#: C-11	Coring Time:	09:03	Penetration	Depth:	94"	Core Recove	ry: 89"
**************************************	Vibracore / Piston Core / Manual						
	der) PVL / Portable Clamp-on / NA			•		eplaced:	
SAMPLE/PUSH #2 Core ID#:	Coring Time:		Penetration I	Depth:	ft.	Core Recovery	<u>ft</u>
Sample Method: Ponar /	Vibracore / Piston Core / Manual	Coring I	Material: CAB / A	Aluminum / SS	Co	ore Diameter (C	D): 2" 3" 4"
Vibracore Type: Rossfel	der / PVL / Portable Clamp-on / NA		Sampling E	quipment De	conned or Re	placed: Y	N
SAMPLE/PUSH #3 Core ID#:	Coring Time:		Penetration I	Depth:	ft.	Core Recovery	v:ft
Sample Method: Penal /	Vibracore / Piston Core / Manual	Coring I	Material: CAB / A	Aluminum / SS	Co	ore Diameter (C	DD): 2" 3" 4"
Vioracore Type: Rossfel	der / PVL / Portable Clamp-on / NA		Sampling Ed	quipment De	conned or Re	placed: Y	N
DGPS DATA							
Operator: JBS			Coordinate Ur		n US Sun	•	
File Name: C-11-1		-	Datum: WGS	84 Y	N Othe	er	
	780746		Proj.: N/A	00054 00 0	VII		
Lon / E: 70.856	000320	-	GPS Serial #:	99991-00 G	eo 🗚		
COMMENTS / NOTES	3						
		- - - -	Narth			C-11	dock
Ft. Tube Used=9'		.					
Preparer's Initial: JBS							

TIEED DATA O			- ruge rorr
Project Name:	Eversource: Seacost Reliabili	y Project	Proj. #: 22860.006
Site Name:	Little Bay		Task #: 05
City:	Newington	State: NH	Date: 09/21/16
Field Team Leader(s) Field Crew: CJR, BJ Station ID #: C-12 Photos: Y N	A, AT	Field Team Safety Coordinator: Arrival & Departure Times: 08:41- Weather: Clear Cloudy Wind Conditions (Speed/Direction)	Rain Other
FIELD DATA Water Depth: 2.6 PID: N/A	ft. Tide: Ebb Redox Potential: N/A	Flood Low Slack High Slack pH: N/A H ² O Temp.: N/A	
· · · · · · · · · · · · · · · · · · ·		08:44 Penetration Depth:37" Coring Material CAB / luminum / SS C Sampling Equipment Deconned or F	Core Diameter (OD): 2 3" 4"
		Penetration Depth:ft. Coring Material: CAB / Aluminum / SS Sampling Equipment Deconned or F	Core Diameter (OD): 2" 3" 4"
	Coring Time: Vibracore / Piston Core / Manual Ider / PVL / Portable Clamp-on / NA	Penetration Depth:ft. Coring Material: CAB / Aluminum / SS C Sampling Equipment Deconned or F	Core Diameter (OD): 2" 3" 4"
	762305 488882	Coordinate Units: at/Lon US So Datum: WGS84 Y N Ot Proj.: N/A GPS Serial #: 88951-00 Geo XH	urvey Feet her
COMMENTS / NOTE	S	North brick building	dock
Ft. Tube Used=5' Preparer's Initial: <u>JBS</u>			C-12 V

Soil Boring Log

PROJECT : Eversource: Seacoast Reliability Project LOCATION : Newington, NH

ELEVATION : NA DRILLING CONTRACTOR : Normandeau

DRILLING METHOD AND EQUIPMENT USED : Vibracore

WATER LEVELS	VATER LEVELS 2.8		START: 12:52 END: 13:05	LOGGER: JBS
	DEPTH BELOW SURFACE (IN) STANDARD		CORE DESCRIPTION	COMMENTS
INTERVA	RECOVERY (IN) #/TYPE	PENETRATION TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
0			medium density gley 1 4/10Y medium plasticity wet cohesive uniform throughout trace sand	some shells in top 12"
36 - - - - 48 4'			fine grained fat clay	
- - - - - - -	50"			

 PROJECT NUMBER:
 BORING NUMBER

 22860.006 Task 5
 C-2
 SHEET _1_ OF _1_

Soil Boring Log

PROJECT : Eversource: Seacoast Reliability Project				LOCATION: Newington, NH			
ELEVATION:	NA		DRILLING	CONTRACTOR:	Normandeau		
DRILLING METH	OD AND EQUIPMENT USED :	Vibracore					
WATER LEVELS	3 1	START ·	13.10	FND : 13:25	LOGGER : JBS		

ATER LEVELS 3.1 PTH BELOW SURFACE (IN)	STANDARD	START: 13:10 END: 13:25 CORE DESCRIPTION	LOGGER: JBS COMMENTS
INTERVAL (FT)	PENETRATION	CORE DESCRIPTION	COMMENTS
RECOVERY (IN) #/TYPI	TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
0 - - - - 12		stiff density gley 1 4/10Y high plasticity wet cohesive uniform throughout	some shells in top 12"
24		trace sand	
36 		fine grained fat clay	- - - -
48 4'			
- - - -			- - - -

BORING NUMBER PROJECT NUMBER: C-3 22860.006 Task 5 SHEET _1_ OF _1_

Soil Boring Log

PROJECT:	Eversource: Seacoast Reliability Project	LOCATION : Newington, NH	
ELEVATION:	NA ·	DRILLING CONTRACTOR:	Normandeau
	CONTRACTOR OF THE STATE OF THE		

DRILLING METHOD AND EQUIPMENT USED: Vibracore LOGGER: JBS WATER LEVELS START: 13:30 END: 13:45 DEPTH BELOW SURFACE (IN) STANDARD CORE DESCRIPTION COMMENTS INTERVAL (FT) PENETRATION RECOVERY (IN) DEPTH OF CASING, DRILLING RATE, **TEST** SOIL NAME, USCS GROUP SYMBOL, COLOR, DRILLING FLUID LOSS, #/TYPE **RESULTS** MOISTURE CONTENT, RELATIVE DENSITY 6"-6"-6"-6" OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. (N) MINERALOGY. 0_ stiff density some shells in top 12" gley 1 4/10Y high plasticity wet cohesive uniform throughout trace sand 24 fine grained fat clay 36

				_
				-
-			_	-
			_	-
				-
_			_	-
				_

NAI-Boring Log Form-6/05

58"

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER

C-4

SHEET _1_ OF _1_

Soil Boring Log

PROJECT : Eversource: Seacoast Reliability Project LOCATION : Newington, NH

ELEVATION : NA DRILLING CONTRACTOR : Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore

WATER LEVELS 4.1 START: 14:00 END: 14:15 LOGGER: JBS

/ATER LEVELS 4.1		START: 14:00 END: 14:15	LOGGER: JBS
DEPTH BELOW SURFACE (IN)	STANDARD	CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (IN) #/TYPE	PENETRATION TEST RESULTS 6"-6"-6"-6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERAL OGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
0	(N)	stiff density gley 1 4/10Y high plasticity wet cohesive uniform throughout trace sand fine grained fat clay	some shells in top 12"
-		-	-
AALBoring Log Form-6/05	<u> </u>		<u> </u>

NAI-Boring Log Form-6/05

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER

C-5

SHEET _1_ OF _1_

Soil Boring Log

PROJECT: Eversource: Seacoast Reliability Project LOCATION: Newington, NH

ELEVATION: NA DRILLING CONTRACTOR: Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore

WATER LEVELS 3.7 START: 8:25 END: 08:40 LOGGER: JBS

WATER	WATER LEVELS 3.7			START: 8:25 END: 08:40 LOGGER: JBS		
DEPTH B	DEPTH BELOW SURFACE (IN) STANDARD		STANDARD	CORE DESCRIPTION COMME	NTS	
	INTERVA	L (FT)		PENETRATION		
		RECOVE	RY (IN)	TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING,	DRILLING RATE,
			#/TYPE	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOS	3S,
				6"-6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRU	IMENTATION.
				(N)	MINERALOGY.	***************************************
0_						
					stiff densitysome shells in	op 12"
					gley 1 4/10Y	, –
_						
_					medium plasticity _	<u></u>
_					wet _	_
12					cohesive	
-	:				uniform throughout	•••
_					umom mougnout	
					_	_
					_	
24					trace sand	
_					-	
_					-	
_					_	
					fine grained	
36					fat clay	
					_	***************************************
_					-	_
-					_	
					_	
48	4'				7	-
"_	•					
_					-	
_		54"			_	
_					-	
					-	<u></u>
_					_	
_					_	
-					-	
-					- 	
-					_ 	_

NAI-Boring Log Form-6/05

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER

C-6

6 SHEET _1_ OF _1_

Soil Boring Log

PROJECT: Eversource: Seacoast Reliability Project LOCATION: Newington, NH **DRILLING CONTRACTOR: ELEVATION:** Normandeau DRILLING METHOD AND EQUIPMENT USED: Vibracore WATER LEVELS START: 10:00 END: 11:15 LOGGER: JBS DEPTH BELOW SURFACE (IN) STANDARD CORE DESCRIPTION COMMENTS PENETRATION INTERVAL (FT) RECOVERY (IN) TEST SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, **RESULTS** #/TYPE MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS, 6"-6"-6"-6" OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY. stiff density some shells in top 12" gley 1 4/10Y high plasticity wet cohesive uniform throughout trace sand 24 fine grained fat clay 36 48 SAME AS ABOVE 63" 63

QC8 Kemilzilib

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER

C-7

SHEET _1_ OF _1_

Soil Boring Log

PROJECT : Eversource: Seacoast Reliability Project LOCATION : Newington, NH

ELEVATION : NA DRILLING CONTRACTOR : Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore

WATER LEVELS 20 START: 11:55 END: 12:35 LOGGER: JBS

			ART: 11:55 END:	2:35 LOGGER: C	IBS		
DEPTH B	EPTH BELOW SURFACE (IN) STANDARD		CORE DESCRIPTION	(COMMENTS		
	INTERVA	L (FT)		PENETRATION			
		RECOVE		TEST	OIL NAME, USCS GROUP SYMBO		ASING, DRILLING RATE,
			#/TYPE	RESULTS	DISTURE CONTENT, RELATIVE I	ENSITY DRILLING FL	UID LOSS,
				6"-6"-6"-6"	R CONSISTENCY, SOIL STRUCT	RE, TESTS, AND	INSTRUMENTATION.
				(N)	NERALOGY.		
0						_	
					edium density	some she	lls in top 12"
_					ey 1 4/10Y		• -
_						_	_
-					w plasticity	-	-
_					et, cohesive	_	_
12					iform fat clay w/ sand		
_					ff density	_	
_						-	_
-					ey 1 4/10Y	-	
_					gh plasticity	_	-
					et	••••	
					hesive		
					iform throughout		
-							-
_					e grained	-	-
					t clay	_	_
_						1	_
-							
_						_	
_						_	

-						-	
_						-	_
_							
54		54					_
_							
_						-	-
_						_	_
						_	•••
-						7	
L		L	L				

NAI-Boring Log Form-6/05

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER

C-8

SHEET _1_ OF _1_

Soil Boring Log

PROJECT : Eversource: Seacoast Reliability Project LOCATION : Newington, NH

ELEVATION : NA DRILLING CONTRACTOR : Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore
WATER LEVELS 33.4 START: 12:45 END: 13:15 LOGGER: JBS

WATER LEVELS	***************************************		START: 12:45 END: 13:15	LUGGER: JBS
DEPTH BELOW SU	JRFACE (IN)	STANDARD	CORE DESCRIPTION	COMMENTS
INTERV	AL (FT)	PENETRATION		
	RECOVERY (IN) #/TYPE	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
		V- 7		
O - - - - -			stiff density gley 1 2.5/N fine sand noń plastic wet non-cohesive	some shells in top 6"
- - - 19			uniform fine sand	- - -
- - - - -			stiff density gley 1 4/10Y high plasticity wet cohesive	- - - - -
- - 36	36"		uniform _ fat clay -	- - -
- - - -				
- - - -			- - -	- - -
<u>-</u>				_

NAI-Boring Log Form-6/0

PROJECT NUMBER:	BORING NUMBER	
22860.006 Task 5	C-9	SHEET _1_ OF _1_

Soil Boring Log

PROJECT : Eversource: Seacoast Reliability Project LOCATION : Newington, NH

ELEVATION : NA DRILLING CONTRACTOR : Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore

		START: 11	:25	END: 11:50		LOGGER: JBS				
DEPTH BELOW SURFACE (IN) STANDARD			C	ORE DES	SCRIPTION		COMMENTS			
	INTERVAL (FT) PENETRATION									
	RECOVERY (IN) TEST		SOIL NAME, US	CS GRO	UP SYMBOL, COLOR,		DEPTH OF CASING, DRILLING RATE,			
			#/TYPE	RESULTS	MOISTURE COM	NTENT, R	RELATIVE DENSITY		DRILLING FLUID LOSS,	ı
				6"-6"-6"-6"	OR CONSISTEN	ICY, SOIL	_STRUCTURE,		TESTS, AND INSTRUMENTATION.	
				(N)	MINERALOGY.					
0										
					stiff density					
_										
_					gley 1 2.5/N					
_					medium sar	nd				
					non plastic					
_					wet .					
-					non-cohesiv	e				-
_								_		
_										_
								_		-
9										
_								_		_
					stiff density					
_					gley 1 5/N					
-								_		-
_					low plasticity	y		_		_
					wet					
					cohesive					
_					uniform					
-								_		-
-					fat clay w/sa	and				
14		14"						_		
'*		17	 							
_										-
_								_		_
								_		
-										
										_
-								_		
-										
_								_		
-										
		L	l							

PROJECT NUMBER: 22860.006 Task 5

NAI-Boring Log Form-6/05

BORING NUMBER
C-10

SHEET _1_ OF _1_

Soil Boring Log

PROJECT:	Eversource: Seacoast Reliability Project	LOCATION: Newington, NH	
ELEVATION:	NA	DRILLING CONTRACTOR:	Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore

WATER LEVELS 18.5 START: 12:05 END: 12:27 LOGGER: JBS

					START: 12:05 END: 12:27 LOGGER: JBS
DEPTH BELOW SURFACE (IN) STANDARD			V)	STANDARD	CORE DESCRIPTION COMMENTS
	INTERVAL (FT) PENETRATION			PENETRATION	
	RECOVERY (IN) TEST		TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE,	
			#/TYPE	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS,
				6"-6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION.
				(N)	MINERALOGY.
0_					
					stiff density
-					
-					fine sand
					gley 1 3/10Y
					non plastic
-					wet
_					non-cohesive
					uniform
-					-
_					, -
					<u>-</u>
-					-
_					-
_					
					_
-					-
-					-
					<u>_</u>
					-
23		23"			
_					<u>_</u>
-					-
-					-
_					
-					-
_					-
_					
-					-
-					-
			1		

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER

C-11

SHEET _1_ OF _1_

Soil Boring Log

PROJECT: Eversource: Seacoast Reliability Project LOCATION : Newington, NH

ELEVATION : NA DRILLING CONTRACTOR : Normandeau

DRILLING METHOD AND EQUIPMENT USED: Vibracore

WATER LEVELS 13.5 START: 8:56 END: 09:15 LOGGER: JBS

DEPTH BELOW SURFACE (IN)		CTANDADD	CORE DESCRIPTION	COMMENTS		
INTERVAL (FT)			ν,	STANDARD	CORE DESCRIPTION	COMMINENTS
		_ (FT) RECOVE	RY (IN) #/TYPE	PENETRATION TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				(14)		
0					soft density gley 1 4/10Y	some shells top 12"
_					low plasticity _	
_					wet _	-
					cohesive _	
14					silt w/ sand	-
_					-	
_					stiff density _	
					gley 1 4/10Y	
					high plasticity	
					wet _	
					cohesive _	
					uniform _	
<u></u>					fat clay _	
_					-	
					-	
					-	
					-	
					·	
					-	
_					-	-
					_	1
 89		89"			_	
03		03			-	
_					_	1
_					_	
_					_	
_						

NAI-Boring Log Form-6/05

 PROJECT NUMBER:
 BORING NUMBER

 22860.006 Task 5
 C-12
 SHEET _1_ OF _1_

Soil Boring Log

PROJECT:	Eversource: Seacoast Reliability	Project	LOCATION: Newington, NH		
ELEVATION:	NA		DRILLING CONTRACTOR:	Normandeau	
DRILLING METH	IOD AND EQUIPMENT USED :	Vibracore			

LOGGER: JBS WATER LEVELS START: 8:41 END: 08:50 DEPTH BELOW SURFACE (IN) CORE DESCRIPTION COMMENTS STANDARD INTERVAL (FT) PENETRATION RECOVERY (IN) DEPTH OF CASING, DRILLING RATE. TEST SOIL NAME, USCS GROUP SYMBOL, COLOR, #/TYPE MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS, **RESULTS** 6"-6"-6"-6" OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY. (N) 0_ some shells top 12" very stiff density gley 1 4/10Y wet medium plasticity cohesive uniform fat clay w/ sand 36" 36

NAI-Boring Log Form-6/05

Appendix C: Analytical Results

ANALYTICAL REPORT

Lab Number: L1629727

Client: Normandeau Associates

25 Nashua Rd. Bedford, NH 03110

ATTN: Ann Pembroke Phone: (603) 637-1169

Project Name: SRP

Project Number: 23840.003

Report Date: 10/27/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SRP

Project Number: 23840.003

Lab Number: L1629727 **Report Date:** 10/27/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1629727-01	C-6 (0-48)	SEDIMENT	LITTLE BAY	09/20/16 10:10	09/20/16
L1629727-02	C-7 (0-48)	SEDIMENT	LITTLE BAY	09/20/16 12:02	09/20/16
L1629727-03	C-1	SEDIMENT	LITTLE BAY	09/20/16 12:58	09/20/16
L1629727-04	C-2	SEDIMENT	LITTLE BAY	09/20/16 13:05	09/20/16
L1629727-05	C-3	SEDIMENT	LITTLE BAY	09/20/16 13:36	09/20/16
L1629727-06	C-4	SEDIMENT	LITTLE BAY	09/20/16 14:05	09/20/16
L1629727-07	C-6 (48-61)	SEDIMENT	LITTLE BAY	09/20/16 10:10	09/20/16
L1629727-08	C-7 (48-54)	SEDIMENT	LITTLE BAY	09/20/16 12:02	09/20/16
L1629727-09	C-5	SEDIMENT	LITTLE BAY	09/21/16 08:35	09/21/16
L1629727-10	C-8	SEDIMENT	LITTLE BAY	09/21/16 13:00	09/21/16
L1629727-11	C-9	SEDIMENT	LITTLE BAY	09/21/16 11:45	09/21/16
L1629727-12	C-10	SEDIMENT	LITTLE BAY	09/21/16 12:20	09/21/16
L1629727-13	C-11 (0-48)	SEDIMENT	LITTLE BAY	09/21/16 09:03	09/21/16
L1629727-14	C-12	SEDIMENT	LITTLE BAY	09/21/16 08:44	09/21/16
L1629727-15	C-11 (48-89)	SEDIMENT	LITTLE BAY	09/21/16 09:03	09/21/16

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:SRPLab Number:L1629727Project Number:23840.003Report Date:10/27/16

Case Narrative (continued)

Report Reissue

This report replaces the report issued on October 25, 2016. The project name has been revised.

Report Submission

The analysis of Dioxin by 1631B was subcontracted to Cape Fear Analytical in Wilmington NC. A copy of the laboratory report is included as an addendum.

The analysis of PFOA/PFOS was subcontracted to Vista Analytical Lab, El Dorado Hills, CA. A copy of the laboratory report is included as an addendum.

Please note: The subcontracted data is only available in PDF format and is not available electronically.

Semivolatile Organics

The WG937275-4 SRM recoveries, are outside the acceptance criteria for CL6-BZ#128 (164%).

The WG937275-6/-7 MS/MSD recoveries, performed on L1629727-01, are outside the acceptance criteria for Naphthalene (39%/40%), Acenaphthylene (42%/43%), Acenaphthene (45%/45%), Fluorene (47%/47%), Phenanthrene (49%/49%), Anthracene (45%/46%), Fluoranthene (50% MS only), Pyrene (48%/48%) and CL3-BZ#18 (49%/49%).

Petroleum Hydrocarbon Quantitation

WG938023-1: A Matrix Spike and Matrix Spike Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the matrix spike and Matrix Spike Duplicate results could not be reported.

Total Organic Carbon

The WG940886-4/-5 MS/MSD RPD for Total Organic Carbon (Rep2) (47%), performed on L1629727-01, is above the acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Galle Por Elizabeth Porta

Title: Technical Director/Representative Date: 10/27/16

ORGANICS

SEMIVOLATILES

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-01
Client ID: C-6 (0-48)
Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 15:55

Analyst: MS Percent Solids: 68% Date Collected: 09/20/16 10:10
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC	/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	7.37		1
Acenaphthylene	ND		ug/kg	7.37		1
Acenaphthene	ND		ug/kg	7.37		1
Fluorene	ND		ug/kg	7.37		1
Phenanthrene	ND		ug/kg	7.37		1
Anthracene	ND		ug/kg	7.37		1
Fluoranthene	ND		ug/kg	7.37		1
Pyrene	ND		ug/kg	7.37		1
Benz(a)anthracene	ND		ug/kg	7.37		1
Chrysene	ND		ug/kg	7.37		1
Benzo(b)fluoranthene	ND		ug/kg	7.37		1
Benzo(k)fluoranthene	ND		ug/kg	7.37		1
Benzo(a)pyrene	ND		ug/kg	7.37		1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	7.37		1
Dibenz(a,h)anthracene	ND		ug/kg	7.37		1
Benzo(ghi)perylene	ND		ug/kg	7.37		1
Cl2-BZ#8	ND		ug/kg	0.737		1
Cl3-BZ#18	ND		ug/kg	0.737		1
Cl3-BZ#28	ND		ug/kg	0.737		1
Cl4-BZ#44	ND		ug/kg	0.737		1
Cl4-BZ#49	ND		ug/kg	0.737		1
Cl4-BZ#52	ND		ug/kg	0.737		1
CI4-BZ#66	ND		ug/kg	0.737		1
CI5-BZ#87	ND		ug/kg	0.737		1
Cl5-BZ#101	ND		ug/kg	0.737		1
CI5-BZ#105	ND		ug/kg	0.737		1
CI5-BZ#118	ND		ug/kg	0.737		1
Cl6-BZ#128	ND		ug/kg	0.737		1
Cl6-BZ#138	ND		ug/kg	0.737		1
Cl6-BZ#153	ND		ug/kg	0.737		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 10:10

Client ID: C-6 (0-48) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Mai	nsfield Lab					
CI7-BZ#170	ND		ug/kg	0.737		1
CI7-BZ#180	ND		ug/kg	0.737		1
CI7-BZ#183	ND		ug/kg	0.737		1
CI7-BZ#184	ND		ug/kg	0.737		1
CI7-BZ#187	ND		ug/kg	0.737		1
CI8-BZ#195	ND		ug/kg	0.737		1
Cl9-BZ#206	ND		ug/kg	0.737		1
Cl10-BZ#209	ND		ug/kg	0.737		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	47		30-150	
Pyrene-d10	54		30-150	
Benzo(b)fluoranthene-d12	56		30-150	
DBOB	58		30-150	
BZ 198	61		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-02
Client ID: C-7 (0-48)
Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 17:57

Analyst: MS Percent Solids: 72% Date Collected: 09/20/16 12:02
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630

10/09/16

Cleanup Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by GC/M	S - Mansfield Lab						
Naphthalene	ND		ug/kg	6.51		1	
Acenaphthylene	ND		ug/kg	6.51		1	
Acenaphthene	ND		ug/kg	6.51		1	
Fluorene	ND		ug/kg	6.51		1	
Phenanthrene	6.97		ug/kg	6.51		1	
Anthracene	ND		ug/kg	6.51		1	
Fluoranthene	18.9		ug/kg	6.51		1	
Pyrene	17.9		ug/kg	6.51		1	
Benz(a)anthracene	17.2		ug/kg	6.51		1	
Chrysene	15.5		ug/kg	6.51		1	
Benzo(b)fluoranthene	10.8		ug/kg	6.51		1	
Benzo(k)fluoranthene	12.6		ug/kg	6.51		1	
Benzo(a)pyrene	15.3		ug/kg	6.51		1	
Indeno(1,2,3-cd)Pyrene	7.44		ug/kg	6.51		1	
Dibenz(a,h)anthracene	ND		ug/kg	6.51		1	
Benzo(ghi)perylene	6.67		ug/kg	6.51		1	
CI2-BZ#8	ND		ug/kg	0.651		1	
Cl3-BZ#18	ND		ug/kg	0.651		1	
Cl3-BZ#28	ND		ug/kg	0.651		1	
CI4-BZ#44	ND		ug/kg	0.651		1	
CI4-BZ#49	ND		ug/kg	0.651		1	
Cl4-BZ#52	ND		ug/kg	0.651		1	
CI4-BZ#66	ND		ug/kg	0.651		1	
CI5-BZ#87	ND		ug/kg	0.651		1	
CI5-BZ#101	ND		ug/kg	0.651		1	
CI5-BZ#105	ND		ug/kg	0.651		1	
CI5-BZ#118	ND		ug/kg	0.651		1	
CI6-BZ#128	ND		ug/kg	0.651		1	
CI6-BZ#138	ND		ug/kg	0.651		1	
CI6-BZ#153	ND		ug/kg	0.651		1	
						_	

1

1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:02

Client ID: C-7 (0-48) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab CI7-BZ#170 ND 0.651 ug/kg 1 ND 0.651 1 CI7-BZ#180 ug/kg CI7-BZ#183 ND 1 0.651 ug/kg --CI7-BZ#184 ND 0.651 1 ug/kg CI7-BZ#187 ND ug/kg 0.651 1 CI8-BZ#195 ND 1 0.651 ug/kg --

0.651

0.651

ug/kg

ug/kg

--

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	48		30-150	
Pyrene-d10	60		30-150	
Benzo(b)fluoranthene-d12	63		30-150	
DBOB	60		30-150	
BZ 198	63		30-150	

ND

ND

CI9-BZ#206

CI10-BZ#209

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-03

Client ID: C-1

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 18:27

Analyst: MS Percent Solids: 59% Date Collected: 09/20/16 12:58
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by G	C/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	8.37		1
Acenaphthylene	ND		ug/kg	8.37		1
Acenaphthene	ND		ug/kg	8.37		1
Fluorene	ND		ug/kg	8.37		1
Phenanthrene	8.40		ug/kg	8.37		1
Anthracene	ND		ug/kg	8.37		1
Fluoranthene	17.4		ug/kg	8.37		1
Pyrene	16.4		ug/kg	8.37		1
Benz(a)anthracene	9.65		ug/kg	8.37		1
Chrysene	9.46		ug/kg	8.37		1
Benzo(b)fluoranthene	11.6		ug/kg	8.37		1
Benzo(k)fluoranthene	10.2		ug/kg	8.37		1
Benzo(a)pyrene	11.6		ug/kg	8.37		1
Indeno(1,2,3-cd)Pyrene	9.30		ug/kg	8.37		1
Dibenz(a,h)anthracene	ND		ug/kg	8.37		1
Benzo(ghi)perylene	9.20		ug/kg	8.37		1
CI2-BZ#8	ND		ug/kg	0.837		1
CI3-BZ#18	ND		ug/kg	0.837		1
Cl3-BZ#28	ND		ug/kg	0.837		1
CI4-BZ#44	ND		ug/kg	0.837		1
CI4-BZ#49	ND		ug/kg	0.837		1
CI4-BZ#52	ND		ug/kg	0.837		1
CI4-BZ#66	ND		ug/kg	0.837		1
CI5-BZ#87	ND		ug/kg	0.837		1
CI5-BZ#101	ND		ug/kg	0.837		1
CI5-BZ#105	ND		ug/kg	0.837		1
CI5-BZ#118	ND		ug/kg	0.837		1
CI6-BZ#128	ND		ug/kg	0.837		1
CI6-BZ#138	ND		ug/kg	0.837		1
CI6-BZ#153	ND		ug/kg	0.837		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-03

Client ID: C-1

Sample Location: LITTLE BAY

Date Collected: 09/20/16 12:58

Date Received: 09/20/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Mar	nsfield Lab					
CI7-BZ#170	ND		ug/kg	0.837		1
CI7-BZ#180	ND		ug/kg	0.837		1
CI7-BZ#183	ND		ug/kg	0.837		1
CI7-BZ#184	ND		ug/kg	0.837		1
CI7-BZ#187	ND		ug/kg	0.837		1
CI8-BZ#195	ND		ug/kg	0.837		1
CI9-BZ#206	ND		ug/kg	0.837		1
Cl10-BZ#209	ND		ug/kg	0.837		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	35		30-150	
Pyrene-d10	46		30-150	
Benzo(b)fluoranthene-d12	48		30-150	
DBOB	46		30-150	
BZ 198	45		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-04 Date Collect

Client ID: C-2

Sample Location: LITTLE BAY
Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 18:57

Analyst: MS Percent Solids: 61% Date Collected: 09/20/16 13:05
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by GC	C/MS - Mansfield Lab						
Naphthalene	ND		ug/kg	7.88		1	
Acenaphthylene	ND		ug/kg	7.88		1	
Acenaphthene	ND		ug/kg	7.88		1	
Fluorene	ND		ug/kg	7.88		1	
Phenanthrene	ND		ug/kg	7.88		1	
Anthracene	ND		ug/kg	7.88		1	
Fluoranthene	10.4		ug/kg	7.88		1	
Pyrene	11.7		ug/kg	7.88		1	
Benz(a)anthracene	ND		ug/kg	7.88		1	
Chrysene	ND		ug/kg	7.88		1	
Benzo(b)fluoranthene	ND		ug/kg	7.88		1	
Benzo(k)fluoranthene	ND		ug/kg	7.88		1	
Benzo(a)pyrene	ND		ug/kg	7.88		1	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	7.88		1	
Dibenz(a,h)anthracene	ND		ug/kg	7.88		1	
Benzo(ghi)perylene	ND		ug/kg	7.88		1	
Cl2-BZ#8	ND		ug/kg	0.788		1	
Cl3-BZ#18	ND		ug/kg	0.788		1	
Cl3-BZ#28	ND		ug/kg	0.788		1	
Cl4-BZ#44	ND		ug/kg	0.788		1	
Cl4-BZ#49	ND		ug/kg	0.788		1	
Cl4-BZ#52	ND		ug/kg	0.788		1	
Cl4-BZ#66	ND		ug/kg	0.788		1	
CI5-BZ#87	ND		ug/kg	0.788		1	
Cl5-BZ#101	ND		ug/kg	0.788		1	
Cl5-BZ#105	ND		ug/kg	0.788		1	
Cl5-BZ#118	ND		ug/kg	0.788		1	
CI6-BZ#128	ND		ug/kg	0.788		1	
CI6-BZ#138	ND		ug/kg	0.788		1	
Cl6-BZ#153	ND		ug/kg	0.788		1	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-04

Client ID: C-2

Sample Location: LITTLE BAY

Date Collected: 09/20/16 13:05

Date Received: 09/20/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab						
CI7-BZ#170	ND		ug/kg	0.788		1
CI7-BZ#180	ND		ug/kg	0.788		1
CI7-BZ#183	ND		ug/kg	0.788		1
CI7-BZ#184	ND		ug/kg	0.788		1
CI7-BZ#187	ND		ug/kg	0.788		1
CI8-BZ#195	ND		ug/kg	0.788		1
CI9-BZ#206	ND		ug/kg	0.788		1
Cl10-BZ#209	ND		ug/kg	0.788		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	45		30-150	
Pyrene-d10	54		30-150	
Benzo(b)fluoranthene-d12	57		30-150	
DBOB	54		30-150	
BZ 198	56		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-05

Client ID: C-3

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 19:27

Analyst: MS Percent Solids: 63% Date Collected: 09/20/16 13:36
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by G	C/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	7.63		1
Acenaphthylene	ND		ug/kg	7.63		1
Acenaphthene	18.4		ug/kg	7.63		1
Fluorene	ND		ug/kg	7.63		1
Phenanthrene	13.5		ug/kg	7.63		1
Anthracene	9.28		ug/kg	7.63		1
Fluoranthene	39.4		ug/kg	7.63		1
Pyrene	36.6		ug/kg	7.63		1
Benz(a)anthracene	19.8		ug/kg	7.63		1
Chrysene	21.4		ug/kg	7.63		1
Benzo(b)fluoranthene	22.6		ug/kg	7.63		1
Benzo(k)fluoranthene	20.2		ug/kg	7.63		1
Benzo(a)pyrene	23.4		ug/kg	7.63		1
Indeno(1,2,3-cd)Pyrene	16.5		ug/kg	7.63		1
Dibenz(a,h)anthracene	ND		ug/kg	7.63		1
Benzo(ghi)perylene	16.0		ug/kg	7.63		1
CI2-BZ#8	ND		ug/kg	0.763		1
CI3-BZ#18	ND		ug/kg	0.763		1
Cl3-BZ#28	ND		ug/kg	0.763		1
CI4-BZ#44	ND		ug/kg	0.763		1
CI4-BZ#49	ND		ug/kg	0.763		1
CI4-BZ#52	ND		ug/kg	0.763		1
CI4-BZ#66	ND		ug/kg	0.763		1
CI5-BZ#87	ND		ug/kg	0.763		1
CI5-BZ#101	ND		ug/kg	0.763		1
CI5-BZ#105	ND		ug/kg	0.763		1
CI5-BZ#118	ND		ug/kg	0.763		1
Cl6-BZ#128	ND		ug/kg	0.763		1
CI6-BZ#138	ND		ug/kg	0.763		1
CI6-BZ#153	ND		ug/kg	0.763		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-05

Client ID: C-3

Sample Location: LITTLE BAY

Date Collected: 09/20/16 13:36

Date Received: 09/20/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab						
CI7-BZ#170	ND		ug/kg	0.763		1
CI7-BZ#180	ND		ug/kg	0.763		1
CI7-BZ#183	ND		ug/kg	0.763		1
CI7-BZ#184	ND		ug/kg	0.763		1
CI7-BZ#187	ND		ug/kg	0.763		1
CI8-BZ#195	ND		ug/kg	0.763		1
Cl9-BZ#206	ND		ug/kg	0.763		1
Cl10-BZ#209	ND		ug/kg	0.763		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	44		30-150	
Pyrene-d10	55		30-150	
Benzo(b)fluoranthene-d12	57		30-150	
DBOB	54		30-150	
BZ 198	58		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-06

Client ID: C-4

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 19:57

Analyst: MS Percent Solids: 65% Date Collected: 09/20/16 14:05
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by C	GC/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	7.13		1
Acenaphthylene	ND		ug/kg	7.13		1
Acenaphthene	ND		ug/kg	7.13		1
Fluorene	ND		ug/kg	7.13		1
Phenanthrene	ND		ug/kg	7.13		1
Anthracene	ND		ug/kg	7.13		1
Fluoranthene	8.65		ug/kg	7.13		1
Pyrene	8.86		ug/kg	7.13		1
Benz(a)anthracene	ND		ug/kg	7.13		1
Chrysene	ND		ug/kg	7.13		1
Benzo(b)fluoranthene	ND		ug/kg	7.13		1
Benzo(k)fluoranthene	ND		ug/kg	7.13		1
Benzo(a)pyrene	ND		ug/kg	7.13		1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	7.13		1
Dibenz(a,h)anthracene	ND		ug/kg	7.13		1
Benzo(ghi)perylene	ND		ug/kg	7.13		1
CI2-BZ#8	ND		ug/kg	0.713		1
Cl3-BZ#18	ND		ug/kg	0.713		1
Cl3-BZ#28	ND		ug/kg	0.713		1
CI4-BZ#44	ND		ug/kg	0.713		1
CI4-BZ#49	ND		ug/kg	0.713		1
Cl4-BZ#52	ND		ug/kg	0.713		1
CI4-BZ#66	ND		ug/kg	0.713		1
CI5-BZ#87	ND		ug/kg	0.713		1
CI5-BZ#101	ND		ug/kg	0.713		1
CI5-BZ#105	ND		ug/kg	0.713		1
CI5-BZ#118	ND		ug/kg	0.713		1
CI6-BZ#128	ND		ug/kg	0.713		1
CI6-BZ#138	ND		ug/kg	0.713		1
CI6-BZ#153	ND		ug/kg	0.713		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-06

Client ID: C-4

Sample Location: LITTLE BAY

Date Collected: 09/20/16 14:05

Date Received: 09/20/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Mar	nsfield Lab					
CI7-BZ#170	ND		ug/kg	0.713		1
CI7-BZ#180	ND		ug/kg	0.713		1
CI7-BZ#183	ND		ug/kg	0.713		1
CI7-BZ#184	ND		ug/kg	0.713		1
CI7-BZ#187	ND		ug/kg	0.713		1
CI8-BZ#195	ND		ug/kg	0.713		1
CI9-BZ#206	ND		ug/kg	0.713		1
Cl10-BZ#209	ND		ug/kg	0.713		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	65		30-150	
Pyrene-d10	77		30-150	
Benzo(b)fluoranthene-d12	81		30-150	
DBOB	78		30-150	
BZ 198	76		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-07
Client ID: C-6 (48-61)
Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 20:27

Analyst: MS Percent Solids: 65% Date Collected: 09/20/16 10:10
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630

10/09/16

Cleanup Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC	MS - Mansfield Lab					
Naphthalene	ND		ug/kg	7.60		1
Acenaphthylene	ND		ug/kg	7.60		1
Acenaphthene	27.5		ug/kg	7.60		1
Fluorene	ND		ug/kg	7.60		1
Phenanthrene	ND		ug/kg	7.60		1
Anthracene	ND		ug/kg	7.60		1
Fluoranthene	ND		ug/kg	7.60		1
Pyrene	ND		ug/kg	7.60		1
Benz(a)anthracene	ND		ug/kg	7.60		1
Chrysene	ND		ug/kg	7.60		1
Benzo(b)fluoranthene	ND		ug/kg	7.60		1
Benzo(k)fluoranthene	ND		ug/kg	7.60		1
Benzo(a)pyrene	ND		ug/kg	7.60		1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	7.60		1
Dibenz(a,h)anthracene	ND		ug/kg	7.60		1
Benzo(ghi)perylene	ND		ug/kg	7.60		1
CI2-BZ#8	ND		ug/kg	0.760		1
Cl3-BZ#18	ND		ug/kg	0.760		1
Cl3-BZ#28	ND		ug/kg	0.760		1
CI4-BZ#44	ND		ug/kg	0.760		1
CI4-BZ#49	ND		ug/kg	0.760		1
CI4-BZ#52	ND		ug/kg	0.760		1
CI4-BZ#66	ND		ug/kg	0.760		1
CI5-BZ#87	ND		ug/kg	0.760		1
CI5-BZ#101	ND		ug/kg	0.760		1
CI5-BZ#105	ND		ug/kg	0.760		1
CI5-BZ#118	ND		ug/kg	0.760		1
Cl6-BZ#128	ND		ug/kg	0.760		1
CI6-BZ#138	ND		ug/kg	0.760		1
CI6-BZ#153	ND		ug/kg	0.760		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 10:10

Client ID: C-6 (48-61) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by GC/I	MS - Mansfield Lab						
CI7-BZ#170	ND			0.760		1	
			ug/kg			l	
CI7-BZ#180	ND		ug/kg	0.760		1	
CI7-BZ#183	ND		ug/kg	0.760		1	
CI7-BZ#184	ND		ug/kg	0.760		1	
CI7-BZ#187	ND		ug/kg	0.760		1	
CI8-BZ#195	ND		ug/kg	0.760		1	
CI9-BZ#206	ND		ug/kg	0.760		1	
Cl10-BZ#209	ND		ug/kg	0.760		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	59		30-150	
Pyrene-d10	81		30-150	
Benzo(b)fluoranthene-d12	86		30-150	
DBOB	77		30-150	
BZ 198	79		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-08
Client ID: C-7 (48-54)
Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 20:58

Analyst: MS Percent Solids: 71% Date Collected: 09/20/16 12:02
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:28
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by GC/MS	- Mansfield Lab						
Naphthalene	ND		ug/kg	7.04		1	
Acenaphthylene	ND		ug/kg	7.04		1	
Acenaphthene	ND		ug/kg	7.04		1	
Fluorene	ND		ug/kg	7.04		1	
Phenanthrene	ND		ug/kg	7.04		1	
Anthracene	ND		ug/kg	7.04		1	
Fluoranthene	ND		ug/kg	7.04		1	
Pyrene	ND		ug/kg	7.04		1	
Benz(a)anthracene	ND		ug/kg	7.04		1	
Chrysene	ND		ug/kg	7.04		1	
Benzo(b)fluoranthene	ND		ug/kg	7.04		1	
Benzo(k)fluoranthene	ND		ug/kg	7.04		1	
Benzo(a)pyrene	ND		ug/kg	7.04		1	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	7.04		1	
Dibenz(a,h)anthracene	ND		ug/kg	7.04		1	
Benzo(ghi)perylene	ND		ug/kg	7.04		1	
CI2-BZ#8	1.10		ug/kg	0.704		1	
Cl3-BZ#18	1.16		ug/kg	0.704		1	
Cl3-BZ#28	ND		ug/kg	0.704		1	
Cl4-BZ#44	ND		ug/kg	0.704		1	
Cl4-BZ#49	ND		ug/kg	0.704		1	
Cl4-BZ#52	ND		ug/kg	0.704		1	
CI4-BZ#66	ND		ug/kg	0.704		1	
CI5-BZ#87	ND		ug/kg	0.704		1	
CI5-BZ#101	ND		ug/kg	0.704		1	
CI5-BZ#105	ND		ug/kg	0.704		1	
CI5-BZ#118	ND		ug/kg	0.704		1	
CI6-BZ#128	ND		ug/kg	0.704		1	
CI6-BZ#138	ND		ug/kg	0.704		1	
Cl6-BZ#153	ND		ug/kg	0.704		1	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-08 Date Collected: 09/20/16 12:02

Client ID: C-7 (48-54) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
RIM PAHs/PCB Congeners by GC/MS - Mar	RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab							
CI7-BZ#170	ND		ug/kg	0.704		1		
CI7-BZ#180	ND		ug/kg	0.704		1		
CI7-BZ#183	ND		ug/kg	0.704		1		
CI7-BZ#184	ND		ug/kg	0.704		1		
CI7-BZ#187	ND		ug/kg	0.704		1		
CI8-BZ#195	ND		ug/kg	0.704		1		
CI9-BZ#206	ND		ug/kg	0.704		1		
Cl10-BZ#209	ND		ug/kg	0.704		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	59		30-150	
Pyrene-d10	74		30-150	
Benzo(b)fluoranthene-d12	77		30-150	
DBOB	73		30-150	
BZ 198	75		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-09

Client ID: C-5

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 21:28

Analyst: MS Percent Solids: 68% Date Collected: 09/21/16 08:35
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:30
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by G	C/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	7.22		1
Acenaphthylene	ND		ug/kg	7.22		1
Acenaphthene	ND		ug/kg	7.22		1
Fluorene	ND		ug/kg	7.22		1
Phenanthrene	ND		ug/kg	7.22		1
Anthracene	ND		ug/kg	7.22		1
Fluoranthene	12.8		ug/kg	7.22		1
Pyrene	11.8		ug/kg	7.22		1
Benz(a)anthracene	9.22		ug/kg	7.22		1
Chrysene	7.71		ug/kg	7.22		1
Benzo(b)fluoranthene	7.35		ug/kg	7.22		1
Benzo(k)fluoranthene	ND		ug/kg	7.22		1
Benzo(a)pyrene	8.55		ug/kg	7.22		1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	7.22		1
Dibenz(a,h)anthracene	ND		ug/kg	7.22		1
Benzo(ghi)perylene	ND		ug/kg	7.22		1
CI2-BZ#8	ND		ug/kg	0.722		1
CI3-BZ#18	ND		ug/kg	0.722		1
CI3-BZ#28	ND		ug/kg	0.722		1
CI4-BZ#44	ND		ug/kg	0.722		1
CI4-BZ#49	ND		ug/kg	0.722		1
CI4-BZ#52	ND		ug/kg	0.722		1
CI4-BZ#66	ND		ug/kg	0.722		1
CI5-BZ#87	ND		ug/kg	0.722		1
CI5-BZ#101	ND		ug/kg	0.722		1
CI5-BZ#105	ND		ug/kg	0.722		1
CI5-BZ#118	ND		ug/kg	0.722		1
Cl6-BZ#128	ND		ug/kg	0.722		1
CI6-BZ#138	ND		ug/kg	0.722		1
CI6-BZ#153	ND		ug/kg	0.722		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-09

