

	Client Ev	/ersource		Page	1	_of	
INELL.	Project	Northern Pass	Date	Made By			
		Transition Station #1		Checked By			
		Impervious Area Summary		Preliminary		Final	
						_	

			ter Po																						
A			ous ar			-		•					_												
	(Cor	ntribu	uting \	wate	ershe	eds:	Area	аA,	Are	аB,	, Are	a G)													
																								_	
_		0.25	_	-		t Pa																		_	
		0.01	_								ncret													_	
_		0.06	ac	Wa	ater	(por	tion	of	the	dete	entio	on ba	asin	-not	req	uire	d fc	or W	۷Q۱	/ -0	0.01	. ac)	_	
_																					_			_	
_		<u>0.32</u>	<u>ac</u>	то	TAL	Imp	ervi	ous	Ar	ea C	onti	ibut	ing	to B	MP:	Sto	orm	wat	ter	Por	nd			_	
_		_				_	_			_	_	_			_	_								_	
_		_			-+	_				_	_	-		_	_	-								\rightarrow	
_		_	$\left \right $		-+	_					_	-		_	_	-								-+	
_		_			-+	_				_	_	-			_	-								-+	
2 1 4 1). Trop	tmai	nt Swa		\vdash	_					_	-	$\left - \right $	_	_	-								-	
			ous ar		Irair	ning	to th	le n	ract	ice	= 0 3	1 35 au	-	_	-	-								-	
			uting v			-		•					=	+	+	-								-+	
+			uting v	wate	:15110	eus.	Alea	a C,	Ale	a Ľ,	Ale	a r)		-	-	-								-	_
-		0.35	20	٨с	nhal	t Pa	lom	ont		-		-		-	-	-								-	_
-		0.55	ac							fΛr	ea F	imn	orvi		(130	20.0	γf Τι	roc	tla	lan	(م		-	
-		_				ot d								Jus	(=0.0				103		Lan			\rightarrow	_
-		_		uu							/	-		-	-	-								\rightarrow	_
-																									
		0.35	ac	TO	TAL	Imp	ervi	ious	Ar	ea C	onti	ibut	ing	to B	MP	Tre	atr	nen	nt S	wal	le				
-	++	<u>0.35</u>	<u>ac</u>	то	TAL	Imp	ervi	ious	Ar	ea C	onti	ibut	ing	to B	MP:	Tre	atr	nen	it S	wal	le				
_		0.35	ac	то	TAL	Imp	ervi	ious	Ar	ea C	Conti	ibut	ing	to B	MP	Tre	atr	nen	nt S	wa	le				_
		0.35		TO	TAL	Imp	ervi	ious	Ar	ea C	Conti	ibut	ing	to B	MP	Tre	atr	nen	nt S ⁱ	wa	le				
		0.35		TO		Imp	ervi	ious	Ar	ea C	Conti	ibut	ing	to B	MP	Tre	atr	nen	it S	wal	le				
		0.35		TO		Imp	ervi			ea C	Conti		ing	to B		Tre	atr	nen	it S	wal	le				
		0.35					ervi			ea C			ing	to B		Tre	eatr	nen	it S	wal					
		0.35				. Imp							ing	to B			eatr	nen		wal					
		0.35															eatr	nen		wal					
		0.35											ing						it S	wal					
									Arc																
									Arc																
							ervi 																		
																Tre Image: Image of the second sec									

STORMWATER POND DESIGN CRITERIA (Env-Wq 1508.03)