Client ID: C-5

Sample Location: LITTLE BAY

Date Collected: 09/21/16 08:35

Date Received: 09/21/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab								
CI7-BZ#170	ND		ug/kg	0.722		1		
CI7-BZ#180	ND		ug/kg	0.722		1		
CI7-BZ#183	ND		ug/kg	0.722		1		
CI7-BZ#184	ND		ug/kg	0.722		1		
CI7-BZ#187	ND		ug/kg	0.722		1		
CI8-BZ#195	ND		ug/kg	0.722		1		
CI9-BZ#206	ND		ug/kg	0.722		1		
Cl10-BZ#209	ND		ug/kg	0.722		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	53		30-150	
Pyrene-d10	65		30-150	
Benzo(b)fluoranthene-d12	69		30-150	
DBOB	62		30-150	
BZ 198	66		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-10

Client ID: C-8

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 21:58

Analyst: MS Percent Solids: 70%

Date Collected:	09/21/16 13:00
Date Received:	09/21/16
Field Prep:	Not Specified
Extraction Method	I:EPA 3570
Extraction Date:	09/29/16 18:30
Cleanup Method:	EPA 3630
Cleanup Date:	10/09/16

Result	Qualifier	Units	RL	MDL	Dilution Factor
MS - Mansfield Lab					
ND		ug/kg	6.76		1
11.0			6.76		1
11.0			6.76		1
13.0		ug/kg	6.76		1
9.37		ug/kg	6.76		1
ND		ug/kg	6.76		1
10.1		ug/kg	6.76		1
10.2		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	6.76		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
ND		ug/kg	0.676		1
	ND 11.0 11.0 13.0 9.37 ND 10.1 10.2 ND	ND 11.0 11.0 11.0 13.0 9.37 ND 10.1 10.2 ND ND ND ND ND ND ND ND ND N	ND	ND ug/kg 6.76 11.0 ug/kg 6.76 11.0 ug/kg 6.76 13.0 ug/kg 6.76 9.37 ug/kg 6.76 ND ug/kg 6.76 10.1 ug/kg 6.76 ND ug/kg 0.676	ND ug/kg 6.76 11.0 ug/kg 6.76 11.0 ug/kg 6.76 11.0 ug/kg 6.76 11.0 ug/kg 6.76 13.0 ug/kg 6.76 9.37 ug/kg 6.76 ND ug/kg 6.76 10.1 ug/kg 6.76 10.2 ug/kg 6.76 ND ug/kg 0.676 ND

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-10

Client ID: C-8

Sample Location: LITTLE BAY

Date Collected: 09/21/16 13:00

Date Received: 09/21/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Mar	nsfield Lab					
CI7-BZ#170	ND		ug/kg	0.676		1
CI7-BZ#180	ND		ug/kg	0.676		1
CI7-BZ#183	ND		ug/kg	0.676		1
CI7-BZ#184	ND		ug/kg	0.676		1
CI7-BZ#187	ND		ug/kg	0.676		1
CI8-BZ#195	ND		ug/kg	0.676		1
CI9-BZ#206	ND		ug/kg	0.676		1
CI10-BZ#209	ND		ug/kg	0.676		1

Surrogate	% Recovery	eptance riteria	
2-Methylnaphthalene-d10	73	30-150	
Pyrene-d10	84	30-150	
Benzo(b)fluoranthene-d12	88	30-150	
DBOB	92	30-150	
BZ 198	90	30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-11

Client ID: C-9

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 22:28

Analyst: MS Percent Solids: 82%

	Date Collected:	09/21/16 11:45				
	Date Received:	09/21/16				
	Field Prep:	Not Specified				
Extraction Method:EPA 3570						
	Extraction Date:	09/29/16 18:30				
	Cleanup Method:	EPA 3630				
	Cleanup Date:	10/09/16				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by 0	GC/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	5.87		1
Acenaphthylene	ND		ug/kg	5.87		1
Acenaphthene	ND		ug/kg	5.87		1
Fluorene	ND		ug/kg	5.87		1
Phenanthrene	ND		ug/kg	5.87		1
Anthracene	ND		ug/kg	5.87		1
Fluoranthene	ND		ug/kg	5.87		1
Pyrene	ND		ug/kg	5.87		1
Benz(a)anthracene	ND		ug/kg	5.87		1
Chrysene	ND		ug/kg	5.87		1
Benzo(b)fluoranthene	ND		ug/kg	5.87		1
Benzo(k)fluoranthene	ND		ug/kg	5.87		1
Benzo(a)pyrene	ND		ug/kg	5.87		1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	5.87		1
Dibenz(a,h)anthracene	ND		ug/kg	5.87		1
Benzo(ghi)perylene	ND		ug/kg	5.87		1
CI2-BZ#8	ND		ug/kg	0.587		1
Cl3-BZ#18	ND		ug/kg	0.587		1
Cl3-BZ#28	ND		ug/kg	0.587		1
CI4-BZ#44	ND		ug/kg	0.587		1
CI4-BZ#49	ND		ug/kg	0.587		1
CI4-BZ#52	ND		ug/kg	0.587		1
CI4-BZ#66	ND		ug/kg	0.587		1
CI5-BZ#87	ND		ug/kg	0.587		1
Cl5-BZ#101	ND		ug/kg	0.587		1
Cl5-BZ#105	ND		ug/kg	0.587		1
CI5-BZ#118	ND		ug/kg	0.587		1
Cl6-BZ#128	ND		ug/kg	0.587		1
Cl6-BZ#138	ND		ug/kg	0.587		1
Cl6-BZ#153	ND		ug/kg	0.587		1
			-			

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-11

Client ID: C-9

Sample Location: LITTLE BAY

Date Collected: 09/21/16 11:45

Date Received: 09/21/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab								
CI7-BZ#170	ND		ug/kg	0.587		1		
CI7-BZ#180	ND		ug/kg	0.587		1		
CI7-BZ#183	ND		ug/kg	0.587		1		
CI7-BZ#184	ND		ug/kg	0.587		1		
CI7-BZ#187	ND		ug/kg	0.587		1		
CI8-BZ#195	ND		ug/kg	0.587		1		
Cl9-BZ#206	ND		ug/kg	0.587		1		
Cl10-BZ#209	ND		ug/kg	0.587		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	61		30-150	
Pyrene-d10	80		30-150	
Benzo(b)fluoranthene-d12	85		30-150	
DBOB	81		30-150	
BZ 198	86		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-12 Date Collected:

Client ID: C-10

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 22:59

Analyst: MS Percent Solids: 79% Date Collected: 09/21/16 12:20
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:30
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC	C/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	6.25		1
Acenaphthylene	ND		ug/kg	6.25		1
Acenaphthene	ND		ug/kg	6.25		1
Fluorene	ND		ug/kg	6.25		1
Phenanthrene	ND		ug/kg	6.25		1
Anthracene	ND		ug/kg	6.25		1
Fluoranthene	ND		ug/kg	6.25		1
Pyrene	ND		ug/kg	6.25		1
Benz(a)anthracene	ND		ug/kg	6.25		1
Chrysene	ND		ug/kg	6.25		1
Benzo(b)fluoranthene	ND		ug/kg	6.25		1
Benzo(k)fluoranthene	ND		ug/kg	6.25		1
Benzo(a)pyrene	ND		ug/kg	6.25		1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	6.25		1
Dibenz(a,h)anthracene	ND		ug/kg	6.25		1
Benzo(ghi)perylene	ND		ug/kg	6.25		1
CI2-BZ#8	ND		ug/kg	0.625		1
Cl3-BZ#18	ND		ug/kg	0.625		1
Cl3-BZ#28	ND		ug/kg	0.625		1
Cl4-BZ#44	ND		ug/kg	0.625		1
Cl4-BZ#49	ND		ug/kg	0.625		1
Cl4-BZ#52	ND		ug/kg	0.625		1
Cl4-BZ#66	ND		ug/kg	0.625		1
Cl5-BZ#87	ND		ug/kg	0.625		1
Cl5-BZ#101	ND		ug/kg	0.625		1
CI5-BZ#105	ND		ug/kg	0.625		1
CI5-BZ#118	ND		ug/kg	0.625		1
CI6-BZ#128	ND		ug/kg	0.625		1
CI6-BZ#138	ND		ug/kg	0.625		1
CI6-BZ#153	ND		ug/kg	0.625		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-12

Client ID: C-10

Sample Location: LITTLE BAY

Date Collected: 09/21/16 12:20

Date Received: 09/21/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab							
CI7-BZ#170	ND		ug/kg	0.625		1	
CI7-BZ#180	ND		ug/kg	0.625		1	
CI7-BZ#183	ND		ug/kg	0.625		1	
CI7-BZ#184	ND		ug/kg	0.625		1	
CI7-BZ#187	ND		ug/kg	0.625		1	
CI8-BZ#195	ND		ug/kg	0.625		1	
CI9-BZ#206	ND		ug/kg	0.625		1	
Cl10-BZ#209	ND		ug/kg	0.625		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	56		30-150	
Pyrene-d10	77		30-150	
Benzo(b)fluoranthene-d12	83		30-150	
DBOB	77		30-150	
BZ 198	81		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-13
Client ID: C-11 (0-48)
Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 23:30

Analyst: MS Percent Solids: 69% Date Collected: 09/21/16 09:03
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:30
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC	/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	7.21		1
Acenaphthylene	ND		ug/kg	7.21		1
Acenaphthene	ND		ug/kg	7.21		1
Fluorene	ND		ug/kg	7.21		1
Phenanthrene	10.7		ug/kg	7.21		1
Anthracene	ND		ug/kg	7.21		1
Fluoranthene	20.4		ug/kg	7.21		1
Pyrene	28.6		ug/kg	7.21		1
Benz(a)anthracene	16.4		ug/kg	7.21		1
Chrysene	14.8		ug/kg	7.21		1
Benzo(b)fluoranthene	19.6		ug/kg	7.21		1
Benzo(k)fluoranthene	19.0		ug/kg	7.21		1
Benzo(a)pyrene	22.6		ug/kg	7.21		1
Indeno(1,2,3-cd)Pyrene	18.8		ug/kg	7.21		1
Dibenz(a,h)anthracene	ND		ug/kg	7.21		1
Benzo(ghi)perylene	19.3		ug/kg	7.21		1
Cl2-BZ#8	ND		ug/kg	0.721		1
Cl3-BZ#18	ND		ug/kg	0.721		1
Cl3-BZ#28	ND		ug/kg	0.721		1
CI4-BZ#44	ND		ug/kg	0.721		1
CI4-BZ#49	ND		ug/kg	0.721		1
Cl4-BZ#52	ND		ug/kg	0.721		1
CI4-BZ#66	ND		ug/kg	0.721		1
CI5-BZ#87	ND		ug/kg	0.721		1
CI5-BZ#101	ND		ug/kg	0.721		1
CI5-BZ#105	ND		ug/kg	0.721		1
Cl5-BZ#118	ND		ug/kg	0.721		1
Cl6-BZ#128	ND		ug/kg	0.721		1
Cl6-BZ#138	ND		ug/kg	0.721		1
Cl6-BZ#153	ND		ug/kg	0.721		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-13 Date Collected: 09/21/16 09:03

Client ID: C-11 (0-48) Date Received: 09/21/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by	y GC/MS - Mansfield Lab						
CI7-BZ#170	ND		ug/kg	0.721		1	
CI7-BZ#180	ND		ug/kg	0.721		1	
CI7-BZ#183	ND		ug/kg	0.721		1	
CI7-BZ#184	ND		ug/kg	0.721		1	
CI7-BZ#187	ND		ug/kg	0.721		1	
CI8-BZ#195	ND		ug/kg	0.721		1	
CI9-BZ#206	ND		ug/kg	0.721		1	
CI10-BZ#209	ND		ug/kg	0.721		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	55		30-150	
Pyrene-d10	71		30-150	
Benzo(b)fluoranthene-d12	75		30-150	
DBOB	72		30-150	
BZ 198	76		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-14

Client ID: C-12

Sample Location: LITTLE BAY Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/25/16 00:00

Analyst: MS Percent Solids: 75% Date Collected: 09/21/16 08:44

Date Received: 09/21/16

Field Prep: Not Specified

Extraction Method: EPA 3570

Extraction Date: 09/29/16 18:30

Cleanup Method: EPA 3630

Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by G	C/MS - Mansfield Lab					
Naphthalene	ND		ug/kg	6.48		1
Acenaphthylene	ND		ug/kg	6.48		1
Acenaphthene	ND		ug/kg	6.48		1
Fluorene	6.75		ug/kg	6.48		1
Phenanthrene	11.9		ug/kg	6.48		1
Anthracene	ND		ug/kg	6.48		1
Fluoranthene	19.7		ug/kg	6.48		1
Pyrene	20.7		ug/kg	6.48		1
Benz(a)anthracene	14.1		ug/kg	6.48		1
Chrysene	14.8		ug/kg	6.48		1
Benzo(b)fluoranthene	13.8		ug/kg	6.48		1
Benzo(k)fluoranthene	13.8		ug/kg	6.48		1
Benzo(a)pyrene	16.8		ug/kg	6.48		1
Indeno(1,2,3-cd)Pyrene	11.4		ug/kg	6.48		1
Dibenz(a,h)anthracene	ND		ug/kg	6.48		1
Benzo(ghi)perylene	11.0		ug/kg	6.48		1
Cl2-BZ#8	ND		ug/kg	0.648		1
Cl3-BZ#18	ND		ug/kg	0.648		1
Cl3-BZ#28	ND		ug/kg	0.648		1
Cl4-BZ#44	ND		ug/kg	0.648		1
Cl4-BZ#49	ND		ug/kg	0.648		1
Cl4-BZ#52	ND		ug/kg	0.648		1
Cl4-BZ#66	ND		ug/kg	0.648		1
CI5-BZ#87	ND		ug/kg	0.648		1
Cl5-BZ#101	ND		ug/kg	0.648		1
CI5-BZ#105	ND		ug/kg	0.648		1
Cl5-BZ#118	ND		ug/kg	0.648		1
Cl6-BZ#128	ND		ug/kg	0.648		1
Cl6-BZ#138	ND		ug/kg	0.648		1
CI6-BZ#153	ND		ug/kg	0.648		1

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-14

Client ID: C-12

Sample Location: LITTLE BAY

Date Collected: 09/21/16 08:44

Date Received: 09/21/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab							
CI7-BZ#170	ND		ug/kg	0.648		1	
CI7-BZ#180	ND		ug/kg	0.648		1	
CI7-BZ#183	ND		ug/kg	0.648		1	
CI7-BZ#184	ND		ug/kg	0.648		1	
CI7-BZ#187	ND		ug/kg	0.648		1	
CI8-BZ#195	ND		ug/kg	0.648		1	
CI9-BZ#206	ND		ug/kg	0.648		1	
CI10-BZ#209	ND		ug/kg	0.648		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	49		30-150	
Pyrene-d10	69		30-150	
Benzo(b)fluoranthene-d12	75		30-150	
DBOB	71		30-150	
BZ 198	76		30-150	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-15
Client ID: C-11 (48-89)
Sample Location: LITTLE BAY
Matrix: Sediment

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/25/16 00:30

Analyst: MS Percent Solids: 67% Date Collected: 09/21/16 09:03
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3570
Extraction Date: 09/29/16 18:30
Cleanup Method: EPA 3630
Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
RIM PAHs/PCB Congeners by G0	C/MS - Mansfield Lab						
Naphthalene	ND		ug/kg	6.85		1	
Acenaphthylene	ND		ug/kg	6.85		1	
Acenaphthene	ND		ug/kg	6.85		1	
Fluorene	ND		ug/kg	6.85		1	
Phenanthrene	ND		ug/kg	6.85		1	
Anthracene	ND		ug/kg	6.85		1	
Fluoranthene	ND		ug/kg	6.85		1	
Pyrene	ND		ug/kg	6.85		1	
Benz(a)anthracene	ND		ug/kg	6.85		1	
Chrysene	ND		ug/kg	6.85		1	
Benzo(b)fluoranthene	ND		ug/kg	6.85		1	
Benzo(k)fluoranthene	ND		ug/kg	6.85		1	
Benzo(a)pyrene	ND		ug/kg	6.85		1	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	6.85		1	
Dibenz(a,h)anthracene	ND		ug/kg	6.85		1	
Benzo(ghi)perylene	ND		ug/kg	6.85		1	
CI2-BZ#8	ND		ug/kg	0.685		1	
Cl3-BZ#18	ND		ug/kg	0.685		1	
Cl3-BZ#28	ND		ug/kg	0.685		1	
CI4-BZ#44	ND		ug/kg	0.685		1	
CI4-BZ#49	ND		ug/kg	0.685		1	
CI4-BZ#52	ND		ug/kg	0.685		1	
CI4-BZ#66	ND		ug/kg	0.685		1	
CI5-BZ#87	ND		ug/kg	0.685		1	
CI5-BZ#101	ND		ug/kg	0.685		1	
CI5-BZ#105	ND		ug/kg	0.685		1	
Cl5-BZ#118	ND		ug/kg	0.685		1	
Cl6-BZ#128	ND		ug/kg	0.685		1	
CI6-BZ#138	ND		ug/kg	0.685		1	
Cl6-BZ#153	ND		ug/kg	0.685		1	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/21/16 09:03

Client ID: C-11 (48-89) Date Received: 09/21/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
RIM PAHs/PCB Congeners by GC/MS - Ma	nsfield Lab					
CI7-BZ#170	ND		ug/kg	0.685		1
CI7-BZ#180	ND		ug/kg	0.685		1
CI7-BZ#183	ND		ug/kg	0.685		1
CI7-BZ#184	ND		ug/kg	0.685		1
CI7-BZ#187	ND		ug/kg	0.685		1
CI8-BZ#195	ND		ug/kg	0.685		1
CI9-BZ#206	ND		ug/kg	0.685		1
Cl10-BZ#209	ND		ug/kg	0.685		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Methylnaphthalene-d10	51		30-150	
Pyrene-d10	64		30-150	
Benzo(b)fluoranthene-d12	70		30-150	
DBOB	64		30-150	
BZ 198	66		30-150	

Project Name: Lab Number: SRP L1629727

Project Number: 23840.003 Report Date: 10/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 13:01

Analyst: MS

Extraction Method: EPA 3570 09/29/16 18:28 Extraction Date: EPA 3630 Cleanup Method: Cleanup Date: 10/09/16

arameter	Result	Qualifier Units	RL	MDL
IM PAHs/PCB Congeners by	y GC/MS - Mans	field Lab for sample(s)	01-15	Batch: WG937275-1
Naphthalene	ND	ug/kg	5.00	
Acenaphthylene	ND	ug/kg	5.00	
Acenaphthene	ND	ug/kg	5.00	
Fluorene	ND	ug/kg	5.00	
Phenanthrene	ND	ug/kg	5.00	
Anthracene	ND	ug/kg	5.00	
Fluoranthene	ND	ug/kg	5.00	
Pyrene	ND	ug/kg	5.00	
Benz(a)anthracene	ND	ug/kg	5.00	
Chrysene	ND	ug/kg	5.00	
Benzo(b)fluoranthene	ND	ug/kg	5.00	
Benzo(k)fluoranthene	ND	ug/kg	5.00	
Benzo(a)pyrene	ND	ug/kg	5.00	
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	5.00	
Dibenz(a,h)anthracene	ND	ug/kg	5.00	
Benzo(ghi)perylene	ND	ug/kg	5.00	
CI2-BZ#8	ND	ug/kg	0.500	
Cl3-BZ#18	ND	ug/kg	0.500	
Cl3-BZ#28	ND	ug/kg	0.500	
CI4-BZ#44	ND	ug/kg	0.500	
CI4-BZ#49	ND	ug/kg	0.500	
CI4-BZ#52	ND	ug/kg	0.500	
CI4-BZ#66	ND	ug/kg	0.500	
CI5-BZ#87	ND	ug/kg	0.500	
CI5-BZ#101	ND	ug/kg	0.500	
CI5-BZ#105	ND	ug/kg	0.500	
Cl5-BZ#118	ND	ug/kg	0.500	
Cl6-BZ#128	ND	ug/kg	0.500	
CI6-BZ#138	ND	ug/kg	0.500	

Project Name: Lab Number: SRP L1629727

Project Number: 23840.003 Report Date: 10/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 105,8270D-SIM/680(M)

Analytical Date: 10/24/16 13:01

Analyst:

MS

Extraction Method: EPA 3570 09/29/16 18:28 Extraction Date: EPA 3630 Cleanup Method: Cleanup Date: 10/09/16

Parameter	Result	Qualifier	Units	RL	N	IDL
RIM PAHs/PCB Congeners by GC/M	MS - Mansf	ield Lab for	sample(s):	01-15	Batch:	WG937275-1
Cl6-BZ#153	ND		ug/kg	0.500		
CI7-BZ#170	ND		ug/kg	0.500		
Cl7-BZ#180	ND		ug/kg	0.500		
CI7-BZ#183	ND		ug/kg	0.500		
CI7-BZ#184	ND		ug/kg	0.500		
CI7-BZ#187	ND		ug/kg	0.500		
Cl8-BZ#195	ND		ug/kg	0.500		
Cl9-BZ#206	ND		ug/kg	0.500		
Cl10-BZ#209	ND		ug/kg	0.500		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Methylnaphthalene-d10	58	30-150
Pyrene-d10	77	30-150
Benzo(b)fluoranthene-d12	85	30-150
DBOB	66	30-150
BZ 198	71	30-150

10/27/16

Lab Control Sample Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003 Lab Number: L1629727

Report Date:

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
RIM PAHs/PCB Congeners by GC/MS - Mar	sfield Lab Asso	ciated sample(s): 01-15 Ba	ntch: WG937275-2 WG93727	5-3	
Naphthalene	54	59	50-120	9	30
Acenaphthylene	58	64	50-120	10	30
Acenaphthene	63	68	50-120	8	30
Fluorene	68	73	50-120	7	30
Phenanthrene	72	76	50-120	5	30
Anthracene	67	71	50-120	6	30
Fluoranthene	75	80	50-120	6	30
Pyrene	72	76	50-120	5	30
Benz(a)anthracene	77	81	50-120	5	30
Chrysene	79	83	50-120	5	30
Benzo(b)fluoranthene	86	91	50-120	6	30
Benzo(k)fluoranthene	83	88	50-120	6	30
Benzo(a)pyrene	81	85	50-120	5	30
Indeno(1,2,3-cd)Pyrene	84	85	50-120	1	30
Dibenz(a,h)anthracene	79	84	50-120	6	30
Benzo(ghi)perylene	81	85	50-120	5	30
Cl2-BZ#8	73	77	50-120	5	30
Cl3-BZ#18	74	76	50-120	3	30
Cl3-BZ#28	77	80	50-120	4	30
CI4-BZ#44	83	86	50-120	4	30
CI4-BZ#49	80	82	50-120	2	30

Project Name: SRP

Project Number: 23840.003

Lab Number: L1629727

Report Date: 10/27/16

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
RIM PAHs/PCB Congeners by GC/MS - Mans	sfield Lab Asso	ociated sample(s):	: 01-15 Bato	ch: WG9372	275-2 WG9372	75-3		
CI4-BZ#52	81		83		50-120	2		30
Cl4-BZ#66	83		85		50-120	2		30
CI5-BZ#87	82		85		50-120	4		30
CI5-BZ#101	82		84		50-120	2		30
CI5-BZ#105	82		85		50-120	4		30
CI5-BZ#118	82		84		50-120	2		30
Cl6-BZ#128	82		84		50-120	2		30
Cl6-BZ#138	82		84		50-120	2		30
Cl6-BZ#153	82		85		50-120	4		30
CI7-BZ#170	84		86		50-120	2		30
CI7-BZ#180	81		84		50-120	4		30
CI7-BZ#183	78		80		50-120	3		30
CI7-BZ#184	79		82		50-120	4		30
CI7-BZ#187	80		82		50-120	2		30
CI8-BZ#195	81		83		50-120	2		30
CI9-BZ#206	81		86		50-120	6		30
Cl10-BZ#209	84		90		50-120	7		30

Project Name: SRP

Lab Number:

L1629727

Project Number:

23840.003

Report Date:

10/27/16

	LCS	LCSD %Recovery					F		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	

RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab Associated sample(s): 01-15 Batch: WG937275-2 WG937275-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Methylnaphthalene-d10	60		64		30-150	
Pyrene-d10	80		83		30-150	
Benzo(b)fluoranthene-d12	88		92		30-150	
DBOB	73		78		30-150	
BZ 198	79		84		30-150	

Matrix Spike Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number:

L1629727

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RI Qual Lin	
RIM PAHs/PCB Congene C-6 (0-48)	rs by GC/MS - Ma	nsfield Lab	Associated s	sample(s): 01-15	QC Ba	atch ID: WO	9937275-6 W	G93727	5-7 QC Sa	mple: L	1629727-01	Client ID
Naphthalene	ND	369	143	39	Q	145	40	Q	50-120	1	;	30
Acenaphthylene	ND	369	156	42	Q	157	43	Q	50-120	1	;	30
Acenaphthene	ND	369	165	45	Q	165	45	Q	50-120	0	;	30
Fluorene	ND	369	172	47	Q	172	47	Q	50-120	0		30
Phenanthrene	ND	369	179	49	Q	179	49	Q	50-120	0		30
Anthracene	ND	369	167	45	Q	168	46	Q	50-120	1	•	30
Fluoranthene	ND	369	184	50	Q	185	51		50-120	1	•	30
Pyrene	ND	369	178	48	Q	176	48	Q	50-120	1	•	30
Benz(a)anthracene	ND	369	196	53		192	52		50-120	2	3	30
Chrysene	ND	369	187	51		187	51		50-120	0	:	30
Benzo(b)fluoranthene	ND	369	191	52		191	52		50-120	0	3	30
Benzo(k)fluoranthene	ND	369	210	57		210	57		50-120	0		30
Benzo(a)pyrene	ND	369	198	54		198	54		50-120	0	;	30
Indeno(1,2,3-cd)Pyrene	ND	369	207	56		210	57		50-120	1	;	30
Dibenz(a,h)anthracene	ND	369	197	53		195	53		50-120	1	;	30
Benzo(ghi)perylene	ND	369	198	54		198	54		50-120	0	;	30
CI2-BZ#8	ND	73.8	37.4	51		36.9	50		50-120	1	;	30
Cl3-BZ#18	ND	73.8	36.3	49	Q	35.7	49	Q	50-120	2	;	30
Cl3-BZ#28	ND	73.8	38.1	52		38.0	52		50-120	0	3	30
Cl4-BZ#44	ND	73.8	40.9	55		39.8	54		50-120	3	;	30
CI4-BZ#49	ND	73.8	38.6	52		37.7	52		50-120	2		30

Matrix Spike Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number:

L1629727

Report Date:

10/27/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
RIM PAHs/PCB Congeners by C-6 (0-48)	y GC/MS - Ma	ansfield Lab	Associated s	ample(s): 01-15	QC Batch ID: WG	937275-6 W	G937275-7 QC San	nple: L	1629727-01 Client ID:
CI4-BZ#52	ND	73.8	40.3	55	39.3	54	50-120	3	30
CI4-BZ#66	ND	73.8	40.5	55	39.3	54	50-120	3	30
CI5-BZ#87	ND	73.8	40.1	54	38.8	53	50-120	3	30
Cl5-BZ#101	ND	73.8	39.1	53	38.9	53	50-120	1	30
Cl5-BZ#105	ND	73.8	40.0	54	39.1	53	50-120	2	30
Cl5-BZ#118	ND	73.8	39.0	53	38.3	52	50-120	2	30
Cl6-BZ#128	ND	73.8	40.4	55	39.3	54	50-120	3	30
Cl6-BZ#138	ND	73.8	40.7	55	39.3	54	50-120	4	30
Cl6-BZ#153	ND	73.8	39.4	53	38.4	52	50-120	3	30
CI7-BZ#170	ND	73.8	43.0	58	41.2	56	50-120	4	30
CI7-BZ#180	ND	73.8	38.6	52	38.6	53	50-120	0	30
CI7-BZ#183	ND	73.8	37.4	51	36.9	50	50-120	1	30
CI7-BZ#184	ND	73.8	38.8	53	37.6	51	50-120	3	30
CI7-BZ#187	ND	73.8	40.8	55	39.1	53	50-120	4	30
CI8-BZ#195	ND	73.8	41.9	57	40.4	55	50-120	4	30
CI9-BZ#206	ND	73.8	40.1	54	39.1	53	50-120	3	30
Cl10-BZ#209	ND	73.8	42.3	57	40.3	55	50-120	5	30

MS MSD Acceptance
Surrogate % Recovery Qualifier % Recovery Qualifier Criteria

2-Methylnaphthalene-d10

42

43

30-150

Matrix Spike Analysis Batch Quality Control

Project Name:

Project Number:

SRP

23840.003

Lab Number:

L1629727

Report Date:

10/27/16

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	

RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab Associated sample(s): 01-15 QC Batch ID: WG937275-6 WG937275-7 QC Sample: L1629727-01 Client ID: C-6 (0-48)

	MS MSD		MSD		Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
BZ 198	56		51		30-150	
Benzo(b)fluoranthene-d12	55		56		30-150	
DBOB	54		53		30-150	
Pyrene-d10	53		53		30-150	

Lab Duplicate Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number:

L1629727

Report Date: 10/27/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
RIM PAHs/PCB Congeners by GC/MS - Mansfield La (0-48)	ab Associated sample(s):	01-15 QC Batch ID:	WG937275-5	QC Sample	e: L1629727-01 Client ID: C-6
Naphthalene	ND	ND	ug/kg	NC	30
Acenaphthylene	ND	ND	ug/kg	NC	30
Acenaphthene	ND	ND	ug/kg	NC	30
Fluorene	ND	ND	ug/kg	NC	30
Phenanthrene	ND	ND	ug/kg	NC	30
Anthracene	ND	ND	ug/kg	NC	30
Fluoranthene	ND	ND	ug/kg	NC	30
Pyrene	ND	ND	ug/kg	NC	30
Benz(a)anthracene	ND	ND	ug/kg	NC	30
Chrysene	ND	ND	ug/kg	NC	30
Benzo(b)fluoranthene	ND	ND	ug/kg	NC	30
Benzo(k)fluoranthene	ND	ND	ug/kg	NC	30
Benzo(a)pyrene	ND	ND	ug/kg	NC	30
Indeno(1,2,3-cd)Pyrene	ND	ND	ug/kg	NC	30
Dibenz(a,h)anthracene	ND	ND	ug/kg	NC	30
Benzo(ghi)perylene	ND	ND	ug/kg	NC	30
CI2-BZ#8	ND	ND	ug/kg	NC	30
Cl3-BZ#18	ND	ND	ug/kg	NC	30
Cl3-BZ#28	ND	ND	ug/kg	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number: L1629727

Report Date: 10/27/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
RIM PAHs/PCB Congeners by GC/MS - (0-48)	Mansfield Lab Associated sample(s):	01-15 QC Batch ID:	WG937275-5	QC Sample	: L1629727-01 Client ID: C-6
Cl4-BZ#44	ND	ND	ug/kg	NC	30
Cl4-BZ#49	ND	ND	ug/kg	NC	30
Cl4-BZ#52	ND	ND	ug/kg	NC	30
Cl4-BZ#66	ND	ND	ug/kg	NC	30
CI5-BZ#87	ND	ND	ug/kg	NC	30
CI5-BZ#101	ND	ND	ug/kg	NC	30
CI5-BZ#105	ND	ND	ug/kg	NC	30
CI5-BZ#118	ND	ND	ug/kg	NC	30
CI6-BZ#128	ND	ND	ug/kg	NC	30
CI6-BZ#138	ND	ND	ug/kg	NC	30
CI6-BZ#153	ND	ND	ug/kg	NC	30
CI7-BZ#170	ND	ND	ug/kg	NC	30
CI7-BZ#180	ND	ND	ug/kg	NC	30
CI7-BZ#183	ND	ND	ug/kg	NC	30
CI7-BZ#184	ND	ND	ug/kg	NC	30
CI7-BZ#187	ND	ND	ug/kg	NC	30
CI8-BZ#195	ND	ND	ug/kg	NC	30
CI9-BZ#206	ND	ND	ug/kg	NC	30
Cl10-BZ#209	ND	ND	ug/kg	NC	30

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1629727

Report Date:

10/27/16

RPD **Parameter Native Sample Duplicate Sample** Units RPD Limits

RIM PAHs/PCB Congeners by GC/MS - Mansfield Lab Associated sample(s): 01-15 QC Batch ID: WG937275-5 QC Sample: L1629727-01 Client ID: C-6

(0-48)

Project Name:

Project Number:

SRP

23840.003

			Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria	
2-Methylnaphthalene-d10	47	48	30-150	
Pyrene-d10	54	56	30-150	
Benzo(b)fluoranthene-d12	56	58	30-150	
DBOB	58	57	30-150	
BZ 198	61	56	30-150	

Project Name:SRPLab Number:L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

S.R.M. Standard Quality Control

Standard Reference Material (SRM): WG937275-4

arameter	% Recovery	Qual	QC Criteria
Phenanthrene	65		40-140
Fluoranthene	68		40-140
Pyrene	57		40-140
Benz(a)anthracene	66		40-140
Chrysene	84		40-140
Benzo(b)fluoranthene	71		40-140
Benzo(k)fluoranthene	117		40-140
Benzo(a)pyrene	59		40-140
Indeno(1,2,3-cd)Pyrene	69		40-140
Dibenz(a,h)anthracene	113		40-140
Benzo(ghi)perylene	69		40-140
Cl2-BZ#8	68		40-140
Cl3-BZ#18	89		40-140
Cl3-BZ#28	43		40-140
Cl4-BZ#44	86		40-140
Cl4-BZ#49	78		40-140
Cl4-BZ#52	69		40-140
CI4-BZ#66	59		40-140
Cl5-BZ#87	87		40-140
Cl5-BZ#101	81		40-140
Cl5-BZ#105	76		40-140
Cl5-BZ#118	77		40-140
Cl6-BZ#128	164	Q	40-140
Cl6-BZ#138	85		40-140
Cl6-BZ#153	64		40-140
CI7-BZ#170	95		40-140
CI7-BZ#180	72		40-140
CI7-BZ#183	68		40-140
CI7-BZ#187	83		40-140
Cl9-BZ#206	89		40-140
Cl10-BZ#209	94		40-140
2-Methylnaphthalene-d10 (Surrogate)	62		30-150
Pyrene-d10 (Surrogate)	83		30-150
Benzo(b)fluoranthene-d12 (Surrogate)	80		30-150
DBOB (Surrogate)	74		30-150
BZ 198 (Surrogate)	93		30-150

PETROLEUM HYDROCARBONS

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

OAIIII EE REGOE

Lab ID: L1629727-01
Client ID: C-6 (0-48)
Sample Location: LITTLE BAY
Matrix: Sediment
Analytical Method: 1,8015C(M)

Analytical Date: 10/03/16 13:47

Analyst: DG Percent Solids: 68% Date Collected: 09/20/16 10:10
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/02/16 12:28

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL
 Dilution Factor

 Petroleum Hydrocarbon Quantitation - Westborough Lab

 TPH
 ND
 ug/kg
 48700
 - 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	102		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-02
 Date Collected:
 09/20/16 12:02

 Client ID:
 C-7 (0-48)
 Date Received:
 09/20/16

 Sample Location:
 LITTLE BAY
 Field Prep:
 Not Specified

Matrix: Sediment Extraction Method: EPA 3546
Analytical Method: 1,8015C(M) Extraction Date: 10/02/16 12:28

Analystical Date: 10/03/16 14:20
Analystic DG

72%

Percent Solids:

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL
 Dilution Factor

 Petroleum Hydrocarbon Quantitation - Westborough Lab

 TPH
 ND
 ug/kg
 45900
 - 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	82		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-03 Date C

Client ID: C-1

Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 1,8015C(M)

Analytical Date: 10/03/16 14:52

Analyst: DG Percent Solids: 59% Date Collected: 09/20/16 12:58
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method:EPA 3546
Extraction Date: 10/02/16 12:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbon Quantitation - Westborough Lab									
ТРН	ND		ug/kg	53500		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	84		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-04

Client ID: C-2

Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 1,8015C(M)

Analytical Date: 10/03/16 15:25

Analyst: DG Percent Solids: 61% Date Collected: 09/20/16 13:05
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method:EPA 3546

Extraction Date: 10/02/16 12:28

ug/kg	54000		1
	ug/kg	ug/kg 54000	ug/kg 54000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	82		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-05

Client ID: C-3

Sample Location: LITTLE BAY
Matrix: Sediment
Analytical Method: 1,8015C(M)
Analytical Date: 10/03/16 15:57

Analyst: DG Percent Solids: 63% Date Collected: 09/20/16 13:36
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/02/16 12:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbon Quantitation - Westborough Lab								
ТРН	ND		ug/kg	51800		1		
			0 0					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	87		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-06

Client ID: C-4

Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 1,8015C(M)

Analytical Date: 10/03/16 15:25

Analyst: DG Percent Solids: 65% Date Collected: 09/20/16 14:05
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/02/16 12:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbon Quantitation - Westborough Lab								
ТРН	ND		ug/kg	50500		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	81		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID:L1629727-07Date CollectClient ID:C-6 (48-61)Date RecollectSample Location:LITTLE BAYField Preprint

Matrix: Sediment
Analytical Method: 1,8015C(M)
Analytical Date: 10/04/16 18:26

Analyst: SR Percent Solids: 65% Date Collected: 09/20/16 10:10
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/03/16 16:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Petroleum Hydrocarbon Quantitation - Westborough Lab							
ТРН	ND		ug/kg	53200		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	90		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID:L1629727-08Date Collected:09/20/16 12:02Client ID:C-7 (48-54)Date Received:09/20/16Sample Location:LITTLE BAYField Prep:Not SpecifiedMatrix:SedimentExtraction Method: EPA 3546

Analytical Method: 1,8015C(M) Extraction Date: 10/03/16 16:32

Analytical Date: 10/04/16 18:58

Analyst: SR

Percent Solids: 71%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbon Quantitation - Westborough Lab								
ТРН	ND		ug/kg	45900		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	83		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-09

Client ID: C-5

Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 1,8015C(M)

Analytical Date: 10/03/16 21:32

Analyst: DG Percent Solids: 68% Date Collected: 09/21/16 08:35
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/03/16 09:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - \	Westborough Lab					
TPH	ND		ug/kg	48400		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	95		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-10

Client ID: C-8

Sample Location: LITTLE BAY
Matrix: Sediment
Analytical Method: 1,8015C(M)
Analytical Date: 10/03/16 22:36

Analyst: DG Percent Solids: 70% Date Collected: 09/21/16 13:00
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/03/16 09:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Petroleum Hydrocarbon Quantitation - Westborough Lab							
ТРН	ND		ug/kg	47000		1	
			Ac	ceptance			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	96		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-11

Client ID: C-9

Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 1,8015C(M)

Analytical Date: 10/03/16 23:09

Analyst: DG Percent Solids: 82% Date Collected: 09/21/16 11:45
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/03/16 09:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Petroleum Hydrocarbon Quantitation - V	Westborough Lab						
TPH	ND		ug/kg	39000		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	95		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-12

Client ID: C-10

Sample Location: LITTLE BAY
Matrix: Sediment
Analytical Method: 1,8015C(M)
Analytical Date: 10/03/16 23:41

Analyst: DG Percent Solids: 79% Date Collected: 09/21/16 12:20
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/03/16 09:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Westbe	orough Lab					
TPH	ND		ug/kg	41100		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	98		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID:L1629727-13Date Collected:09/21/16 09:03Client ID:C-11 (0-48)Date Received:09/21/16Sample Location:LITTLE BAYField Prep:Not SpecifiedMatrix:SedimentExtraction Method: EPA 3546

Analytical Method: 1,8015C(M) Extraction Date: 10/03/16 09:04
Analytical Date: 10/04/16 00:14

Analyst: DG
Percent Solids: 69%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Westb	orough Lab					
ТРН	ND		ug/kg	47800		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	91		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-14

Client ID: C-12

Sample Location: LITTLE BAY

Matrix: Sediment

Analytical Method: 1,8015C(M)

Analytical Date: 10/04/16 00:46

Analyst: DG Percent Solids: 75% Date Collected: 09/21/16 08:44
Date Received: 09/21/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 10/03/16 09:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Westbe	orough Lab					
ТРН	ND		ug/kg	43600		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	92		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-15
 Date Collected:
 09/21/16 09:03

 Client ID:
 C-11 (48-89)
 Date Received:
 09/21/16

 Sample Location:
 LITTLE BAY
 Field Prep:
 Not Specified

Matrix:SedimentExtraction Method: EPA 3546Analytical Method:1,8015C(M)Extraction Date: 10/03/16 09:04

Analytical Date: 10/04/16 01:19
Analyst: DG

67%

Percent Solids:

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL
 Dilution Factor

 Petroleum Hydrocarbon Quantitation - Westborough Lab

 TPH
 ND
 ug/kg
 47800
 - 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	94		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015C(M) Extraction Method: EPA 3546
Analytical Date: 10/03/16 12:09 Extraction Date: 10/02/16 12:28

Analyst: DG

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbon Quantitation	n - Westbor	ough Lab fo	or sample(s):	01-06	Batch: WG938023-1
TPH	ND		ug/kg	31600	

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
o-Terphenyl	80		40-140				

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8015C(M)
Analytical Date: 10/03/16 20:27

Analyst: DG

Extraction Method: EPA 3546 Extraction Date: 10/03/16 09:04

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Petroleum Hydrocarbon Quantitation - Westborough Lab for sample(s):
 09-15
 Batch: WG938163-1

 TPH
 ND
 ug/kg
 32300
 -

Surrogate	%Recovery	Qualifier	Criteria	
o-Terphenyl	99		40-140	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015C(M) Extraction Method: EPA 3546

Analytical Date: 10/04/16 10:59 Extraction Date: 10/03/16 16:32 Analyst: DG

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbon Quantitatio	n - Westbor	ough Lab f	or sample(s): 07-08	Batch: WG938314-1
TPH	ND		ug/kg	32600	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
o-Terphenyl	75		40-140		

Project Name: SRP

Project Number: 23840.003 Lab Number:

L1629727

Report Date:

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbon Quantitation - West	borough Lab Assoc	ciated sample(s)): 01-06 E	Batch: WG9	938023-2				
ТРН	88		-		40-140	-		40	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
o-Terphenyl	75				40-140

Project Name: SRP

Project Number: 23840.003 Lab Number:

L1629727

Report Date:

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbon Quantitation - Westb	orough Lab Asso	ciated sample(s)): 09-15 E	Batch: WG9	38163-2				
ТРН	99		-		40-140	-		40	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
o-Terphenyl	86				40-140	

Project Name: SRP

Project Number:

23840.003

Lab Number:

L1629727

Report Date:

Parameter	LCS %Recovery C	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Petroleum Hydrocarbon Quantitation - Wes	tborough Lab Associa	ated sample(s): 07-08	Batch: WG938314-2			
ТРН	86	-	40-140	-	40	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
o-Terphenyl	82				40-140

Matrix Spike Analysis Batch Quality Control

Project Name: SRP

Project Number:

23840.003

Lab Number:

L1629727

Report Date:

10/27/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover Qual Limits	_	RPD Qual Limits	
Petroleum Hydrocarbon Quanti ID: C-6 (0-48)	itation - Wes	borough Lab	Associated	sample(s): 01-06	6 QC Batch ID:	WG938023-3	WG938023-4 QC	Sample: L10	629727-01 (Client
TPH	ND	194000	195000	101	176000	93	40-140	10	40	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
o-Terphenyl	99	92	40-140

METALS

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-01 Date Collected: 09/20/16 10:10
Client ID: C-6 (0-48) Date Received: 09/20/16

Client ID: C-6 (0-48) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Matrix: Sediment

Percent Solids: 68% Dilution Date Date Prep **Analytical** Method Factor Prepared Method **Analyzed** Parameter Result Qualifier Units RL MDL **Analyst** Total Metals - Mansfield Lab 9.14 Arsenic, Total mg/kg 0.047 2 10/11/16 15:00 10/13/16 14:10 EPA 3050B 1,6020A DB Cadmium, Total 0.130 0.019 2 10/11/16 15:00 10/13/16 14:10 EPA 3050B 1,6020A DB mg/kg 2 1,6020A Chromium, Total 22.4 0.186 10/11/16 15:00 10/13/16 14:10 EPA 3050B DB mg/kg 2 Copper, Total 9.15 mg/kg 0.186 10/11/16 15:00 10/13/16 14:10 EPA 3050B 1,6020A DB Lead, Total 6.03 0.279 10 10/11/16 15:00 10/13/16 15:02 EPA 3050B 1,6020A DB mg/kg Mercury, Total ND 0.018 5 10/11/16 14:49 10/13/16 14:14 EPA 7474 1,7474 LC mg/kg Nickel, Total 15.6 mg/kg 0.093 --2 10/11/16 15:00 10/13/16 14:10 EPA 3050B 1,6020A DB Zinc, Total 47.2 mg/kg 0.930 2 10/11/16 15:00 10/13/16 14:10 EPA 3050B 1,6020A DB

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-02
 Date Collected:
 09/20/16 12:02

 Client ID:
 C-7 (0-48)
 Date Received:
 09/20/16

Sample Location: LITTLE BAY Field Prep: Not Specified

Percent Solids: 72%

Dilution Date Date Prep **Analytical** Method Factor Prepared Method **Analyzed** Parameter Result Qualifier Units RL MDL **Analyst** Total Metals - Mansfield Lab 7.17 Arsenic, Total mg/kg 0.035 2 10/11/16 15:00 10/13/16 14:26 EPA 3050B 1,6020A DB Cadmium, Total 0.064 0.014 2 10/11/16 15:00 10/13/16 14:26 EPA 3050B 1,6020A DB mg/kg 2 1,6020A Chromium, Total 16.7 0.140 10/11/16 15:00 10/13/16 14:26 EPA 3050B DB mg/kg 2 Copper, Total 6.02 mg/kg 0.140 10/11/16 15:00 10/13/16 14:26 EPA 3050B 1,6020A DB Lead, Total 4.07 0.042 2 10/11/16 15:00 10/13/16 14:26 EPA 3050B 1,6020A DB mg/kg Mercury, Total ND 0.017 5 10/11/16 14:49 10/13/16 14:24 EPA 7474 1,7474 LC mg/kg Nickel, Total 11.5 mg/kg 0.070 --2 10/11/16 15:00 10/13/16 14:26 EPA 3050B 1,6020A DB Zinc, Total 34.5 mg/kg 0.701 2 10/11/16 15:00 10/13/16 14:26 EPA 3050B 1,6020A DB

Matrix:

Sediment

Project Name:SRPLab Number:L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-03

Client ID: C-1

Sample Location: LITTLE BAY

Matrix: Sediment

Percent Solids: 59%

Date Collected: 09/20/16 12:58

Date Received: 09/20/16

Field Prep: Not Specified

Percent Solids:	59%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	10.7		mg/kg	0.046		2	10/11/16 15:00) 10/13/16 14:28	EPA 3050B	1,6020A	DB
Cadmium, Total	0.187		mg/kg	0.018		2	10/11/16 15:00) 10/13/16 14:28	EPA 3050B	1,6020A	DB
Chromium, Total	36.9		mg/kg	0.183		2	10/11/16 15:00) 10/13/16 14:28	EPA 3050B	1,6020A	DB
Copper, Total	10.5		mg/kg	0.183		2	10/11/16 15:00) 10/13/16 14:28	EPA 3050B	1,6020A	DB
Lead, Total	11.7		mg/kg	0.275		10	10/11/16 15:00) 10/13/16 15:12	EPA 3050B	1,6020A	DB
Mercury, Total	0.033		mg/kg	0.022		5	10/11/16 14:49	9 10/13/16 14:34	EPA 7474	1,7474	LC
Nickel, Total	17.9		mg/kg	0.092		2	10/11/16 15:00) 10/13/16 14:28	EPA 3050B	1,6020A	DB
Zinc, Total	58.2		mg/kg	0.916		2	10/11/16 15:00) 10/13/16 14:28	EPA 3050B	1,6020A	DB

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-04

Client ID: C-2

Sample Location: LITTLE BAY

Matrix: Sediment

Percent Solids: 61%

Date Collected: 09/20/16 13:05

Date Received: 09/20/16

Field Prep: Not Specified

Percent Solids:	61%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Matala, Man	ما ا ما ا										
Total Metals - Man	sileid Lab										
Arsenic, Total	10.4		mg/kg	0.049		2	10/11/16 15:00) 10/13/16 14:30	EPA 3050B	1,6020A	DB
Cadmium, Total	0.188		mg/kg	0.020		2	10/11/16 15:00) 10/13/16 14:30	EPA 3050B	1,6020A	DB
Chromium, Total	29.9		mg/kg	0.195		2	10/11/16 15:00	10/13/16 14:30	EPA 3050B	1,6020A	DB
Copper, Total	9.54		mg/kg	0.195		2	10/11/16 15:00	10/13/16 14:30	EPA 3050B	1,6020A	DB
Lead, Total	7.49		mg/kg	0.058		2	10/11/16 15:00) 10/13/16 14:30	EPA 3050B	1,6020A	DB
Mercury, Total	0.025		mg/kg	0.018		5	10/11/16 14:49	10/13/16 14:37	EPA 7474	1,7474	LC
Nickel, Total	17.2		mg/kg	0.097		2	10/11/16 15:00	10/13/16 14:30	EPA 3050B	1,6020A	DB
Zinc, Total	54.6		mg/kg	0.974		2	10/11/16 15:00) 10/13/16 14:30	EPA 3050B	1,6020A	DB

09/20/16 13:36

Project Name: SRP Lab Number: L1629727

Project Number: Report Date: 23840.003 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-05

Client ID: C-3

Sample Location: LITTLE BAY

Matrix: Sediment

Percent Solids: 63%

Zinc, Total

Date Received: 09/20/16

Field Prep: Not Specified

Date Collected:

Dilution Date Date Prep **Analytical** Method Factor Prepared Method **Analyzed** Parameter Result Qualifier Units RL MDL **Analyst** Total Metals - Mansfield Lab 9.94 Arsenic, Total mg/kg 0.048 2 10/11/16 15:00 10/13/16 14:33 EPA 3050B 1,6020A DB Cadmium, Total 0.185 0.019 2 10/11/16 15:00 10/13/16 14:33 EPA 3050B 1,6020A DB mg/kg 32.5 2 1,6020A Chromium, Total 0.193 10/11/16 15:00 10/13/16 14:33 EPA 3050B DB mg/kg 2 Copper, Total 9.79 mg/kg 0.193 10/11/16 15:00 10/13/16 14:33 EPA 3050B 1,6020A DB Lead, Total 8.36 0.058 2 10/11/16 15:00 10/13/16 14:33 EPA 3050B 1,6020A DB mg/kg Mercury, Total 0.041 0.019 5 10/11/16 14:49 10/13/16 14:48 EPA 7474 1,7474 LC mg/kg Nickel, Total 15.8 mg/kg 0.097 2 10/11/16 15:00 10/13/16 14:33 EPA 3050B 1,6020A DB 52.0 2 10/11/16 15:00 10/13/16 14:33 EPA 3050B 1,6020A DB

mg/kg

0.966

Project Name: Lab Number: SRP L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-06

Client ID: C-4

LITTLE BAY Sample Location: Sediment

Matrix:

Percent Solids

Date Collected: 09/20/16 14:05

Date Received: 09/20/16

Field Prep: Not Specified

Percent Solids:	65%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	8.54		mg/kg	0.045		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Cadmium, Total	0.154		mg/kg	0.018		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Chromium, Total	22.2		mg/kg	0.181		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Copper, Total	7.49		mg/kg	0.181		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Lead, Total	5.13		mg/kg	0.054		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Mercury, Total	ND		mg/kg	0.017		5	10/11/16 14:49	9 10/13/16 14:51	EPA 7474	1,7474	LC
Nickel, Total	14.1		mg/kg	0.091		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Zinc, Total	43.3		mg/kg	0.906		2	10/11/16 15:00) 10/13/16 14:35	EPA 3050B	1,6020A	DB
Zinc, Total	43.3		mg/kg	0.906		2	10/11/16 15:00	10/13/16 14:35	EPA 3050B	1,6020A	

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-07
 Date Collected:
 09/20/16 10:10

 Client ID:
 C-6 (48-61)
 Date Received:
 09/20/16

Client ID: C-6 (48-61) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Matrix: Sediment

Percent Solids: 65%

Dilution Date Date Prep Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analysi

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	11.7		mg/kg	0.048		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB
Cadmium, Total	0.112		mg/kg	0.019		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB
Chromium, Total	25.4		mg/kg	0.192		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB
Copper, Total	10.2		mg/kg	0.192		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB
Lead, Total	5.46		mg/kg	0.058		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB
Mercury, Total	ND		mg/kg	0.021		5	10/11/16 14:49	9 10/13/16 14:53	EPA 7474	1,7474	LC
Nickel, Total	18.2		mg/kg	0.096		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB
Zinc, Total	54.2		mg/kg	0.960		2	10/11/16 15:00	0 10/13/16 14:37	EPA 3050B	1,6020A	DB

 Project Name:
 SRP
 Lab Number:
 L1629727

 Project Number:
 23840.003
 Report Date:
 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-08
 Date Collected:
 09/20/16 12:02

 Client ID:
 C-7 (48-54)
 Date Received:
 09/20/16

Sample Location: LITTLE BAY Field Prep: Not Specified Matrix: Sediment

Percent Solids: 71%

Dilution Date Date Prep Analytical

Method Factor Prepared Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab 6.88 Arsenic, Total mg/kg 0.044 2 10/11/16 15:00 10/13/16 14:39 EPA 3050B 1,6020A DB Cadmium, Total 0.057 0.018 2 10/11/16 15:00 10/13/16 14:39 EPA 3050B 1,6020A DB mg/kg 2 1,6020A Chromium, Total 18.0 10/11/16 15:00 10/13/16 14:39 EPA 3050B DB mg/kg 0.177 2 Copper, Total 7.35 mg/kg 0.177 10/11/16 15:00 10/13/16 14:39 EPA 3050B 1,6020A DB Lead, Total 3.91 0.053 2 10/11/16 15:00 10/13/16 14:39 EPA 3050B 1,6020A DB mg/kg Mercury, Total ND 0.015 5 10/11/16 14:49 10/13/16 14:56 EPA 7474 1,7474 LC mg/kg Nickel, Total 13.2 mg/kg 0.089 --2 10/11/16 15:00 10/13/16 14:39 EPA 3050B 1,6020A DB Zinc, Total 38.6 mg/kg 0.887 2 10/11/16 15:00 10/13/16 14:39 EPA 3050B 1,6020A DB

Project Name:SRPLab Number:L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-09

Client ID: C-5

Sample Location: LITTLE BAY

Matrix: Sediment

Percent Solids: 68%

Date Collected: 09/21/16 08:35

Date Received: 09/21/16

Field Prep: Not Specified

Percent Solids:	68%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	ofiold Lob										
Total Metals - Mans	sileid Lab										
Arsenic, Total	7.05		mg/kg	0.038		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB
Cadmium, Total	0.157		mg/kg	0.015		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB
Chromium, Total	20.6		mg/kg	0.152		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB
Copper, Total	6.61		mg/kg	0.152		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB
Lead, Total	4.80		mg/kg	0.046		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB
Mercury, Total	0.016		mg/kg	0.016		5	10/11/16 14:49	9 10/13/16 14:58	EPA 7474	1,7474	LC
Nickel, Total	12.7		mg/kg	0.076		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB
Zinc, Total	52.8		mg/kg	0.759		2	10/11/16 15:00) 10/13/16 14:41	EPA 3050B	1,6020A	DB

Project Name: SRP Lab Number: L1629727

Project Number: Report Date: 23840.003 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-10

Client ID: C-8

Sample Location: LITTLE BAY

Matrix:

Sediment

Percent Solids: 70% Date Collected:

09/21/16 13:00

Date Received: 09/21/16

Field Prep: Not Specified

Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed** Parameter Result Qualifier Units RL MDL **Analyst** Total Metals - Mansfield Lab 6.56 Arsenic, Total mg/kg 0.039 2 10/11/16 15:00 10/13/16 14:43 EPA 3050B 1,6020A DB Cadmium, Total 0.114 0.016 2 10/11/16 15:00 10/13/16 14:43 EPA 3050B 1,6020A DB mg/kg 2 1,6020A Chromium, Total 13.7 0.156 10/11/16 15:00 10/13/16 14:43 EPA 3050B DB mg/kg 2 Copper, Total 6.04 mg/kg 0.156 10/11/16 15:00 10/13/16 14:43 EPA 3050B 1,6020A DB Lead, Total 4.40 0.047 2 10/11/16 15:00 10/13/16 14:43 EPA 3050B 1,6020A DB mg/kg Mercury, Total ND 0.014 5 10/11/16 14:49 10/13/16 15:01 EPA 7474 1,7474 LC mg/kg Nickel, Total 9.43 mg/kg 0.078 --2 10/11/16 15:00 10/13/16 14:43 EPA 3050B 1,6020A DB Zinc, Total 36.2 mg/kg 0.782 2 10/11/16 15:00 10/13/16 14:43 EPA 3050B 1,6020A DB

09/21/16 11:45

Not Specified

09/21/16

Date Collected:

Date Received:

Field Prep:

 Project Name:
 SRP
 Lab Number:
 L1629727

 Project Number:
 23840.003
 Report Date:
 10/27/16

105 Kepon

SAMPLE RESULTS

Lab ID: L1629727-11

Client ID: C-9

Sample Location: LITTLE BAY Matrix: Sediment

Porcont Solids: 92%

Percent Solids: 82% Dilution Date Date Prep Analytical

Method Factor Prepared Method **Analyzed** Parameter Result Qualifier Units RL MDL **Analyst** Total Metals - Mansfield Lab Arsenic, Total 6.40 mg/kg 0.040 2 10/11/16 15:00 10/13/16 14:45 EPA 3050B 1,6020A DB Cadmium, Total 0.022 0.016 2 10/11/16 15:00 10/13/16 14:45 EPA 3050B 1,6020A DB mg/kg 2 1,6020A Chromium, Total 17.4 0.161 10/11/16 15:00 10/13/16 14:45 EPA 3050B DB mg/kg 2 Copper, Total 7.64 mg/kg 0.161 10/11/16 15:00 10/13/16 14:45 EPA 3050B 1,6020A DB Lead, Total 5.39 0.048 2 10/11/16 15:00 10/13/16 14:45 EPA 3050B 1,6020A DB mg/kg Mercury, Total ND 0.013 5 10/11/16 14:49 10/13/16 15:03 EPA 7474 1,7474 LC mg/kg Nickel, Total 13.2 mg/kg 0.081 2 10/11/16 15:00 10/13/16 14:45 EPA 3050B 1,6020A DB Zinc, Total 44.7 mg/kg 0.805 2 10/11/16 15:00 10/13/16 14:45 EPA 3050B 1,6020A DB

Project Name:SRPLab Number:L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-12

Client ID: C-10

Sample Location: LITTLE BAY

Matrix: Sediment

Percent Solids: 79%

Date Collected: 09/21/16 12:20

Date Received: 09/21/16

Field Prep: Not Specified

Percent Solids:	79%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
T	<i>.</i>										
Total Metals - Man	sfield Lab										
Arsenic, Total	6.56		mg/kg	0.032		2	10/11/16 15:00) 10/13/16 14:53	EPA 3050B	1,6020A	DB
Cadmium, Total	0.035		mg/kg	0.013		2	10/11/16 15:00) 10/13/16 14:53	EPA 3050B	1,6020A	DB
Chromium, Total	10.9		mg/kg	0.129		2	10/11/16 15:00) 10/13/16 14:53	EPA 3050B	1,6020A	DB
Copper, Total	2.46		mg/kg	0.129		2	10/11/16 15:00) 10/13/16 14:53	EPA 3050B	1,6020A	DB
Lead, Total	2.88		mg/kg	0.039		2	10/11/16 15:00) 10/13/16 14:53	EPA 3050B	1,6020A	DB
Mercury, Total	ND		mg/kg	0.015		5	10/11/16 14:49	10/13/16 15:06	EPA 7474	1,7474	LC
Nickel, Total	6.17		mg/kg	0.064		2	10/11/16 15:00	10/13/16 14:53	EPA 3050B	1,6020A	DB
Zinc, Total	30.9		mg/kg	0.643		2	10/11/16 15:00) 10/13/16 14:53	EPA 3050B	1,6020A	DB

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-13
 Date Collected:
 09/21/16 09:03

 Client ID:
 C-11 (0-48)
 Date Received:
 09/21/16

Sample Location: LITTLE BAY Field Prep: Not Specified Matrix: Sediment

Percent Solids: 69%

Dilution Date Pren Analytics

Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab 7.39 Arsenic, Total mg/kg 0.048 2 10/11/16 15:00 10/13/16 14:55 EPA 3050B 1,6020A DB Cadmium, Total 0.082 0.019 2 10/11/16 15:00 10/13/16 14:55 EPA 3050B 1,6020A DB mg/kg 22.8 2 1,6020A Chromium, Total 0.190 10/11/16 15:00 10/13/16 14:55 EPA 3050B DB mg/kg 2 Copper, Total 8.19 mg/kg 0.190 10/11/16 15:00 10/13/16 14:55 EPA 3050B 1,6020A DB Lead, Total 9.39 0.057 2 10/11/16 15:00 10/13/16 14:55 EPA 3050B 1,6020A DB mg/kg Mercury, Total ND 0.018 5 10/11/16 14:49 10/13/16 15:08 EPA 7474 1,7474 LC mg/kg Nickel, Total 14.1 mg/kg 0.095 --2 10/11/16 15:00 10/13/16 14:55 EPA 3050B 1,6020A DB Zinc, Total 45.6 mg/kg 0.953 2 10/11/16 15:00 10/13/16 14:55 EPA 3050B 1,6020A DB

Project Name:SRPLab Number:L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-14

Client ID: C-12

Sample Location: LITTLE BAY

Matrix: Sediment

Percent Solids: 75%

Date Collected: 09/21/16 08:44

Date Received: 09/21/16

Field Prep: Not Specified

Percent Solids:	75%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
T	C 111 1										
Total Metals - Man	stield Lab										
Arsenic, Total	6.06		mg/kg	0.038		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB
Cadmium, Total	0.089		mg/kg	0.015		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB
Chromium, Total	16.8		mg/kg	0.151		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB
Copper, Total	5.51		mg/kg	0.151		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB
Lead, Total	4.60		mg/kg	0.045		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB
Mercury, Total	0.019		mg/kg	0.013		5	10/11/16 14:49	10/13/16 15:35	EPA 7474	1,7474	LC
Nickel, Total	10.7		mg/kg	0.075		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB
Zinc, Total	26.8		mg/kg	0.754		2	10/11/16 15:00) 10/13/16 14:57	EPA 3050B	1,6020A	DB

Project Name:SRPLab Number:L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-15
 Date Collected:
 09/21/16 09:03

 Client ID:
 C-11 (48-89)
 Date Received:
 09/21/16

Client ID: C-11 (48-89) Date Received: 09/21/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Matrix: Sediment

Percent Solids: 67%

Dilution Date Date Prep Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analysis

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	10.8		mg/kg	0.038		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB
Cadmium, Total	0.083		mg/kg	0.015		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB
Chromium, Total	22.7		mg/kg	0.150		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB
Copper, Total	9.21		mg/kg	0.150		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB
Lead, Total	4.80		mg/kg	0.045		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB
Mercury, Total	ND		mg/kg	0.017		5	10/11/16 14:49	9 10/13/16 15:44	EPA 7474	1,7474	LC
Nickel, Total	16.5		mg/kg	0.075		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB
Zinc, Total	49.3		mg/kg	0.752		2	10/11/16 15:00	0 10/13/16 14:59	EPA 3050B	1,6020A	DB

Project Name: SRP

Project Number: 23840.003

Lab Number:

L1629727

Report Date: 10/27/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01-15 B	atch: W	G94094	4-1				
Arsenic, Total	ND	mg/kg	0.050		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB
Cadmium, Total	ND	mg/kg	0.020		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB
Chromium, Total	ND	mg/kg	0.200		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB
Copper, Total	ND	mg/kg	0.200		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB
Lead, Total	ND	mg/kg	0.060		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB
Nickel, Total	ND	mg/kg	0.100		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB
Zinc, Total	ND	mg/kg	1.00		2	10/11/16 15:00	10/13/16 14:03	3 1,6020A	DB

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfiel	d Lab for sample(s)	: 01-15 B	atch: W	G94094	5-1				
Mercury, Total	ND	mg/kg	0.013		5	10/11/16 14:49	10/13/16 14:09	1,7474	LC

Prep Information

Digestion Method: EPA 7474

Lab Control Sample Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number:

L1629727

Report Date:

10/27/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sam	ple(s): 01-15 Ba	atch: WG940)944-2 SRM Lot	Number: D	091-540			
Arsenic, Total	98		-		80-121	-		20
Cadmium, Total	94		-		83-117	-		20
Chromium, Total	88		-		80-119	-		20
Copper, Total	102		-		82-117	-		20
Lead, Total	89		-		82-118	-		20
Nickel, Total	102		-		83-117	-		20
Zinc, Total	97		-		82-118	-		20
otal Metals - Mansfield Lab Associated sam	ple(s): 01-15 Ba	atch: WG940)945-2 SRM Lot	Number: D	091-540			
Mercury, Total	108		-		72-128	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: SRP

Project Number:

23840.003

Lab Number: L1629727

Report Date: 10/27/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	/ RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	o Associated sam	ple(s): 01-15	QC Bat	tch ID: WG940	944-4	NG940944-5	QC Sample	e: L1629	9727-01	Client ID	: C-6 (0	0-48)
Arsenic, Total	9.14	187	192	98		190	98		75-125	1		20
Cadmium, Total	0.130	93.6	94.1	100		93.0	101		75-125	1		20
Chromium, Total	22.4	187	205	98		205	99		75-125	0		20
Copper, Total	9.15	187	199	101		197	102		75-125	1		20
Lead, Total	6.03	187	200	104		175	92		75-125	13		20
Nickel, Total	15.6	187	209	103		206	104		75-125	1		20
Zinc, Total	47.2	187	217	91		223	96		75-125	3		20
otal Metals - Mansfield Lab	o Associated sam	nple(s): 01-15	QC Bat	tch ID: WG940	945-4	NG940945-5	QC Sample	e: L1629	9727-01	Client ID	: C-6 (0	0-48)
Mercury, Total	ND	0.906	0.772	85		0.778	85		80-120	1		20

Lab Duplicate Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number:

L1629727 10/27/16

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	-15 QC Batch ID: WG	940944-3 QC Sample:	L1629727-01	Client ID:	C-6 (0-48)	
Arsenic, Total	9.14	9.41	mg/kg	3		20
Cadmium, Total	0.130	0.130	mg/kg	0		20
Chromium, Total	22.4	22.7	mg/kg	1		20
Copper, Total	9.15	9.52	mg/kg	4		20
Nickel, Total	15.6	16.6	mg/kg	6		20
Zinc, Total	47.2	47.7	mg/kg	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	-15 QC Batch ID: WG	940944-3 QC Sample:	L1629727-01	Client ID:	C-6 (0-48)	
Lead, Total	6.03	6.27	mg/kg	4		20
Total Metals - Mansfield Lab Associated sample(s): 01	-15 QC Batch ID: WG	940945-3 QC Sample:	L1629727-01	Client ID:	C-6 (0-48)	
Mercury, Total	ND	ND	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-01
 Date Collected:
 09/20/16 10:10

 Client ID:
 C-6 (0-48)
 Date Received:
 09/20/16

 Sample Location:
 LITTLE BAY
 Field Prep:
 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.16		%	0.010		1	-	10/10/16 09:20	1,9060A	CM
Total Organic Carbon (Rep2)	1.17		%	0.010		1	-	10/10/16 09:20	1,9060A	CM
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	0.200		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	1.30		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	4.00		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	13.1		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	81.4		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	67.6		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	32.4		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Matrix:

Sediment

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-02 Date Collected: 09/20/16 12:02

Client ID: C-7 (0-48) Date Received: 09/20/16
Sample Location: LITTLE BAY Field Prep: Not Specified

Sample Location: LITTLE BAY Field Prep: Not Specifie

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.682		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	0.754		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	0.100		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	0.700		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	4.30		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	44.9		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	50.0		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	72.0		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	28.0		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: L1629727-03 09/20/16 12:58

C-1 Client ID:

Date Received: 09/20/16 LITTLE BAY Not Specified Sample Location: Field Prep:

Matrix: Sediment

						Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.63		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.64		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	0.200		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	1.50		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	3.40		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	6.00		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	88.9		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	58.7		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	41.3		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

09/20/16 13:05

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: L1629727-04

C-2 Client ID:

Date Received: 09/20/16 Sample Location: LITTLE BAY Not Specified Field Prep:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.52		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.56		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	0.200		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	1.40		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	4.70		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	8.00		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	85.7		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	61.1		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	38.9		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-05 Date Collected: 09/20/16 13:36

Client ID: C-3 Date Received: 09/20/16

Sample Location: LITTLE BAY
Matrix: Field Prep: Not Specified

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.41		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.35		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	0.100		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	0.700		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	2.30		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	8.20		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	88.7		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	63.1		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	36.9		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: L1629727-06 09/20/16 14:05

C-4 Client ID:

Date Received: 09/20/16 LITTLE BAY Not Specified Sample Location: Field Prep:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.22		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.11		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	ND		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	3.20		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	7.10		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	16.3		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	73.4		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	64.9		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	35.1		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID:L1629727-07Date Collected:09/20/16 10:10Client ID:C-6 (48-61)Date Received:09/20/16Sample Location:LITTLE BAYField Prep:Not SpecifiedMatrix:Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.29		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.27		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield La	ab								
% Total Gravel	ND		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	0.600		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	2.90		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	5.90		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	90.6		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	64.7		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	35.3		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

09/20/16 12:02

Not Specified

09/20/16

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID:L1629727-08Date Collected:Client ID:C-7 (48-54)Date Received:Sample Location:LITTLE BAYField Prep:Matrix:Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.647		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	0.674		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	ND		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	0.100		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	7.30		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	36.7		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	55.9		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	70.9		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	29.1		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/21/16 08:35 L1629727-09

C-5 Client ID:

Date Received: 09/21/16 Sample Location: LITTLE BAY Not Specified Field Prep:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.17		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.05		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield La	ab								
% Total Gravel	0.600		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	2.00		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	4.00		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	24.3		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	69.1		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	68.3		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	31.7		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-10

Client ID: C-8

Sample Location: LITTLE BAY

Matrix: Sediment

Date Collected: 09/21/16 13:00

Date Received: 09/21/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.974		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	1.14		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	0.600		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	0.400		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	8.80		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	66.0		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	24.2		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	70.3		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	29.7		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

SAMPLE RESULTS

Lab ID: Date Collected: L1629727-11 09/21/16 11:45

C-9 Client ID:

Date Received: 09/21/16 Sample Location: LITTLE BAY Not Specified Field Prep:

Matrix: Sediment

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.105		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	0.095		%	0.010		1	-	10/10/16 09:20	1,9060A	CM
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	2.30		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	3.40		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	31.6		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	34.0		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	28.7		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	81.7		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	18.3		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-12

Client ID: C-10
Sample Location: LITTLE BAY
Matrix: Sediment

Date Collected: 09/21/16 12:20

Date Received: 09/21/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.197		%	0.010		1	-	10/10/16 09:20	1,9060A	CM
Total Organic Carbon (Rep2)	0.191		%	0.010		1	-	10/10/16 09:20	1,9060A	CM
RIM Grain Size Analysis -	Mansfield La	ab								
% Total Gravel	0.100		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	0.400		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	1.70		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	91.6		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	6.20		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	field Lab									
Solids, Total	78.9		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	21.1		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

 Lab ID:
 L1629727-13
 Date Collected:
 09/21/16 09:03

 Client ID:
 C-11 (0-48)
 Date Received:
 09/21/16

Sample Location: LITTLE BAY
Matrix: Field Prep: Not Specified

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.768		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	0.822		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	1.10		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	1.70		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	5.90		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	35.8		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	55.5		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	68.6		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	31.4		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

SAMPLE RESULTS

Lab ID: L1629727-14

Client ID: C-12
Sample Location: LITTLE BAY
Matrix: Sediment

Date Collected: 09/21/16 08:44

Date Received: 09/21/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	0.569		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	0.493		%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
RIM Grain Size Analysis -	Mansfield L	ab								
% Total Gravel	2.20		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Coarse Sand	2.10		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Medium Sand	7.10		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Fine Sand	39.2		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
% Total Fines	49.4		%	0.100	NA	1	-	10/12/16 10:08	12,D422	AR
General Chemistry - Mans	sfield Lab									
Solids, Total	75.4		%	0.100		1	-	10/05/16 14:25	121,2540G	SP
Moisture	24.6		%	0.100		1	-	10/05/16 14:25	121,2540G	SP

Project Name: SRP Lab Number: L1629727

SAMPLE RESULTS

Lab ID: L1629727-15 Date Collected: 09/21/16 09:03

Client ID: C-11 (48-89)

Sample Location: LITTLE BAY

Matrix: Sediment

Date Received: 09/21/16

Field Prep: Not Specified

Dilution Date Date Analytical **Factor Prepared** Method MDL Analyzed **Parameter** Result **Qualifier Units** RL **Analyst** Total Organic Carbon - Mansfield Lab Total Organic Carbon (Rep1) % 0.010 1 10/11/16 13:10 1,9060A AR 0.947 AR Total Organic Carbon (Rep2) % 0.010 1 10/11/16 13:10 1,9060A 0.924 ---RIM Grain Size Analysis - Mansfield Lab % Total Gravel % 0.100 10/12/16 10:08 AR ND NA 1 12,D422 % 0.100 NA 1 AR % Coarse Sand 1.30 10/12/16 10:08 12,D422 % Medium Sand 4.30 % 0.100 NA 1 10/12/16 10:08 12,D422 AR 0.100 % Fine Sand 12.6 % NA 1 10/12/16 10:08 12,D422 AR % Total Fines % NA 1 AR 81.8 0.100 10/12/16 10:08 12,D422 General Chemistry - Mansfield Lab Solids, Total 66.8 % 0.100 1 10/05/16 14:25 121,2540G SP 0.100 Moisture 33.2 % 1 10/05/16 14:25 121,2540G SP --

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab for sam	ple(s): 01-	·14 Bate	ch: WG	940886-1				
Total Organic Carbon (Rep1)	ND	%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon (Rep2)	ND	%	0.010		1	-	10/10/16 09:20	1,9060A	СМ
Total Organic Carbon - Ma	ansfield Lab for sam	ple(s): 15	Batch:	WG94	1002-1				
Total Organic Carbon (Rep1)	ND	%	0.010		1	-	10/11/16 11:19	1,9060A	AR
Total Organic Carbon (Rep2)	ND	%	0.010		1	-	10/11/16 11:19	1,9060A	AR

Matrix Spike Analysis Batch Quality Control

Project Name: SRP

Project Number:

23840.003

Lab Number:

L1629727

Report Date:

10/27/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	Qual	RPD Limits
Total Organic Carbon - Mansfiel (0-48)	ld Lab Assoc	iated sample	e(s): 01-14	QC Batch ID:	: WG94	0886-4 W	G940886-5 (QC Sample	: L162972	27-01	Client	ID: C-6
Total Organic Carbon (Rep1)	1.16	0.723	1.94	108		2.08	109		75-125	7		25
Total Organic Carbon (Rep2)	1.17	0.641	1.84	104		2.96	105		75-125	47	Q	25
Total Organic Carbon - Mansfiel Sample	ld Lab Assoc	iated sample	e(s): 15 Q	C Batch ID: W	G94100	02-4 WG94	41002-5 QC	Sample: L1	1629586-2	20 CI	ient ID:	MS
Total Organic Carbon (Rep1)	0.196	0.715	0.942	104		0.852	104		75-125	10		25
Total Organic Carbon (Rep2)	0.199	0.622	0.839	103		0.996	104		75-125	17		25

Lab Duplicate Analysis Batch Quality Control

Project Name: SRP

Project Number: 23840.003

Lab Number: L1629727

Report Date: 10/27/16

Parameter	Na	tive San	nple	Duplicate Sam	nple Units	RPD	Qual	RPD Limits
General Chemistry - Mansfield Lab A	Associated sample(s): 01	I-15 Q	C Batch ID:	WG939164-1 (QC Sample: L16	29727-01 Cli	ent ID: C	-6 (0-48)
Solids, Total		67.6		66.2	%	2		10
Moisture		32.4		33.8	%	4		10
Total Organic Carbon - Mansfield Lal	b Associated sample(s):	01-14	QC Batch II	D: WG940886-3	QC Sample: L	.1629727-01	Client ID:	C-6 (0-48)
Total Organic Carbon (Rep1)		1.16		1.10	%	5		25
Total Organic Carbon (Rep2)		1.17		1.20	%	3		25
Total Organic Carbon - Mansfield Lal	b Associated sample(s):	15 Q0	C Batch ID:	WG941002-3	QC Sample: L162	29586-20 Clie	ent ID: Dl	JP Sample
Total Organic Carbon (Rep1)		0.196		0.203	%	4		25
Total Organic Carbon (Rep2)		0.199		0.215	%	8		25
RIM Grain Size Analysis - Mansfield	Lab Associated sample(s): 01-1	5 QC Batc	h ID: WG941283	3-1 QC Sample	: L1629727-0	1 Client l	D: C-6 (0-48)
% Total Gravel		0.200		ND	%	NC		25
% Coarse Sand		1.30		1.30	%	0		25
% Medium Sand		4.00		3.10	%	25		25
% Fine Sand		13.1		11.5	%	13		25
% Total Fines		81.4		84.1	%	3		25

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

S.R.M. Standard Quality Control

Standard Reference Material (SRM): WG940886-2

Parameter	% Recovery	Qual	QC Criteria
Total Organic Carbon (Rep1)	86		75-125
Total Organic Carbon (Rep2)	90		75-125

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 **Report Date:** 10/27/16

S.R.M. Standard Quality Control

Standard Reference Material (SRM): WG941002-2

Parameter	% Recovery	Qual	QC Criteria
Total Organic Carbon (Rep1)	101		75-125
Total Organic Carbon (Rep2)	88		75-125

Project Name: Lab Number: L1629727 SRP

Report Date: 10/27/16 Project Number: 23840.003

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 09/21/2016 02:24

Cooler Information Custody Seal

Cooler

Absent Α В Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629727-01A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)
L1629727-01B	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)
L1629727-01C	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)
L1629727-01D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-01E	Plastic 8oz unpreserved for Grai	A	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-01F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-01G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-01H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()
L1629727-02A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)
L1629727-02B	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)
L1629727-02C	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)

Project Name: SRP

Project Number: 23840.003

Container Information Temp										
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)			
L1629727-02D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)			
L1629727-02E	Plastic 8oz unpreserved for Grai	Α	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()			
L1629727-02F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)			
L1629727-02G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)			
L1629727-02H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()			
L1629727-03A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-03B	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-03C	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-03D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)			
L1629727-03E	Plastic 8oz unpreserved for Grai	Α	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()			
L1629727-03F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)			
L1629727-03G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)			
L1629727-03H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()			
L1629727-04A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-04B	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-04C	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			

Project Name: SRP

Project Number: 23840.003

Container Information Temp										
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)			
L1629727-04D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)			
L1629727-04E	Plastic 8oz unpreserved for Grai	Α	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()			
L1629727-04F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)			
L1629727-04G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)			
L1629727-04H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()			
L1629727-05A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-05B	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-05C	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-05D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)			
L1629727-05E	Plastic 8oz unpreserved for Grai	Α	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()			
L1629727-05F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)			
L1629727-05G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)			
L1629727-05H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()			
L1629727-06A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-06B	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			
L1629727-06C	Vial water preserved	Α	N/A	4.1	Υ	Absent	HOLD-8260(14)			

Project Name: SRP

Project Number: 23840.003

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1629727-06D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-06E	Plastic 8oz unpreserved for Grai	А	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-06F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-06G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-06H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()
L1629727-07D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-07E	Plastic 8oz unpreserved for Grai	Α	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-07F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-07G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-07H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()
L1629727-08D	Glass 120ml/4oz unpreserved	A	N/A	4.1	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)

Project Name: SRP

Project Number: 23840.003

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1629727-08E	Plastic 8oz unpreserved for Grai	A	N/A	4.1	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-08F	Glass 60ml unpreserved split	Α	N/A	4.1	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-08G	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-08H	Amber 120ml unpreserved	Α	N/A	4.1	Υ	Absent	A2-SUB()
L1629727-09A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-09B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-09C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-09D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-09E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-09F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()
L1629727-09G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-09H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-10A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-10B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-10C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-10D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-10E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-PREP-3050:2T(180),A2-PC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)

Project Name: SRP

Project Number: 23840.003

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629727-10F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()
L1629727-10G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-10H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-11A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-11B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-11C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-11D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-11E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-11F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()
L1629727-11G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-11H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-12A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-12B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-12C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-12D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-12E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-12F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()

Project Name: SRP

Project Number: 23840.003

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629727-12G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-12H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-13A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-13B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-13C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-13D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-13E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-13F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()
L1629727-13G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-13H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-14A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-14B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-14C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-14D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-14E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)
L1629727-14F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()
L1629727-14G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)

Project Name: SRP

Project Number: 23840.003

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629727-14H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()
L1629727-15A	Vial MeOH preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-15B	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-15C	Vial water preserved	В	N/A	4.7	Υ	Absent	HOLD-8260(14)
L1629727-15D	Glass 60ml unpreserved split	В	N/A	4.7	Υ	Absent	HOLD-EPH(14),TPH-DRO- D(14)
L1629727-15E	Glass 120ml/4oz unpreserved	В	N/A	4.7	Y	Absent	A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180),A2-PREP-3050:1T(180)
L1629727-15F	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	A2-SUB()
L1629727-15G	Amber 120ml unpreserved	В	N/A	4.7	Υ	Absent	SUB-DIOXIN-1613B(365)
L1629727-15H	Plastic 8oz unpreserved for Grai	В	N/A	4.7	Y	Absent	A2-RIMHYDRO-CSAND(),A2- RIMHYDRO-MSAND(),A2- RIMHYDRO-TFINE(),A2- RIMHYDRO-TGRAVEL(),A2- RIMHYDRO-FSAND()

Project Name: SRP Lab Number: L1629727

Project Number: 23840.003 Report Date: 10/27/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:SRPLab Number:L1629727Project Number:23840.003Report Date:10/27/16

Data Qualifiers

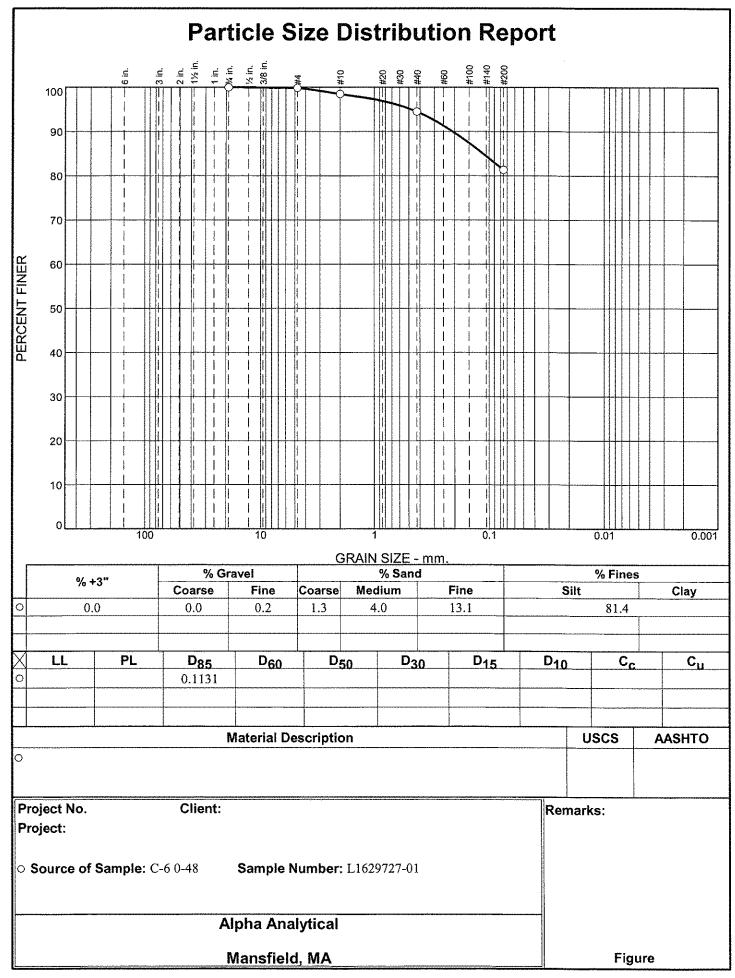
- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: SRP Lab Number: L1629727
Project Number: 23840.003 Report Date: 10/27/16

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Annual Book of ASTM Standards. (American Society for Testing and Materials) ASTM International.
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997 in conjunction with NOAA Technical Memorandum NMFS-NWFSC-59: Extraction, Cleanup and GC/MS Analysis of Sediments and Tissues for Organic Contaminants, March 2004 and the Determination of Pesticides and PCBs in Water and Oil/Sediment by GC/MS: Method 680, EPA 01A0005295, November 1985.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.


LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ASTM D422-63 GRAIN SIZE ANALYSIS

10/17/2016

Location: C-6 0-48

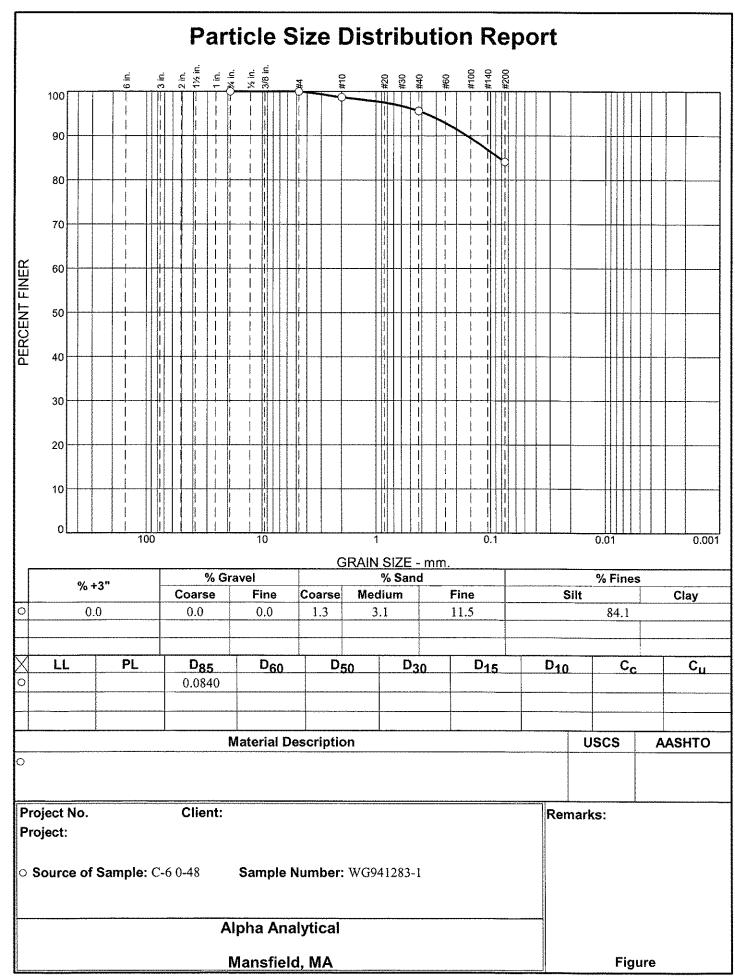
Sample Number: L1629727-01

Sieve Les Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 88.20 Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
88.20	0.00	3/4"	0.00	0.00	100.0
		#4	0.15	0.00	99.8
		#10	1.20	0.00	98.5
		#40	3.51	0.00	94.5
		#200	11.58	0.00	81.4


Fractional Components

Cabbles		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Silt	Clay	Total	
0.0	0.0	0.2	0.2	1.3	4.0	13.1	18.4			81.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.1131	0.2082	0.4750

Fineness Modulus 0.28

. Alpha Analytical 🔔

10/17/2016

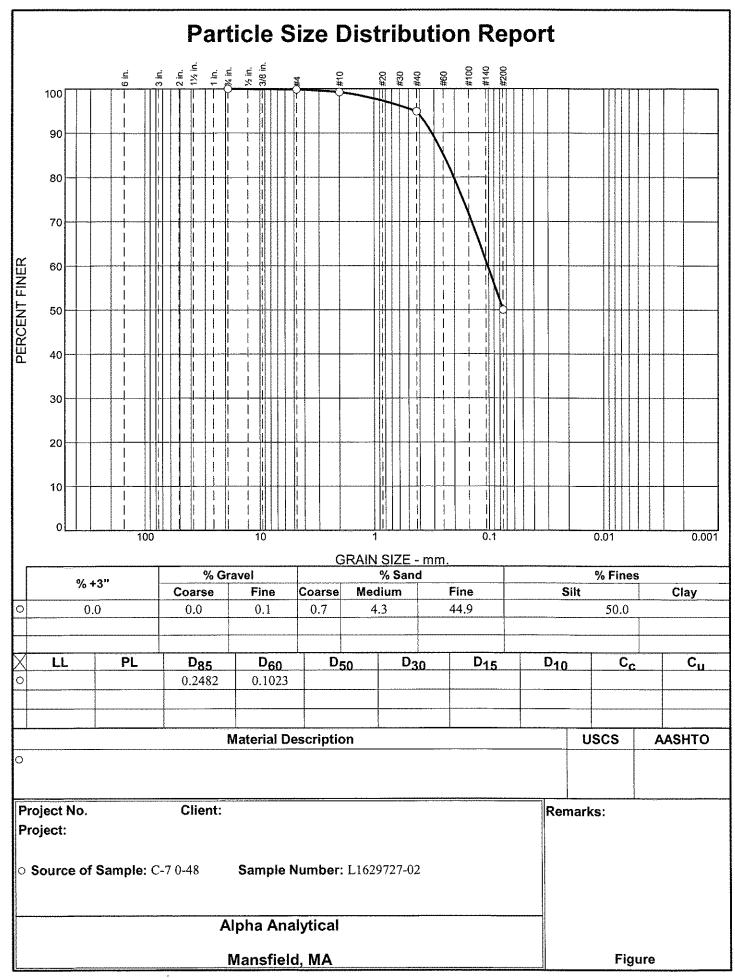
Location: C-6 0-48

Sample Number: WG941283-1

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 88.39
Tare Wt. = 0.00
Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
88.39	0.00	3/4"	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	1.17	0.00	98.7
		#40	2.74	0.00	95.6
		#200	10.14	0.00	84.1


Fractional Components

Calabia		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	1.3	3.1	11.5	15.9			84.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.0840	0.1619	0.3717

Fineness
Modulus
0.23

__ Alpha Analytical _____

10/17/2016

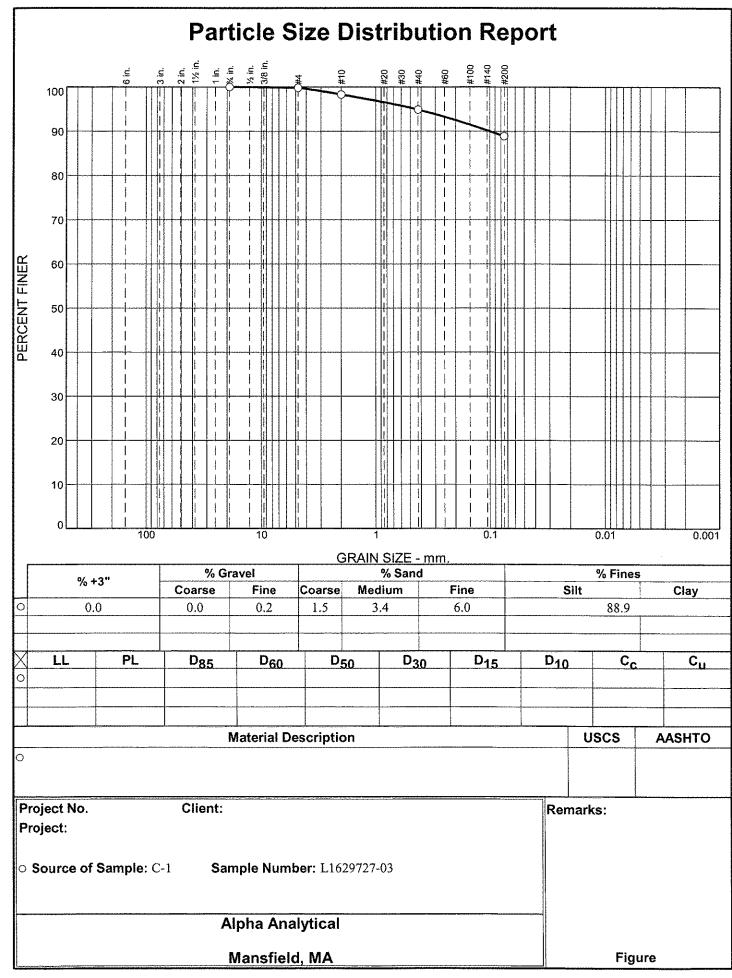
Location: C-7 0-48

Sample Number: L1629727-02

Sieve Tast Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 127.22 Tare Wt. = 0.00 Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
127.22	0.00	3/4"	0.00	0.00	100.0
		#4	0.19	0.00	99.9
		#10	0.77	0.00	99.2
		#40	5.55	0.00	94.9
		#200	57.05	0.00	50.0


Fractional Components

	Cabbias		Gravel			Sa	nd	Fines			
1	Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
	0.0	0.0	0.1	0.1	0.7	4.3	44.9	49.9			50.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.1023	0.2025	0.2482	0.3143	0.4372

Fineness
Modulus
0.46

_ Alpha Analytical _____

10/17/2016

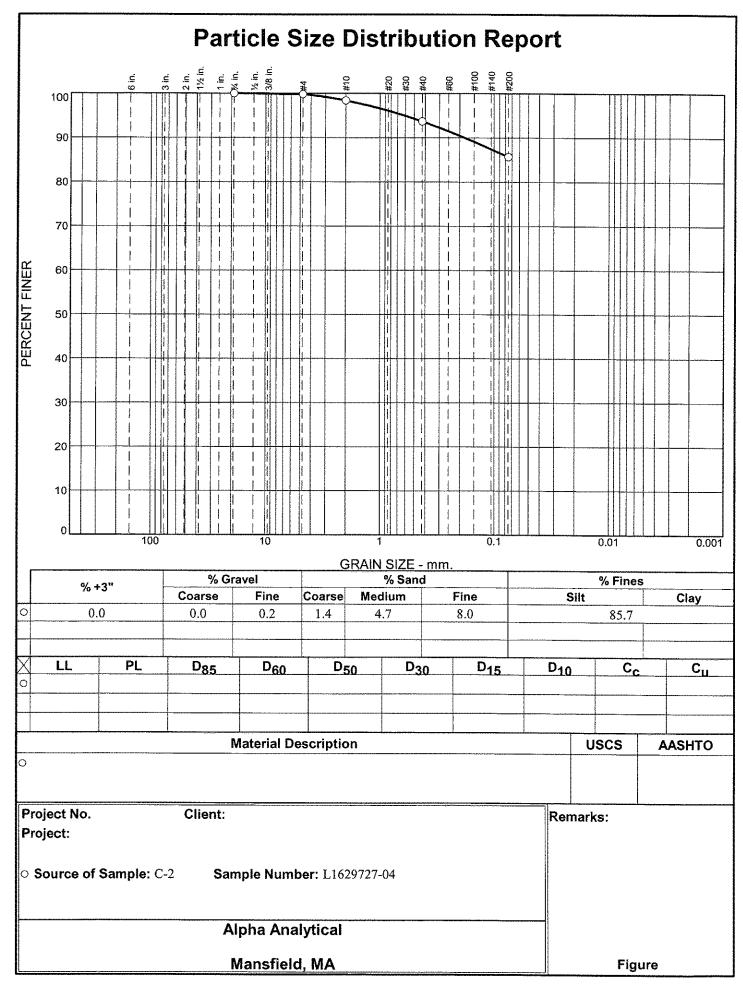
Location: C-1

Sample Number: L1629727-03

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 97.83
Tare Wt. = 0.00
Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
97.83	0.00	3/4"	0.00	0.00	100.0
		#4	0.18	0.00	99.8
		#10	1.50	0.00	98.3
		#40	3.32	0.00	94.9
		#200	5.85	0.00	88.9


Fractional Components

		Gravel				Sa	nd	Fines			
Cobb		Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0	0.0	0.2	0.2	1.5	3.4	6.0	10.9			88.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
								0.1000	0.4427

Fineness Modulus	
0.23	

Alpha Analytical _____

10/17/2016

Location: C-2

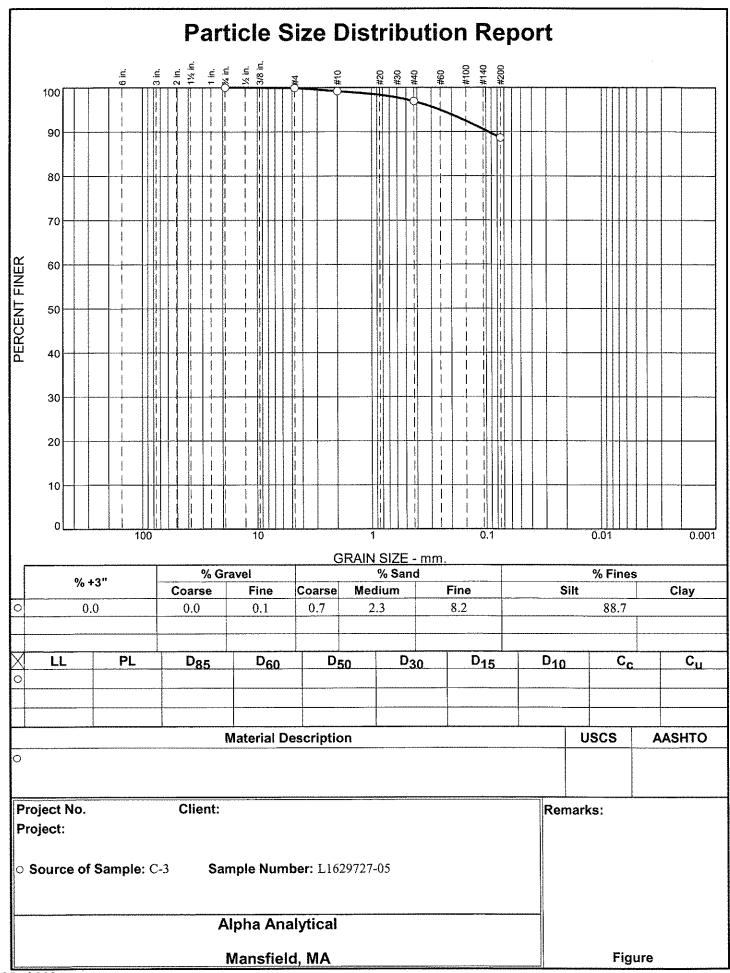
Sample Number: L1629727-04

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 104.95 Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
104.95	0.00	3/4"	0.00	0.00	100.0
		#4	0.22	0.00	99.8
		#10	1.48	0.00	98.4
		#40	4.91	0.00	93.7
		#200	8.39	0.00	85.7


Fractional Components

Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.2	0.2	1.4	4.7	8.0	14.1			85.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
								0.1811	0.6037

Fineness
Modulus
0.28

. Alpha Analytical _

10/17/2016

Location: C-3

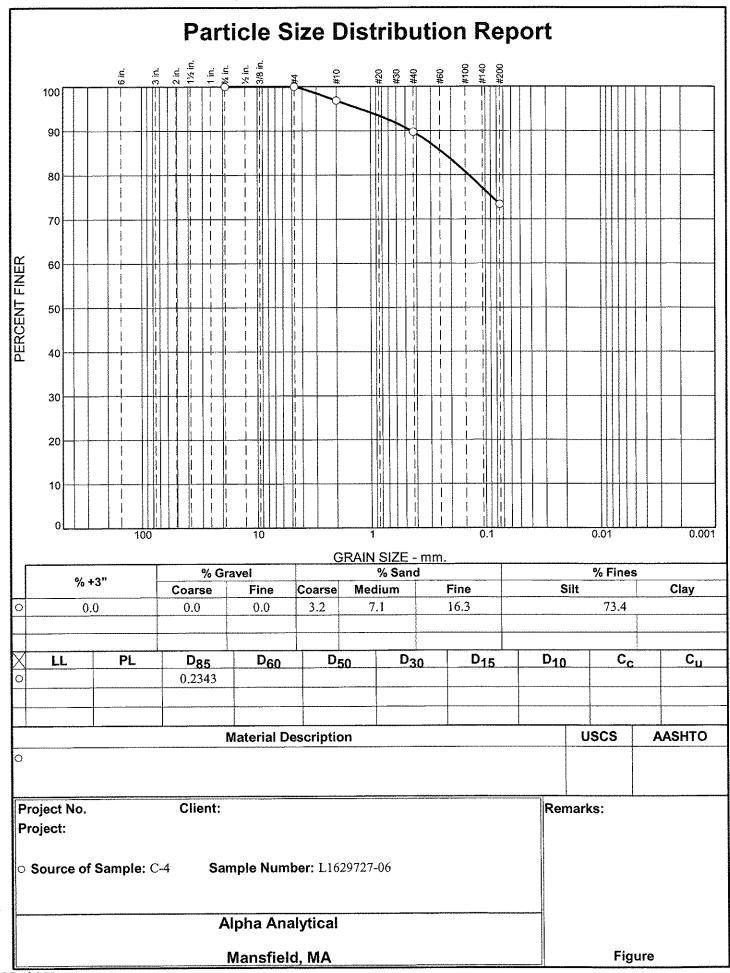
Sample Number: L1629727-05

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 105.87 Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
105.87	0.00	3/4"	0.00	0.00	100.0
		#4	0.11	0.00	99.9
		#10	0.76	0.00	99.2
		#40	2.41	0.00	96.9
		#200	8.73	0.00	88.7


Fractional Components

Cobbles	Gravel es			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.1	0.1	0.7	2.3	8.2	11.2			88.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
								0.0952	0.2536

Fineness Modulus
0.16

Alpha Analytical _____

10/17/2016

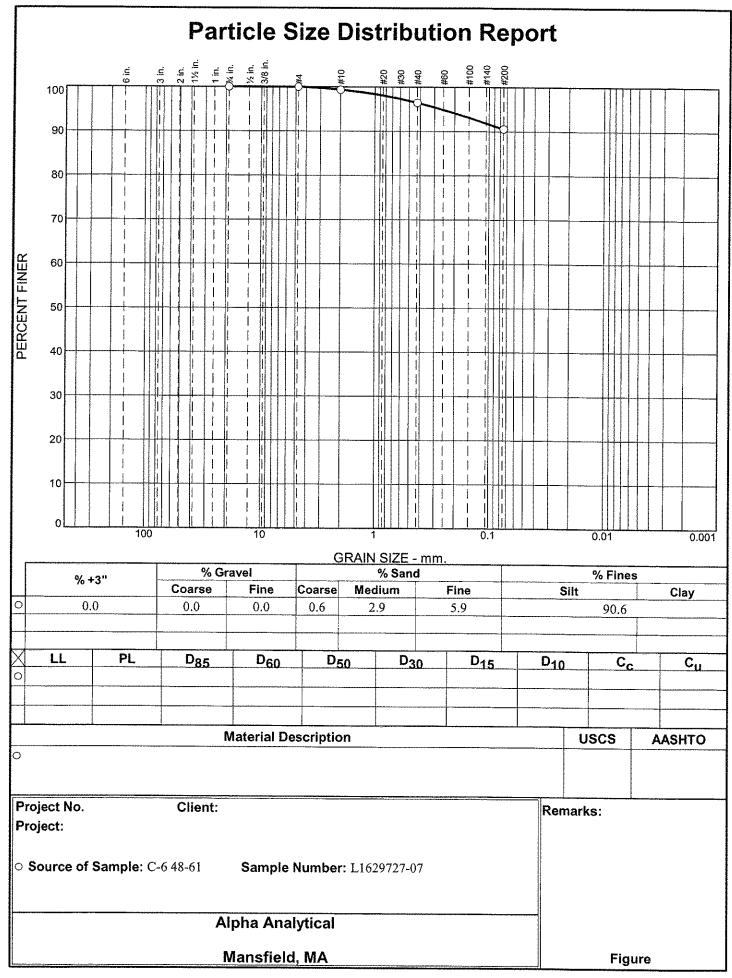
Location: C-4

Sample Number: L1629727-06

Sieve Tosi Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 102.81
Tare Wt. = 0.00
Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
102.81	0.00	3/4"	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	3.25	0.00	96.8
		#40	7.31	0.00	89.7
		#200	16.80	0.00	73.4


Fractional Components

		Gravel		Sand				Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	3.2	7.1	16.3	26.6			73.4	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1399	0.2343	0.4428	1.2439

 Fineness
 Modulus
0.48

_ Alpha Analytical _

10/17/2016

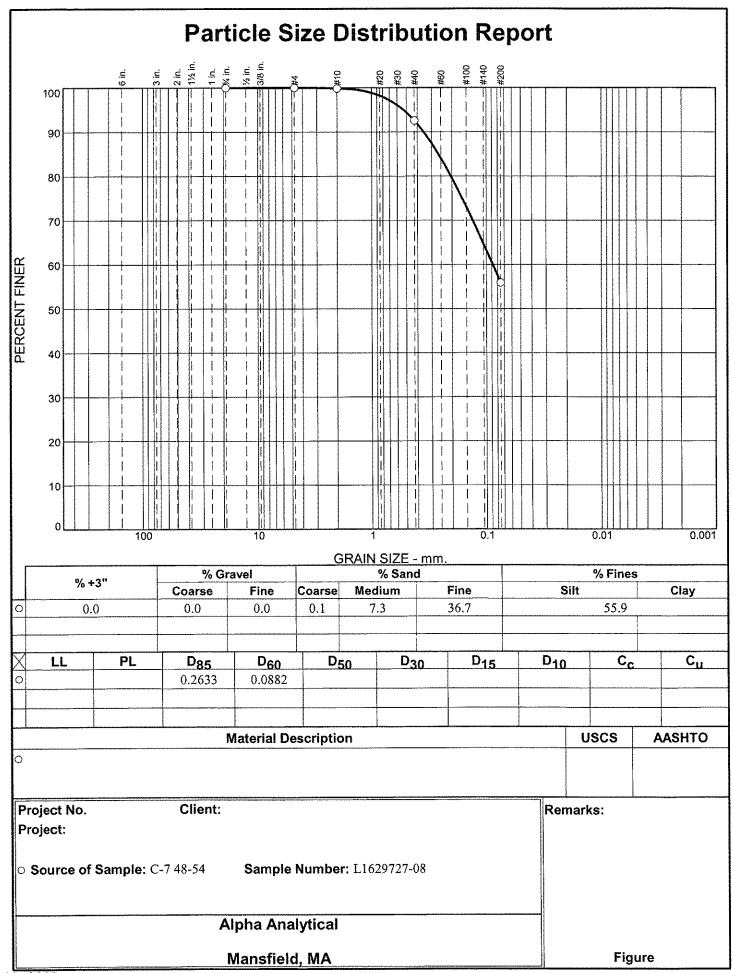
Location: C-6 48-61

Sample Number: L1629727-07

Berelles Dala

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 103.37 Tare Wt. = 0.00 Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
103.37	0.00	3/4"	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	0.67	0.00	99.4
		#40	2.99	0.00	96.5
		#200	6.09	0.00	90.6


Practional Components

Cabbles		Gravel		Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.6	2.9	5.9	9.4			90.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
									0.2601

Fineness Modulus
0.16

Alpha Analytical .

10/17/2016

Location: C-7 48-54

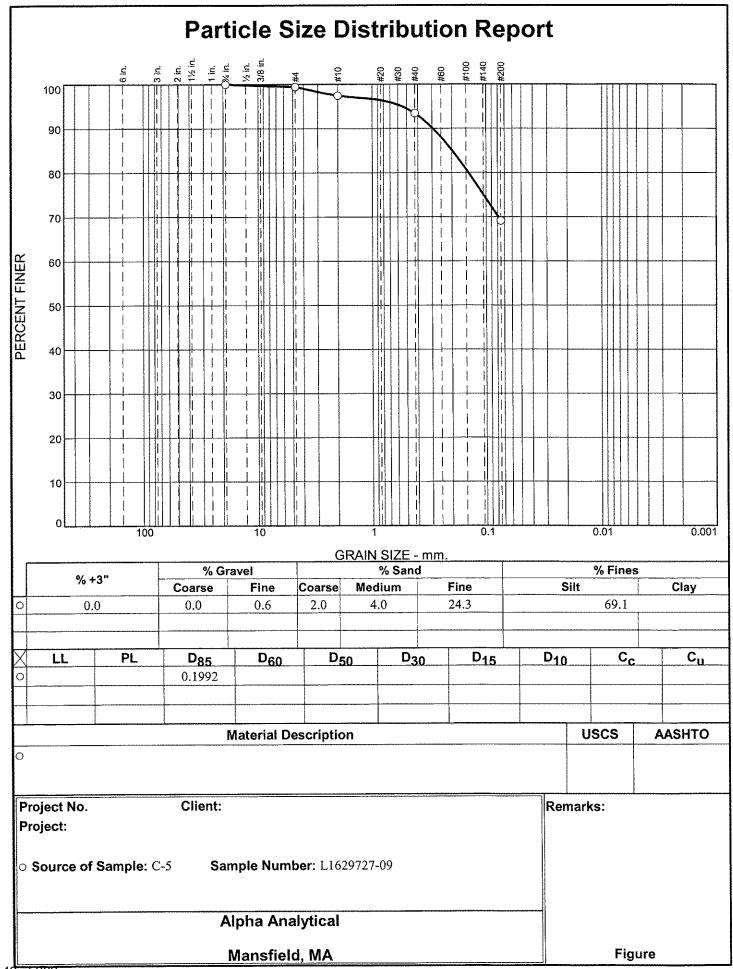
Sample Number: L1629727-08

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 140.11 Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
140.11	0.00	3/4"	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	0.20	0.00	99.9
		#40	10.21	0.00	92.6
		#200	51.42	0.00	55.9


Fractional Components

Cobbles		Gravel		Sand				Fines		
CODDICS	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	7.3	36.7	44.1			55.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0882	0.2049	0.2633	0.3533	0.5298

Fineness Modulus
0.44

Alpha Analytical _____

10/17/2016

Location: C-5

Sample Number: L1629727-09

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 109.80 Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
109.80	0.00	3/4"	0.00	0.00	100.0
		#4	0.65	0.00	99.4
		#10	2.17	0.00	97.4
		#40	4.39	0.00	93.4
		#200	26.70	0.00	69.1


Fractional Components

Cobbles		Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.6	0.6	2.0	4.0	24.3	30.3			69.1	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅	-
						0.1431	0.1992	0.2948	0.5494	

Fineness Modulus	
0.40	

Alpha Analytical _____

10/17/2016

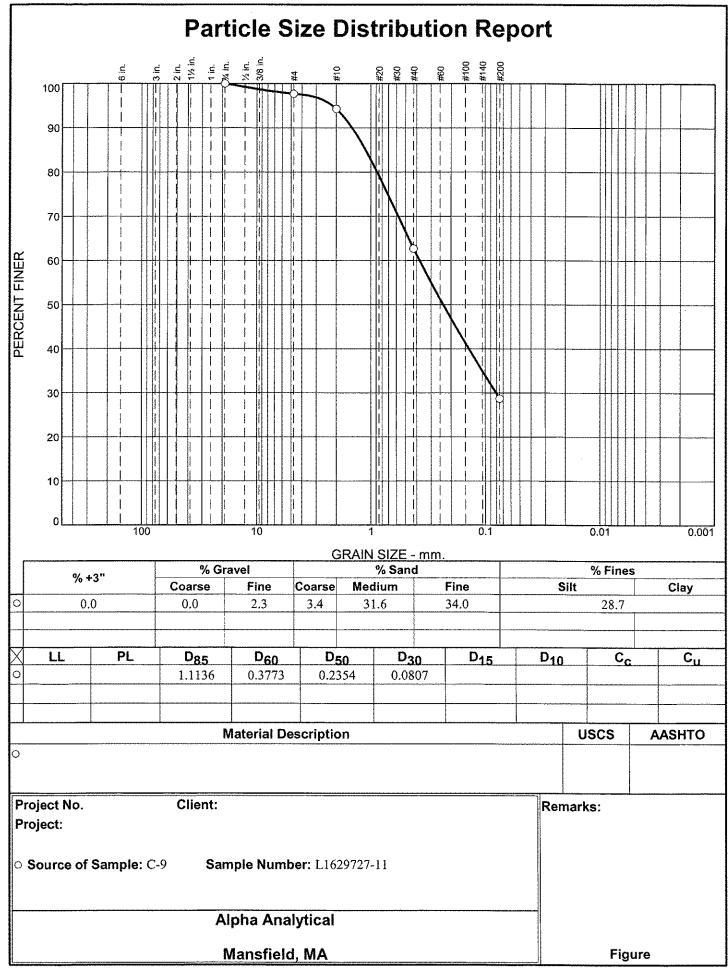
Location: C-8

Sample Number: L1629727-10

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 110.68 Tare Wt. = 0.00 Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
110.68	0.00	3/4"	0.00	0.00	100.0
		#4	0.63	0.00	99.4
		#10	0.52	0.00	99.0
		#40	9.74	0.00	90.2
		#200	73.04	0.00	24.2


Fractional Components

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.6	0.6	0.4	8.8	66.0	75.2			24.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0850	0.1317	0.1664	0.2874	0.3417	0.4217	0.8015

Fineness
Modulus
0.75
0,15

_ Alpha Analytical ___

10/17/2016

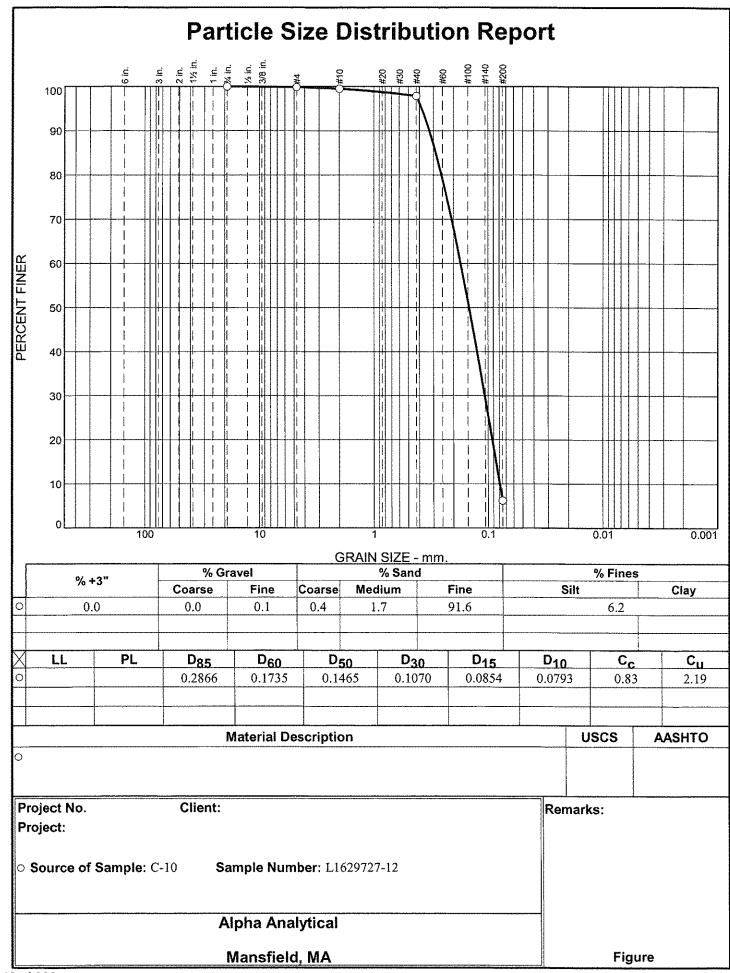
Location: C-9

Sample Number: L1629727-11

Sieve Tosi Dalo

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 130.73
Tare Wt. = 0.00
Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
130.73	0.00	3/4"	0.00	0.00	100.0
		#4	3.02	0.00	97.7
		#10	4.47	0.00	94.3
		#40	41.26	0.00	62.7
		#200	44.46	0.00	28.7


Fractional Components

	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.3	2.3	3.4	31.6	34.0	69.0			28.7

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
ì				0.0807	0.2354	0.3773	0.8828	1.1136	1.4588	2.1608

Fineness Modulus	
1.55	

_ Alpha Analytical _____

10/17/2016

Location: C-10

Sample Number: L1629727-12

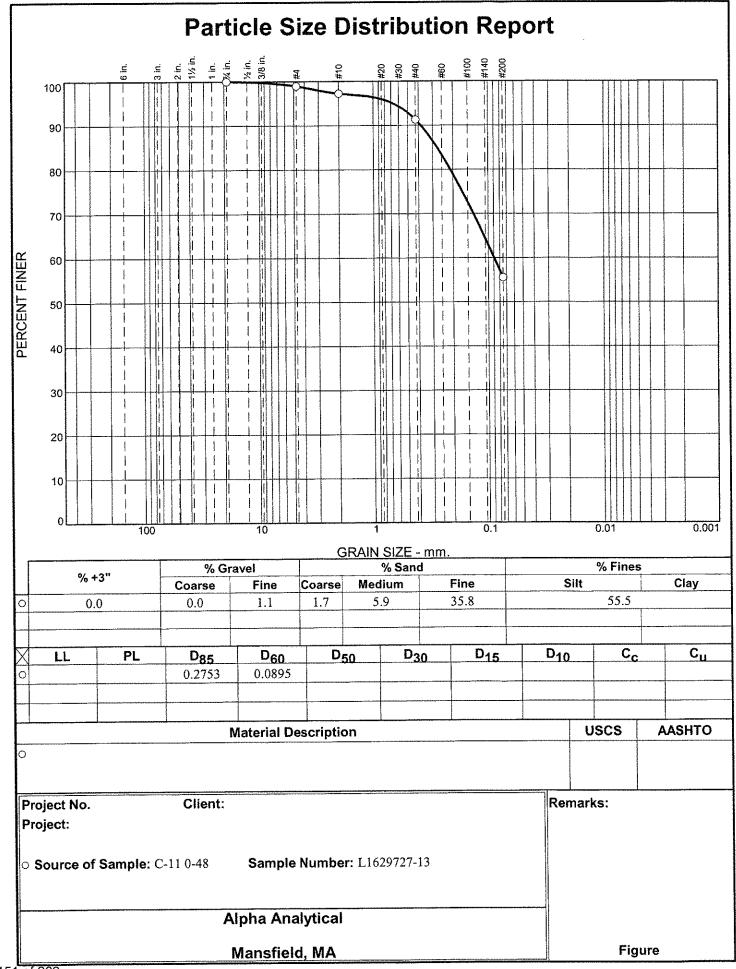
Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 123.33

Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
123.33	0.00	3/4"	0.00	0.00	100.0
		#4	0.18	0.00	99.9
		#10	0.47	0.00	99.5
		#40	2.03	0.00	97.8
		#200	112.98	0.00	6.2


Fractional Components

Cobbles	Gravel				Sand Fines					
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.1	0.1	0.4	1.7	91.6	93.7			6.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0793	0.0854	0.0920	0.1070	0.1465	0.1735	0.2554	0.2866	0.3264	0.3812

Fineness Modulus	Cu	C _C		
0.65	2.19	0.83		

_ Alpha Analytical _____

10/17/2016

Location: C-11 0-48

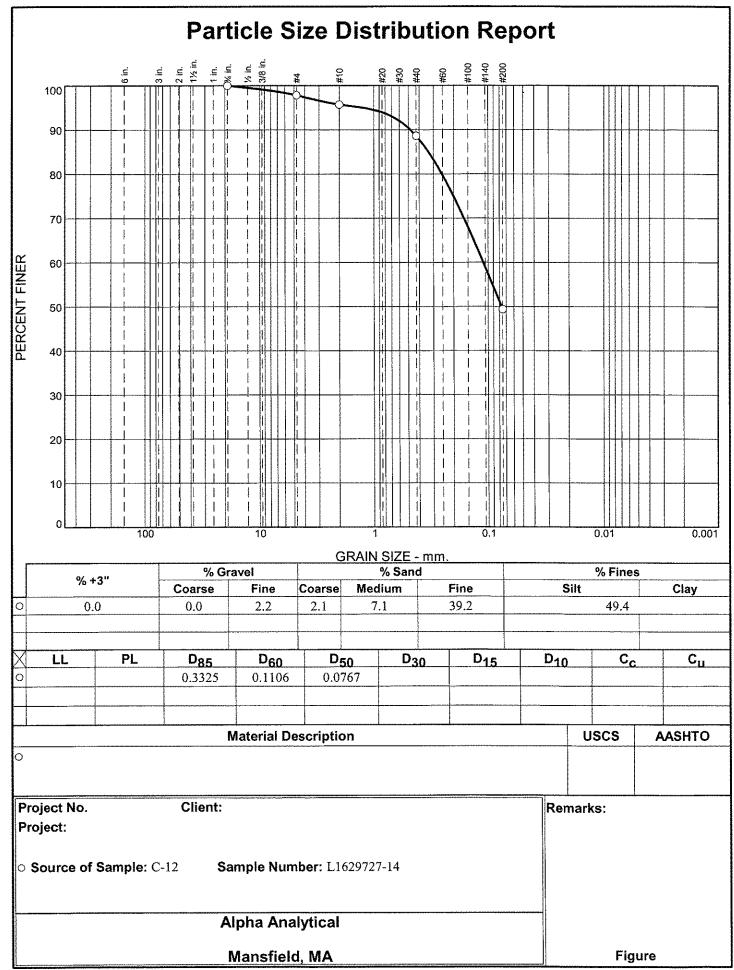
Sample Number: L1629727-13

Sieve Task Jaka

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 121.22 Tare Wt. = 0.00

Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
121.22	0.00	3/4"	0.00	0.00	100.0
		#4	1.29	0.00	98.9
		#10	2.07	0.00	97.2
		#40	7.19	0.00	91.3
		#200	43.34	0.00	55.5


Fractional Components

Cobbles		Gravel		Sand Fines						
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.1	1.1	1.7	5.9	35.8	43.4			55.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0895	0.2113	0.2753	0.3820	0.6739

Fineness Modulus	•
0.54	•

... Alpha Analytical

10/17/2016

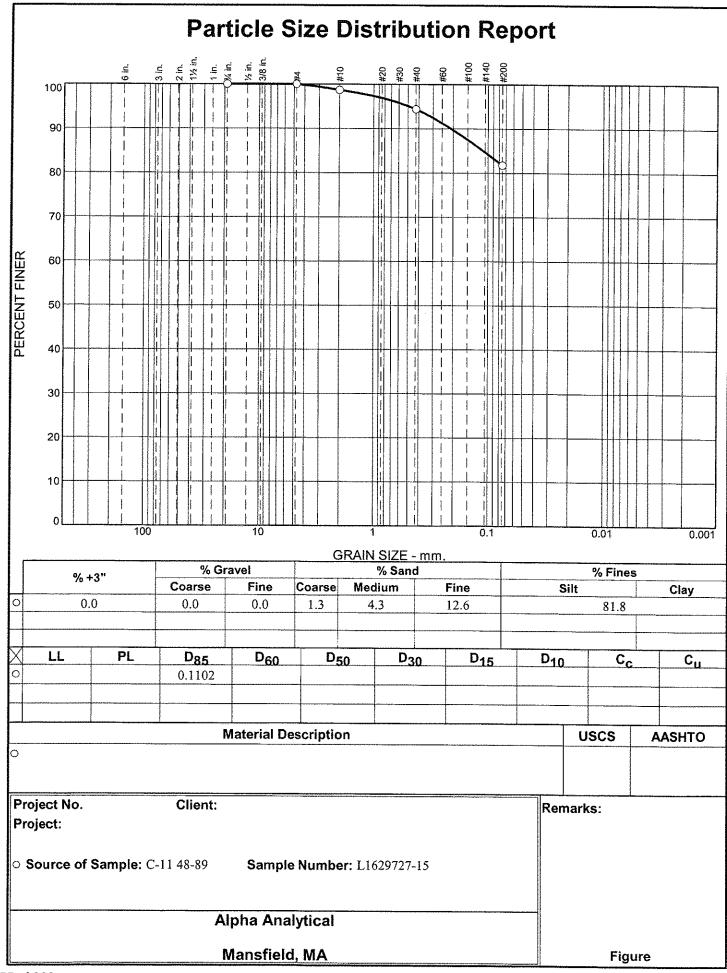
Location: C-12

Sample Number: L1629727-14

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 142.17
Tare Wt. = 0.00
Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
142.17	0.00	3/4"	0.00	0.00	100.0
		#4	3.10	0.00	97.8
		#10	3.02	0.00	95.7
		#40	10.09	0.00	88.6
		#200	55.75	0.00	49.4


Fractional Components

Cobbles		Gravel			Sand Fines					
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.2	2.2	2.1	7.1	39.2	48.4			49.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0767	0.1106	0.2536	0.3325	0.4794	1.2650

Fineness
Modulus
0.69

Alpha Analytical _

10/17/2016

Location: C-11 48-89

Sample Number: L1629727-15

Sieve Test Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 121.51
Tare Wt. = 0.00
Minus #200 from wash = 0.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
121.51	0.00	3/4"	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	1.60	0.00	98.7
		#40	5.23	0.00	94.4
		#200	15.33	0.00	81.8

Fractional Components

Cobbles		Gravel			Sa	nd	Fines			
connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	1.3	4.3	12.6	18.2			81.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.1102	0.2086	0.4863

Fineness
Modulus
0.28

_ Alpha Analytical __

Serial_No:10271613:37

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

,

Revision 7

ID No.:17873

Page 1 of 1

Published Date: 8/5/2016 11:25:56 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; Azobenzen

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔLPHA	CHAIN	OF C	JSTO	DY	PAGE	OF	_ Date	Rec'd	in La	b:	9	201	6		1	\LPH	A Job	#: [6297	27
8 Walkup Drive	320 Forbes Blvd	Proje	et Informa	ation			Repo	ort Inf	form:	ation	- Da	ta De	eliver	ables				mation	O/A	
Westboro, MA Tel: 508-898-	9220 Tel: 508-822-9300	· · · · · · · · · · · · · · · · · · ·	Name: 5				□ AE	DEx		pá	EMAI	L				Same	as Clie	nt info	PO #:	
Client Informati	CAN SHARE SHOULD	Project	Location:	ittle Be	35		Regu	ulator	y Re	quire	men	its	& P	rojec	t Info	rmati	on Red	quireme	nts	ALS ASSESSED
	idan Assucit	S Project	#: 238	40,0	d3		☐ Yes								G? (F	O Ye	s D No	CT RCI	Analytical I	Vethods
	Nashua Rd	Project	Manager:	Sarah	Aller	`	☐ Yes	□ No	GW:	1 Star	dards	(Info	Requ	ired fo	r Meta	als & El	PH with	Targets)	incs)	
MOTOR CO. C.	NH 03410		A Quote #:			# # # P P P P P P P P P P P P P P P P P	☐ Yes☐ Oth									(Criteria			
Phone: 603	-637-1158	Turn:	Around T	ime					1	7	2/ 0	,/,	7.	1	/ /	7	7 /	7	77	
Email: 5-1/e	n Onormadao.c	Och di Star	ndard l	⊒ RUSH ∕onio	confirmed if pre-ag	n ro eV	5	/		DRCB	DPp	les Onl	Ranges Only	/ /		//	//	1/1	/	
Additional F	Project Information:	Date					ANALYSIS	0 5242	_/	EPH. C. DRCRAS C. DRCP. 14 DRCP.	888	Ti. PCR Targer & Targer	Rang	DFingerprin		//		//	/	0 7
Call fo	ong ques	Lie					\$	0 0	\$ / L	5/6	Get R	W. PCB		DFing	/ /		/ /	' / /	/ SAMPLE Filtration	INFO T A L
The state of the s	9 90	1.45					8 7 7	/ >	8	Sp. S.	S& Ta	1 82 J	EST	Nuo		11		1/	☐ Field☐ Lab to	do
*Print							D 8260	METAL DABN	META. DINCP 13	OR	ange.	P. PCR	Doug		//	/ /	/	/ /	Preservati	
ALPHA Lab ID	Complete St.		Col	ection	Sample	Sampler	Voc.	ن \ع ير	3/2	3 / 3	5/5	2 8	1/9	//	/ /		//		☐ Lab to d	ion o T do T L E
(Lab Use Only)	Sample II	, 	Date	Time	Matrix	Initials	2/6	ME	ME	18	13	1794	Æ,			1			mple Comn	ents 8
0/1/21-010	16-6	#UP MADE TO TAKE A STATE OF A STATE OF THE S	9/20	1010	ļ.,,,,,,,,	JBS	2	12	12	2	2.	2	2				At 1884 a passage	0-5	18 , 48	61 14
02,0	8 (-7	Water to the second	9/20	1202	1	JBS		2 2	2	2	2	2	2		1000			0-4	5, 45-	5414
03	<u>C-1</u>		9/20	1258		202		1	1	t	i	1	1				-	-		7
641	C-1		9120	1305		JBS	1	(1	1	1	(1							7
05	C-3		9/20	1336		JBS	(ſ	1	[1	(7				İ			7
06	C-4		9/20	1403		力的	1	(1	((11				フ
	****	Angelina de la constitución de l														-				
	- Junious -															- Anna				
		***************************************								1					1			July 1		
								-	***************************************									1		
Container Type P∞ Plastic	Preservative A= None				Contai	ner Type						-			- Control of the Cont					
A≔ Amber glass V≔ Vial G≃ Glass	B= HCI C≈ HNO ₃ D= H, SO ₄				Pres	servative					1							-		
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinqu	ished By:		Dale/		7 10	Re	eceive	d By:	,			Date	e/Time		AD.			
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl	and 1	Ah	1 0	20110	1645	100	11.9	11	4	1		7-2	afle	14	W.	Alpha's	Terms ar	nitted are su d Condition	
	K= Zn Acetate O= Other	644VV	1/200	1 /	14	1820	1.00	404		42°	L		Π/	0 277	-6-1			/erse side 0 01-01 (rev	12-Mar-2012)	