Wet Extended Detention Basin

Enter the	type of stormwater pond (e.g., Wet Pond) and the node name in the drainage as	nalysis, if applicable
11.37 ac	A = Area draining to the practice	
0.32 ac	A_{I} = Impervious area draining to the practice	
0.03 decimal	I = percent impervious area draining to the practice, in decimal form	
0.08 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.86 ac-in	WQV= 1" x Rv x A	
3,109 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
311 cf	10% x WQV (check calc for sediment forebay and micropool volume)
1,555 cf	50% x WQV (check calc for extended detention volume)	
891 cf	V_{SED} = sediment forebay volume	$\leftarrow \geq 10\% WQV$
7,749 cf	V_{PP} = permanent pool volume (volume below the lowest invert of the	outlet structure)
NA cf	$V_{ED} = WQV - V_{PP} = extended detention volume$	$\leftarrow \leq X\%^1 WQV$
N/A	E_{ED} = elevation of V_{ED} (attach stage-storage table)	
- cfs	$2Q_{avg} = 2* V_{ED} / 24$ hrs * (1hr / 3600 sec) (used to check against Q_{EDr}	nax below)
0.15 cfs	Q_{EDmax} = discharge at the E_{ED} (attach stage-discharge table)	$\leftarrow < 2Q_{avg}$
- hours	T_{ED} = drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	$\leftarrow \geq 24$ -hrs
3.00 :1	Pond side slopes	← <u>></u> 3:1
3.00 ft	Average permanent pool depth	← 3 - 6 ft
<u>3.75</u> ft	Maximum depth of permanent pool	← <u>≤</u> 8 ft
115.00 ft	Length of the flow path between the inlet and outlet at mid-depth	
37.00 ft	Average Width ([average of the top width + average bottom width]/2)	
3.11 :1	Length to Average Width ratio	$\leftarrow \ge 3:1$
Yes Yes/No	The perimeter should be curvilinear.	
Yes Yes/No	The inlet and outlet should be located as far apart as possible.	
Yes Yes/No	Is there a manually-controlled drain provided to dewater the pond over	er a 24hr period?
If no state why	:	
Inspection/Repair	_What mechanism is proposed to prevent the outlet structure from clogg	ing (applicable for
	orifices/weirs with a dimension of ≤ 6 ")?	
1,160.77 ft	Peak elevation of the 50-year storm event	
1,162.60 ft	Berm elevation of the pond	
YES	50 peak elevation \leq the berm elevation?	← yes
—	that developed the planting plan:	
Name, Profession:		

1. "X" varies depending on type of stormwater pond design. See NH Stormwater Manual, Vol.2, Ch.4-3, Section 1, for the design permanent pool volumes and extended detention volumes.

Designer's Notes:

Type/Node Name:

TREATMENT SWALE DESIGN CRITERIA (Env-Wq 1508.07)

Node Name:	Drainline B/Swale F Treatment Swale	
	Enter the node name in the drainage analysis (e.g., reach TS 5), if applicable	
Yes Yes/No	Have you reviewed the restrictions on unlined swales outlined in Env-We	1508.07(b)?
No Yes/No	Is the system lined?	
11.30 ac	A = Area draining to the practice	
0.35 ac	A_{I} = Impervious area draining to the practice	
22.7 minutes	$T_c = Time of Concentration$	
0.03 decimal	I = percent impervious area draining to the practice, in decimal form	
0.08 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.88 ac-in	WQV= 1" x Rv x A	
3,194 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
<u>1</u> inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".	
0.08 inches	Q = water quality depth. Q = WQV/A	95 +0+01
80 unitless	CN = unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2 + 10Q^2 + 10Q^2))$.25*Q*P] ***)
2.56 inches	S = potential maximum retention. S = $(1000/CN) - 10$	
0.513 inches	Ia = initial abstraction. Ia = $0.2S$	1 4 777
	qu = unit peak discharge. Obtain this value from TR-55 exhibits 4-II a	
0.36 cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiplied	
88.00 feet	$L = swale length^{1}$	← ≥ 100'
10.00 feet	$w = bottom of the swale width^2$	\leftarrow 0 - 8 feet ²
feet	E_{SHWT} = elevation of SHWT. If none found, use the lowest elev. of te	st pit
1,140.39 feet	E_{BTM} = elevation of the bottom of the practice	$\leftarrow \geq E_{SHWT}$
3.0 :1	$SS_{RIGHT} = right Side slope$	← <u>></u> 3:1
3.0 :1	$SS_{LEFT} = left Side slope$	← <u>></u> 3:1
0.002 ft/ft	S = slope of swale in decimal form3	← 0.00505
2.6 inches	d = flow depth in swale at WQF (attach stage-discharge table) ⁴	← <u><</u> 4"
0.15 unitless	d must be $< 4''$, therefore Manning's n = 0.15	—
2.32 ft^2	Cross-sectional area check (assume trapezoidal channel)	
11.38 feet	Check wetted perimeter	
0.36 cfs	WQF_{check} . $\leftarrow WQF_{check} = WQF$	7
0%	Percent difference between WQF _{check} and WQF ⁵	← +/- 10%
10 minutes	HRT = hydraulic residence time during the WQF	$\epsilon \geq 10 \min$
1,141.19 ft	Peak elevation of the 10-year storm event	
1,143.90 ft	Elevation of the top of the swale	
YES Yes/No	10 peak elevation \leq the top of swale	← yes