Project Information Additional Project Information: Additional Project Information: Call with any Questions Additional Project Information Call with any Questions Additional Project Informa	Дірна	Cl	HAIN OF	CUSTO	DY	PAGE	OF <u> </u>	Date	Rec'd	in Lal	b ;	09	12	2/	16	AL	PHA .	Job#	: L/	297	2 7
Client Information Project Localion: Liff's Buy Requisitory Requirements & Project Information Requirements Project Manager: \$2.8840.003 Project Manager: \$3.840.003 Proje	8 Walkup Drive		es Blvd	Project Inform	ation			Rep	ort Inf	orma	ation	- Date	Deli	verat	oles	Distriction of the last of the	-	The Contract of the Contract o	_		
Client. Normaclean Associates Project & 23 \$40 0000 Address: 25 Nashe Reliance for Metals & EPH with Targets) Project Manager: Sa Tash Allen Red N H O3 110 APPHA Cloude Red N H O3 110 APPHA Cloude Phone: 603 - 637 1158 Email: Sallen@nermalean. Cam Additional Project Information: Call with any QUESTION QUESTION Calledon Calle	Weslboro, MA Tel: 508-898-9	01581 Mansfield. 9220 Tel: 508-8	·	Continue Con				ΠA	DEx		DO	MAIL				O S	ame as	Client	info PO#	:	
Client Normacleur Associates Project K 23840003 Address: 25 Nash R2 Project Manages: 25 Rach Blen Rech NH 03110 APHAQuillo & Project Manages: 25 Rach Blen Rech NH 03110 APHAQuillo & Project Manages: 25 Rach Blen Rech NH 03110 APHAQuillo & Project Manages: 25 Rach Blen Rech NH 03110 APHAQuillo & Project Manages: 25 Rach Blen Additional Project Information: Call with any Questions Questions Additional Project Information: Call with any Additional Project Information: Additional Project Information: Call with any A	Client Information	on	F	Project Location:	Little	Berry									ject l	nform	ation	Requ	irements		
Additional Project Information: Call with any Questions Alternative Graphs Additional Project Information: Call with any Questions Alternative Graphs Date Due: Sample Sampler Sampler Sampler Sampler Information: Call with any Questions Alternative Graphs Additional Project Information: Call with any Questions Alternative Graphs Additional Project Information: Call with any Questions Alternative Graphs Alternative Graphs Additional Project Information: Call with any Questions Alternative Graphs Additional Project Information: Call with any Questions Alternative Graphs Additional Project Information: Call with any Questions Alternative Graphs Additional Project Information: Call with any Questions Sample Sampler Sampler Federation Agencies Sampler Graphs	Client: Norman	ideau Asso	scientos F	Project #: 23	84010	13		☐ Ye	S D No	MA N Matri	MCP A	nalytic	al Met	hods	SDG	(Rec	Yes C	J No	CT RCP And	llytical Metho	ods
Rectard N # 03 110	Address: 25 /	Vashen R	F لے	Project Manager:	Sarah	Allen	***	☐ Ye.	s 🗆 No	GW1	Stan	dards (Info R	equire	d for N	Metals	& EPH	with Ta	inorganics) argets)		
Phone: 637 - 637. US8 Email: Sallen @ Paramodaew. Can Additional Project Information: Call with any Questions ALPHALatin D. ALPHALatin D. Collection Sample	Bectiro	NH 031	io				W. Africa										Crit	eria			
C C S S S S S S S S				Turn-Around T	ime				1	/	1 5	2/2	/	7.7	1		7 /	7	71	7	
C C S S S S S S S S	Email: Saller Additional P	n @ normand	nation;		⊒ RUSH _(***)	conlimed & pre-apy	provedlj	1 1 ,	D ABN D 824.2	S. DMCP 13 Des	4:	Ran Ran Depr	D Pro	Quant Only	VI J Lingerprint				Film	tration Field Lab to do	T 0 T A L # B 0 T
C C S S S S S S S S		a national	Sample ID					ွ်ပွဲ	FTAL.	ETAI	H	PH: D	BOA /		77	//	/ /			.ab to do	T L E
C - 8	29727-69	6-5			W	Maux	TOTAL PROPERTY AND ADDRESS OF THE PARTY AND AD		1	*	1 . 1		4/2	-	$\frac{1}{1}$	+		11	Sample	Comments	S
C - 9 9 21 1149 JBS									+	1			/ 1	+		+		-		-	17
-12									+;		-	\exists	\ \	1/	1		-				7
Container Type Pesservative P= Plastic A= Amber glass B= Bacteria cup C= Clabe C= Clabe C= Clabe C= Clabe C= Clabe C= NahlSO ₄ C= Insore C= NahlSO ₄ C= Insore C= NahlSO ₄ C= Insore C= Clabe C= Clabe C= Clabe C= Clabe C= Clabe C= NahlSO ₄ C= Insore C= Clabe C= Clabe C= Clabe C= NahlSO ₄ C= NahlSO ₄ C= Insore C= Clabe C= Clabe C= Clabe C= Clabe C= NahlSO ₄ C= NahlSO ₄ C= Insore C= Clabe C= Clabe C= NahlSO ₄ C= NahlSO ₄ C= Insore C= NahlSO ₄ C= Insore C=	,					 				l		<u> </u>		1 1	1	+		-			7
Container Type			A 11.25			 			1	[[1									7
Container Type P= Plastic A= Mone A= Amber glass B= HCI C= Libe B= Bacteria cup C= Cube C= Cub			0-48			 				l	L	(. 1	1							7
Container Type Preservative P= Plastic A= None A= Amber glass B= HCI V= Vial C= HNO ₃ C= Glass D= H ₃ SO ₃ B= Bacteria cup E= NaOH C= Cube F= MeCH C= Cube F						- 3	JBS			i	(1	1 1	1)							フ
P= Plastic A= Amber glass B= HCl V= Vial C= HNO ₃ C= Glass D= H ₂ SO ₄ B= Bacteria cup C= Cube C= NaOH C= NaHSO ₄ C= All samples submitted are subject to Alpha's Terms and Conditions	-15	_C-!(_	48-89	912	0905		JBS		l	ł	[]	[]	1	1							7
P= Plastic A= Amber glass B= HCl V= Vial C= HNO ₃ C= Glass D= H ₂ SO ₄ B= Bacteria cup C= Cube C= NaOH C= NaHSO ₄ C= All samples submitted are subject to Alpha's Terms and Conditions			*****																		
P= Plastic A= Amber glass B= HCl V= Vial C= HNO ₃ C= Glass D= H ₂ SO ₄ B= Bacteria cup C= Cube C= NaOH C= NaHSO ₄ C= All samples submitted are subject to Alpha's Terms and Conditions																***************************************					
P= Plastic A= Amber glass B= HCl V= Vial C= HNO ₃ C= Glass D= H ₂ SO ₄ B= Bacteria cup C= Cube C= NaOH C= NaHSO ₄ C= All samples submitted are subject to Alpha's Terms and Conditions		1-10							-								T		***************************************		
A= Amber glass W= Vial C= HNO ₃ G= Glass D= H ₂ SO ₄ B= Bacteria cup C= Cube C= Cube C= Cube C= Cube C= NaHSO ₄ H= Na ₂ S ₂ O ₃ C= HNO ₅ Date/Time Received By: Date/Time Received By: All samples submitted are subject to Alpha's Terms and Conditions	P= Plastic					Contain	er Type	- Table - Tabl										\Box		PM	
B= Bacteria cup C= Cube C= Cube G= NaOH G= NaHSO4 H= Na ₂ S ₂ O ₃ E= Encore D= BOD Bottle Relinquished By: Date/Time Received By: Date/Time Received By: Date/Time Received By: All samples submitted are subject to All samples submitted are subject to All pha's Terms and Conditions	V= Vial G= Glass	B= HCI C= HNO ₃				Pres	ervative									_		\vdash			
C= Other FORM NO 01-01 (rev 12-Mai-2012)	B= Bacteria cup C= Cube O= Other E= Encore	E= NaOH F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ Cl K= Zn Acetate	a free	delinguished By:	MX	9/21 9/21	Time 1600 17:50	de	Re	ceive	фВ́у:		Æ_	9/2	Date/T		Aip Ser	ha's Te e reven	erms and Co se side	nditions	to

Table II-1: Completeness Checklist

Quality Assurance/Quality Control Questions	Yes/No? Comments?
1. Was the report signed by the responsible applicant approved representative?	Yes
2. Were the methods for sampling, chemical and biological testing described in the Sampling and Analysis Plan (SAP) and the Laboratory QA Plan (LQAP) followed?	Yes
3. If not, were deviations documented?	N/A
4. Was the SAP approved by the New England District?	Yes
5. Did the applicant use a laboratory with a LQAP on file at the New England District?	Yes
6. Did the samples adequately represent the physical/chemical variability in the dredging area?	Yes
7. Were the correct stations sampled (include the precision of the navigation method used)?	Yes
8. Were the preservation and storage requirements in Chapter 8 of the EPA/Corps QA/QC Manual (EPA/USACE 1995) and EPA (2001d) followed?	Yes
9. Were the samples properly labeled?	Yes
10. Were all the requested data included?	Yes
11. Were the reporting limits met?	Yes
12. Were the chain-of-custody forms properly processed?	Yes
13. Were the method blanks run and were the concentration below the acceptance criteria?	Yes
14. Was the MDL study performed on each matrix (with this data submission) or within the last 12 months?	Yes
15. Were the SRM/CRM analyses within acceptance criteria?	No – see narrative
16. Were the matrix spike/matrix spike duplicates run at the required frequency and was the percent recovery/RPD within the acceptance criteria?	No – see narrative
17. Were the duplicate samples analyzed and were the RPDs within the required acceptance criteria?	Yes
18. For each analytical fraction of organic compounds, were recoveries for the internal standard within the acceptance criteria?	Yes
19. Were surrogate recoveries within the required acceptance criteria?	Yes

Table II-1 (Continued): Completeness Checklist

Quality Assurance/Quality Control Questions	Yes/No? Comments?
20. Were corrective action forms provided for all non-conforming data?	Yes
21. Were all the species-specific test conditions in Appendix V met?	
22. Were the test-specific age requirements met for each test species?	
23. Was the bulk physical/chemical testing performed on the	
sediments/composites that were biologically tested?	
24. Were the mortality acceptance criteria met for the water column and sediment	
toxicity tests?	
25. Were the test performance requirements in Table 11.3 of EPA (1994a)	
met?	

Table II-2: Quality Control Summary for Analyses of Polyaromatic Hydrocarbons (PAHs) and other base-neutrals in Sediment and Tissue Matrices

Method Reference Number: 8270C

Quality Control (QC) Element	Acceptance Criteria*	Criteria Met? Yes/No	List results outside criteria (Cross-reference results table in data report)	Location of Results (Retained at Lab or in Data Package)
Initial Calibration	Must be performed prior to the analysis of any QC sample or field sample (<20 % RSD for each compound)	Yes		Retained at Lab
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)	Yes		Retained at Lab and On file at USACoE-NED
Calibration Verification (Second Source)	Once, after initial calibration (80 to 120% recovery of each compound)	Yes		Retained at Lab
Continuing Calibration	At the beginning of every 12 hour shift (± 15 % D)	Yes		Retained at Lab
Standard Reference Materials	Within the limits provided by vendor	Yes		In Data Package
Method Blank	No target analytes > RL	Yes		In Data Package
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One set (MS/MSD) per group of field samples. Must contain all target analytes. (Recovery Limits 50 to 120%; RPD <30%)	No	WG937275-6 MS naphthalene (38.7%), acenaphthylene (42.3%), acenaphthene (44.7%), fluorene (46.6%), phenanthrene (48.5%), anthracene (45.2%), fluoranthene (49.9%), pyrene (48.2%) and cl3-bz#18 (49.2%). WG937275-7 MS naphthalene (39.6%), acenaphthylene (42.9%), acenaphthene (45.1%), fluorene (47%), phenanthrene (48.9%), anthracene (45.9%), pyrene (48.1%)	In Data Package
Analytical Replicates	Analyze one sample in duplicate for each group of	Yes		In Data Package

	field samples (RPD < 30%)		
Surrogate Recoveries	Calculate % recovery (30 to	Yes	In Data Package
	150% recovery)		
Internal Standard Areas	Within 50 to 200% of internal	Yes	Retained at Lab
	standards in continuing		
	calibration check		

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Table II-3: Quality Control Summary for the Analyses of Pesticides in Sediment, Tissue, and Water Matrices

Method Reference Number: 8081B

Quality Control (QC)	Acceptance Criteria*	Criteria	List results outside criteria	Location of Results
Element		Met? Yes/No	(Cross-reference results table in data report)	(Retained at Lab or in Data Package)
Initial Calibration	Must be performed prior to the analysis of any QC sample or field sample (<20 % RSD for each compound)			Retained at Lab
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)			Retained at Lab and On file at USACoE-NED
Calibration Verification (Second Source)	Once, after initial calibration (80 to 120% recovery of each compound)			Retained at Lab
Continuing Calibration	Every 20 injections (± 15 % D)			Retained at Lab
Standard Reference Materials	Within the limits provided by vendor			In Data Package
Method Blank	No target analytes > RL			In Data Package
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One set (MS/MSD) per group of field samples. Must contain all target analytes. (Recovery Limits 50 to 120%; RPD <30%)			In Data Package
Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD < 30%)			In Data Package
Surrogate Recoveries	Calculate % recovery (30 to 150% recovery)			In Data Package

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Table II-4: Quality Control Summary for Analyses of Polychlorinated Biphenyls (PCB Congeners) in Sediment, Tissue, and Water Matrices

Method Reference Number: 8270C

Quality Control (QC)	Acceptance Criteria*	Criteria	List results outside criteria	Location of Results
Element		Met? Yes/No	(Cross-reference results table in data report)	(Retained at Lab or in Data Package)
Initial Calibration	Must be performed prior to the analysis of any QC sample or field sample (<20 % RSD for each compound)	Yes		Retained at Lab
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)	Yes		Retained at Lab and On file at USACoE-NED
Calibration Verification (Second Source)	Once, after initial calibration (80 to 120% recovery of each compound)	Yes		Retained at Lab
Continuing Calibration	Every 20 injections (± 15 % D)	Yes		Retained at Lab
Standard Reference Materials	Within the limits provided by vendor	No	cl6-bz#128 (164%)	In Data Package
Method Blank	No target analytes > RL	Yes		In Data Package
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One set (MS/MSD) per group of field samples. Must contain all target analytes. (Recovery Limits 50 to 120%; RPD <30%)	No	WG937275-6 MS cl3-bz#18 (49.2%) WG937275-7 MS cl3-bz#18 (48.7%).	In Data Package
Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD < 30%)	Yes		In Data Package
Surrogate Recoveries	Calculate % recovery (30 to 150% recovery)	Yes		In Data Package

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Table II-5: Quality Control Summary for Analyses of Metals in Sediments, Tissue, and Water Matrices

Method Reference Numbers: Various Reference Numbers

Quality Control (QC)	Acceptance Criteria*	Criteria	List results outside criteria	Location of Results
Element		Met? Yes/No	(Cross-reference results table in	(Retained at Lab or in
			data report)	Data Package)
Linear Range Determination for ICP	Performed Quarterly	Yes		Retained at Lab
Initial Calibration for AA, Hg	Performed Daily (Correlation Coefficient ≥0.995)	Yes		Retained at Lab
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)	Yes		Retained at Lab and On file at USACoE-NED
Initial Calibration Verification/ Continuing Calibration Verification	Hg: 80 to 120% recovery Other metals: 90 to 110% recovery	Yes		Retained at Lab
Initial Calibration Blank/ Continuing Calibration Blank	No target analytes > Instrument Detection Limit (IDL)	No	Results >3x IDL noted, on file at lab	Retained at Lab
Standard Reference Materials	Within the limits provided by vendor	Yes		In Data Package
Method Blank	No target analytes > RL	Yes		In Data Package
Sample Spike/ Sample Duplicate	One set per group of field samples. Must contain all target analytes. Recovery Limits (75 to 125%; RPD < 20% or < 35%)	Yes		In Data Package
Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD < 30%)	Yes		In Data Package

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Table II-6: Quality Control Summary for Analyses of other Organic Chemicals not listed in Sediment, Tissue, and Water Matrices

Method Reference Numbers:

Quality Control (QC)	Acceptance Criteria*	Criteria	List results outside criteria	Location of Results
Element		Met? Yes/No	(Cross-reference results table in	(Retained at Lab or in
			data report)	Data Package)
Initial Calibration	Must be performed prior to		• /	Retained at Lab
	the analysis of any QC			
	sample or field sample (<20			
	% RSD for each compound)			
Calculation of Method	For each matrix, analyzed			In Data Package
Detection Limits (MDLs)	once per 12 month period			
	(see Section 5.2 for MDL			
	procedure)			
Calibration Verification	Once, after initial calibration			Retained at Lab
(Second Source)	(80 to 120% recovery of each			
	compound)			
Continuing Calibration	At the beginning of every 12			Retained at Lab
	hour shift (± 15 % D)			
Standard Reference Materials	Within the limits provided by			In Data Package
	vendor			
Method Blank	No target analytes > RL			In Data Package
Matrix Spike/Matrix Spike	One set (MS/MSD) per group			In Data Package
Duplicate (MS/MSD)	of field samples. Must			
	contain all target analytes.			
	(Recovery Limits 50 to			
	120%; RPD <30%)			
Analytical Replicates	Analyze one sample in			In Data Package
	duplicate for each group of			
	field samples (RPD < 30%)			
Surrogate Recoveries	Calculate % recovery (30 to			In Data Package
	150% recovery)			
Internal Standard Areas	Within 50 to 200% of internal			In Data Package
(if applicable)	standards in continuing			
	calibration check			

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Table II-7: Quality Control Summary for Analyses of Sediment Grain Size and Total Organic Carbon

Method Reference Numbers:

Quality Control (QC)	Acceptance Criteria*	Criteria	List results outside criteria	Location of Results
Element		Met? Yes/No	(Cross-reference results table in	(Retained at Lab or in
			data report)	Data Package)
Grain Size:	Analyze one sample in	Yes		In Data Package
Analytical Replicates	duplicate for each group of			
	field samples (RPD < 25%)			
Total Organic Carbon:	Within the limits provided by	Yes		In Data Package
Standard Reference Materials	vendor			
Total Organic Carbon:	Analyze one sample in	Yes		In Data Package
Analytical Replicates	duplicate for each group of			
	field samples (RPD <30%)			

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Table II-8: Quality Control Summary for Biological Toxicity Testing only

Method Reference Numbers:

Quality Control (QC)	Acceptance Criteria*	Criteria	List results outside criteria	Location of Results
Element		Met? Yes/No	(Cross-reference results table in data report)	(Retained at Lab or in Data Package)
Test condition requirements for each species: Temperature, Salinity, pH, D.O., Ammonia (Total, Un-ionized)	Test conditions within the requirements specified for each species	109110	in data report)	In Data Package
Test species age	Age/health within guidelines for each species (Appendix V)			In Data Package
Bulk physical/chemical analyses (If required by the Sampling plan)	Required? If so, performed? Yes or No			In Data Package
Water column toxicity test:				In Data Package
Control mortality Control abnormality	< 10% mean < 30% mussel/oyster; < 40% clam larvae, < 30% sea urchin larvae			
Sediment toxicity test:				In Data Package
Control mortality	< 10% mean (no chamber >20%)			
Compliance with applicable test acceptability requirements in Table 11.3 (EPA 1994a)	See EPA (1994a) Section 9; Table 11.3			

^{*} The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

Reference:

Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters, U.S. EPA and U.S. Army Corps of Engineers, New England District, April 2004.

October 13, 2016

Vista Work Order No. 1601237

Ms. Liz Porta Alpha Analytical Laboratory 8 Walkup Drive Westborough, MA 01581

Dear Ms. Porta,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on September 27, 2016. This sample set was analyzed on a rush turn-around time, under your Project Name 'L1629727'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Karenjopez for

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfeld Way El Dorado Hills , CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1601237 Case Narrative

Sample Condition on Receipt:

Fifteen aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. As directed, the sample IDs were confirmed for the following samples:

Sample C-8 (L1629727-10) collected 21-SEP-16 13:00 Sample C-9 (L1629727-11) collected 21-SEP-16 11:45

Analytical Notes:

Modified EPA Method 537

The samples were extracted and analyzed for PFOA and PFOS using Modified EPA Method 537. The results include both linear and branched isomers.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The recoveries of all internal standards in the QC and field samples were within the acceptance criteria.

As requested, an MS/MSD was performed on sample "C-6 (0-48)".

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	24
Certifications	25
Sample Receipt	28

Sample Inventory Report

Vista Sample ID	Client Sample ID		Sampled	Received	Components/Containers
1601237-01	C-6 (0-48)	MS/MSD	20-Sep-16 10:10	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-02	C-7 (0-48)		20-Sep-16 12:02	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-03	C-1		20-Sep-16 12:58	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-04	C-2		20-Sep-16 13:05	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-05	C-3		20-Sep-16 13:36	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-06	C-4		20-Sep-16 14:05	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-07	C-6 (48-61)		20-Sep-16 10:10	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-08	C-7 (48-54)		20-Sep-16 12:02	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-09	C-5		21-Sep-16 08:35	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-10	C-9		21-Sep-16 13:00	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-11	C-9		21-Sep-16 11:45	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-12	C-10		21-Sep-16 12:20	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-13	C-11 (0-48)		21-Sep-16 09:03	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-14	C-12		21-Sep-16 08:44	27-Sep-16 10:06	HDPE Jar, 4 oz
1601237-15	C-11 (48-89)		21-Sep-16 09:03	27-Sep-16 10:06	HDPE Jar, 4 oz

Vista Project: 1601237 Client Project: L1629727

ANALYTICAL RESULTS

Sample ID	: Method Blank							VA	L - PFAS
Matrix: Sample Size:	Solid 1.00 g	QC Batch: Date Extracted:	B6J0020 05-Oct-2016 15:22			o Sample: B6J0020-BL te Analyzed: 11-Oct-16 19		C18	
Analyte	Conc. (ng/g)	RL		Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA PFOS	ND ND	2.00 2.00			IS IS	13C2-PFOA 13C8-PFOS	99.0 107	60 - 150 60 - 150	

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: OPR								VAL - PFAS
Matrix: Solid Sample Size: 1.00 g	QC Batch: Date Extracted	B6J0020 d: 05-Oct-2010	6 15:22		Lab Sam Date Ana	•	n: BEH C18	
Analyte	Amt Found (ng/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
PFOA	9.68	10.0	96.8	70 - 130	IS	13C2-PFOA	95.4	60 - 150
PFOS	8.31	10.0	83.1	70 - 130	IS	13C8-PFOS	105	60 - 150

LCL-UCL - Lower control limit - upper control limit

Sample ID:	C-6 (0-48)								VA	L - PFAS
Client Data			Sample Data		Lal	boratory	y Data			
Name:	Alpha Analytical La	ooratory	Matrix:	Solid	L	ab Samp	ole: 1601237-01	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.48 g	Q	C Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 10:10		% Solids:	67.5	D	ate Anal	lyzed: 11-Oct-16 20:53	Column: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifiers	s	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	2.00				IS	13C2-PFOA	92.1	60 - 150	
PFOS	ND	2.00				IS	13C8-PFOS	81.1	60 - 150	

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Matrix Spike Re	esults														VAL -	PFAS
Source Client ID: Source LabNumber: Matrix: Sample Size:	C-6 (0-48) 1601237-01 Solid 1.52/1.49 g				QC Bate Date Ex			10020 Oct-201	6 15:22		Lab Sample: Date Analyze	ed: 11-Oct-16 21:05	6J0020-MSD1 Column: BEH Cl Column: BEH Cl			
Analyte		Spike-MS (ng/g)		MS Qual.	Spike-MSD (ng/g)	MSD %R	RPD	MSD Qual.	%R Limit	%RPD Limit	Labeled	l Standard	MS %R	MS Qualifiers	MSD %R	MS Qual.
PFOA PFOS		9.75 9.75	108 97.3		9.94 9.94	93.9 91.2	14.0 6.47		70 - 130 70 - 130	-		2-PFOA 3-PFOS	92.0 70.6		101 77.5	

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID:	C-7 (0-48)								VA	L - PFAS
Client Data			Sample Data		La	boratory	Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Solid	I	Lab Samp	de: 1601237-02	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.41 g		QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 12:02		% Solids:	72.6		Date Anal	yzed: 11-Oct-16 21:31 Colu	umn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifier	s	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.95				IS	13C2-PFOA	93.1	60 - 150	
PFOS	ND	1.95				IS	13C8-PFOS	82.8	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-1								VA	L - PFAS
Client Data			Sample Data		La	boratory	⁷ Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Solid	L	ab Samp	le: 1601237-03	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.79 g		C Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 12:58		% Solids:	58.5	Г	Date Anal	yzed: 11-Oct-16 21:43 Colu	mn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifier	s	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.91				IS	13C2-PFOA	93.5	60 - 150	
PFOS	ND	1.91				IS	13C8-PFOS	90.7	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-2								VA	L - PFAS
Client Data			Sample Data		Lal	boratory	Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Solid	L	ab Samp	le: 1601237-04	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.70 g	Q	C Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 13:05		% Solids:	61.8	D	ate Anal	yzed: 11-Oct-16 21:56 Col-	umn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifiers	:	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.91				IS	13C2-PFOA	101	60 - 150	
PFOS	ND	1.91				IS	13C8-PFOS	80.6	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-3								VA	L - PFAS
Client Data			Sample Data		Lat	oratory	Data			
Name:	Alpha Analytical Lab	oratory	Matrix:	Solid	La	ab Samp	le: 1601237-05	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.64 g	Q	C Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 13:36		% Solids:	62.9	D	ate Anal	yzed: 11-Oct-16 22:08 (Column: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.94				IS	13C2-PFOA	97.0	60 - 150	
PFOS	ND	1.94				IS	13C8-PFOS	76.6	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-4								VA	L - PFAS
Client Data			Sample Data			aboratory				
Name:	Alpha Analytical Lab	ooratory	Matrix:	Solid	I	Lab Samp	le: 1601237-06	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.58 g	(QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 14:05		% Solids:	65.9	I	Date Anal	yzed: 11-Oct-16 22:21 Colu	ımn: BEH C18		
Analyte	Conc. (ng/g)	RL	·		Qualifier	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.92				IS	13C2-PFOA	94.6	60 - 150	
PFOS	ND	1.92				IS	13C8-PFOS	78.6	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-6 (48-61)								VA	.L - PFAS
Client Data			Sample Data		L	aborator	y Data			
Name:	Alpha Analytical Lab	ooratory	Matrix:	Solid		Lab Samp	ble: 1601237-07	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.61 g		QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 10:10		% Solids:	64.2		Date Ana	lyzed: 11-Oct-16 22:34 Colum	nn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifie	ers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.93				IS	13C2-PFOA	97.6	60 - 150	
PFOS	ND	1.93				IS	13C8-PFOS	74.6	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-7 (48-54)								VA	L - PFAS
Client Data			Sample Data		I	aboratory	y Data			
Name:	Alpha Analytical Lab	ooratory	Matrix:	Solid		Lab Samp	ole: 1601237-08	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.50 g		QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	20-Sep-2016 12:02		% Solids:	71.5		Date Anal	lyzed: 11-Oct-16 23:49 C	olumn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifie	ers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.87				IS	13C2-PFOA	111	60 - 150	
PFOS	ND	1.87				IS	13C8-PFOS	90.4	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-5								VA	L - PFAS
Client Data			Sample Data			Laborator	y Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Solid		Lab Sam	ple: 1601237-09	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.51 g		QC Batcl	n: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 8:35		% Solids:	68.4		Date Ana	lyzed: 12-Oct-16 00:02	Column: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifi	iers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.94				IS	13C2-PFOA	103	60 - 150	
PFOS	ND	1.94				IS	13C8-PFOS	81.1	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-8								VA	.L - PFAS
Client Data			Sample Data		I	Laborator	y Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Solid		Lab Sam	ple: 1601237-10	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.46 g		QC Batcl	n: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 13:00		% Solids:	74.2		Date Ana	lyzed: 12-Oct-16 00:15	Column: BEH C18		
						-				
Analyte	Conc. (ng/g)	RL			Qualific	ers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.85				IS	13C2-PFOA	105	60 - 150	
PFOS	ND	1.85				IS	13C8-PFOS	85.9	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-9									VA	L - PFAS
Client Data			Sample Data			Laborato	ry Data				
Name:	Alpha Analytical La	boratory	Matrix:	Solid		Lab Saı	nple:	1601237-11	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.22 g		QC Bat	ch:	B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 11:45		% Solids:	83.0		Date A	nalyzed:	12-Oct-16 00:27	Column: BEH C18		
Analyte	Conc. (ng/g)	RL	1		Qualif	iers	Labe	eled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.97				IS	13C2	2-PFOA	108	60 - 150	
PFOS	ND	1.97				IS	13C8	8-PFOS	88.6	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-10								VA	L - PFAS
Client Data			Sample Data		L	aboratory	Data			
Name:	Alpha Analytical Lal	boratory	Matrix:	Solid		Lab Samp	de: 1601237-12	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.34 g		QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 12:20		% Solids:	81.5		Date Anal	yzed: 12-Oct-16 00:40 Colu	mn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifie	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.83				IS	13C2-PFOA	107	60 - 150	
PFOS	ND	1.83				IS	13C8-PFOS	75.0	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-11 (0-48)								VA	.L - PFAS
Client Data			Sample Data		L	aboratory	y Data			
Name:	Alpha Analytical Lab	oratory	Matrix:	Solid		Lab Samp	ole: 1601237-13	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.46 g		QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 9:03		% Solids:	70.1		Date Anal	lyzed: 12-Oct-16 00:53 Colu	mn: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifie	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.95				IS	13C2-PFOA	111	60 - 150	
PFOS	ND	1.95				IS	13C8-PFOS	89.3	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-12								VA	.L - PFAS
Client Data			Sample Data			Laborato	ry Data			
Name:	Alpha Analytical La	boratory	Matrix:	Solid		Lab San	nple: 1601237-14	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.29 g		QC Bate	eh: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 8:44		% Solids:	78.3		Date An	alyzed: 12-Oct-16 01:05	Column: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualif	iers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.98				IS	13C2-PFOA	110	60 - 150	
PFOS	ND	1.98				IS	13C8-PFOS	94.4	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Sample ID:	C-11 (48-89)								VA	.L - PFAS
Client Data			Sample Data		L	aborator	Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Solid		Lab Samp	ole: 1601237-15	Date Received:	27-Sep-201	6 10:06
Project:	L1629727		Sample Size:	1.48 g		QC Batch	: B6J0020	Date Extracted:	05-Oct-201	6 15:22
Date Collected:	21-Sep-2016 9:03		% Solids:	69.3		Date Ana	yzed: 12-Oct-16 01:18 C	Column: BEH C18		
Analyte	Conc. (ng/g)	RL			Qualifie	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.95				IS	13C2-PFOA	107	60 - 150	
PFOS	ND	1.95				IS	13C8-PFOS	81.3	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound	d was a	lso d	etected	in the	method	blank.
---	---------------	---------	-------	---------	--------	--------	--------

D Dilution

E The associated compound concentration exceeded the calibration range of

the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ.

* See Cover Letter

Conc. Concentration

NA Not applicable

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2014022
Nevada Division of Environmental Protection	CA004132015-1
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-004
Pennsylvania Department of Environmental Protection	012
South Carolina Department of Health	87002001
Texas Commission on Environmental Quality	T104704189-15-6
Virginia Department of General Services	7923
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

SUB UPS: Vista Analytical –Eldorado Holls, CA

SOB OIS.						160	212	3+	٠, :	7.()												
	CHAIN OF	CUSTO	DY	PAGE 1	of 2	Date	Rec'd i	n Lab:							HA Jo	ob #:	L1629	9727					
ALPH	A	Project Inform	nation			Rep	ort In	form	ation	Data	Deliv	/erab	les	Billir	ng Inf	orma	ation		TORRE				
ANALYT							FAX			⊠ E	MAIL			☐ Sa	ame as	Client	t info	PO #:					
	Mansfield, MA FEL: 508-822-9300	Project Name:					ADEx			□ A	dd'I De	liverabl	es										
FAX: 508-898-9193	FAX: 508-822-3288					Reg	julato	ry Re	quire	ment	s/Rep	ort L	imits					AFFECT SER					
Client Information	on	Project Location	n: NJ			State	e/Fed Pi	rogram						Criteria	a			78310 (3120 - W.)					
Client: Alpha Analy	tical Lab	Project #:				MO		CLUM	DTIV	CE	TAIN	ITV C	F (0)=	4601	IADI	F 00	MEID	ENCE PROTOCOLO					
Address: 320 Forbe	es Blvd.	Project Manage	r: Elizabeth F	orta		IVIC			No	CEI				Method				ENCE PROTOCOLS					
Mansfield, Ma 0204	8	ALPHA Quote #	t:			Y			No No									s) Required?					
Phone: 508-822-93	Turn-Around	Time			ANA	ALYS	S										T O SAMPLE HANDLING T						
Fax:	Standard Standard	☐ Ru	ish (ONLY IF F	PRE-APPROVED)													SAMPLE HANDLING T Filtration T						
Email: subreports@alphal	- Due Date:	Time:															□ Done □ Not Needed #						
☐ These samples have	been Previously analyzed by Alpha	Duo Duto.																☐ Lab to do Preservation ☐ Lab to do (Please specify below) S					
Other Project Specific Requirements/Comments/Detection Limits:																		☐ Lab to do					
																		(Please specify below) E					
Please include Alph	na job #L1629727 on this report.					S																	
						PFOA/PFOS																	
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sample Sampler's													Compte Consider					
(Lab Use Only)		Date	Time	Matrix	Initials	H												Sample Specific Comments					
MS/MSD	C-6 (0-48)	9/20/16	10:10			\boxtimes												L1629727-01					
	C-7 (0-48)	9/20/16	12:02															L1629727-02					
	C-1	9/20/16	12:58															L1629727-03					
	C-2	9/20/16	13:05				Ш	Ш	Ш		Ш					Ц		L1629727-04					
	C-3	9/20/16	13:36				Ш	Ш	Ц		Ц	Ц				Ц	닏	L1629727-05					
	C-4	9/20/16	14:05						Ц		빌							L1629727-06					
	C-6 (48-61)	9/20/16	10:10				닏											L1629727-07					
	C-7 (48-54)	9/20/16	19:02				닏						Ц		빌	Ц		L162972-08	_				
	C-5	9/21/16	08:35				片		H		님		Н			Н	님	L1629727-09	_				
	C-9	9/21/16	13:00	-				Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш		L1629727-10					
PLEASE ANSWER	QUESTIONS ABOVE!			С	ontainer Type	A	-	-	-	-	-	-	-	-	-	-	-	Please print clearly, legibly					
					Preservative	A	-	-	-	-	-	-	-	-	-	-	-	and completely. Samples can not be logged in and					
	PROJECT	111	Relin	quished By:		O INA	ate/Tim			4		red By:			D	ate/Tir	ne	turnaround time clock will not slart until any ambiguities are					
MA MCP	or CT RCP?	W	Chegal	K		4/24	10	1700	111	neox)PS				4-25	1-10	1012	resolved. All samples submitted are subject to					
FORM NO: 01-01(I) (rev. 30-JUL-07)		2						M	VID	<u> </u>	100 1990			1 27	10	JUIL	Alpha's Payment Terms						

Page 197 of 262

Work Order 1601237

1601237,7.0

CHAIN OF CUSTODY PAGE 2 OF 2							Date Rec'd in Lab: ALPHA Job #: L1629727									9727							
ALPHI	4	Project Inform	mation			1 10 70 70	ort In	form	ation	0.0000000000000000000000000000000000000		/erab	les	Marketonia (Const.)		forma							
Westborough, MA	Mansfield, MA					☐ F				⊠ E			-		ame as	s Client	info	PO #:					
TEL: 508-898-9220	FEL: 508-822-9300	Project Name:					ADEx			☐ A	dd'l De	liverab	les				Anna han						
Client Information	FAX: 508-822-3288	Project Location	n: NJ				ulato		quire	ment	s/Rep	ort L	imits.	Criteri	ia								
Client: Alpha Analy	772 1000 Ura	Project #:				State	e/Fed Pi	ogram						Criteri	id								
Address: 320 Forbe	Project Manage	er: Elizabeth I	Porta		MC	P PRE			CEF	RTAIN	ITY-C	TRE	ASO	NABL	E CC	NFID	ENCE PROTOCOLS	,					
Mansfield, Ma 0204		ALPHA Quote #		Ortu					No No					I Metho		*		s) Required?					
Phone: 508-822-93	Turn-Around	The second second			□ Y	ALYS		ZI NO		Alec) KU	Reas	oriable	Conno	lence r	TOLOCOL	T						
Fax:				ush (ONLY IE	PRE-APPROVED)		101											SAMPLE HANDLING TA					
Email:	_ M Otalidala		4011 (01121 11	THE THE HOTEL													Filtration Done						
subreports@alphal	- Due Date:	Time	:														☐ Not Needed #						
These samples have	been Previously analyzed by Alpha																	Preservation 0					
Other Project Specific Requirements/Comments/Detection Limits:																	Preservation □ Lab to do (Please specify below) □ Lab to do □ Lab to do □ Lab to do □ E						
																	below) E S						
Please include Alph	na job #L1629727 on this report.					08																	
	1					VPF																	
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	lection Time	Sample Matrix	Sampler's Initials	PFOA/PFOS												Sample Specific Comments					
(Eac cos ciii)		1	11:45				\vdash			П	П	П	П		П	П	\vdash	L1629727-11					
	C-9	9/21/16	12170				H		H	H	\Box	Ħ	П	H	П	H	H	L1629727-12	_				
	C-10	9/21/16	9:03				\Box		F									L1629727-13					
	C-11 (0-48) C-12	9/21/16	8:44				\Box											L1629727-14					
	C-11 (48-89)	9/21/16	9:03															L1629727-15					
			1			\boxtimes																	
						\boxtimes																	
						\boxtimes																	
									Щ		Ц	Ц	Ц	Щ		Щ	닏						
						\boxtimes		Ш		Ш	Ц	Ш	Ш	Ш	Ш	Ш	Ш						
PLEASE ANSWER	QUESTIONS ABOVE!				Container Type	A	-	-	-	-		-	-		-	-	-	Please print clearly, legibly					
					Preservative	A		-	-	-	-	-		-	-	-		and completely. Samples ca not be logged in and					
	PROJECT	11	Relin	nquished By:		1/2/ /	ate/Tim		-	1	Receiv	ed By:		*******	[Date/Tir	ne	turnaround time clock will not start until any ambiguities are					
	or CT RCP?	11/1	M CHICL	ces		136/1	417	TUU	11	Som	19	-			9/2-	1/16	1012	resolved. All samples submitted are subject to Alpha's Payment Terms.					
FORM NO: 01-01(I) (rev. 30-JUL-07)						- 1			HOLD	A)				11-	10	1014							

Page 198 of 262

SAMPLE LOG-IN CHECKLIST

Vista Project #:		1601237			TAT_	14		_			
	Date/Time		Initials:		Location	n: \W	R-Z				
Samples Arrival:	9/27/16	1006	alw		Shelf/Ra	ack:N/A					
	Date/Time	n: \\)	V-2								
Logged In:	9/28/16	1620	SR.			40	T				
					Shelf/Ra	ack: and		_			
Delivered By:	FedEx	UPS	On Trac	DHL		vered	Otl	ner			
Preservation:	Ice		Blue Ice	Dr	y Ice		None				
	Temp °C: 7.6 (uncorrected) Time: 1025 Thermore										
Temp °C: → (corrected) Probe used: Yes No□											
						YES	NO	NA			
Adequate Sample	Volume Rec	eived?				1/	NO	IVA			
Holding Time Acceptable?											
Shipping Container	r(s) Intact?					V					
Shipping Custody S	Seals Intact?	•				V					
Shipping Documen	tation Prese	nt?				V					
Airbill	Trk # 1	2 19E 18E	01 9424 7	721		V					
Sample Container I	Intact?					V					
Sample Custody Se	eals Intact?							V			
Chain of Custody /	Sample Doo	cumentation P	resent?			V					
COC Anomaly/Sam	ple Accepta	ance Form cor	mpleted?								
If Chlorinated or Dr	inking Wate	r Samples, Ac	ceptable Pre	servatio	n?						
Preservation Docur		Na ₂ S ₂ (Trizma		Yes	No	(NA)			
Shipping Container		Vista	Client	Reta	in Re	eturn	Disp	ose			
Comments:	-abel 11 COC 10 ista 10	D: C-8 D: C-9 D: 160012	37-10		•		•				

BLA 09/06/2016

Chain of Custody Anomaly/Sample Acceptance Form

Client: Contact: Email: Phone:	Alpha Analytical Laboratory Liz Porta eporta@alphalab.com (508) 844-4124		Workorder Number: Date Received: Documented by/date:	1601237 27-Sep-16 11:16 S.Roughton 9/28/16
	view the following information and tion before proceeding with sample		on section. To comply v	with NELAC regulations, we must receive
Thank yo	u,			
Martha M mmaier@ 916-673-	vista-analytical.com			
The follow	ring information or item is needed	to proceed with analysis:		
	Complete Chain-of-Custody	Preservative		Collector's Name
	Test Method Requested	Sample Identification		Sample Type
	Analyte List Requested	Sample Collection Date	and/or Time	Sample Location
	Other:			
	Temperature outside < 6°C Range Temperature°C Sample ID Discrepancy Sample Holding Time Missed Custody Seals Broken	Samples Affector Ice Present? Yes Insur	-	
COC ID:	bel ID: C-8 C-9 1601237-10			
See page	2			
Client A	uthorization			
Proceed v	with Analysis YES NO	Signature and Date Kou	my w	-13-110
Client Co	omments/Instructions C - B	Signature and Date You Collected on 9/2	21/11/ 13:00.	

9/21/14

li: 45.

Work Order 1601237

Page 200 of 262

c-9 collected an

Page 31 of 32

Chain of Custody Anomaly/Sample Acceptance Form

Alpha Analytical Laboratory Liz Porta eporta@alphalab.com (508) 844-4124 Workorder Number: 1601237

Date Received: 27-Sep-16 11:16

Documented by/date:

S.Roughton 9/28/16

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier mmaier@vista-analytical.com 916-673-1520

1	_
1	T T
1	
1	∡ ⊾

Sample IDs on Chain of Custody do not match Sample Container Labels

Chain of Custody ID	Container Label ID
-	
C-9	C-8

Client Authorization Proceed with Analysis: YES NO Client Comments/Instructions	Signature and Date	10-13-16	
Page 201 of 262			

Serial_No:10271613:37

an affiliate of The GEL Group INC

3306 Kitty Hawk Road, Suite 120 Wilmington, NC 28405

P 910.795.0421

www.capefearanalytical.com

October 19, 2016

Ms. Elizabeth Porta Alpha Analytical Laboratory 8 Walkup Drive Westborough, Massachusetts 01581

Re: Dioxin and PCB Subcontract, Liz Porta PM Work Order: 9822 SDG: L1629727

Dear Ms. Porta:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 27, 2016. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Cyrole Larkins

Cynde Larkins Project Manager

Enclosures

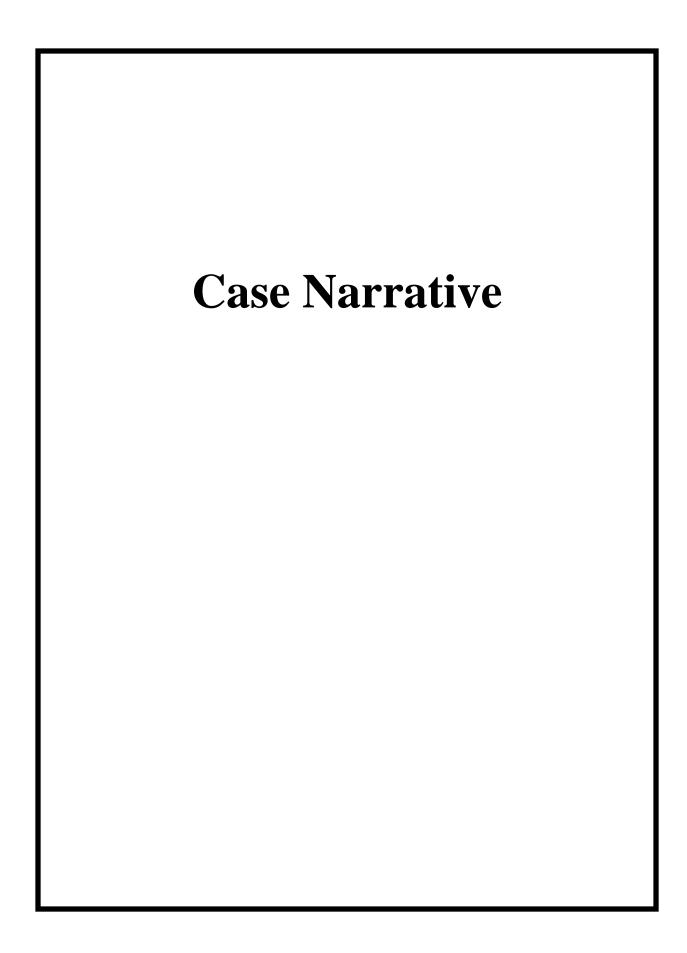
228 bacon

and SUB UPS: CAPE FEAR, NC

not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms. MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS SAMPLE HANDLING L1629727-04 L1629727-05 L1629727-09 L1629727-10 (Please specify below) L1629727-02 L1629727-03 L1629727-06 L1629727-07 L1629727-01 □ Not Needed L162972-08 ☐ Lab to do Sample Specific Comments ☐ Lab to do Preservation Are CT RCP (Reasonable Confidence Protocols) Required? □ Done Filtration PO #: ALPHA Job #: L1629727 \$ 0.01 psca Same as Client info Billing Information Date/Time Are MCP Analytical Methods Required? Criteria 3:37 Regulatory Requirements/Report Limits Report Information Data Deliverables ☐ Add'l Deliverables Received By: ⊠ EMAIL o ⊠ % ⊠ State/Fed Program Date Rec'd in Lab ANALYSIS Date/Time ☐ ADEx □ FĀ □ Yes □ Yes B1681 nixoiQ \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes ⋖ Preservative Container Type Rush (ONLY IF PRE-APPROVED) Sampler's Initials PAGE OF Sedimont Sample Matrix nquished By: Project Manager: Elizabeth Porta Time: 13:36 5.8 B 13:05 08:35 60.0 15. 18. 0.0 13:05 12:58 Ö. Time Project Information **CHAIN OF CUSTODY Turn-Around Time** Collection Project Location: NJ Other Project Specific Requirements/Comments/Detection Limits: ALPHA Quote #: Project Name: Standard Standard 9/20/16 9/20/16 9/20/16 9/20/16 9/21/16 9/20/46 9/20/16 9/21/16 9/20/16 9/20/16 Date Due Date: Project #: Please include Alpha job #L1629727 on this report. subreports@alphalab.com,eporta@alphalab.com MA MCP or CT RCP? These samples have been Previously analyzed by Alpha Sample ID S YOUR PROJECT PLEASE ANSWER QUESTIONS ABOVE! FAX: 508-822-3288 TEL: 508-822-9300 C-7 (48-54) C-6 (48-61) C-7 (0-48) C-6 (0-48) Mansfield, MA Client: Alpha Analytical Lab Address: 320 Forbes Blvd. C-5 C-2 င်း 0 4 ပ် $\overline{\Omega}$ KE-1 Client Information Phone: 508-822-9300 Mansfield, Ma 02048 DWestborough, MA (Lab Use Only) ALPHA Lab ID TEL: 508-898-9220 FAX: 508-898-9193 CISM/SH Fax:

BOFFJWS

5.60


WD# 9822	ALPHA Job #: L1629727	Billing Information Same as Client info PO#:			Criteria		MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?		SAMPLE HANDLING T	ğ	☐ Lab to do B Preservation O	☐ Lab to do T (Please specify E below)			Sample Specific Comments									,	•	Date/Time	start until any annoloures are resolved. All samples submitted are subject to Alpha's Payment Terms.
		Information Data Deliverables ⊠ EMAIL	ADEx Add" Deliverables	Regulatory Requirements/Report Limits			PRESUMPTIVE CERTAINTY-CT REA	2 2 3 X	rsis														rial			161	Date/Time Received By:	
***************************************	PAGE 2 OF 2			Regu			orta			☐ Rush (ONLY IF PRE-APPROVED)	Time.			816318	Sample Sampler's	Time Matrix Initials	11:45 Sediment				D9:63 V ⊠		\boxtimes		Container Type A	Preservative A	•	1800 Ly 100/16
R, NC	CHAIN OF CUSTODY	Project Information	Project Name:		Project Location: NJ	Project #:	Project Manager: Elizabeth P	ALPHA Quote #:	Turn-Around Time	Standard	galphalab.com Due Date.		Other Project Specific Requirements/Comments/Detection Limits:	27 on this report.	Sample ID Collection	Date	9/21/16	9/21/16	9/21/16	9/21/16	9/21/16				BOVE!			RCP?
SUB UPS: CAPE FEAR, NC		PO CANALTICAL ANALTICAL	NWestborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-830		Client Information	Client: Alpha Analytical Lab	Address: 320 Forbes Blvd.	Mansfield, Ma 02048	Phone: 508-822-9300	Fax:	Email: subreports@alphalab.com,eporta@alphalab.com	These samples have been Previously analyzed by Alpha	Other Project Specific Requirer	Please include Alpha job #L1629727 on this report.	ALPHA Lab ID	(Lab Use Only)	6-0	C-10	C-11 (0-48)	C-12	C-11 (48-89)				PLEASE ANSWER QUESTIONS ABOVE!		IS YOUR PROJECT	MA MCP or CT RCP?

SAMPLE RECEIPT CHECKLIST

r					Cape Fear Analytical						
Clie	nt: ALDH				Work Order: 9822						
Ship	pping Company: UPS				Date/Time Received: 27802016 70:26.10:05						
Ship	pected Hazard Information pped as DOT Hazardous? pples identified as Foreign Soil?	Yes	NA	No	DOE Site Sample Packages Screened <0.5 mR/hr? Samples < 2x background? * Notify RSO of any responses in this column immediately.						
	Sample Receipt Specifics sample in shipment?	Yes	NA	No	Air Witness:						
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)						
1	Shipping containers received intact and sealed?				Circle Applicable: seals broken damaged container leaking container other(describe)						
2	Chain of Custody documents included with shipment?)	_								
3	Samples requiring cold preservation within 0-6°C?	<u>_</u>		(Presentation Method: ice bags blue ice dry ice none other (describe) 5.6						
4	Aqueous samples found to have visible solids?		\	/	Sample IDs, containers affected:						
5	Samples requiring chemical preservation at proper pH?		~	/	Sample IDs, containers affected and pH observed: If preservative added, Lot#:						
6	Samples requiring preservation have no residual chlorine?		/	_	Sample IDs, containers affected: If preservative added, Lot#:						
7	Samples received within holding time?				Sample IDs, tests affected:						
8	Sample IDs on COC match IDs on containers?			V	Sample #10 is C-8 on container #11 is C-9 on container						
9	Date & time of COC match date & time on containers?	V			Sample IDs, containers affected:						
10	Number of containers received match number indicated on COC?	/	1		List type and number of containers / Sample IDs, containers affected: 1 - 402 CAMBER ECACH						
11	COC form is properly signed in relinquished/received sections?	V									
Con	nments:										

CF-UD-F-7

High Resolution Dioxins and Furans Analysis

HDOX Case Narrative Alpha Analytical Laboratory (ALPH) SDG L1629727 Work Order 9822

Method/Analysis Information

Product: Dioxins/Furans by EPA Method 1613B in Solids

Analytical Method: EPA Method 1613B

Extraction Method: SW846 3540C

Analytical Batch Number: 33023 Clean Up Batch Number: 33022 Extraction Batch Number: 33021

Sample Analysis

The following samples were analyzed using the analytical protocol as established in Method 1613B:

Sample ID	Client ID
9822001	C-6 (0-48)
9822002	9822001(C-6 (0-48)) Matrix Spike (MS)
9822003	9822001(C-6 (0-48)) Matrix Spike Duplicate (MSD)
9822004	C-7 (0-48)
9822005	C-1
9822006	C-2
9822007	C-3
9822008	C-4
9822009	C-6 (48-61)
9822010	C-7 (48-54)
9822011	C-5
9822012	C-8
9822013	C-9
9822014	C-10
9822015	C-11(0-48)
9822016	C-12
9822017	C-11(48-89)
12017085	Method Blank (MB)
12017086	Laboratory Control Sample (LCS)
12017087	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 14.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

Sample 9822001 (C-6 (0-48))- Batch 33023 was selected for analysis as the matrix spike and matrix spike duplicate.

Matrix Spike (MS) Recovery Statement

The MS recoveries were within the established acceptance limits.

Matrix Spike Duplicate (MSD) Recovery Statement

One analyte recovered outside the acceptance limits. 9822003 (C-6 (0-48))- Batch 33023.

MS/MSD Relative Percent Difference (RPD) Statement

One RPD was outside the acceptance limits. 9822003 (C-6 (0-48))- Batch 33023.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

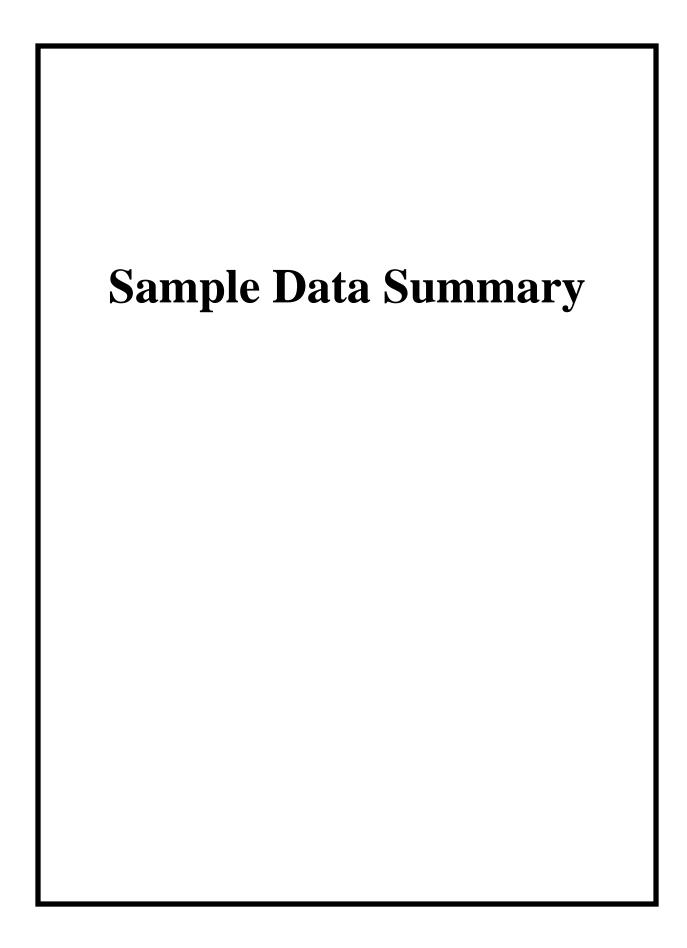
Miscellaneous Information

Nonconformance (NCR) Documentation

The following NCR was generated for this SDG: 646052 9822003 (C-6 (0-48))- Batch 33023.

Manual Integrations

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.


Sample preparation

No difficulties were encountered during sample preparation.

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also

includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Certificate of Analysis Report for

ALPH001 Alpha Analytical Laboratory Client SDG: L1629727 CFA Work Order: 9822

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the specified detection limit.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Heather Patterson

Date: 19 OCT 2016 Title: Group Leader

of 2

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

Client: ALPH001 09/20/2016 10:10 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture:

ALPH00416 SOIL 34.7

Prep Basis: Dry Weight

EPA Method 1613B

Instrument: HRP763 Dilution: 1

Batch ID: 33023 **Run Date:** 10/17/2016 19:22 Data File: b17oct16a-5 33021 **Prep Batch: Prep Date:** 16-OCT-16

L1629727

1613B Soil

C-6 (0-48)

TEQ WHO2005 ND=0.5

9822001

Prep Method:

Method:

Analyst:

SW846 3540C Prep Aliquot: 16.14 g

		_			
Parmname	Qual	Result	Units	PQL	
2,3,7,8-TCDD	U	.949	pg/g	0.949	
1,2,3,7,8-PeCDD	U	4.74	pg/g	4.74	
1,2,3,4,7,8-HxCDD	U	4.74	pg/g	4.74	
1,2,3,6,7,8-HxCDD	U	4.74	pg/g	4.74	
1,2,3,7,8,9-HxCDD	U	4.74	pg/g	4.74	
1,2,3,4,6,7,8-HpCDD	U	4.74	pg/g	4.74	
1,2,3,4,6,7,8,9-OCDD		98.2	pg/g	9.49	
2,3,7,8-TCDF	U	.949	pg/g	0.949	
1,2,3,7,8-PeCDF	U	4.74	pg/g	4.74	
2,3,4,7,8-PeCDF	U	4.74	pg/g	4.74	
1,2,3,4,7,8-HxCDF	U	4.74	pg/g	4.74	
1,2,3,6,7,8-HxCDF	U	4.74	pg/g	4.74	
2,3,4,6,7,8-HxCDF	U	4.74	pg/g	4.74	
1,2,3,7,8,9-HxCDF	U	4.74	pg/g	4.74	
1,2,3,4,6,7,8-HpCDF	U	4.74	pg/g	4.74	
1,2,3,4,7,8,9-HpCDF	U	4.74	pg/g	4.74	
1,2,3,4,6,7,8,9-OCDF	U	9.49	pg/g	9.49	
Total Tetrachlorodibenzo-p-dioxin	U	.949	pg/g	0.949	
Total Pentachlorodibenzo-p-dioxin	U	4.74	pg/g	4.74	
Total Hexachlorodibenzo-p-dioxin	U	4.74	pg/g	4.74	
Total Heptachlorodibenzo-p-dioxin		5.28	pg/g	4.74	
Total Tetrachlorodibenzofuran	U	.949	pg/g	0.949	
Total Pentachlorodibenzofuran	U	4.74	pg/g	4.74	
Total Hexachlorodibenzofuran	U	4.74	pg/g	4.74	
Total Heptachlorodibenzofuran	U	4.74	pg/g	4.74	
TEQ WHO2005 ND=0		0.0295	pg/g		
	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-OCDF Total Tetrachlorodibenzo-p-dioxin Total Pentachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin Total Tetrachlorodibenzo-p-dioxin Total Tetrachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin Total Hexachlorodibenzo-p-dioxin	2,3,7,8-TCDD U 1,2,3,7,8-PeCDD U 1,2,3,4,7,8-HxCDD U 1,2,3,7,8,9-HxCDD U 1,2,3,4,6,7,8-HpCDD U 1,2,3,4,6,7,8,9-OCDD U 2,3,7,8-TCDF U 1,2,3,7,8-PeCDF U 2,3,4,7,8-PeCDF U 1,2,3,4,7,8-HxCDF U 1,2,3,4,6,7,8-HxCDF U 1,2,3,7,8,9-HxCDF U 1,2,3,4,6,7,8-HpCDF U 1,2,3,4,6,7,8-HpCDF U 1,2,3,4,6,7,8,9-HpCDF U 1,2,3,4,6,7,8,9-OCDF U Total Pentachlorodibenzo-p-dioxin U Total Hexachlorodibenzo-p-dioxin U Total Heptachlorodibenzo-p-dioxin U Total Pentachlorodibenzo-p-dioxin U Total Hexachlorodibenzo-furan U Total Hexachlorodibenzo-furan U Total Hexachlorodibenzo-furan U Total Heptachlorodibenzo-furan U Total Heptachlorodibenzo-furan U Total Heptachlorodibenzo-furan U Total Heptachlorodibenzo-furan U <td< td=""><td>2,3,7,8-TCDD 1,2,3,7,8-PeCDD U 4.74 1,2,3,4,7,8-HxCDD U 4.74 1,2,3,6,7,8-HxCDD U 4.74 1,2,3,4,6,7,8-HxCDD U 4.74 1,2,3,4,6,7,8-HxCDD U 4.74 1,2,3,4,6,7,8-PCDD U 4.74 1,2,3,4,6,7,8-PCDF U 9.49 1,2,3,7,8-PeCDF U 4.74 1,2,3,4,7,8-HxCDF U 4.74 1,2,3,4,6,7,8-HxCDF U 4.74 1,2,3,4,6,7,8-PCDF U 4.74 1,2,3</td><td>2.3.7,8-TCDD 1.2.3.7,8-PCDD 1.2.3.7,8-PCDD 1.2.3.7,8-PCDD 1.2.3.7,8-PCDD 1.2.3.4,7.8-HxCDD 1.2.3.4,6.7,8-HxCDD 1.2.3.4,6.7,8-HxCDD 1.2.3.4,6.7,8-HxCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDF 1.2.3.7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,6,7,8-HxCDF 1.2.3.4,6,7,8-HxCDF 1.2.3.4,6,7,8-HxCDF 1.2.3.4,6,7,8-PCDF 1</td><td> 2,3,7,8-TCDD</td></td<>	2,3,7,8-TCDD 1,2,3,7,8-PeCDD U 4.74 1,2,3,4,7,8-HxCDD U 4.74 1,2,3,6,7,8-HxCDD U 4.74 1,2,3,4,6,7,8-HxCDD U 4.74 1,2,3,4,6,7,8-HxCDD U 4.74 1,2,3,4,6,7,8-PCDD U 4.74 1,2,3,4,6,7,8-PCDF U 9.49 1,2,3,7,8-PeCDF U 4.74 1,2,3,4,7,8-HxCDF U 4.74 1,2,3,4,6,7,8-HxCDF U 4.74 1,2,3,4,6,7,8-PCDF U 4.74 1,2,3	2.3.7,8-TCDD 1.2.3.7,8-PCDD 1.2.3.7,8-PCDD 1.2.3.7,8-PCDD 1.2.3.7,8-PCDD 1.2.3.4,7.8-HxCDD 1.2.3.4,6.7,8-HxCDD 1.2.3.4,6.7,8-HxCDD 1.2.3.4,6.7,8-HxCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDD 1.2.3.4,6.7,8-PCDF 1.2.3.7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,7,8-PCDF 1.2.3.4,6,7,8-HxCDF 1.2.3.4,6,7,8-HxCDF 1.2.3.4,6,7,8-HxCDF 1.2.3.4,6,7,8-PCDF 1	2,3,7,8-TCDD

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		131	190	pg/g	69.2	(25%-164%)	
13C-1,2,3,7,8-PeCDD		125	190	pg/g	65.9	(25%-181%)	
13C-1,2,3,4,7,8-HxCDD		126	190	pg/g	66.5	(32%-141%)	
13C-1,2,3,6,7,8-HxCDD		128	190	pg/g	67.4	(28%-130%)	
13C-1,2,3,4,6,7,8-HpCDD		117	190	pg/g	61.5	(23%-140%)	
13C-OCDD		136	379	pg/g	35.7	(17%-157%)	
13C-2,3,7,8-TCDF		129	190	pg/g	68.1	(24%-169%)	
13C-1,2,3,7,8-PeCDF		119	190	pg/g	62.9	(24%-185%)	
13C-2,3,4,7,8-PeCDF		116	190	pg/g	61.1	(21%-178%)	
13C-1,2,3,4,7,8-HxCDF		128	190	pg/g	67.3	(26%-152%)	
13C-1,2,3,6,7,8-HxCDF		129	190	pg/g	67.8	(26%-123%)	
13C-2,3,4,6,7,8-HxCDF		131	190	pg/g	69.2	(28%-136%)	
13C-1,2,3,7,8,9-HxCDF		129	190	pg/g	68.2	(29%-147%)	

5.44

pg/g

3333-30-1

Page 2

L1629727

1613B Soil

C-6 (0-48)

b17oct16a-5

16-OCT-16

10/17/2016 19:22

33023

33021

9822001

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

EPA Method 1613B

09/20/2016 10:10 **Date Collected:** 09/27/2016 12:00 Date Received:

ALPH00416 Project: SOIL Matrix: %Moisture: 34.7

Dry Weight **Prep Basis:**

Instrument: HRP763

Dilution: 1

SW846 3540C **Prep Method:**

CLP

Prep Aliquot: 16.14 g

PQL CAS No. Qual Units **Parmname** Result

Client:

Method:

Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		106	190	pg/g	56.1	(28%-143%)
3C-1,2,3,4,7,8,9-HpCDF		119	190	pg/g	62.8	(26%-138%)
37Cl-2,3,7,8-TCDD		14.3	19.0	pg/g	75.5	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

Data File:

Prep Batch:

Prep Date:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

L1629727

1613B Soil

C-7 (0-48)

b17oct16a-8

10/17/2016 21:43

33023

9822004

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Data File:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

Client: ALPH001 09/20/2016 12:02 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture: **ALPH00416** SOIL 31.5

Prep Basis:

Dry Weight

Instrument: HRP763 Dilution: 1

Method:

Analyst:

SW846 3540C

CLP

EPA Method 1613B

.66 g

Prep Batch:	33021	Prep Method:	SV
Prep Date:	16-OCT-16	Prep Aliquot:	15.0

Prep Date:	16-OCT-16	Prep Aliquot:	15.66 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.932	pg/g	0.932	
40321-76-4	1,2,3,7,8-PeCDD	U	4.66	pg/g	4.66	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.66	pg/g	4.66	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.66	pg/g	4.66	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.66	pg/g	4.66	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.66	pg/g	4.66	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		36.9	pg/g	9.32	
51207-31-9	2,3,7,8-TCDF	U	.932	pg/g	0.932	
57117-41-6	1,2,3,7,8-PeCDF	U	4.66	pg/g	4.66	
57117-31-4	2,3,4,7,8-PeCDF	U	4.66	pg/g	4.66	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.66	pg/g	4.66	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.66	pg/g	4.66	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.66	pg/g	4.66	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.66	pg/g	4.66	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.66	pg/g	4.66	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.66	pg/g	4.66	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.32	pg/g	9.32	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.932	pg/g	0.932	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.66	pg/g	4.66	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.66	pg/g	4.66	
37871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.66	pg/g	4.66	
30402-14-3	Total Tetrachlorodibenzofuran	U	.932	pg/g	0.932	
30402-15-4	Total Pentachlorodibenzofuran	U	4.66	pg/g	4.66	
55684-94-1	Total Hexachlorodibenzofuran	U	4.66	pg/g	4.66	
38998-75-3	Total Heptachlorodibenzofuran	U	4.66	pg/g	4.66	
3333-30-0	TEQ WHO2005 ND=0		0.0111	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.33	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		146	186	pg/g	78.3	(25%-164%)	
13C-1,2,3,7,8-PeCDD		138	186	pg/g	74.2	(25%-181%)	
13C-1,2,3,4,7,8-HxCDD		141	186	pg/g	75.6	(32%-141%)	
13C-1,2,3,6,7,8-HxCDD		130	186	pg/g	69.7	(28%-130%)	
13C-1,2,3,4,6,7,8-HpCDD		125	186	pg/g	67.1	(23%-140%)	
13C-OCDD		143	373	pg/g	38.4	(17%-157%)	
13C-2,3,7,8-TCDF		139	186	pg/g	74.4	(24%-169%)	
13C-1,2,3,7,8-PeCDF		134	186	pg/g	72.0	(24%-185%)	
13C-2,3,4,7,8-PeCDF		131	186	pg/g	70.2	(21%-178%)	
13C-1,2,3,4,7,8-HxCDF		139	186	pg/g	74.8	(26%-152%)	
13C-1,2,3,6,7,8-HxCDF		131	186	pg/g	70.3	(26%-123%)	
13C-2,3,4,6,7,8-HxCDF		138	186	pg/g	73.9	(28%-136%)	
13C-1,2,3,7,8,9-HxCDF		138	186	pg/g	74.0	(29%-147%)	

Page 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

CLP

09/20/2016 12:02 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture:

SOIL 31.5

ALPH00416

Prep Basis: Dry Weight

Instrument: HRP763

Dilution: 1

Data File: b17oct16a-8

L1629727

1613B Soil

C-7 (0-48)

10/17/2016 21:43

33023

9822004

Prep Batch: 33021 **Prep Date:** 16-OCT-16 **Prep Method:**

SW846 3540C

EPA Method 1613B

Prep Aliquot: 15.66 g

PQL CAS No. Qual Result Units **Parmname**

Client:

Method:

Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		113	186	pg/g	60.7	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		128	186	pg/g	68.8	(26%-138%)
37Cl-2,3,7,8-TCDD		15.1	18.6	pg/g	80.9	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

of 2

L1629727

1613B Soil

10/17/2016 22:30

9822005

C-1

33023

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

Client: **Date Collected:** Date Received:

ALPH001 09/20/2016 12:58 09/27/2016 12:00

EPA Method 1613B

Project: Matrix: %Moisture: **ALPH00416** SOIL 39.7

Prep Basis:

Dry Weight

HRP763

Instrument: Dilution:

1

Data File: b17oct16a-9 Prep Batch: 33021 **Prep Date:** 16-OCT-16

Prep Method: Prep Aliquot:

Method:

Analyst:

SW846 3540C 17.05 g

PQL CAS No. **Parmname** Qual Result Units 1746-01-6 2,3,7,8-TCDD U .972 0.972 pg/g 1,2,3,7,8-PeCDD U 40321-76-4 4.86 pg/g 4.86 U 39227-28-6 1,2,3,4,7,8-HxCDD 4.86 4.86 pg/g 1,2,3,6,7,8-HxCDD U 57653-85-7 4.86 4.86 pg/g 19408-74-3 U 1,2,3,7,8,9-HxCDD 4.86 pg/g 4.86 35822-46-9 1,2,3,4,6,7,8-HpCDD 7.41 4.86 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 84.9 9.72 pg/g 51207-31-9 2,3,7,8-TCDF U .972 0.972 pg/g U 57117-41-6 1,2,3,7,8-PeCDF 4.86 pg/g 4.86 57117-31-4 2,3,4,7,8-PeCDF U 4.86 4.86 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF U 4.86 4.86 pg/g 57117-44-9 U 1,2,3,6,7,8-HxCDF 4.86 pg/g 4.86 60851-34-5 2,3,4,6,7,8-HxCDF U 4.86 4.86 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF U 4.86 4.86 pg/g U 1,2,3,4,6,7,8-HpCDF 67562-39-4 4.86 pg/g 4.86 55673-89-7 1,2,3,4,7,8,9-HpCDF U 4.86 4.86 pg/g 39001-02-0 1,2,3,4,6,7,8,9-OCDF U 9.72 pg/g 9.72 U 41903-57-5 Total Tetrachlorodibenzo-p-dioxin .972 0.972 pg/g U 36088-22-9 Total Pentachlorodibenzo-p-dioxin 4.86 4.86 pg/g U 34465-46-8 Total Hexachlorodibenzo-p-dioxin 4.86 4.86 pg/g 37871-00-4 Total Heptachlorodibenzo-p-dioxin 17.7 pg/g 4.86 U 30402-14-3 Total Tetrachlorodibenzofuran .972 0.972 pg/g 30402-15-4 Total Pentachlorodibenzofuran U 4.86 4.86 pg/g U 55684-94-1 Total Hexachlorodibenzofuran 4.86 4.86 pg/g U 38998-75-3 Total Heptachlorodibenzofuran 4.86 pg/g 4.86 3333-30-0 TEQ WHO2005 ND=0 0.0995 pg/g 3333-30-1 TEQ WHO2005 ND=0.5 5.62 pg/g

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		110	194	pg/g	56.8	(25%-164%)	
13C-1,2,3,7,8-PeCDD		109	194	pg/g	56.2	(25%-181%)	
13C-1,2,3,4,7,8-HxCDD		111	194	pg/g	57.3	(32%-141%)	
13C-1,2,3,6,7,8-HxCDD		115	194	pg/g	59.1	(28%-130%)	
13C-1,2,3,4,6,7,8-HpCDD		109	194	pg/g	56.1	(23%-140%)	
13C-OCDD		135	389	pg/g	34.6	(17%-157%)	
13C-2,3,7,8-TCDF		111	194	pg/g	57.3	(24%-169%)	
13C-1,2,3,7,8-PeCDF		108	194	pg/g	55.7	(24%-185%)	
13C-2,3,4,7,8-PeCDF		104	194	pg/g	53.7	(21%-178%)	
13C-1,2,3,4,7,8-HxCDF		116	194	pg/g	59.5	(26%-152%)	
13C-1,2,3,6,7,8-HxCDF		116	194	pg/g	59.5	(26%-123%)	
13C-2,3,4,6,7,8-HxCDF		118	194	pg/g	60.8	(28%-136%)	
13C-1,2,3,7,8,9-HxCDF		118	194	pg/g	60.6	(29%-147%)	

Page 2

L1629727

1613B Soil

10/17/2016 22:30

9822005

C-1

33023

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client:

09/20/2016 12:58 **Date Collected:** 09/27/2016 12:00 Date Received:

ALPH00416 Project: SOIL Matrix: %Moisture: 39.7

Prep Basis: Dry Weight

Instrument: HRP763

Dilution: 1

Data File: b17oct16a-9 **Prep Batch:**

33021 16-OCT-16

Prep Method:

Method:

Analyst:

SW846 3540C

CLP

EPA Method 1613B

Prep Aliquot: 17.05 g

PQL CAS No. Qual Result Units **Parmname**

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		102	194	pg/g	52.7	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		114	194	pg/g	58.6	(26%-138%)
37Cl-2,3,7,8-TCDD		13.6	19.4	pg/g	70.0	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Prep Date:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

of 2

SDG Number:

Lab Sample ID:

Client Sample:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client: 09/20/2016 13:05 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture: 38.9

ALPH00416 SOIL

HRP763

1

Prep Basis: Dry Weight

Instrument: Dilution:

Client ID: C-2 Batch ID: 33023 **Run Date:** 10/17/2016 23:17

Data File: b17oct16a-10 Prep Batch: 33021

L1629727

1613B Soil

9822006

Prep Method:

Method:

Analyst:

SW846 3540C

CLP

EPA Method 1613B

Prep Date:	16-OCT-16	Prep Aliquot:	17.19 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.952	pg/g	0.952	
40321-76-4	1,2,3,7,8-PeCDD	U	4.76	pg/g	4.76	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.76	pg/g	4.76	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.76	pg/g	4.76	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.76	pg/g	4.76	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.76	pg/g	4.76	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		33.7	pg/g	9.52	
51207-31-9	2,3,7,8-TCDF	U	.952	pg/g	0.952	
57117-41-6	1,2,3,7,8-PeCDF	U	4.76	pg/g	4.76	
57117-31-4	2,3,4,7,8-PeCDF	U	4.76	pg/g	4.76	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.76	pg/g	4.76	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.76	pg/g	4.76	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.76	pg/g	4.76	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.76	pg/g	4.76	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.76	pg/g	4.76	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.76	pg/g	4.76	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.52	pg/g	9.52	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.952	pg/g	0.952	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.76	pg/g	4.76	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.76	pg/g	4.76	
37871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.76	pg/g	4.76	
30402-14-3	Total Tetrachlorodibenzofuran	U	.952	pg/g	0.952	
30402-15-4	Total Pentachlorodibenzofuran	U	4.76	pg/g	4.76	
55684-94-1	Total Hexachlorodibenzofuran	U	4.76	pg/g	4.76	
38998-75-3	Total Heptachlorodibenzofuran	U	4.76	pg/g	4.76	
3333-30-0	TEQ WHO2005 ND=0		0.0101	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.44	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
3C-2,3,7,8-TCDD		99.0	190	pg/g	52.0	(25%-164%)
3C-1,2,3,7,8-PeCDD		105	190	pg/g	54.9	(25%-181%)
C-1,2,3,4,7,8-HxCDD		116	190	pg/g	61.1	(32%-141%)
C-1,2,3,6,7,8-HxCDD		107	190	pg/g	56.3	(28%-130%)
C-1,2,3,4,6,7,8-HpCDD		110	190	pg/g	57.5	(23%-140%)
C-OCDD		137	381	pg/g	35.9	(17%-157%)
-2,3,7,8-TCDF		98.3	190	pg/g	51.6	(24%-169%)
1,2,3,7,8-PeCDF		102	190	pg/g	53.7	(24%-185%)
2,3,4,7,8-PeCDF		98.8	190	pg/g	51.9	(21%-178%)
1,2,3,4,7,8-HxCDF		115	190	pg/g	60.1	(26%-152%)
,2,3,6,7,8-HxCDF		108	190	pg/g	56.8	(26%-123%)
.3,4,6,7,8-HxCDF		113	190	pg/g	59.3	(28%-136%)
,2,3,7,8,9-HxCDF		113	190	pg/g	59.6	(29%-147%)

Page 2

L1629727

1613B Soil

10/17/2016 23:17

9822006

C-2

33023

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

CLP

09/20/2016 13:05 **Date Collected:** 09/27/2016 12:00 Date Received:

ALPH00416 Project: SOIL Matrix: %Moisture: 38.9

Prep Basis: Dry Weight

Instrument: HRP763 1

Dilution:

Data File: b17oct16a-10 **Prep Batch:** 33021

Prep Date: 16-OCT-16 **Prep Method:**

Client:

Method:

Analyst:

SW846 3540C

EPA Method 1613B

Prep Aliquot: 17.19 g

PQL CAS No. Qual Units **Parmname** Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		99.3	190	pg/g	52.2	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		114	190	pg/g	60.1	(26%-138%)
37Cl-2,3,7,8-TCDD		14.0	19.0	pg/g	73.3	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client:

09/20/2016 13:36 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture: **ALPH00416** SOIL 37.7

Prep Basis:

Dry Weight HRP763

Batch ID: 33023 **Run Date:** 10/18/2016 00:04 Data File: b17oct16a-11

L1629727

1613B Soil

9822007

C-3

Prep Method:

Method:

Analyst:

CLP

EPA Method 1613B

Instrument: Dilution: 1

SW846 3540C **Prep Batch:** 33021 Prep Aliquot: 17.03 g **Prep Date:** 16-OCT-16

Trep Dute.	10-001-10					
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.942	pg/g	0.942	
40321-76-4	1,2,3,7,8-PeCDD	U	4.71	pg/g	4.71	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.71	pg/g	4.71	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.71	pg/g	4.71	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.71	pg/g	4.71	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.71	pg/g	4.71	
3268-87-9	1,2,3,4,6,7,8,9-OCDD	U	9.42	pg/g	9.42	
51207-31-9	2,3,7,8-TCDF	U	.942	pg/g	0.942	
57117-41-6	1,2,3,7,8-PeCDF	U	4.71	pg/g	4.71	
57117-31-4	2,3,4,7,8-PeCDF	U	4.71	pg/g	4.71	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.71	pg/g	4.71	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.71	pg/g	4.71	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.71	pg/g	4.71	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.71	pg/g	4.71	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.71	pg/g	4.71	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.71	pg/g	4.71	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.42	pg/g	9.42	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.942	pg/g	0.942	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.71	pg/g	4.71	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.71	pg/g	4.71	
37871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.71	pg/g	4.71	
30402-14-3	Total Tetrachlorodibenzofuran	U	.942	pg/g	0.942	
30402-15-4	Total Pentachlorodibenzofuran	U	4.71	pg/g	4.71	
55684-94-1	Total Hexachlorodibenzofuran	U	4.71	pg/g	4.71	
38998-75-3	Total Heptachlorodibenzofuran	U	4.71	pg/g	4.71	
3333-30-0	TEQ WHO2005 ND=0		0.00	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.37	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		117	188	pg/g	62.0	(25%-164%)	
13C-1,2,3,7,8-PeCDD		117	188	pg/g	62.0	(25%-181%)	
13C-1,2,3,4,7,8-HxCDD		124	188	pg/g	66.0	(32%-141%)	
13C-1,2,3,6,7,8-HxCDD		117	188	pg/g	62.2	(28%-130%)	
13C-1,2,3,4,6,7,8-HpCDD		113	188	pg/g	60.1	(23%-140%)	
13C-OCDD		139	377	pg/g	36.8	(17%-157%)	
13C-2,3,7,8-TCDF		113	188	pg/g	60.2	(24%-169%)	
13C-1,2,3,7,8-PeCDF		111	188	pg/g	58.9	(24%-185%)	
13C-2,3,4,7,8-PeCDF		109	188	pg/g	57.6	(21%-178%)	
13C-1,2,3,4,7,8-HxCDF		122	188	pg/g	64.8	(26%-152%)	
13C-1,2,3,6,7,8-HxCDF		119	188	pg/g	63.1	(26%-123%)	
13C-2,3,4,6,7,8-HxCDF		122	188	pg/g	64.5	(28%-136%)	
13C-1,2,3,7,8,9-HxCDF		122	188	pg/g	64.5	(29%-147%)	

Page 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

CLP

EPA Method 1613B

09/20/2016 13:36 **Date Collected:** 09/27/2016 12:00 Date Received:

ALPH00416 Project: SOIL Matrix: %Moisture: 37.7

Prep Basis: Dry Weight

Instrument: HRP763 1

Dilution:

Data File: b17oct16a-11

L1629727

1613B Soil

10/18/2016 00:04

9822007

C-3

33023

Prep Batch: 33021 **Prep Date:** 16-OCT-16

SW846 3540C **Prep Method:**

Prep Aliquot: 17.03 g

PQL CAS No. Qual Result Units **Parmname**

Client:

Method:

Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		102	188	pg/g	54.2	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		114	188	pg/g	60.4	(26%-138%)
37Cl-2,3,7,8-TCDD		14.9	18.8	pg/g	78.9	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Prep Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

09/27/2016 12:00

EPA Method 1613B

ALPH001 Client: 09/20/2016 14:05 **Date Collected:**

Project: Matrix: %Moisture: 34

ALPH00416 SOIL

Prep Basis: Dry Weight

Instrument: HRP763 Dilution: 1

Run Date: 10/18/2016 00:51 Data File: b17oct16a-12 **Prep Batch:**

33021 16-OCT-16

L1629727

1613B Soil

9822008

C-4

33023

Prep

Date Received:

Method:

Analyst:

Prep Method:	SW846 3540C
Prep Aliquot:	16.22 g

CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.934	pg/g	0.934	
40321-76-4	1,2,3,7,8-PeCDD	U	4.67	pg/g	4.67	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.67	pg/g	4.67	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.67	pg/g	4.67	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.67	pg/g	4.67	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.67	pg/g	4.67	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		30.7	pg/g	9.34	
51207-31-9	2,3,7,8-TCDF	U	.934	pg/g	0.934	
57117-41-6	1,2,3,7,8-PeCDF	U	4.67	pg/g	4.67	
57117-31-4	2,3,4,7,8-PeCDF	U	4.67	pg/g	4.67	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.67	pg/g	4.67	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.67	pg/g	4.67	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.67	pg/g	4.67	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.67	pg/g	4.67	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.67	pg/g	4.67	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.67	pg/g	4.67	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.34	pg/g	9.34	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.934	pg/g	0.934	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.67	pg/g	4.67	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.67	pg/g	4.67	
37871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.67	pg/g	4.67	
30402-14-3	Total Tetrachlorodibenzofuran	U	.934	pg/g	0.934	
30402-15-4	Total Pentachlorodibenzofuran	U	4.67	pg/g	4.67	
55684-94-1	Total Hexachlorodibenzofuran	U	4.67	pg/g	4.67	
38998-75-3	Total Heptachlorodibenzofuran	U	4.67	pg/g	4.67	
3333-30-0	TEQ WHO2005 ND=0		0.00921	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.33	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
3C-2,3,7,8-TCDD		132	187	pg/g	70.5	(25%-164%)
C-1,2,3,7,8-PeCDD		124	187	pg/g	66.2	(25%-181%)
C-1,2,3,4,7,8-HxCDD		129	187	pg/g	69.0	(32%-141%)
-1,2,3,6,7,8-HxCDD		128	187	pg/g	68.7	(28%-130%)
C-1,2,3,4,6,7,8-HpCDD		117	187	pg/g	62.6	(23%-140%)
-OCDD		154	373	pg/g	41.2	(17%-157%)
-2,3,7,8-TCDF		128	187	pg/g	68.4	(24%-169%)
,2,3,7,8-PeCDF		116	187	pg/g	62.3	(24%-185%)
2,3,4,7,8-PeCDF		115	187	pg/g	61.8	(21%-178%)
1,2,3,4,7,8-HxCDF		129	187	pg/g	69.3	(26%-152%)
,2,3,6,7,8-HxCDF		127	187	pg/g	67.9	(26%-123%)
2,3,4,6,7,8-HxCDF		130	187	pg/g	69.8	(28%-136%)
,2,3,7,8,9-HxCDF		129	187	pg/g	69.2	(29%-147%)

Page 2

ALPH00416

L1629727

1613B Soil

10/18/2016 00:51

9822008

C-4

33023

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

CLP

Date Collected: 09/27/2016 12:00 Date Received:

09/20/2016 14:05 Matrix:

SOIL %Moisture: 34

Project:

Prep Basis: Dry Weight

Instrument: HRP763 1

Dilution:

Data File: b17oct16a-12 **Prep Batch:** 33021

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Prep Date: 16-OCT-16

SW846 3540C **Prep Method:**

EPA Method 1613B

Prep Aliquot: 16.22 g

PQL CAS No. Qual Units **Parmname** Result

Client:

Method:

Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		105	187	pg/g	56.5	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		122	187	pg/g	65.5	(26%-138%)
37Cl-2,3,7,8-TCDD		14.3	18.7	pg/g	76.7	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

Client: ALPH001 **Date Collected:**

09/20/2016 10:10 09/27/2016 12:00

EPA Method 1613B

Project: Matrix: %Moisture:

ALPH00416 SOIL 35.4

Prep Basis:

Dry Weight

PQL

0.937

4.68

4.68

4.68

4.68

4 68

9.37

0.937

4.68

4.68

4.68

4.68

4.68

4.68

4.68

4.68

9.37

0.937

4.68

Run Date: 10/18/2016 01:38 Data File: b17oct16a-13 Prep Batch: 33021

L1629727

1613B Soil

C-6 (48-61)

9822009

33023

Prep Method:

Method:

Analyst:

Date Received:

CLP SW846 3540C

4.68

4.68

4.68

4.68

4.68

4.68

9.37

.937

4.68

4.68

4.68

.937

4.68

4.68

4.68

0.00

5.34

Nominal

187

187

187

187

187

375

187

187

187

Units

pg/g

U

U

IJ

U

U

U

U

U

U

U

Result

135

Dilution:

Instrument: HRP763 1

Prep Aliquot: 16.52 g **Prep Date:** 16-OCT-16 CAS No. **Parmname** Qual Result Units 1746-01-6 2,3,7,8-TCDD U .937 U 40321-76-4 1,2,3,7,8-PeCDD 4.68 39227-28-6 1,2,3,4,7,8-HxCDD U 4.68 U 57653-85-7 1,2,3,6,7,8-HxCDD 4.68 1,2,3,7,8,9-HxCDD 19408-74-3 U 4.68 U 35822-46-9 1,2,3,4,6,7,8-HpCDD 4.68

3268-87-9 1,2,3,4,6,7,8,9-OCDD U 9.37 51207-31-9 2,3,7,8-TCDF U .937 57117-41-6 1,2,3,7,8-PeCDF U 4.68 57117-31-4 2,3,4,7,8-PeCDF U 4.68

70648-26-9 1,2,3,4,7,8-HxCDF U IJ 57117-44-9 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF U 60851-34-5 72918-21-9 1,2,3,7,8,9-HxCDF U U 67562-39-4 1,2,3,4,6,7,8-HpCDF

55673-89-7 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF 39001-02-0 41903-57-5 Total Tetrachlorodibenzo-p-dioxin 36088-22-9 Total Pentachlorodibenzo-p-dioxin 34465-46-8 Total Hexachlorodibenzo-p-dioxin

Total Heptachlorodibenzo-p-dioxin

Total Tetrachlorodibenzofuran

30402-15-4 Total Pentachlorodibenzofuran 55684-94-1 Total Hexachlorodibenzofuran Total Heptachlorodibenzofuran 38998-75-3 3333-30-0 TEQ WHO2005 ND=0

37871-00-4

30402-14-3

13C-2,3,7,8-TCDD

3333-30-1 TEQ WHO2005 ND=0.5 Surrogate/Tracer recovery

13C-1,2,3,7,8-PeCDD 129 13C-1,2,3,4,7,8-HxCDD 131 13C-1,2,3,6,7,8-HxCDD 133 13C-1,2,3,4,6,7,8-HpCDD 119 13C-OCDD 143 13C-2,3,7,8-TCDF 131 13C-1,2,3,7,8-PeCDF 122 121 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 133

187 13C-1,2,3,6,7,8-HxCDF 131 187 13C-2,3,4,6,7,8-HxCDF 134 187 13C-1,2,3,7,8,9-HxCDF 133 187

Qual

pg/g pg/g pg/g pg/g pg/g

pg/g

pg/g

pg/g pg/g pg/g pg/g pg/g pg/g pg/g

pg/g pg/g pg/g pg/g pg/g pg/g pg/g

4.68 4.68 0.937 pg/g 4.68 pg/g 4.68 pg/g pg/g 4.68 pg/g pg/g

Acceptable Limits

71.9 (25%-164%) 68.9 (25%-181%) 69.9 (32%-141%) 71.0 (28%-130%) 63.6

Recovery%

(23%-140%) 38.2 (17%-157%) 69.8 (24%-169%) 65.4 (24%-185%) 64.5 (21%-178%)

71.0 (26%-152%) 69.7 (26%-123%) 71.6 (28%-136%) (29%-147%) 70.8

Page 2

L1629727

1613B Soil

C-6 (48-61)

10/18/2016 01:38

9822009

33023

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

CAS No.