1. Any portion of the swale that is in a roadside ditch shall not count towards the swale length.

2. Widths up to 16' allowed if a dividing berm or structure is used such that neither width is more than 8'.

3. If > 0.02 (2%) then check dams are required. No additional detention time is credited for check dams.

4. If a detention structure is used immediately upstream of the swale, the flow depth in the swale shall be no greater than 4" during the peak of the 2-yr storm, 24-hour storm event.

5. The WQF_{check} & WQF should be near equal (within 10%) to confirm that you have selected the correct depth off the stage-discharge table. If the depth is not accurate the HRT will be incorrect. Designer's Notes:

BU		NS		E	r.	Cli	ent	EV	ers	our	ce							<u> </u>	1.0					Pa	ge	-		1		ot .		1
UT I	Ľ		NIN			Pro	ojeo	Ct	NO	rthe	ern I	as	S					Da	te					Ma	ae	ву	_					
									Tra	ans	itior	า St	atic	n ‡	‡ 2									Ch	eck	ed	By					
									Im	per	νίοι	ıs A	Area	a Si	umi	mai	y							Pre	elim	ina	iry	1		Fin	al .	
BIV	1P:	Infi	ltra	<u>atio</u>	n B	asi	<u>n</u>		Ŀ																							
	A _l :	= In												tice	<u>e = (</u>	0.01	L ac															
		(Co	onti	ribu	utin	g w	/ate	ersh	ned	: Ar	ea	1B)																		_	_	
_																		_												_	_	
_			0	01	26		C+-		n /1		fto		and	60	ncr	ete	foi	ınd	ati.	0n)							-			-	-	
_			0.	01	ac		310		n (i	00		ps a	une	00	ncr	ete	100	inu	ati								-			_	-	
_				-		-	-	-	-	-	-	-				-		_									-			-	\rightarrow	
_			0.	01	ac		то	ΤΔ	l In	nne	rvi	0118	Δr	еа	Cor	ntri	hut	ing	to	RN	1P:	Infi	Itra	ntio	n B	asi	n				\rightarrow	
_						-												Б													\neg	
				-		-			-	-								-												\neg	\dashv	
																															-	
_																																
																														_		
																														_	_	
_																		_												_	$ \rightarrow$	
																		_												_	-	
_			_				_	_			-	-			_	-		_									-			-	-	
_			-												-		_	_						_	_					_	-	
_			-	-		-			-						-			-												-	-	
_				-		-			-	-								-				\square								\neg	\neg	
_																	_							_	_						\neg	
																															1	
_																		_												_	_	
																		_												_	_	
																		_												_	\neg	
_			-	<u> </u>		<u> </u>			<u> </u>	<u> </u>					-			_				$\left - \right $								-	-	
_			-												-			_				\vdash								\neg	\neg	
_			-												-			_				\square								\neg	-	
_			-												-			_				\vdash								\neg	-	
							1																						1		- I.	

Type/Node Name: Infiltration Basin

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	wed?
0.57 ac	A = Area draining to the practice	
0.01 ac	A_{I} = Impervious area draining to the practice	
0.02 decimal	I = percent impervious area draining to the practice, in decimal form	
0.07 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.04 ac-in	WQV= 1" x Rv x A	
140 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
35 cf	25% x WQV (check calc for sediment forebay volume)	
pretreatment swale	Method of pretreatment? (not required for clean or roof runoff)	
cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
659 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
664 sf	A_{SA} = surface area of the bottom of the pond	
0.30 iph	$I_{DESIGN} = design infiltration rate2$	
39.7 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
1,303.00 feet	E_{BTM} = elevation of the bottom of the practice	
feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
1,303.00 feet	D_{SHWT} = separation from SHWT ³	$\leftarrow \geq *^3$
1,303.0 feet	D_{ROCK} = separation from bedrock ³	← <u>></u> * ³
ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
N/A Yes/No	If a trench or underground system is proposed, observation well provi	ided
	If a trench is proposed, material in trench	
Sand or Pea Gravel	If a basin is proposed, basin floor material	
yes Yes/No	If a basin is proposed, the perimeter should be curvilinear.	
3.0 :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
1,303.91 ft	Peak elevation of the 10-year storm event (infiltration can be used in	analysis)
1,303.98 ft	Peak elevation of the 50-year storm event (infiltration can be used in	analysis)
1,305.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of	the berm)
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

5	Client Ev	rersource		Page	1	_of	1
NNELL.	Project	Northern Pass	Date	Made By			
		Transition Station #3		Checked By			
		Impervious Area Summary		Preliminary		Final	

		ation B						-		12									$ \rightarrow $		
A		ervious			-		-		e = <u>0.</u>	<u>13 ac</u>	<u> </u>										
	(Cont	tributin	g wate	ershe	eds: F	ost	Area	1)						_			_				
_		12	•					_			_			_			_			_	_
_).12 ac			t Pav			1				••••		_			_				_
_	0).01 ac	Sta	ation	(roo	τ τομ	os an	a co	ncre	te foı	indat	lon)		-			-				_
_	0	12 22	тс		Imne	mic		roo	Cont	ribut	ing to			filter		n Pa				_	-
_	<u><u>u</u></u>	<u>.13 ac</u>		JIAL	impe		JUS A	rea	cont	ribut	ing u	יום נ	IP: IN	i i i u i e	atio	II Dd	5111			_	+-
_			_				_	-		_	_			-			-				-
_			_				_	-		_	_			-			-				-
_			_		_		_	-			_			-			+				-
			_		_			-		_	_			-			-				-
BMP	Treat	ment Sv	vale		-	$\left \right $		-	\vdash					-			+	+			-
		ervious		drain	ing to	o the	e pra	ctice	e = 0.	<u>11</u> ac				-	\square		+	+	\square		-
		tributin			-									+			+			-	+-
								_,.						+			+	+	\square	\neg	-
	C).09 ac	As	phal	t Pav	eme	nt	1		_				+			+				-
).02 ac			Roac			1						1			-				1
										_				-			-				
	0).11 ac	тс	TAL	Impe	ervio	ous A	rea	Cont	ribut	ing to) BN	IP: Tr	eatr	nen	t Sw	ale				
					Ť																
						\square								1							
														_							
																					_

Type/Node Name: Infiltration Basin

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	ved?
0.94 ac	A = Area draining to the practice	
0.13 ac	A_{I} = Impervious area draining to the practice	
0.14 decimal	I = percent impervious area draining to the practice, in decimal form	
0.17 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.16 ac-in	WQV= 1" x Rv x A	
595 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
149 cf	25% x WQV (check calc for sediment forebay volume)	
Sediment Forebay	Method of pretreatment? (not required for clean or roof runoff)	
317 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
873 cf	$V = volume^1$ (attach a stage-storage table)	$\leftarrow \geq WQV$
1,247 sf	A_{SA} = surface area of the bottom of the pond	
0.30 iph	$I_{DESIGN} = design infiltration rate2$	
28.0 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u>≤</u> 72-hrs
1,801.50 feet	E_{BTM} = elevation of the bottom of the practice	
feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	—
1,801.50 feet	D_{SHWT} = separation from SHWT ³	$\leftarrow \geq *^3$
1,801.5 feet	D_{ROCK} = separation from bedrock ³	
ft	$D_{\rm T}$ = depth of trench, if trench proposed	← 4 - 10 ft
Yes/No	If a trench or underground system is proposed, observation well provi	ided
	If a trench is proposed, material in trench	
sand or pea gravel	If a basin is proposed, basin floor material	
Yes Yes/No	If a basin is proposed, the perimeter should be curvilinear.	
3.0 :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
ft	Peak elevation of the 10-year storm event (infiltration can be used in	analysis)
1,303.58 ft	Peak elevation of the 50-year storm event (infiltration can be used in	analysis)
1,305.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of	
-	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

TREATMENT SWALE DESIGN CRITERIA (Env-Wq 1508.07)

Node Name:	Treatment Swale 5	<i>,</i>
	Enter the node name in the drainage analysis (e.g., reach TS 5), if applicable	
Yes Yes/No	Have you reviewed the restrictions on unlined swales outlined in Env-We	l 1508.07(b)?
No Yes/No	Is the system lined?	
<u>0.90</u> ac	A = Area draining to the practice	
0.11 ac	A_{I} = Impervious area draining to the practice	
6.0 minutes	$T_c = Time of Concentration$	
0.12 decimal	I = percent impervious area draining to the practice, in decimal form	
0.16 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.14 ac-in	WQV= 1" x Rv x A	
519 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
<u>1</u> inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".	
0.16 inches	Q = water quality depth. $Q = WQV/A$	0.5
84 unitless	CN = unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2 + 1Q^2 + 1Q^2))$.25*Q*P] •••)
1.86 inches	S = potential maximum retention. S = $(1000/CN) - 10$	
0.371 inches	Ia = initial abstraction. $Ia = 0.2S$	
	qu = unit peak discharge. Obtain this value from TR-55 exhibits 4-II a	
0.19 cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiplied with the second secon	ply by 1mi ² /640ac
107.00 feet	$L = swale length^{1}$	← <u>></u> 100'
<u>2.00</u> feet	$w = bottom of the swale width^2$	$\leftarrow 0 - 8 \text{ feet}^2$
feet	E_{SHWT} = elevation of SHWT. If none found, use the lowest elev. of te	est pit
1,793.39 feet	E_{BTM} = elevation of the bottom of the practice	$\leftarrow \geq E_{SHWT}$
333.0 :1	$SS_{RIGHT} = right Side slope$	← <u>≥</u> 3:1
45.0 :1	$SS_{LEFT} = left Side slope$	← <u>≥</u> 3:1
0.029 ft/ft	S = slope of swale in decimal form3	← 0.00505
0.8 inches	d = flow depth in swale at WQF (attach stage-discharge table)4	← <u><</u> 4"
0.15 unitless	d must be < 4 ", therefore Manning's n = 0.15	
1.01ft^2	Cross-sectional area check (assume trapezoidal channel)	
27.67 feet	Check wetted perimeter	
0.19 cfs	$WQF_{check}^{5} \leftarrow WQF_{check} = WQF_{check}^{5}$	ז
0%	Percent difference between WQF _{check} and WQF 5	← +/- 10%
10 minutes	HRT = hydraulic residence time during the WQF	← ≥ 10 min
1,793.43 ft	Peak elevation of the 10-year storm event	
1,793.99 ft	Elevation of the top of the swale	
YES Yes/No	10 peak elevation \leq the top of swale	← yes

1. Any portion of the swale that is in a roadside ditch shall not count towards the swale length.

2. Widths up to 16' allowed if a dividing berm or structure is used such that neither width is more than 8'.

3. If > 0.02 (2%) then check dams are required. No additional detention time is credited for check dams.

4. If a detention structure is used immediately upstream of the swale, the flow depth in the swale shall be no greater than 4" during the peak of the 2-yr storm, 24-hour storm event.

5. The WQF_{check} & WQF should be near equal (within 10%) to confirm that you have selected the correct depth off the stage-discharge table. If the depth is not accurate the HRT will be incorrect. Designer's Notes:

50	ואי	NS				CII	ent	EV	613	oui	ce													Га	ge .			1		0		
M	CD		١N	EL	.L .	Pro	ojeo	ct	No	rthe	ern I	Pas	s					Da	te					Ma	de	By				-		
							-		Tra	ans	itior	ı St	tatio	on ‡	† 4									Ch	eck	éd	Βv					
									Im	ner	vin	15 /	Are	a S	 	mai	ν							Pre	alim	ina	rv			Fin	al	
										001	*100	10 F			ann	nul	y								,		. y					
							<u> </u>				<u> </u>				<u> </u>	<u> </u>																
ΒN	1P:	Un	der	gro	ouno	d Sa	and	Fil	ter																							
	A	= In	npe	rvi	ous	are	ea c	drai	nin	g to	b th	e p	rac	tice	<u>e = (</u>	0.0	1 ac															
		(Co	onti	ribu	utin	g w	/ate	ersh	ned	s: P	ost	Are	ea 2	1B)																		
			0.	01	ac		Sta	atio	n (r	00	f to	ps a	anc	l co	ncr	ete	fou	und	lati	on)												
			<u>0.</u>	01	<u>ac</u>		то	ЭTΑ	L In	npe	ervi	ous	s Ar	ea	Cor	ntri	but	ing	to	ΒN	1P:	Un	der	gro	und	d Sa	and	Fil	ter			
																															_	
																								_								
																															_	
																															_	
				_									_											_	_						_	
	_			_									_											_	_						_	
	_																								_						_	
	_																								_						_	
	-			-	\square								-					_			\square			_		_					_	
	-			-									-								\square			_							_	
	-			-			-	-	-	-	-		-	-	-	-		_			$\left - \right $			_	_	_				$ \rightarrow $	_	
	-			-	\square		-	-	-	-	-		-	-	-	-					\vdash			_	_						_	
	-			-	\square		-	-	-	-	-		-	-	-	-		_			\vdash			_	_	_					_	
	-			-			-	-	-	-	-		-	-	-	-		_			\vdash			_	_	_					-	
	-			-			-	-	-	-	-		-	-	-	-		_			\vdash			_		_						
							-	-		-	-			-	-	-	-	_			\vdash	-		-		_		—	—	\square		
	-			-									-								\square											
							-			-						-					\vdash	\square								\dashv		
							-			-	-				-	-		_						-		_						
							-			-	<u> </u>				<u> </u>	-		_						-		_		—	—			
							-			-						-					\vdash			-								
							-	-		-	-			-	-	-	-	_			\vdash	-		-		_		—	—	\square		
	-				\square		-			-	-	\vdash			-	-	\square	_		\vdash	\vdash	\square		-		_				\square		
	-			-			-			-			-			-					\square			-	_			_	_			
					1 I			1																						- II		

Type/Node Name:

Underground Sand Filter- SF-1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-We	q 1508.06(b)?
0.58 ac	A = Area draining to the practice1	
0.01 ac	A_{I} = Impervious area draining to the practice	
0.02 decimal	I = percent impervious area draining to the practice, in decimal form	
0.07 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.04 ac-in	WQV= 1" x Rv x A	
141 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
35 cf	25% x WQV (check calc for sediment forebay volume)	
106 cf	75% x WQV (check calc for surface sand filter volume)	
^	r Method of Pretreatment? (not required for clean or roof runoff)	
<u>150</u> cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
<u>50</u> sf	A_{SA} = surface area of the practice	
1.75 iph	$I_{DESIGN} = design infiltration rate2$	
Yes Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
19.4 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
1,727.45 feet	E_{FC} = elevation of the bottom of the filter course material	
1,726.45 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
1,726.45 feet	E_{BTM} = elevation of the bottom of the practice (i.e., bottom of the stone)	e reservoir).
1,724.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
1,724.00 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
1.00 feet	$D_{FC to UD}$ = depth to UD from the bottom of the filter course ³	← ≥ 1'
3.45 feet	$D_{FC \text{ to ROCK}} = \text{depth to bedrock from the bottom of the filter course}^3$	← ≥ 1'
3.45 feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}^3$	← ≥ 1'
2.45 feet	$D_{BTM \text{ to SHWT}} = \text{depth to SHWT from the bottom of the practice}^3$	← ≥ 2'
1,731.55 ft	Peak elevation of the 10-year storm event (infiltration can be used in a	nalysis)
1,733.45 ft	Elevation of the top of the practice	
YES	10 peak elevation $\leq $ Elevation of the top of the practice	← yes
If a surface sand filte	er is proposed:	
YES ac	Drainage Area check.	← < 10 ac
cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	← ≥ 75%WQV
inches	D_{FC} = filter course thickness	← 18"
Sheet	Note what sheet in the plan set contains the filter course specification	
Yes/No	Access grate provided?	← yes
	The filter shall not be covered in grass. What is covering the filter?	
If an underground sa	and filter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
277 cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	← ≥75%WQV
24.0 inches	$D_{FC} = filter course thickness$	← 24''
Sheet C507	1 1	
Yes Yes/No	Access grate provided?	← yes

If a bioretention area is proposed:

YES	ac	Drainage Area no larger than 5 ac?	← yes
	cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	$\leftarrow \geq WQV$
	inches	$D_{FC} = $ filter course thickness	← 18''
Shee	t	Note what sheet in the plan set contains the filter course specification	
	:1	Pond side slopes	← <u>≥</u> 2:1
Shee	t	Note what sheet in the plan set contains the planting plans and surface	e cover
If porous	pavement	is proposed:	
		Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
	acres	A_{SA} = surface area of the pervious pavement	
-	:1	ratio of the contributing area to the pervious surface area	← 5:1
	inches	$D_{FC} = $ filter course thickness	← 12"

1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre

2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.

Note what sheet in the plan set contains the filter course spec.

3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.

4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.

5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Designer's Notes:

Sheet

1. Assumed the limiting layer is the sand layer which has a permeability rate (K) of 3.5 ft/day which equates to 1.75 inches/hour.

2. Concrete chamber will be lined on the outside with a waterproof coat which will act as an impermeable liner.

NHDES Alteration of Terrain Last Revised: August 2013

← 304.1 sand

	Client Ev	versource	 Page	1	of		
ELL.	Project	Northern Pass	Date	Made By			
		Franklin		Checked B	у		
		Impervious Area Summary		Preliminary		Final	

		ation Bas														
			rea draining				<u> 7 ac</u>									
	(Con	tributing	watersheds:	Post-Ar	ea 2A-	·2D)										
_									_							
_														_		
_		1.97	Station (ro	of tops	and co	oncret	e foun	datior	ר)					_		
_														_		
_		<u>1.97</u>	TOTAL Imp	perviou	s Area	Contr	ibutin	g to B	MP:	Infiltr	atio	n Bas	in 1			
_									_				$ \rightarrow $			
_									_				$ \rightarrow $			
_									_				$ \rightarrow $			
_																
_											\square		\square		\square	
_											\square		\square		\square	
													\square		\square	
BM	<u>P: Infiltr</u>	ation Ba	<u>sin 2</u>													
			rea draining													
	(Con	tributing	watersheds:	Post-Ar	ea 4A,	Post	Area 4	B, Pos	st Are	ea 4D)					
		0.60	Asphalt Pa	vement												
		0.12	Gravel Roa	d												
		<u>0.72</u>	TOTAL Imp	perviou	s Area	Contr	ibutin	g to B	MP:	Infiltr	atio	n Bas	in 2			
													1 1			

Type/Node Name: Franklin Infiltration Basin 1

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	ved?
19.77 ac	A = Area draining to the practice	
1.97 ac	A_{I} = Impervious area draining to the practice	
0.10 decimal	I = percent impervious area draining to the practice, in decimal form	
0.14 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
2.76 ac-in	WQV= 1" x Rv x A	
10,024 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
2,506 cf	25% x WQV (check calc for sediment forebay volume)	
Forebay	Method of pretreatment? (not required for clean or roof runoff)	
2,713 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
40,043 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \ge WQV$
17,812 sf	A_{SA} = surface area of the bottom of the pond	
3.00 iph	$I_{DESIGN} = design infiltration rate^2$	
9.0 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
327.50 feet	E_{BTM} = elevation of the bottom of the practice	
feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	-
327.50 feet	D_{SHWT} = separation from SHWT ³	$\leftarrow \geq *^3$
327.5 feet	D_{ROCK} = separation from bedrock ³	← ≥ * °
N/A ft	$D_{\rm T}$ = depth of trench, if trench proposed	← 4 - 10 ft
N/A Yes/No	If a trench or underground system is proposed, observation well provi	ded
N/A	If a trench is proposed, material in trench	
Sand/Gravel	If a basin is proposed, basin floor material	
Yes Yes/No	If a basin is proposed, the perimeter should be curvilinear.	
3.0 :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
<u>328.66</u> ft	Peak elevation of the 10-year storm event (infiltration can be used in a	•
330.39 ft	Peak elevation of the 50-year storm event (infiltration can be used in a	•
332.50 ft	Elevation of the top of the practice (if a basin, this is the elevation of t	
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Designer's Notes: Test pits not yet taken to determine elevation of SHWT and separation from bedrock.

NHDES Alteration of Terrain Last Revised: August 2013

Type/Node Name: Franklin Infiltration Basin 2

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	ved?
8.09 ac	A = Area draining to the practice	
0.72 ac	A_{I} = Impervious area draining to the practice	
0.09 decimal	I = percent impervious area draining to the practice, in decimal form	
0.13 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
1.05 ac-in	WQV= 1" x Rv x A	
3,807 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
952 cf	25% x WQV (check calc for sediment forebay volume)	
Forebay	Method of pretreatment? (not required for clean or roof runoff)	
1,013 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
7,675 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
1,426 sf	A_{SA} = surface area