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

CLP

09/20/2016 10:10 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture:

ALPH00416 SOIL

35.4

Prep Basis: Dry Weight

Instrument: HRP763 1

Dilution:

Data File: b17oct16a-13 **Prep Batch:** 33021

Prep Date: 16-OCT-16 **Prep Method: Prep Aliquot:**

Client:

Method:

Analyst:

SW846 3540C

EPA Method 1613B

16.52 g

PQL Qual Units **Parmname** Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		111	187	pg/g	59.2	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		123	187	pg/g	65.6	(26%-138%)
37Cl-2,3,7,8-TCDD		14.5	18.7	pg/g	77.4	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample:

Prep Batch:

Prep Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

Client: **Date Collected:** Date Received:

ALPH001 09/20/2016 12:02 09/27/2016 12:00

EPA Method 1613B

Project: Matrix: %Moisture: **ALPH00416** SOIL 26.4

Dry Weight

Prep Basis:

Instrument: HRP763 Dilution: 1

Client ID: C-7 (48-54) **Batch ID:** 33023 **Run Date:** 10/18/2016 02:25 Data File:

b17oct16a-14 33021 16-OCT-16

L1629727

1613B Soil

9822010

Prep Method:

Method:

Analyst:

SW846 3540C

CLP

Prep Aliquot: 14.89 g

CAS No.	Parmname	Qual	Result	Units	PQL	
746-01-6	2,3,7,8-TCDD	U	.912	pg/g	0.912	
0321-76-4	1,2,3,7,8-PeCDD	U	4.56	pg/g	4.56	
9227-28-6	1,2,3,4,7,8-HxCDD	U	4.56	pg/g	4.56	
7653-85-7	1,2,3,6,7,8-HxCDD	U	4.56	pg/g	4.56	
9408-74-3	1,2,3,7,8,9-HxCDD	U	4.56	pg/g	4.56	
5822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.56	pg/g	4.56	
268-87-9	1,2,3,4,6,7,8,9-OCDD		60.6	pg/g	9.12	
1207-31-9	2,3,7,8-TCDF	U	.912	pg/g	0.912	
7117-41-6	1,2,3,7,8-PeCDF	U	4.56	pg/g	4.56	
7117-31-4	2,3,4,7,8-PeCDF	U	4.56	pg/g	4.56	
0648-26-9	1,2,3,4,7,8-HxCDF	U	4.56	pg/g	4.56	
7117-44-9	1,2,3,6,7,8-HxCDF	U	4.56	pg/g	4.56	
0851-34-5	2,3,4,6,7,8-HxCDF	U	4.56	pg/g	4.56	
2918-21-9	1,2,3,7,8,9-HxCDF	U	4.56	pg/g	4.56	
7562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.56	pg/g	4.56	
5673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.56	pg/g	4.56	
9001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.12	pg/g	9.12	
1903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.912	pg/g	0.912	
6088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.56	pg/g	4.56	
4465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.56	pg/g	4.56	
7871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.56	pg/g	4.56	
0402-14-3	Total Tetrachlorodibenzofuran	U	.912	pg/g	0.912	
0402-15-4	Total Pentachlorodibenzofuran	U	4.56	pg/g	4.56	
5684-94-1	Total Hexachlorodibenzofuran	U	4.56	pg/g	4.56	
8998-75-3	Total Heptachlorodibenzofuran	U	4.56	pg/g	4.56	
333-30-0	TEQ WHO2005 ND=0		0.0182	pg/g		
333-30-1	TEQ WHO2005 ND=0.5		5.22	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		133	182	pg/g	73.2	(25%-164%)
13C-1,2,3,7,8-PeCDD		128	182	pg/g	70.1	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		134	182	pg/g	73.4	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		127	182	pg/g	69.9	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		116	182	pg/g	63.7	(23%-140%)
13C-OCDD		139	365	pg/g	38.0	(17%-157%)
13C-2,3,7,8-TCDF		131	182	pg/g	71.8	(24%-169%)
13C-1,2,3,7,8-PeCDF		122	182	pg/g	66.7	(24%-185%)
13C-2,3,4,7,8-PeCDF		119	182	pg/g	65.4	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		134	182	pg/g	73.4	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		130	182	pg/g	71.4	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		133	182	pg/g	72.7	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		133	182	pg/g	73.0	(29%-147%)

Page 2

L1629727

1613B Soil

C-7 (48-54)

9822010

33023

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

09/20/2016 12:02 **Date Collected:** 09/27/2016 12:00 Date Received:

ALPH00416 Project: SOIL Matrix: %Moisture: 26.4

Dry Weight

Prep Basis:

Instrument: HRP763

Dilution: 1

10/18/2016 02:25 **Run Date:** Data File: b17oct16a-14

Prep Batch: 33021 **Prep Date:** 16-OCT-16

Prep Method:

Client:

Method:

Analyst:

SW846 3540C

CLP

EPA Method 1613B

Prep Aliquot: 14.89 g

PQL CAS No. Qual Result Units **Parmname**

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		109	182	pg/g	60.0	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		123	182	pg/g	67.4	(26%-138%)
37Cl-2,3,7,8-TCDD		12.6	18.2	pg/g	68.9	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client: 09/21/2016 08:35 **Date Collected:**

09/27/2016 12:00

pg/g

64.0

Project: Matrix: %Moisture: **ALPH00416** SOIL 31.2

Prep Basis:

Dry Weight

Instrument: Dilution:

HRP763

1

4.71

471

9.42

0.942

4.71

4.71

4.71

4.71

4.71

4.71

4.71

4.71

9.42

0.942

4.71

4.71

4.71

0.942

4.71

4.71

4.71

(29%-147%)

Run Date: 10/18/2016 04:54 Data File: b17oct16a_2-2 Prep Batch: 33021 **Prep Date:**

16-OCT-16

L1629727

1613B Soil

9822011

C-5

33023

Prep Method:

Method:

Analyst:

Date Received:

15.43 g

4.71

9.42

5.42

CLP

EPA Method 1613B

SW846 3540C **Prep Aliquot:**

CAS No.	Parmname	Qual	Result	Units	PQL
1746-01-6	2,3,7,8-TCDD	U	.942	pg/g	0.942
40321-76-4	1,2,3,7,8-PeCDD	U	4.71	pg/g	4.71
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.71	pg/g	4.71
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.71	pg/g	4.71

19408-74-3 1,2,3,7,8,9-HxCDD U 4.71 35822-46-9 1,2,3,4,6,7,8-HpCDD 5.54 3268-87-9 1,2,3,4,6,7,8,9-OCDD 62.7

51207-31-9 2,3,7,8-TCDF U .942 U 57117-41-6 1,2,3,7,8-PeCDF 4.71 57117-31-4 2,3,4,7,8-PeCDF U 4.71 70648-26-9 1,2,3,4,7,8-HxCDF U 4.71

U 57117-44-9 1,2,3,6,7,8-HxCDF 4.71 2,3,4,6,7,8-HxCDF U 4.71 60851-34-5 72918-21-9 1,2,3,7,8,9-HxCDF U 4.71 U 1,2,3,4,6,7,8-HpCDF 67562-39-4 4.71

55673-89-7 1,2,3,4,7,8,9-HpCDF U 1,2,3,4,6,7,8,9-OCDF U 39001-02-0 U 41903-57-5 Total Tetrachlorodibenzo-p-dioxin U 36088-22-9 Total Pentachlorodibenzo-p-dioxin U 34465-46-8 Total Hexachlorodibenzo-p-dioxin 37871-00-4 Total Heptachlorodibenzo-p-dioxin

30402-14-3 Total Tetrachlorodibenzofuran IJ 30402-15-4 Total Pentachlorodibenzofuran U U 55684-94-1 Total Hexachlorodibenzofuran U 38998-75-3 Total Heptachlorodibenzofuran 3333-30-0 TEQ WHO2005 ND=0

TEQ WHO2005 ND=0.5

pg/g .942 pg/g 4.71 pg/g 4.71 pg/g 13.2 pg/g 942 pg/g 4.71 pg/g 4.71 pg/g 4.71 pg/g 0.0743 pg/g

Acceptable Limits Surrogate/Tracer recovery Qual Result Nominal Units Recovery% 13C-2,3,7,8-TCDD 126 188 pg/g 66.9 (25%-164%) 13C-1,2,3,7,8-PeCDD 117 188 62.2 (25%-181%) pg/g 13C-1,2,3,4,7,8-HxCDD 62.7 118 188 pg/g (32%-141%) 13C-1,2,3,6,7,8-HxCDD 119 188 (28%-130%) pg/g 63.1 13C-1,2,3,4,6,7,8-HpCDD 108 188 57.2 (23%-140%) pg/g 13C-OCDD 124 377 32.9 (17%-157%) pg/g 13C-2,3,7,8-TCDF 123 188 65.4 (24%-169%) pg/g 13C-1,2,3,7,8-PeCDF 117 188 62.1 (24%-185%) pg/g 13C-2,3,4,7,8-PeCDF 112 188 59.2 (21%-178%) pg/g 13C-1,2,3,4,7,8-HxCDF 120 188 63.9 (26%-152%) pg/g 13C-1,2,3,6,7,8-HxCDF 121 188 64.4 (26%-123%) pg/g 13C-2,3,4,6,7,8-HxCDF 119 188 pg/g 63.3 (28%-136%)

121

188

pg/g

13C-1,2,3,7,8,9-HxCDF

3333-30-1

Page 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

09/21/2016 08:35 **Date Collected:** Date Received: 09/27/2016 12:00

CLP

ALPH00416 Project: SOIL Matrix: %Moisture: 31.2

Dry Weight **Prep Basis:**

Instrument: HRP763

Dilution: 1

10/18/2016 04:54 **Run Date:** Data File: b17oct16a_2-2 **Prep Batch:**

33021 16-OCT-16

L1629727

1613B Soil

9822011

C-5

33023

Prep Method:

Client:

Method:

Analyst:

SW846 3540C

Prep Aliquot: 15.43 g

EPA Method 1613B

PQL CAS No. Qual Result Units **Parmname**

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		100	188	pg/g	53.3	(28%-143%)
3C-1,2,3,4,7,8,9-HpCDF		112	188	pg/g	59.2	(26%-138%)
37Cl-2,3,7,8-TCDD		13.6	18.8	pg/g	72.2	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Prep Date:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Prep Date:

Hi-Res Dioxins/Furans Certificate of Analysis

Sample Summary Client: ALPH001

09/21/2016 13:00 09/27/2016 12:00 Project: Matrix: %Moisture: **ALPH00416** SOIL 29.3

Prep Basis: Dry Weight

Instrument:

Method: EPA Method 1613B Analyst: CLP

Result

Dilution:

Units

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

Run Date: 10/18/2016 05:40 Data File: b17oct16a_2-3 Prep Batch:

33021 16-OCT-16

L1629727

1613B Soil

9822012

C-8

33023

Prep Method: **Prep Aliquot:**

Date Collected:

Date Received:

SW846 3540C 15.79 g

U

U

IJ

U

U

U

U

U

U

U

110

139

124

118

113

126

125

126

128

CAS No. **Parmname** Qual 1746-01-6 2,3,7,8-TCDD 40321-76-4 1,2,3,7,8-PeCDD 39227-28-6 1,2,3,4,7,8-HxCDD 57653-85-7 1,2,3,6,7,8-HxCDD 19408-74-3 1,2,3,7,8,9-HxCDD 35822-46-9 1,2,3,4,6,7,8-HpCDD 3268-87-9 1,2,3,4,6,7,8,9-OCDD 51207-31-9 2,3,7,8-TCDF 57117-41-6 1,2,3,7,8-PeCDF 57117-31-4 2,3,4,7,8-PeCDF 70648-26-9 1,2,3,4,7,8-HxCDF

57117-44-9 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 60851-34-5 72918-21-9 1,2,3,7,8,9-HxCDF 67562-39-4 1,2,3,4,6,7,8-HpCDF 55673-89-7 1,2,3,4,7,8,9-HpCDF

1,2,3,4,6,7,8,9-OCDF 39001-02-0 41903-57-5 Total Tetrachlorodibenzo-p-dioxin 36088-22-9 Total Pentachlorodibenzo-p-dioxin 34465-46-8 Total Hexachlorodibenzo-p-dioxin 37871-00-4 Total Heptachlorodibenzo-p-dioxin 30402-14-3 Total Tetrachlorodibenzofuran

Total Pentachlorodibenzofuran

Total Hexachlorodibenzofuran

38998-75-3 Total Heptachlorodibenzofuran 3333-30-0 TEQ WHO2005 ND=0 3333-30-1 TEQ WHO2005 ND=0.5

30402-15-4

55684-94-1

13C-1,2,3,4,6,7,8-HpCDD

Surrogate/Tracer recovery Qual Result 13C-2,3,7,8-TCDD 127 13C-1,2,3,7,8-PeCDD 120 13C-1,2,3,4,7,8-HxCDD 122 13C-1,2,3,6,7,8-HxCDD 118

13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF U .896 pg/g U 4.48 pg/g U 4.48 pg/g 4.48 pg/g

U U 4.48 pg/g U 4 48 pg/g 23.0 pg/g U .896 pg/g U

4.48 pg/g 4.48 pg/g 4.48 pg/g 4.48 pg/g pg/g

4.48 4.48 4.48 4.48

U 8.96 IJ .896 U 4.48 U 4.48 U 4.48 U 896

179

179

179

179

4.48 pg/g 4.48 pg/g 4.48 pg/g 0.00689 pg/g 5.12 pg/g

Nominal Units Recovery% pg/g 70.7 66.8 pg/g

pg/g 179 pg/g 66.0 179 61.5 pg/g 358 38.9 pg/g 179 69.0 pg/g 179

pg/g

179 62.9 pg/g 179 70.4 pg/g 179 70.0 pg/g 179 pg/g 70.4

pg/g 71.4

66.0

HRP763 1

PQL

0.896

4.48

4.48 4.48 4.48 4 48 8.96 0.896 4.48 4.48 4.48 4.48 4.48 4.48 4.48 4.48 8.96 0.896

4.48 4.48 4.48 0.896 4.48 4.48 4.48

(25%-164%) (25%-181%) 67.9 (32%-141%) (28%-130%) (23%-140%) (17%-157%) (24%-169%)

Acceptable Limits

(26%-152%) (26%-123%) (28%-136%)

(24%-185%)

(21%-178%)

Page 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

Date Collected: 09/27/2016 12:00 Date Received:

09/21/2016 13:00

Project: Matrix: %Moisture:

Prep Basis:

ALPH00416 SOIL

Dry Weight

29.3

Client ID:

SDG Number:

Lab Sample ID:

1613B Soil **Client Sample: C-8**

L1629727

9822012

Batch ID: 33023

10/18/2016 05:40 **Run Date:**

Data File: b17oct16a_2-3

Prep Batch: 33021 **Prep Date:** 16-OCT-16 Method: **Analyst:**

EPA Method 1613B

CLP

SW846 3540C

15.79 g

Instrument: HRP763 1

Dilution:

Prep Aliquot: PQL CAS No. Qual Units **Parmname** Result

Prep Method:

Client:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		109	179	pg/g	60.7	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		118	179	pg/g	66.1	(26%-138%)
37Cl-2,3,7,8-TCDD		13.4	17.9	pg/g	74.9	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis

Sample Summary

SDG Number: L1629727 9822013 Lab Sample ID: 1613B Soil **Client Sample: Client ID:** C-9

Batch ID: 33023 **Run Date:** 10/18/2016 06:27

Data File: b17oct16a_2-4 **Prep Batch:** 33021 **Prep Date:** 16-OCT-16

ALPH001 Client: 09/21/2016 11:45 **Date Collected:** 09/27/2016 12:00 Date Received:

Method: EPA Method 1613B **Analyst:** CLP

SW846 3540C **Prep Method:** Prep Aliquot: 13.34 g

Project: ALPH00416 SOIL Matrix: %Moisture: 17.9

Prep Basis: Dry Weight

Instrument: HRP763 Dilution: 1

rrep Date:	10-001-10	Trep Anquot.	13.34 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.913	pg/g	0.913	
40321-76-4	1,2,3,7,8-PeCDD	U	4.57	pg/g	4.57	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.57	pg/g	4.57	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.57	pg/g	4.57	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.57	pg/g	4.57	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.57	pg/g	4.57	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		14.8	pg/g	9.13	
51207-31-9	2,3,7,8-TCDF	U	.913	pg/g	0.913	
57117-41-6	1,2,3,7,8-PeCDF	U	4.57	pg/g	4.57	
57117-31-4	2,3,4,7,8-PeCDF	U	4.57	pg/g	4.57	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.57	pg/g	4.57	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.57	pg/g	4.57	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.57	pg/g	4.57	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.57	pg/g	4.57	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.57	pg/g	4.57	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.57	pg/g	4.57	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.13	pg/g	9.13	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.913	pg/g	0.913	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.57	pg/g	4.57	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.57	pg/g	4.57	
37871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.57	pg/g	4.57	
30402-14-3	Total Tetrachlorodibenzofuran	U	.913	pg/g	0.913	
30402-15-4	Total Pentachlorodibenzofuran	U	4.57	pg/g	4.57	
55684-94-1	Total Hexachlorodibenzofuran	U	4.57	pg/g	4.57	
38998-75-3	Total Heptachlorodibenzofuran	U	4.57	pg/g	4.57	
3333-30-0	TEQ WHO2005 ND=0		0.00445	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.21	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		131	183	pg/g	71.5	(25%-164%)	
13C-1,2,3,7,8-PeCDD		125	183	pg/g	68.2	(25%-181%)	
13C-1,2,3,4,7,8-HxCDD		132	183	pg/g	72.2	(32%-141%)	
13C-1,2,3,6,7,8-HxCDD		123	183	pg/g	67.3	(28%-130%)	
13C-1,2,3,4,6,7,8-HpCDD		114	183	pg/g	62.3	(23%-140%)	
13C-OCDD		134	365	pg/g	36.7	(17%-157%)	
13C-2,3,7,8-TCDF		130	183	pg/g	71.0	(24%-169%)	
13C-1,2,3,7,8-PeCDF		119	183	pg/g	65.2	(24%-185%)	
13C-2,3,4,7,8-PeCDF		118	183	pg/g	64.8	(21%-178%)	
13C-1,2,3,4,7,8-HxCDF		130	183	pg/g	71.4	(26%-152%)	
13C-1,2,3,6,7,8-HxCDF		126	183	pg/g	68.9	(26%-123%)	
13C-2,3,4,6,7,8-HxCDF		127	183	pg/g	69.6	(28%-136%)	
13C-1,2,3,7,8,9-HxCDF		129	183	pg/g	70.7	(29%-147%)	

Page 2

L1629727

1613B Soil

10/18/2016 06:27

9822013

C-9

33023

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

CAS No.

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

09/21/2016 11:45 **Date Collected:** 09/27/2016 12:00 Date Received:

CLP

Project: Matrix: %Moisture:

ALPH00416 SOIL

Dry Weight

Prep Basis:

17.9

Instrument: HRP763 1

Dilution:

Data File: b17oct16a_2-4 **Prep Batch:** 33021 **Prep Method: Prep Date:**

Parmname

16-OCT-16

Prep Aliquot:

Client:

Method:

Analyst:

SW846 3540C 13.34 g

PQL Qual Result Units

EPA Method 1613B

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		104	183	pg/g	57.1	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		121	183	pg/g	66.2	(26%-138%)
37Cl-2,3,7,8-TCDD		13.2	18.3	pg/g	72.4	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

Client: ALP Date Collected: 09/21 Date Received: 09/27

Method:

Analyst:

ALPH001 09/21/2016 12:20 09/27/2016 12:00

EPA Method 1613B

Project: Matrix: %Moisture: ALPH00416 SOIL 20.8

Prep Basis:

Dry Weight

Run Date: 10/18/2016 07:15 Data File: b17oct16a_2-5

L1629727

1613B Soil

9822014

C-10

33023

Data File: b17oct16a_2-:
Prep Batch: 33021
Prep Date: 16-OCT-16

Prep Method: SW846 3540C

Instrument: HRP763 Dilution: 1

Prep Date:	16-OCT-16	Prep Aliquot:	13.07 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.966	pg/g	0.966	
40321-76-4	1,2,3,7,8-PeCDD	U	4.83	pg/g	4.83	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.83	pg/g	4.83	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.83	pg/g	4.83	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.83	pg/g	4.83	
35822-46-9	1,2,3,4,6,7,8-HpCDD		8.87	pg/g	4.83	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		135	pg/g	9.66	
51207-31-9	2,3,7,8-TCDF	U	.966	pg/g	0.966	
57117-41-6	1,2,3,7,8-PeCDF	U	4.83	pg/g	4.83	
57117-31-4	2,3,4,7,8-PeCDF	U	4.83	pg/g	4.83	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.83	pg/g	4.83	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.83	pg/g	4.83	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.83	pg/g	4.83	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.83	pg/g	4.83	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.83	pg/g	4.83	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.83	pg/g	4.83	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.66	pg/g	9.66	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin		0.970	pg/g	0.966	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.83	pg/g	4.83	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.83	pg/g	4.83	
37871-00-4	Total Heptachlorodibenzo-p-dioxin		26.9	pg/g	4.83	
30402-14-3	Total Tetrachlorodibenzofuran	U	.966	pg/g	0.966	
30402-15-4	Total Pentachlorodibenzofuran	U	4.83	pg/g	4.83	
55684-94-1	Total Hexachlorodibenzofuran	U	4.83	pg/g	4.83	
38998-75-3	Total Heptachlorodibenzofuran	U	4.83	pg/g	4.83	
3333-30-0	TEQ WHO2005 ND=0		0.129	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.61	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		143	193	pg/g	74.2	(25%-164%)
3C-1,2,3,7,8-PeCDD		140	193	pg/g	72.3	(25%-181%)
3C-1,2,3,4,7,8-HxCDD		147	193	pg/g	76.2	(32%-141%)
3C-1,2,3,6,7,8-HxCDD		135	193	pg/g	70.0	(28%-130%)
3C-1,2,3,4,6,7,8-HpCDD		126	193	pg/g	65.4	(23%-140%)
C-OCDD		147	386	pg/g	38.1	(17%-157%)
C-2,3,7,8-TCDF		143	193	pg/g	74.2	(24%-169%)
C-1,2,3,7,8-PeCDF		132	193	pg/g	68.2	(24%-185%)
C-2,3,4,7,8-PeCDF		132	193	pg/g	68.2	(21%-178%)
C-1,2,3,4,7,8-HxCDF		146	193	pg/g	75.5	(26%-152%)
C-1,2,3,6,7,8-HxCDF		137	193	pg/g	70.7	(26%-123%)
C-2,3,4,6,7,8-HxCDF		142	193	pg/g	73.7	(28%-136%)
-1,2,3,7,8,9-HxCDF		142	193	pg/g	73.6	(29%-147%)

Page 2

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

Prep Date:

L1629727

1613B Soil

16-OCT-16

10/18/2016 07:15

9822014

C-10

33023

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

CLP

EPA Method 1613B

09/21/2016 12:20 **Date Collected:** 09/27/2016 12:00 Date Received:

ALPH00416 Project: Matrix: %Moisture:

SOIL 20.8

Dry Weight **Prep Basis:**

Instrument: HRP763 1

Dilution:

Data File: b17oct16a_2-5 **Prep Batch:** 33021 **Prep Method:**

SW846 3540C

Prep Aliquot: 13.07 g

PQL CAS No. Qual Result Units **Parmname**

Client:

Method:

Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		118	193	pg/g	60.9	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		131	193	pg/g	67.7	(26%-138%)
37Cl-2,3,7,8-TCDD		14.2	19.3	pg/g	73.2	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client: 09/21/2016 09:03 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture: **ALPH00416** SOIL 31.4

Client ID: C-11(0-48) **Batch ID:** 33023 EPA Method 1613B

Method: **Analyst:** CLP **Prep Basis: Dry Weight**

Run Date: 10/18/2016 08:02 Data File: b17oct16a_2-6

L1629727

1613B Soil

9822015

SW846 3540C **Prep Method:**

Instrument: HRP763 Dilution: 1

Prep Batch: 33021 Prep Aliquot: 15.68 g **Prep Date:** 16-OCT-16

CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.93	pg/g	0.930	
40321-76-4	1,2,3,7,8-PeCDD	U	4.65	pg/g	4.65	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.65	pg/g	4.65	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.65	pg/g	4.65	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.65	pg/g	4.65	
35822-46-9	1,2,3,4,6,7,8-HpCDD		11.6	pg/g	4.65	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		334	pg/g	9.30	
51207-31-9	2,3,7,8-TCDF	U	.93	pg/g	0.930	
57117-41-6	1,2,3,7,8-PeCDF	U	4.65	pg/g	4.65	
57117-31-4	2,3,4,7,8-PeCDF	U	4.65	pg/g	4.65	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.65	pg/g	4.65	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.65	pg/g	4.65	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.65	pg/g	4.65	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.65	pg/g	4.65	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.65	pg/g	4.65	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.65	pg/g	4.65	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.3	pg/g	9.30	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.93	pg/g	0.930	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.65	pg/g	4.65	
34465-46-8	Total Hexachlorodibenzo-p-dioxin		5.77	pg/g	4.65	
37871-00-4	Total Heptachlorodibenzo-p-dioxin		41.4	pg/g	4.65	
30402-14-3	Total Tetrachlorodibenzofuran	U	.93	pg/g	0.930	
30402-15-4	Total Pentachlorodibenzofuran	U	4.65	pg/g	4.65	
55684-94-1	Total Hexachlorodibenzofuran	U	4.65	pg/g	4.65	
38998-75-3	Total Heptachlorodibenzofuran	U	4.65	pg/g	4.65	
3333-30-0	TEQ WHO2005 ND=0		0.217	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.50	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		137	186	pg/g	73.6	(25%-164%)	
13C-1,2,3,7,8-PeCDD		131	186	pg/g	70.6	(25%-181%)	
13C-1,2,3,4,7,8-HxCDD		140	186	pg/g	75.3	(32%-141%)	
13C-1,2,3,6,7,8-HxCDD		133	186	pg/g	71.5	(28%-130%)	
13C-1,2,3,4,6,7,8-HpCDD		122	186	pg/g	65.4	(23%-140%)	
13C-OCDD		140	372	pg/g	37.7	(17%-157%)	
13C-2,3,7,8-TCDF		135	186	pg/g	72.7	(24%-169%)	
13C-1,2,3,7,8-PeCDF		129	186	pg/g	69.2	(24%-185%)	
13C-2,3,4,7,8-PeCDF		125	186	pg/g	67.0	(21%-178%)	
13C-1,2,3,4,7,8-HxCDF		139	186	pg/g	74.7	(26%-152%)	
13C-1,2,3,6,7,8-HxCDF		134	186	pg/g	71.9	(26%-123%)	
13C-2,3,4,6,7,8-HxCDF		138	186	pg/g	74.0	(28%-136%)	
13C-1,2,3,7,8,9-HxCDF		138	186	pg/g	74.1	(29%-147%)	

Page 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

09/21/2016 09:03 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix: %Moisture: **ALPH00416** SOIL

Dry Weight

31.4

Client Sample: C-11(0-48) **Client ID:**

SDG Number:

Lab Sample ID:

Batch ID: 33023

10/18/2016 08:02 **Run Date:**

Data File: b17oct16a_2-6 Prep Batch:

33021 16-OCT-16

L1629727

1613B Soil

9822015

Method: Analyst: CLP

EPA Method 1613B

SW846 3540C

15.68 g

Instrument: HRP763

Dilution:

1

Prep Basis:

PQL CAS No. Qual Result Units **Parmname**

Prep Method:

Prep Aliquot:

Client:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		109	186	pg/g	58.8	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		126	186	pg/g	67.5	(26%-138%)
37Cl-2,3,7,8-TCDD		11.7	18.6	pg/g	62.6	(35%-197%)

Comments:

Prep Date:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Data File:

Prep Batch:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

Client: ALPH001
Date Collected: 09/21/2016 08:44
Date Received: 09/27/2016 12:00

Project:
Matrix:
%Moisture:

ALPH00416 SOIL 22.7

Prep Basis:

Dry Weight

Instrument: Dilution:

Diy Weight

10/18/2016 08:49 b17oct16a_2-7

33021 16-OCT-16

L1629727

1613B Soil

9822016

C-12

33023

Prep Method:

Method:

Analyst:

SW846 3540C

EPA Method 1613B

Prep Aliquot: 13.18 g

Dilution

ment: HRP763 on: 1

Prep Date:	16-OCT-16	Prep Aliquot:	13.18 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.981	pg/g	0.981	
40321-76-4	1,2,3,7,8-PeCDD	U	4.91	pg/g	4.91	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.91	pg/g	4.91	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.91	pg/g	4.91	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.91	pg/g	4.91	
35822-46-9	1,2,3,4,6,7,8-HpCDD		30.5	pg/g	4.91	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		410	pg/g	9.81	
51207-31-9	2,3,7,8-TCDF	U	.981	pg/g	0.981	
57117-41-6	1,2,3,7,8-PeCDF	U	4.91	pg/g	4.91	
57117-31-4	2,3,4,7,8-PeCDF	U	4.91	pg/g	4.91	
70648-26-9	1,2,3,4,7,8-HxCDF	U	4.91	pg/g	4.91	
57117-44-9	1,2,3,6,7,8-HxCDF	U	4.91	pg/g	4.91	
60851-34-5	2,3,4,6,7,8-HxCDF	U	4.91	pg/g	4.91	
72918-21-9	1,2,3,7,8,9-HxCDF	U	4.91	pg/g	4.91	
67562-39-4	1,2,3,4,6,7,8-HpCDF		7.19	pg/g	4.91	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.91	pg/g	4.91	
39001-02-0	1,2,3,4,6,7,8,9-OCDF		15.7	pg/g	9.81	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.981	pg/g	0.981	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.91	pg/g	4.91	
34465-46-8	Total Hexachlorodibenzo-p-dioxin		16.4	pg/g	4.91	
37871-00-4	Total Heptachlorodibenzo-p-dioxin		81.6	pg/g	4.91	
30402-14-3	Total Tetrachlorodibenzofuran	U	.981	pg/g	0.981	
30402-15-4	Total Pentachlorodibenzofuran	U	4.91	pg/g	4.91	
55684-94-1	Total Hexachlorodibenzofuran	U	4.91	pg/g	4.91	
38998-75-3	Total Heptachlorodibenzofuran		17.3	pg/g	4.91	
3333-30-0	TEQ WHO2005 ND=0		0.504	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		6.05	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		133	196	pg/g	67.8	(25%-164%)
13C-1,2,3,7,8-PeCDD		128	196	pg/g	65.0	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		133	196	pg/g	68.0	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		123	196	pg/g	62.4	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		118	196	pg/g	59.9	(23%-140%)
13C-OCDD		144	392	pg/g	36.7	(17%-157%)
13C-2,3,7,8-TCDF		129	196	pg/g	65.8	(24%-169%)
13C-1,2,3,7,8-PeCDF		122	196	pg/g	62.2	(24%-185%)
13C-2,3,4,7,8-PeCDF		121	196	pg/g	61.7	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		131	196	pg/g	66.8	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		126	196	pg/g	64.3	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		129	196	pg/g	65.8	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		131	196	pg/g	66.7	(29%-147%)

Page 2

L1629727

1613B Soil

10/18/2016 08:49

9822016

C-12

33023

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

09/21/2016 08:44

EPA Method 1613B

Date Collected: Date Received: 09/27/2016 12:00 **Project:** Matrix: %Moisture: ALPH00416 SOIL

Dry Weight

22.7

PQL

Prep Basis:

Instrument: HRP763 1

Dilution:

Data File: b17oct16a_2-7 33021 Prep Batch:

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

CAS No.

Prep Date: 16-OCT-16 **Prep Method:**

Client:

Method:

Analyst:

SW846 3540C

CLP

Prep Aliquot: 13.18 g

Units **Parmname** Qual Result

Surrogate/Tracer recovery Units Recovery% **Acceptable Limits** Qual Result Nominal 13C-1,2,3,4,6,7,8-HpCDF 110 (28%-143%) 196 56.1 pg/g 13C-1,2,3,4,7,8,9-HpCDF 122 196 62.0 (26%-138%) pg/g 37Cl-2,3,7,8-TCDD 15.4 78.3 (35%-197%) 19.6 pg/g

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

L1629727

1613B Soil

C-11(48-89)

10/18/2016 09:36

9822017

33023

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

Client: **Date Collected:** Date Received:

ALPH001 09/21/2016 09:03 09/27/2016 12:00

EPA Method 1613B

Project: Matrix: %Moisture: **ALPH00416** SOIL 33.1

Prep Basis: Dry Weight

Analyst: SW846 3540C

Dilution:

Instrument: HRP763 1

Data File: Prep Batch: Prep Date:	b17oct16a_2-8 33021 16-OCT-16					
CAS No.	Parn					
1746-01-6	2,3,7,8-TCDD					
40321-76-4	1 2 3 7 8-PeCDD					

Prep Method: Prep Aliquot: 15.85 g

Method:

CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	.943	pg/g	0.943	
10321-76-4	1,2,3,7,8-PeCDD	U	4.72	pg/g	4.72	
39227-28-6	1,2,3,4,7,8-HxCDD	U	4.72	pg/g	4.72	
57653-85-7	1,2,3,6,7,8-HxCDD	U	4.72	pg/g	4.72	
19408-74-3	1,2,3,7,8,9-HxCDD	U	4.72	pg/g	4.72	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	4.72	pg/g	4.72	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		35.0	pg/g	9.43	
1207-31-9	2,3,7,8-TCDF	U	.943	pg/g	0.943	
7117-41-6	1,2,3,7,8-PeCDF	U	4.72	pg/g	4.72	
7117-31-4	2,3,4,7,8-PeCDF	U	4.72	pg/g	4.72	
0648-26-9	1,2,3,4,7,8-HxCDF	U	4.72	pg/g	4.72	
7117-44-9	1,2,3,6,7,8-HxCDF	U	4.72	pg/g	4.72	
0851-34-5	2,3,4,6,7,8-HxCDF	U	4.72	pg/g	4.72	
2918-21-9	1,2,3,7,8,9-HxCDF	U	4.72	pg/g	4.72	
7562-39-4	1,2,3,4,6,7,8-HpCDF	U	4.72	pg/g	4.72	
5673-89-7	1,2,3,4,7,8,9-HpCDF	U	4.72	pg/g	4.72	
9001-02-0	1,2,3,4,6,7,8,9-OCDF	U	9.43	pg/g	9.43	
1903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	.943	pg/g	0.943	
6088-22-9	Total Pentachlorodibenzo-p-dioxin	U	4.72	pg/g	4.72	
4465-46-8	Total Hexachlorodibenzo-p-dioxin	U	4.72	pg/g	4.72	
7871-00-4	Total Heptachlorodibenzo-p-dioxin	U	4.72	pg/g	4.72	
0402-14-3	Total Tetrachlorodibenzofuran	U	.943	pg/g	0.943	
0402-15-4	Total Pentachlorodibenzofuran	U	4.72	pg/g	4.72	
5684-94-1	Total Hexachlorodibenzofuran	U	4.72	pg/g	4.72	
8998-75-3	Total Heptachlorodibenzofuran	U	4.72	pg/g	4.72	
333-30-0	TEQ WHO2005 ND=0		0.0105	pg/g		
333-30-1	TEQ WHO2005 ND=0.5		5.39	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		125	189	pg/g	66.3	(25%-164%)
13C-1,2,3,7,8-PeCDD		124	189	pg/g	65.7	(25%-181%)
3C-1,2,3,4,7,8-HxCDD		134	189	pg/g	70.9	(32%-141%)
3C-1,2,3,6,7,8-HxCDD		128	189	pg/g	68.0	(28%-130%)
C-1,2,3,4,6,7,8-HpCDD		119	189	pg/g	62.8	(23%-140%)
C-OCDD		140	377	pg/g	37.0	(17%-157%)
C-2,3,7,8-TCDF		123	189	pg/g	65.2	(24%-169%)
-1,2,3,7,8-PeCDF		119	189	pg/g	63.3	(24%-185%)
-2,3,4,7,8-PeCDF		119	189	pg/g	63.1	(21%-178%)
C-1,2,3,4,7,8-HxCDF		132	189	pg/g	70.1	(26%-152%)
C-1,2,3,6,7,8-HxCDF		135	189	pg/g	71.5	(26%-123%)
C-2,3,4,6,7,8-HxCDF		136	189	pg/g	72.1	(28%-136%)
C-1,2,3,7,8,9-HxCDF		129	189	pg/g	68.2	(29%-147%)

Page 2

L1629727

1613B Soil

C-11(48-89)

10/18/2016 09:36

b17oct16a_2-8

16-OCT-16

9822017

33023

33021

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

Data File:

Prep Batch:

Prep Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

EPA Method 1613B

09/21/2016 09:03 **Date Collected:** 09/27/2016 12:00 Date Received:

Project: Matrix:

ALPH00416 SOIL

%Moisture: 33.1

Dry Weight **Prep Basis:**

Instrument: HRP763

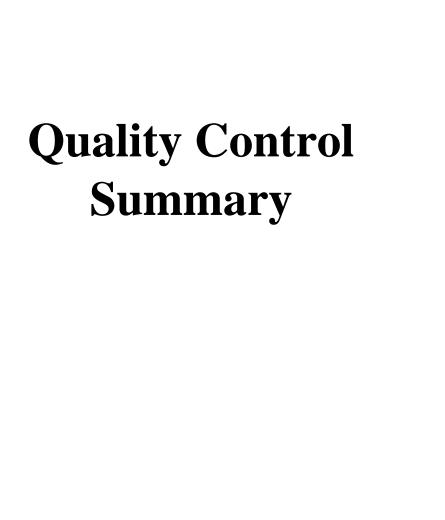
Dilution: 1

SW846 3540C **Prep Method:**

Prep Aliquot: 15.85 g

CLP

PQL CAS No. Qual Result Units **Parmname**


Client:

Method:

Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		111	189	pg/g	59.0	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		124	189	pg/g	65.5	(26%-138%)
37Cl-2,3,7,8-TCDD		12.9	18.9	pg/g	68.6	(35%-197%)

Analyte was analyzed for, but not detected above the specified detection limit.

Serial_No:10271613:37

Report Date: October 19, 2016

of 7

Page 1

Hi-Res Dioxins/Furans

SDG Number: L1629727 Matrix Type: SOLID

Surrogate Recovery Report

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2017086	LCS for batch 33021	13C-2,3,7,8-TCDD		78.0	(20%-175%)
		13C-1,2,3,7,8-PeCDD		72.5	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		78.0 72.5 77.5 71.7 67.3 41.1 74.2 69.1 66.8 75.2 74.8 75.5 75.2 63.3 68.4 80.1 70.5 67.1 70.6 63.8 60.3 35.9 68.2 63.3 63.1 67.4 67.4 67.4 68.2 68.5 56.0 61.2 74.3 78.1 73.7 73.7 71.7 68.4 41.1 75.9 69.8	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		71.7	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		67.3	(22%-166%)
		13C-OCDD			(13%-199%)
		13C-2,3,7,8-TCDF			(22%-152%)
		13C-1,2,3,7,8-PeCDF			(21%-192%)
		13C-2,3,4,7,8-PeCDF			(13%-328%)
		13C-1,2,3,4,7,8-HxCDF			(19%-202%)
		13C-1,2,3,6,7,8-HxCDF			(21%-159%)
		13C-2,3,4,6,7,8-HxCDF			(22%-176%)
		13C-1,2,3,7,8,9-HxCDF			(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF			(21%-158%)
		•			,
		13C-1,2,3,4,7,8,9-HpCDF			(20%-186%)
		37Cl-2,3,7,8-TCDD		80.1	(31%-191%)
017087	LCSD for batch 33021	13C-2,3,7,8-TCDD		74.2 69.1 66.8 75.2 74.8 75.5 75.2 63.3 68.4 80.1 70.5 67.1 70.6 63.8 60.3 35.9 68.2 63.3 63.1 67.4 67.4 68.2 68.5 56.0 61.2 74.3 78.1 73.7 73.7 71.7 68.4	(20%-175%)
		13C-1,2,3,7,8-PeCDD		67.1	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		67.1 70.6 63.8 60.3 35.9 68.2 63.3	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		63.8	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		60.3	(22%-166%)
		13C-OCDD		35.9	(13%-199%)
		13C-2,3,7,8-TCDF		68.2	(22%-152%)
		13C-1,2,3,7,8-PeCDF		63.3	(21%-192%)
		13C-2,3,4,7,8-PeCDF			(13%-328%)
		13C-1,2,3,4,7,8-HxCDF			(19%-202%)
		13C-1,2,3,6,7,8-HxCDF			(21%-159%)
		13C-2,3,4,6,7,8-HxCDF			(22%-176%)
		13C-1,2,3,7,8,9-HxCDF			(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF			(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF			(20%-186%)
		37C1-2,3,7,8-TCDD			(31%-191%)
015005	MD 6 1 - 1 22021	100 0 0 0 0 0 0		70.1	(050/ 1640/)
017085	MB for batch 33021	13C-2,3,7,8-TCDD			(25%-164%)
		13C-1,2,3,7,8-PeCDD		78.0 72.5 77.5 77.7 67.3 41.1 74.2 69.1 66.8 75.2 74.8 75.5 75.2 63.3 68.4 80.1 70.5 67.1 70.6 63.8 60.3 35.9 68.2 63.3 63.1 67.4 67.4 68.2 68.5 56.0 61.2 74.3 78.1 73.7 71.7 68.4 41.1 75.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD			(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD			(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF		69.8	(24%-185%)
		13C-2,3,4,7,8-PeCDF		69.1	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		74.9	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		72.9	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		75.2	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		76.7	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		62.8	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD			(35%-197%)
22001	C-6 (0-48)	13C-2,3,7,8-TCDD		69.2	(25%-164%)

Serial_No:10271613:37

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727 Matrix Type: SOLID Page 2 of 7

Report Date: October 19, 2016

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
822001	C-6 (0-48)	13C-1,2,3,7,8-PeCDD		65.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		65.9 66.5 67.4 61.5 35.7 68.1 62.9 61.1 67.3 67.8 69.2 68.2 56.1 62.8 75.5 72.8 69.9 73.2 66.6 63.4 40.3 72.0 66.9 65.1 72.0 68.9 70.7 70.4 59.6 67.4 66.1 76.5 72.3 75.7 75.3 70.0 44.3 75.7 69.7 67.9 76.0 75.1 76.2 77.2 65.4 71.9 76.4	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD			(23%-140%)
		13C-OCDD	2,3,7,8-PeCDD 2,3,4,7,8-HxCDD 3,3,4,7,8-HxCDD 3,3,4,6,7,8-HxCDD 3,3,4,6,7,8-HpCDD 35.7 3,7,8-TCDF 3,4,7,8-PeCDF 3,4,7,8-HxCDF 3,4,6,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,7,8-PeCDF 3,3,4,7,8,9-HpCDF 3,3,4,7,8,9-HpCDF 3,3,4,7,8-PeCDD 3,7,8-TCDD 3,7,8-TCDD 3,7,8-TCDD 3,3,4,7,8-HxCDD 3,3,4,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,7,8-HxCDF 3,3,4,8,9-HxCDF 3,3,4,8,9-HyCDF 3,3,4,8,9-HyCDF 3,3,4,8,9-HyCDF 3,3,4,8,9-HyCDF 3,3,4,7,8,9-HyCDF	(17%-157%)	
		13C-2,3,7,8-TCDF		68.1	(24%-169%)
		13C-1,2,3,7,8-PeCDF		62.9	(24%-185%)
		13C-2,3,4,7,8-PeCDF		61.1	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		67.3	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		67.8	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		69.2	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		68.2	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		56.1	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		62.8	(26%-138%)
		37Cl-2,3,7,8-TCDD		75.5	(35%-197%)
22002	C-6 (0-48) MS	13C-2,3,7,8-TCDD		72.8	(25%-164%)
22002	C 0 (0 10) 1115	13C-1,2,3,7,8-PeCDD			(25%-181%)
		13C-1,2,3,4,7,8-HxCDD	65.9 66.5 67.4 61.5 35.7 68.1 62.9 61.1 67.3 67.8 69.2 68.2 56.1 62.8 75.5 72.8 69.9 73.2 66.6 63.4 40.3 72.0 66.9 65.1 72.0 68.9 70.7 70.4 59.6 67.4 66.1 76.5 72.3 75.7 75.3 70.0 44.3 75.7 69.7 67.9 76.0 75.1 76.2 77.2 65.4 71.9	(32%-141%)	
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
					(23%-140%)
		13C-1,2,3,4,0,7,0-11pcDD			(17%-157%)
					(24%-169%)
					(24%-185%)
					(21%-178%)
					(26%-152%)
					(26%-123%)
					(28%-136%)
				(29%-147%)	
		•			(28%-143%)
		•			(26%-138%)
		37Cl-2,3,7,8-TCDD		66.1	(35%-197%)
22003	C-6 (0-48) MSD	13C-2,3,7,8-TCDD			(25%-164%)
		13C-1,2,3,7,8-PeCDD		72.3	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		65.9 66.5 67.4 61.5 35.7 68.1 62.9 61.1 67.3 67.8 69.2 68.2 56.1 62.8 75.5 72.8 69.9 73.2 66.6 63.4 40.3 72.0 66.9 65.1 72.0 68.9 70.7 70.4 59.6 67.4 66.1 76.5 72.3 75.7 75.3 70.0 44.3 75.7 69.7 67.9 76.0 75.1 76.2 77.2 65.4 71.9 76.4	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		70.0	(23%-140%)
		13C-OCDD		44.3	(17%-157%)
		13C-2,3,7,8-TCDF		75.7	(24%-169%)
		13C-1,2,3,7,8-PeCDF		69.7	(24%-185%)
		13C-2,3,4,7,8-PeCDF		67.9	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		76.0	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		75.1	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		76.2	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF			(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		65.4	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD			(35%-197%)
22004	C-7 (0-48)	13C-2,3,7,8-TCDD		78.3	(25%-164%)
	- (~ -~)				(== .0 10.70)

Serial_No:10271613:37

Report Date: October 19, 2016

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727
Matrix Type: SOLID

Page 3 of 7

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
9822004	C-7 (0-48)	13C-1,2,3,4,7,8-HxCDD		75.6	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		75.6 69.7 67.1 38.4 74.4 72.0 70.2 74.8 70.3 73.9 74.0 60.7 68.8 80.9 56.8 56.2 57.3 59.1 56.1 34.6 57.3 55.7 53.7 59.5 60.8 60.6 52.7 58.6 70.0 52.0 54.9 61.1 56.3 57.5 35.9 51.6 53.7 51.9 60.1 56.8 59.3 59.6 52.2 60.1 73.3	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD			(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF			(24%-185%)
		13C-2,3,4,7,8-PeCDF			(21%-178%)
		13C-1,2,3,4,7,8-HxCDF			(26%-152%)
		13C-1,2,3,6,7,8-HxCDF			(26%-123%)
		13C-2,3,4,6,7,8-HxCDF			(28%-136%)
		13C-1,2,3,7,8,9-HxCDF			(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF			(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD			(35%-197%)
322005	C-1	13C-2,3,7,8-TCDD		56.8	(25%-164%)
		13C-1,2,3,7,8-PeCDD			(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		56.2 57.3 59.1 56.1 34.6 57.3 55.7 53.7 59.5 59.5	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD			(23%-140%)
		13C-OCDD		34.6	(17%-157%)
		13C-2,3,7,8-TCDF		57.3	(24%-169%)
		13C-1,2,3,7,8-PeCDF		55.7	(24%-185%)
		13C-2,3,4,7,8-PeCDF		53.7	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		59.5	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		59.5	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		60.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		60.6	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		52.7	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		58.6	(26%-138%)
		37Cl-2,3,7,8-TCDD		70.0	(35%-197%)
322006	C-2	13C-2,3,7,8-TCDD		52.0	(25%-164%)
		13C-1,2,3,7,8-PeCDD			(25%-181%)
		13C-1,2,3,4,7,8-HxCDD			(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		75.6 69.7 67.1 38.4 74.4 72.0 70.2 74.8 70.3 73.9 74.0 60.7 68.8 80.9 56.8 56.2 57.3 59.1 56.1 34.6 57.3 55.7 53.7 59.5 60.8 60.6 52.7 58.6 70.0 52.0 54.9 61.1 56.3 57.5 35.9 51.6 53.7 51.9 60.1 56.8 59.3 59.6 52.2 60.1 73.3	(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF			(24%-185%)
		13C-2,3,4,7,8-PeCDF			(21%-178%)
		13C-1,2,3,4,7,8-HxCDF			(26%-152%)
		13C-1,2,3,6,7,8-HxCDF			(26%-123%)
		13C-2,3,4,6,7,8-HxCDF			(28%-136%)
		13C-1,2,3,7,8,9-HxCDF			(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF			(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD			(35%-197%)
322007	C-3	13C-2,3,7,8-TCDD		62.0	(25%-164%)
		13C-1,2,3,7,8-PeCDD			(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		72.0 70.2 74.8 70.3 73.9 74.0 60.7 68.8 80.9 56.8 56.2 57.3 59.1 56.1 34.6 57.3 55.7 53.7 59.5 60.8 60.6 52.7 58.6 70.0 52.0 54.9 61.1 56.3 57.5 35.9 51.6 53.7 51.9 60.1 56.8 59.3 59.6 52.2 60.1 73.3	(32%-141%)

Serial_No:10271613:37

Page 4

Report Date: October 19, 2016

of 7

Hi-Res Dioxins/Furans Surrogate Recovery Report

Surrogate Recover

SDG Number: L1629727 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
322007	C-3	13C-1,2,3,6,7,8-HxCDD		62.2	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		QUAL (%) 62.2 60.1 36.8 60.2 58.9 57.6 64.8 63.1 64.5 64.5 54.2 60.4 78.9 70.5 66.2 69.0 68.7 62.6 41.2 68.4 62.3 61.8 69.3 67.9 69.8 69.2 56.5 65.5 76.7 71.9 68.9 69.9 71.0 63.6 38.2 69.8 65.4	(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF		58.9	(24%-185%)
		13C-2,3,4,7,8-PeCDF		57.6	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		64.8	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		63.1	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		64.5	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		64.5	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		54.2	(28%-143%)
	13C-1,2,3,4,7,8,9-HpCDF		60.4	(26%-138%)	
		*	78.9	(35%-197%)	
22008	C-4	13C-2,3,7,8-TCDD		62.2 60.1 36.8 60.2 58.9 57.6 64.8 63.1 64.5 54.2 60.4 78.9 70.5 66.2 69.0 68.7 62.6 41.2 68.4 62.3 61.8 69.3 67.9 69.8 69.2 56.5 65.5 76.7	(25%-164%)
		13C-1,2,3,7,8-PeCDD		66.2	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		69.0	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		68.7	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		62.6	(23%-140%)
		13C-OCDD		41.2	(17%-157%)
		13C-2,3,7,8-TCDF		68.4	(24%-169%)
		13C-1,2,3,7,8-PeCDF		62.3	(24%-185%)
		13C-2,3,4,7,8-PeCDF		61.8	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		69.3	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		67.9	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		69.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		69.2	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		56.5	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		65.5	(26%-138%)
		37Cl-2,3,7,8-TCDD		76.7	(35%-197%)
22009	C-6 (48-61)	13C-2,3,7,8-TCDD		78.9 70.5 66.2 69.0 68.7 62.6 41.2 68.4 62.3 61.8 69.3 67.9 69.8 69.2 56.5 65.5 76.7 71.9 68.9 69.9 71.0 63.6 38.2 69.8 65.4 64.5 71.0 69.7 71.6 70.8	(25%-164%)
		13C-1,2,3,7,8-PeCDD		68.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		69.9	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		(%) 62.2 60.1 36.8 60.2 58.9 57.6 64.8 63.1 64.5 64.5 54.2 60.4 78.9 70.5 66.2 69.0 68.7 62.6 41.2 68.4 62.3 61.8 69.3 67.9 69.8 69.2 56.5 65.5 76.7 71.9 68.9 69.9 71.0 63.6 38.2 69.8 65.4 64.5 71.0 69.7 71.6 70.8 59.2 65.6	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		63.6	(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF		69.8	(24%-169%)
		13C-1,2,3,7,8-PeCDF			(24%-185%)
		13C-2,3,4,7,8-PeCDF		64.5	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF			(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		69.7	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		71.6	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF			(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		59.2	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD		77.4	(35%-197%)
22010	C-7 (48-54)	13C-2,3,7,8-TCDD			(25%-164%)
		13C-1,2,3,7,8-PeCDD		70.1	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		73.4	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		69 9	(28%-130%)

Serial_No:10271613:37 Report Date: October 19, 2016

Hi-Res Dioxins/Furans Surrogate Recovery Report

Page 5 of 7

SDG Number: L1629727 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
822010	C-7 (48-54)	13C-1,2,3,4,6,7,8-HpCDD		63.7	(23%-140%)
		13C-OCDD		63.7 38.0 71.8 66.7 65.4 73.4 71.4 72.7 73.0 60.0 67.4 68.9 66.9 62.2 62.7 63.1 57.2 32.9 65.4 62.1 59.2 63.9 64.4 63.3 64.0 53.3 59.2 72.2 70.7 66.8 67.9 66.0 61.5 38.9 69.0 66.0 61.5 38.9 69.0 60.0 61.5 38.9 69.0 60.0 61.5 38.9 60.0 61.5 38.9 60.0 61.5 38.9 60.0 60.0 61.5 38.9 60.0 60.1	(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF			(24%-185%)
		13C-2,3,4,7,8-PeCDF		65.4	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		73.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		71.4	(26%-123%)
					(28%-136%)
					(29%-147%)
					(28%-143%)
		* * * * * * * * * * * * * * * * * * * *	73.0 60.0 67.4 68.9 66.9 62.2 62.7 63.1 57.2 32.9 65.4 62.1 59.2 63.9 64.4 63.3 64.0 53.3 59.2	(26%-138%)	
		37Cl-2,3,7,8-TCDD			(35%-197%)
822011	C-5	13C-2.3.7.8-TCDD		66.9	(25%-164%)
				63.7 38.0 71.8 66.7 65.4 73.4 71.4 72.7 73.0 60.0 67.4 68.9 66.9 62.2 62.7 63.1 57.2 32.9 65.4 62.1 59.2 63.9 64.4 63.3 64.0 53.3 59.2 72.2 70.7 66.8 67.9 66.0 61.5 38.9 69.0 66.0 61.5 38.9 69.0 60.0 61.5 38.9 66.0 67.4 68.9	(25%-181%)
					(32%-141%)
	13C-2,3,4,6,7,8-HxCDF 72.7 13C-1,2,3,7,8,9-HxCDF 73.0 13C-1,2,3,4,6,7,8-HpCDF 60.0 13C-1,2,3,4,6,7,8-HpCDF 67.4 37Cl-2,3,7,8-TCDD 68.9 2011 C-5 13C-2,3,7,8-TCDD 66.9 13C-1,2,3,4,7,8-HxCDD 62.2 13C-1,2,3,4,7,8-HxCDD 62.7 13C-1,2,3,4,6,7,8-HxCDD 63.1 13C-1,2,3,4,6,7,8-HpCDD 57.2 13C-OCDD 32.9 13C-2,3,7,8-TCDF 65.4 13C-1,2,3,7,8-PeCDF 62.1 13C-2,3,7,8-PeCDF 62.1 13C-2,3,4,7,8-HxCDF 63.9 13C-1,2,3,4,7,8-HxCDF 63.9 13C-1,2,3,4,7,8-HxCDF 64.4 13C-1,2,3,4,7,8-HxCDF 64.0 13C-1,2,3,4,7,8-HxCDF 59.2 37Cl-2,3,4,7,8-HxCDF 59.2 37Cl-2,3,4,7,8-PeCDF 59.2 37Cl-2,3,4,7,8-PhCDF 59.2 37Cl-2,3,4,7,8-PhCDF 59.2 37Cl-2,3,4,7,8-PhCDF 59.2 37Cl-2,3,4,7,8-PhCDF 59.2 37Cl-2,3,4,7,8-PhCDF 59.2 37Cl-2,3,4,7,8-PhCDF 66.8 13C-1,2,3,7,8-PeCDD 66.8 13C-1,2,3,7,8-PeCDD 66.8	(28%-130%)			
			(23%-140%)		
			(17%-157%)		
					(24%-169%)
					(24%-185%)
					(21%-178%)
					(26%-152%)
					,
					(26%-123%)
					(28%-136%)
				(29%-147%)	
	*			(28%-143%)	
		•			(26%-138%)
		37Cl-2,3,7,8-TCDD		72.2	(35%-197%)
822012	C-8			73.4 71.4 72.7 73.0 60.0 67.4 68.9 66.9 62.2 62.7 63.1 57.2 32.9 65.4 62.1 59.2 63.9 64.4 63.3 64.0 53.3 59.2 72.2 70.7 66.8 67.9 66.0 61.5 38.9 69.0 66.0 62.9 70.4 70.0 70.4 71.4 60.7 66.1 74.9	(25%-164%)
					(25%-181%)
		13C-1,2,3,4,7,8-HxCDD			(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		63.7 38.0 71.8 66.7 65.4 73.4 71.4 72.7 73.0 60.0 67.4 68.9 66.9 62.2 62.7 63.1 57.2 32.9 65.4 62.1 59.2 63.9 64.4 63.3 64.0 53.3 59.2 72.2 70.7 66.8 67.9 66.0 61.5 38.9 69.0 66.0 62.9 70.4 70.0 70.4 71.4 60.7 66.1 74.9	(23%-140%)
		13C-OCDD	66.7 65.4 73.4 71.4 72.7 73.0 60.0 67.4 68.9 66.9 62.2 62.7 63.1 57.2 32.9 65.4 62.1 59.2 63.9 64.4 63.3 64.0 53.3 59.2 72.2 70.7 66.8 67.9 66.0 61.5 38.9 69.0 66.0 62.9 70.4 70.0 70.4 71.4 60.7 66.1 74.9	(17%-157%)	
		13C-2,3,7,8-TCDF		69.0	(24%-169%)
		13C-1,2,3,7,8-PeCDF		66.0	(24%-185%)
		13C-2,3,4,7,8-PeCDF		62.9	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		70.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		70.0	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		70.4	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		71.4	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		60.7	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37C1-2,3,7,8-TCDD		74.9	(35%-197%)
322013	C-9	13C-2,3,7,8-TCDD		71.5	(25%-164%)
		13C-1,2,3,7,8-PeCDD			(25%-181%)
	2012 C-8	13C-1,2,3,4,7,8-HxCDD			(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
				91.0	(=0/0 IJU/0)

Serial_No:10271613:37

Report Date: October 19, 2016

Hi-Res Dioxins/Furans Surrogate Recovery Report

Page 6

of 7

SDG Number: L1629727 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
9822013	C-9	13C-OCDD		36.7	(17%-157%)
		13C-2,3,7,8-TCDF		71.0	(24%-169%)
		13C-1,2,3,7,8-PeCDF		65.2	(24%-185%)
		13C-2,3,4,7,8-PeCDF		65.2 64.8 71.4 68.9 69.6 70.7 57.1 66.2 72.4 74.2 72.3 76.2 70.0 65.4 38.1 74.2 68.2 68.2 68.2 75.5 70.7 73.7 73.6 60.9 67.7 73.2	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		71.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		68.9	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		69.6	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		70.7	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		57.1	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		66.2	(26%-138%)
		37Cl-2,3,7,8-TCDD		72.4	(35%-197%)
9822014	C-10	13C-2,3,7,8-TCDD		74.2	(25%-164%)
		13C-1,2,3,7,8-PeCDD		72.3	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD	71.0 65.2 64.8 71.4 68.9 69.6 70.7 0F	(32%-141%)	
		13C-1,2,3,6,7,8-HxCDD		(28%-130%)	
		13C-1,2,3,4,6,7,8-HpCDD		64.8 71.4 68.9 69.6 70.7 57.1 66.2 72.4 74.2 72.3 76.2 70.0 65.4 38.1 74.2 68.2 68.2 75.5 70.7 73.7 73.6 60.9 67.7 73.2 73.6 70.6 75.3 71.5 65.4 37.7 72.7 69.2 67.0 74.7 71.9 74.0 74.1	(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF	68.2	(24%-185%)	
	13C-2,3,4,7,8-PeCDF			(21%-178%)	
		13C-1,2,3,4,7,8-HxCDF			(26%-152%)
		13C-1,2,3,6,7,8-HxCDF			(26%-123%)
		13C-2,3,4,6,7,8-HxCDF			(28%-136%)
		13C-1,2,3,7,8,9-HxCDF			(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF			(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD		73.2	(35%-197%)
9822015	C-11(0-48)	13C-2,3,7,8-TCDD		73.7 73.6 60.9 67.7 73.2	(25%-164%)
		13C-1,2,3,7,8-PeCDD			(25%-181%)
		13C-1,2,3,4,7,8-HxCDD			(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		36.7 71.0 65.2 64.8 71.4 68.9 69.6 70.7 57.1 66.2 72.4 74.2 72.3 76.2 70.0 65.4 38.1 74.2 68.2 68.2 75.5 70.7 73.7 73.6 60.9 67.7 73.2 73.6 70.6 75.3 71.5 65.4 37.7 72.7 69.2 67.0 74.7 71.9 74.0 74.1 58.8	(23%-140%)
		13C-OCDD			(17%-157%)
		13C-2,3,7,8-TCDF			(24%-169%)
		13C-1,2,3,7,8-PeCDF			(24%-185%)
		13C-2,3,4,7,8-PeCDF			(21%-178%)
		13C-1,2,3,4,7,8-HxCDF			(26%-152%)
		13C-1,2,3,6,7,8-HxCDF			(26%-123%)
		13C-2,3,4,6,7,8-HxCDF			(28%-136%)
		13C-1,2,3,7,8,9-HxCDF			(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF			(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF			(26%-138%)
		37Cl-2,3,7,8-TCDD		62.6	(35%-197%)
9822016	C-12	13C-2,3,7,8-TCDD			(25%-164%)
		13C-1,2,3,7,8-PeCDD			(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		68.0	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD			(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD			(23%-140%)
		13C-OCDD		36.7	(17%-157%)

Serial_No:10271613:37 Report Date: October 19, 2016

Hi-Res Dioxins/Furans Surrogate Recovery Report

Page 7

of 7

SDG Number: L1629727 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
822016	C-12	13C-2,3,7,8-TCDF		65.8	(24%-169%)
		13C-1,2,3,7,8-PeCDF		62.2	(24%-185%)
		13C-2,3,4,7,8-PeCDF		61.7	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		66.8	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		64.3	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		65.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		66.7	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		56.1	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		62.0	(26%-138%)
		37C1-2,3,7,8-TCDD		78.3	(35%-197%)
9822017	C-11(48-89)	13C-2,3,7,8-TCDD		66.3	(25%-164%)
		13C-1,2,3,7,8-PeCDD		65.7	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		70.9	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		68.0	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		62.8	(23%-140%)
		13C-OCDD		37.0	(17%-157%)
		13C-2,3,7,8-TCDF		65.2	(24%-169%)
		13C-1,2,3,7,8-PeCDF		63.3	(24%-185%)
		13C-2,3,4,7,8-PeCDF		63.1	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		70.1	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		71.5	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		72.1	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		68.2	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		59.0	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		65.5	(26%-138%)
		37Cl-2,3,7,8-TCDD		68.6	(35%-197%)

^{*} Recovery outside Acceptance Limits

[#] Column to be used to flag recovery values

D Sample Diluted

Hi-Res Dioxins/Furans Quality Control Summary

Spike Recovery Report

Sample Type: Laboratory Control Sample SDG Number: L1629727

SOIL LCS for batch 33021 **Matrix: Client ID:**

Lab Sample ID: 12017086

Instrument: HRP763 Analysis Date: 10/17/2016 17:01 Dilution: 1

Analyst: CLPPrep Batch ID:33021

			Amount Added	Spike Conc.	Recovery	Acceptance
CAS No.		Parmname	pg/g	pg/g	%	Limits
1746-01-6	LCS	2,3,7,8-TCDD	20.0	20.9	105	67-158
10321-76-4	LCS	1,2,3,7,8-PeCDD	100	96.9	96.9	70-142
9227-28-6	LCS	1,2,3,4,7,8-HxCDD	100	99.6	99.6	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	100	96.4	96.4	76-134
9408-74-3	LCS	1,2,3,7,8,9-HxCDD	100	100	100	64-162
5822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	100	106	106	70-140
268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	200	200	100	78-144
207-31-9	LCS	2,3,7,8-TCDF	20.0	20.1	100	75-158
117-41-6	LCS	1,2,3,7,8-PeCDF	100	110	110	80-134
117-31-4	LCS	2,3,4,7,8-PeCDF	100	100	100	68-160
0648-26-9	LCS	1,2,3,4,7,8-HxCDF	100	101	101	72-134
7117-44-9	LCS	1,2,3,6,7,8-HxCDF	100	99.0	99	84-130
0851-34-5	LCS	2,3,4,6,7,8-HxCDF	100	101	101	70-156
2918-21-9	LCS	1,2,3,7,8,9-HxCDF	100	105	105	78-130
7562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	100	110	110	82-122
5673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	100	110	110	78-138
9001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	200	235	117	63-170

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

Sample Type: Laboratory Control Sample Duplicate L1629727 **SDG Number:**

SOIL LCSD for batch 33021 **Matrix: Client ID:**

Lab Sample ID: 12017087

Instrument: HRP763 Analysis Date: 10/17/2016 17:48 Dilution: 1

Analyst: CLPPrep Batch ID:33021

			Amount Added	Spike Conc.	•	-		Acceptance
CAS No.		Parmname	pg/g	pg/g	%	Limits	%	Limits
1746-01-6	LCSD	2,3,7,8-TCDD	20.0	20.5	102	67-158	2.05	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	100	97.8	97.8	70-142	0.974	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	100	99.9	99.9	70-164	0.279	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	100	97.1	97.1	76-134	0.649	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	100	97.8	97.8	64-162	2.21	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	100	105	105	70-140	1.36	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	200	195	97.3	78-144	2.85	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	20.0	19.8	99	75-158	1.40	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	100	111	111	80-134	1.14	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	100	100	100	68-160	0.0359	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	100	102	102	72-134	0.721	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	100	98.2	98.2	84-130	0.880	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	100	100	100	70-156	0.368	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	100	103	103	78-130	1.75	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	100	108	108	82-122	2.50	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	100	107	107	78-138	2.52	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	200	236	118	63-170	0.400	0-20

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

Sample Type: Matrix Spike **SDG Number:** L1629727

Matrix: **SOIL** C-6 (0-48) MS **Client ID:** 34.7 %Moisture: **Lab Sample ID: 9822002**

Instrument: Analysis Date: 10/17/2016 20:09 **HRP763** Dilution: 1

Analyst: CLPPrep Batch ID:33021

			Amour Added		Spike Conc.	Recovery	Acceptance
CAS No.		Parmname	pg/g		pg/g	%	Limits
1746-01-6	MS	2,3,7,8-TCDD	19.0	U	18.6	98	70-130
10321-76-4	MS	1,2,3,7,8-PeCDD	95.0	U	87.4	92	70-130
9227-28-6	MS	1,2,3,4,7,8-HxCDD	95.0	U	90.1	94.8	70-130
57653-85-7	MS	1,2,3,6,7,8-HxCDD	95.0	U	87.7	92.3	70-130
9408-74-3	MS	1,2,3,7,8,9-HxCDD	95.0	U	89.9	94.6	70-130
5822-46-9	MS	1,2,3,4,6,7,8-HpCDD	95.0	U	98.4	104	70-130
268-87-9	MS	1,2,3,4,6,7,8,9-OCDD	190		263	86.5	70-130
207-31-9	MS	2,3,7,8-TCDF	19.0	U	17.9	94	70-130
117-41-6	MS	1,2,3,7,8-PeCDF	95.0	U	98.3	103	70-130
117-31-4	MS	2,3,4,7,8-PeCDF	95.0	U	89.3	94	70-130
648-26-9	MS	1,2,3,4,7,8-HxCDF	95.0	U	89.2	93.8	70-130
7117-44-9	MS	1,2,3,6,7,8-HxCDF	95.0	U	90.3	95	70-130
0851-34-5	MS	2,3,4,6,7,8-HxCDF	95.0	U	89.1	93.8	70-130
2918-21-9	MS	1,2,3,7,8,9-HxCDF	95.0	U	94.8	99.7	70-130
7562-39-4	MS	1,2,3,4,6,7,8-HpCDF	95.0	U	98.8	104	70-130
673-89-7	MS	1,2,3,4,7,8,9-HpCDF	95.0	U	97.3	102	70-130
9001-02-0	MS	1,2,3,4,6,7,8,9-OCDF	190	U	218	114	70-130

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

Sample Type: Matrix Spike Duplicate **SDG Number:** L1629727

SOIL C-6 (0-48) MSD Matrix: **Client ID:** 34.7 %Moisture: Lab Sample ID: 9822003

Instrument: Analysis Date: 10/17/2016 20:56 **HRP763** Dilution: 1

Analyst: CLPPrep Batch ID:33021

CAS No.		Parmname	Amour Added pg/g		Spike Conc. pg/g	Recovery %	Acceptance Limits	RPD %	Acceptance Limits
1746-01-6	MSD	2,3,7,8-TCDD	18.9	U	19.8	105	70-130	5.92	0-20
40321-76-4	MSD	1,2,3,7,8-PeCDD	94.5	U	89.4	94.6	70-130	2.27	0-20
39227-28-6	MSD	1,2,3,4,7,8-HxCDD	94.5	U	94.4	99.9	70-130	4.72	0-20
57653-85-7	MSD	1,2,3,6,7,8-HxCDD	94.5	U	85.5	90.4	70-130	2.57	0-20
19408-74-3	MSD	1,2,3,7,8,9-HxCDD	94.5	U	90.8	96.1	70-130	0.985	0-20
35822-46-9	MSD	1,2,3,4,6,7,8-HpCDD	94.5	U	117	124	70-130	17.6	0-20
3268-87-9	MSD	1,2,3,4,6,7,8,9-OCDD	189		1060	510 *	70-130	121 *	0-20
51207-31-9	MSD	2,3,7,8-TCDF	18.9	U	18.4	97.2	70-130	2.77	0-20
57117-41-6	MSD	1,2,3,7,8-PeCDF	94.5	U	100	106	70-130	2.00	0-20
57117-31-4	MSD	2,3,4,7,8-PeCDF	94.5	U	90.3	95.6	70-130	1.13	0-20
70648-26-9	MSD	1,2,3,4,7,8-HxCDF	94.5	U	93.8	99.3	70-130	5.07	0-20
57117-44-9	MSD	1,2,3,6,7,8-HxCDF	94.5	U	91.4	96.7	70-130	1.14	0-20
60851-34-5	MSD	2,3,4,6,7,8-HxCDF	94.5	U	91.7	97	70-130	2.79	0-20
72918-21-9	MSD	1,2,3,7,8,9-HxCDF	94.5	U	94.7	100	70-130	0.0987	0-20
67562-39-4	MSD	1,2,3,4,6,7,8-HpCDF	94.5	U	99.8	106	70-130	1.05	0-20
55673-89-7	MSD	1,2,3,4,7,8,9-HpCDF	94.5	U	99.6	105	70-130	2.29	0-20
39001-02-0	MSD	1,2,3,4,6,7,8,9-OCDF	189	U	215	114	70-130	1.17	0-20

Page 1

of 1

Lab Sample ID: 12017085

L1629727

MB for batch 33021

Method Blank Summary

Client: ALPH001 Matrix: SOIL
Instrument ID: HRP763 Data File: b17oct16a-4
Prep Date: 16-OCT-16 Analyzed: 10/17/16 18:35

Column:

Client ID:

SDG Number:

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 33021	12017086	b17oct16a-2	10/17/16	1701	
02 LCSD for batch 33021	12017087	b17oct16a-3	10/17/16	1748	
03 C-6 (0-48)	9822001	b17oct16a-5	10/17/16	1922	
04 C-6 (0-48) MS	9822002	b17oct16a-6	10/17/16	2009	
05 C-6 (0-48) MSD	9822003	b17oct16a-7	10/17/16	2056	
06 C-7 (0-48)	9822004	b17oct16a-8	10/17/16	2143	
07 C-1	9822005	b17oct16a-9	10/17/16	2230	
08 C-2	9822006	b17oct16a-10	10/17/16	2317	
09 C-3	9822007	b17oct16a-11	10/18/16	0004	
10 C-4	9822008	b17oct16a-12	10/18/16	0051	
11 C-6 (48-61)	9822009	b17oct16a-13	10/18/16	0138	
12 C-7 (48-54)	9822010	b17oct16a-14	10/18/16	0225	
13 C-5	9822011	b17oct16a_2-2	10/18/16	0454	
14 C-8	9822012	b17oct16a_2-3	10/18/16	0540	
15 C-9	9822013	b17oct16a_2-4	10/18/16	0627	
16 C-10	9822014	b17oct16a_2-5	10/18/16	0715	
17 C-11(0-48)	9822015	b17oct16a_2-6	10/18/16	0802	
18 C-12	9822016	b17oct16a_2-7	10/18/16	0849	
19 C-11(48-89)	9822017	b17oct16a_2-8	10/18/16	0936	

Page 1

L1629727

12017085

QC for batch 33021

SDG Number:

Lab Sample ID:

Client Sample:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client:

Project:

ALPH00416

SOIL Matrix:

MB for batch 33021 **Prep Basis:**

Client ID: As Received Batch ID: 33023 Method: EPA Method 1613B

Run Date: 10/17/2016 18:35 Analyst: CLP **Instrument:** HRP763 Dilution: 1 Data File: b17oct16a-4

SW846 3540C **Prep Batch:** 33021 **Prep Method:** Prep Date: 16-OCT-16 **Prep Aliquot:** 10 g

Prep Date:	16-OCT-16	Prep Aliquot:	10 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD	U	1	pg/g	1.00	
40321-76-4	1,2,3,7,8-PeCDD	U	5	pg/g	5.00	
39227-28-6	1,2,3,4,7,8-HxCDD	U	5	pg/g	5.00	
57653-85-7	1,2,3,6,7,8-HxCDD	U	5	pg/g	5.00	
19408-74-3	1,2,3,7,8,9-HxCDD	U	5	pg/g	5.00	
35822-46-9	1,2,3,4,6,7,8-HpCDD	U	5	pg/g	5.00	
3268-87-9	1,2,3,4,6,7,8,9-OCDD	U	10	pg/g	10.0	
51207-31-9	2,3,7,8-TCDF	U	1	pg/g	1.00	
57117-41-6	1,2,3,7,8-PeCDF	U	5	pg/g	5.00	
57117-31-4	2,3,4,7,8-PeCDF	U	5	pg/g	5.00	
70648-26-9	1,2,3,4,7,8-HxCDF	U	5	pg/g	5.00	
57117-44-9	1,2,3,6,7,8-HxCDF	U	5	pg/g	5.00	
60851-34-5	2,3,4,6,7,8-HxCDF	U	5	pg/g	5.00	
72918-21-9	1,2,3,7,8,9-HxCDF	U	5	pg/g	5.00	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	5	pg/g	5.00	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	5	pg/g	5.00	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	10	pg/g	10.0	
41903-57-5	Total Tetrachlorodibenzo-p-dioxin	U	1	pg/g	1.00	
36088-22-9	Total Pentachlorodibenzo-p-dioxin	U	5	pg/g	5.00	
34465-46-8	Total Hexachlorodibenzo-p-dioxin	U	5	pg/g	5.00	
37871-00-4	Total Heptachlorodibenzo-p-dioxin	U	5	pg/g	5.00	
30402-14-3	Total Tetrachlorodibenzofuran	U	1	pg/g	1.00	
30402-15-4	Total Pentachlorodibenzofuran	U	5	pg/g	5.00	
55684-94-1	Total Hexachlorodibenzofuran	U	5	pg/g	5.00	
38998-75-3	Total Heptachlorodibenzofuran	U	5	pg/g	5.00	
3333-30-0	TEQ WHO2005 ND=0		0.00	pg/g		
3333-30-1	TEQ WHO2005 ND=0.5		5.70	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
3C-2,3,7,8-TCDD		156	200	pg/g	78.1	(25%-164%)
3C-1,2,3,7,8-PeCDD		147	200	pg/g	73.7	(25%-181%)
C-1,2,3,4,7,8-HxCDD		147	200	pg/g	73.7	(32%-141%)
C-1,2,3,6,7,8-HxCDD		143	200	pg/g	71.7	(28%-130%)
C-1,2,3,4,6,7,8-HpCDD		137	200	pg/g	68.4	(23%-140%)
C-OCDD		164	400	pg/g	41.1	(17%-157%)
-2,3,7,8-TCDF		152	200	pg/g	75.9	(24%-169%)
1,2,3,7,8-PeCDF		140	200	pg/g	69.8	(24%-185%)
2,3,4,7,8-PeCDF		138	200	pg/g	69.1	(21%-178%)
1,2,3,4,7,8-HxCDF		150	200	pg/g	74.9	(26%-152%)
1,2,3,6,7,8-HxCDF		146	200	pg/g	72.9	(26%-123%)
2,3,4,6,7,8-HxCDF		150	200	pg/g	75.2	(28%-136%)
1,2,3,7,8,9-HxCDF		153	200	pg/g	76.7	(29%-147%)

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client:

Project: Matrix:

Page 2

SDG Number: Lab Sample ID:

L1629727 12017085

Parmname

ALPH00416 SOIL

Client Sample: Client ID: Batch ID:

QC for batch 33021 MB for batch 33021

Method:

EPA Method 1613B

Prep Basis: As Received

Run Date:

33023 10/17/2016 18:35

Analyst: CLP

Instrument: HRP763

Data File: **Prep Batch:** b17oct16a-4

Prep Method:

Dilution:

1

Prep Date:

33021

SW846 3540C

CAS No.

16-OCT-16

Prep Aliquot: Qual

10 g

Result

Units

PQL

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		126	200	pg/g	62.8	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		138	200	pg/g	69.2	(26%-138%)
37Cl-2,3,7,8-TCDD		16.5	20.0	pg/g	82.5	(35%-197%)

Comments:

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

HRP763

1

5.00

5.00

10.0

SDG Number:

Lab Sample ID:

Client Sample:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

ALPH001 Client:

ALPH00416 Project:

Instrument:

Dilution:

pg/g

pg/g

pg/g

SOIL Matrix:

Client ID: LCS for batch 33021 **Prep Basis:** As Received Method: EPA Method 1613B

Analyst:

Batch ID: 33023

QC for batch 33021

L1629727

12017086

10/17/2016 17:01 **Run Date:** Data File: b17oct16a-2

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

1,2,3,4,6,7,8,9-OCDF

Prep Batch:

SW846 3540C 33021 **Prep Method:**

Prep Aliquot: 10 g **Prep Date:** 16-OCT-16

CAS No. **PQL Parmname** Qual Result Units 1746-01-6 2,3,7,8-TCDD 20.9 pg/g 1.00 40321-76-4 1,2,3,7,8-PeCDD 5.00 96.9 pg/g 99.6 39227-28-6 1,2,3,4,7,8-HxCDD 5.00 pg/g 57653-85-7 1,2,3,6,7,8-HxCDD 96.4 5.00 pg/g 1,2,3,7,8,9-HxCDD 19408-74-3 100 pg/g 5.00 35822-46-9 1,2,3,4,6,7,8-HpCDD 106 5.00 pg/g3268-87-9 1,2,3,4,6,7,8,9-OCDD 200 10.0 pg/g 2,3,7,8-TCDF 51207-31-9 20.1 1.00 pg/g 57117-41-6 1,2,3,7,8-PeCDF 110 pg/g5.00 57117-31-4 2,3,4,7,8-PeCDF 100 5.00 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF 101 5.00 pg/g 57117-44-9 1,2,3,6,7,8-HxCDF 99.0 pg/g 5.00 60851-34-5 2,3,4,6,7,8-HxCDF 101 5.00 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF 105 5.00 pg/g

110

110

235

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		156	200	pg/g	78.0	(20%-175%)
13C-1,2,3,7,8-PeCDD		145	200	pg/g	72.5	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		155	200	pg/g	77.5	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		143	200	pg/g	71.7	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		135	200	pg/g	67.3	(22%-166%)
13C-OCDD		165	400	pg/g	41.1	(13%-199%)
13C-2,3,7,8-TCDF		148	200	pg/g	74.2	(22%-152%)
13C-1,2,3,7,8-PeCDF		138	200	pg/g	69.1	(21%-192%)
13C-2,3,4,7,8-PeCDF		134	200	pg/g	66.8	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		150	200	pg/g	75.2	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		150	200	pg/g	74.8	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		151	200	pg/g	75.5	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		150	200	pg/g	75.2	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		127	200	pg/g	63.3	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		137	200	pg/g	68.4	(20%-186%)
37Cl-2,3,7,8-TCDD		16.0	20.0	pg/g	80.1	(31%-191%)

Comments:

67562-39-4

55673-89-7

39001-02-0

Page 1

L1629727

12017087

QC for batch 33021

SDG Number:

Lab Sample ID:

Client Sample:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001 Client:

Project:

Instrument:

Dilution:

ALPH00416 SOIL

HRP763

1

Matrix:

Client ID: LCSD for batch 33021 **Prep Basis:** As Received

Batch ID: 33023 Method: EPA Method 1613B **Run Date:** 10/17/2016 17:48 **Analyst:** CLP

Data File: b17oct16a-3 SW846 3540C Prep Batch: 33021 **Prep Method:**

Prep Date: 16-OCT-16 Prep Aliquot:

Prep Date:	16-OCT-16	Prep Anquot:	10 g			
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD		20.5	pg/g	1.00	
40321-76-4	1,2,3,7,8-PeCDD		97.8	pg/g	5.00	
39227-28-6	1,2,3,4,7,8-HxCDD		99.9	pg/g	5.00	
57653-85-7	1,2,3,6,7,8-HxCDD		97.1	pg/g	5.00	
19408-74-3	1,2,3,7,8,9-HxCDD		97.8	pg/g	5.00	
35822-46-9	1,2,3,4,6,7,8-HpCDD		105	pg/g	5.00	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		195	pg/g	10.0	
51207-31-9	2,3,7,8-TCDF		19.8	pg/g	1.00	
57117-41-6	1,2,3,7,8-PeCDF		111	pg/g	5.00	
57117-31-4	2,3,4,7,8-PeCDF		100	pg/g	5.00	
70648-26-9	1,2,3,4,7,8-HxCDF		102	pg/g	5.00	
57117-44-9	1,2,3,6,7,8-HxCDF		98.2	pg/g	5.00	
60851-34-5	2,3,4,6,7,8-HxCDF		100	pg/g	5.00	
72918-21-9	1,2,3,7,8,9-HxCDF		103	pg/g	5.00	
67562-39-4	1,2,3,4,6,7,8-HpCDF		108	pg/g	5.00	
55673-89-7	1,2,3,4,7,8,9-HpCDF		107	pg/g	5.00	
39001-02-0	1,2,3,4,6,7,8,9-OCDF		236	pg/g	10.0	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		141	200	pg/g	70.5	(20%-175%)
13C-1,2,3,7,8-PeCDD		134	200	pg/g	67.1	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		141	200	pg/g	70.6	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		128	200	pg/g	63.8	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		121	200	pg/g	60.3	(22%-166%)
13C-OCDD		143	400	pg/g	35.9	(13%-199%)
13C-2,3,7,8-TCDF		136	200	pg/g	68.2	(22%-152%)
13C-1,2,3,7,8-PeCDF		127	200	pg/g	63.3	(21%-192%)
13C-2,3,4,7,8-PeCDF		126	200	pg/g	63.1	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		135	200	pg/g	67.4	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		135	200	pg/g	67.4	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		136	200	pg/g	68.2	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		137	200	pg/g	68.5	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		112	200	pg/g	56.0	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		122	200	pg/g	61.2	(20%-186%)
37Cl-2,3,7,8-TCDD		14.9	20.0	pg/g	74.3	(31%-191%)

Comments:

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

ALPH001

MS for 9822001 (C-6 (0-48))

Client ID: C-6 (0-48) MS **Batch ID:** 33023

SDG Number:

Lab Sample ID:

Client Sample:

10/17/2016 20:09 Run Date:

L1629727

9822002

Data File: b17oct16a-6 Prep Batch: 33021

Prep Method:

Method:

Analyst:

Client: **Date Collected: Date Received:**

09/20/2016 10:10 09/27/2016 12:00

EPA Method 1613B CLP

SW846 3540C

16.11 g

ALPH00416 Project: Matrix: SOIL %Moisture: 34.7

Prep Basis: Dry Weight

9.50

HRP763 Instrument: Dilution: 1

Prep Aliquot: Prep Date: 16-OCT-16 CAS No. **PQL Parmname** Qual Result Units 1746-01-6 2,3,7,8-TCDD 18.6 pg/g 0.950 40321-76-4 1,2,3,7,8-PeCDD 87.4 pg/g 4.75 39227-28-6 1,2,3,4,7,8-HxCDD 90.1 4.75 pg/g 57653-85-7 1,2,3,6,7,8-HxCDD 87.7 4.75 pg/g 1,2,3,7,8,9-HxCDD 19408-74-3 89.9 pg/g 4.75 35822-46-9 1,2,3,4,6,7,8-HpCDD 98.4 4.75 pg/g3268-87-9 1,2,3,4,6,7,8,9-OCDD 263 9.50 pg/g 51207-31-9 2,3,7,8-TCDF 17.9 0.950 pg/g 57117-41-6 1,2,3,7,8-PeCDF 98.3 pg/g4.75 57117-31-4 2,3,4,7,8-PeCDF 89.3 4.75 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF 89.2 4.75 pg/g 57117-44-9 1,2,3,6,7,8-HxCDF 90.3 pg/g 4.75 60851-34-5 2,3,4,6,7,8-HxCDF 4.75 89.1 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF 94.8 4.75 pg/g 1,2,3,4,6,7,8-HpCDF 67562-39-4 98.8 pg/g4.75 55673-89-7 1,2,3,4,7,8,9-HpCDF 97.3 4.75 pg/g

218

pg/g

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		138	190	pg/g	72.8	(25%-164%)
13C-1,2,3,7,8-PeCDD		133	190	pg/g	69.9	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		139	190	pg/g	73.2	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		127	190	pg/g	66.6	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		121	190	pg/g	63.4	(23%-140%)
13C-OCDD		153	380	pg/g	40.3	(17%-157%)
13C-2,3,7,8-TCDF		137	190	pg/g	72.0	(24%-169%)
13C-1,2,3,7,8-PeCDF		127	190	pg/g	66.9	(24%-185%)
13C-2,3,4,7,8-PeCDF		124	190	pg/g	65.1	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		137	190	pg/g	72.0	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		131	190	pg/g	68.9	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		134	190	pg/g	70.7	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		134	190	pg/g	70.4	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		113	190	pg/g	59.6	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		128	190	pg/g	67.4	(26%-138%)
37Cl-2,3,7,8-TCDD		12.6	19.0	pg/g	66.1	(35%-197%)

Comments:

39001-02-0

1,2,3,4,6,7,8,9-OCDF

Page 1

SDG Number:

Lab Sample ID:

Client Sample:

Prep Date:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

CLP

ALPH001

09/20/2016 10:10

09/27/2016 12:00

EPA Method 1613B

Project: Matrix: %Moisture: 34.7

ALPH00416 SOIL

Prep Basis: Dry Weight

Instrument: HRP763 Dilution: 1

Client ID: C-6 (0-48) MSD Batch ID: 33023 **Run Date:** 10/17/2016 20:56

L1629727

9822003

Data File: b17oct16a-7 **Prep Batch:** 33021

16-OCT-16

MSD for MS for 9822001 (C-6 (0-

SW846 3540C **Prep Method:** 16.2 g

Prep Aliquot:

Method:

Analyst:

Client:

Date Collected:

Date Received:

•						
CAS No.	Parmname	Qual	Result	Units	PQL	
1746-01-6	2,3,7,8-TCDD		19.8	pg/g	0.945	
40321-76-4	1,2,3,7,8-PeCDD		89.4	pg/g	4.73	
39227-28-6	1,2,3,4,7,8-HxCDD		94.4	pg/g	4.73	
57653-85-7	1,2,3,6,7,8-HxCDD		85.5	pg/g	4.73	
19408-74-3	1,2,3,7,8,9-HxCDD		90.8	pg/g	4.73	
35822-46-9	1,2,3,4,6,7,8-HpCDD		117	pg/g	4.73	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		1060	pg/g	9.45	
51207-31-9	2,3,7,8-TCDF		18.4	pg/g	0.945	
57117-41-6	1,2,3,7,8-PeCDF		100	pg/g	4.73	
57117-31-4	2,3,4,7,8-PeCDF		90.3	pg/g	4.73	
70648-26-9	1,2,3,4,7,8-HxCDF		93.8	pg/g	4.73	
57117-44-9	1,2,3,6,7,8-HxCDF		91.4	pg/g	4.73	
60851-34-5	2,3,4,6,7,8-HxCDF		91.7	pg/g	4.73	
72918-21-9	1,2,3,7,8,9-HxCDF		94.7	pg/g	4.73	
67562-39-4	1,2,3,4,6,7,8-HpCDF		99.8	pg/g	4.73	
55673-89-7	1,2,3,4,7,8,9-HpCDF		99.6	pg/g	4.73	
39001-02-0	1,2,3,4,6,7,8,9-OCDF		215	pg/g	9.45	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		145	189	pg/g	76.5	(25%-164%)
13C-1,2,3,7,8-PeCDD		137	189	pg/g	72.3	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		143	189	pg/g	75.7	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		142	189	pg/g	75.3	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		132	189	pg/g	70.0	(23%-140%)
13C-OCDD		167	378	pg/g	44.3	(17%-157%)
13C-2,3,7,8-TCDF		143	189	pg/g	75.7	(24%-169%)
13C-1,2,3,7,8-PeCDF		132	189	pg/g	69.7	(24%-185%)
13C-2,3,4,7,8-PeCDF		128	189	pg/g	67.9	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		144	189	pg/g	76.0	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		142	189	pg/g	75.1	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		144	189	pg/g	76.2	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		146	189	pg/g	77.2	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		124	189	pg/g	65.4	(28%-143%)
3C-1,2,3,4,7,8,9-HpCDF		136	189	pg/g	71.9	(26%-138%)
37Cl-2,3,7,8-TCDD		14.4	18.9	pg/g	76.4	(35%-197%)

Comments: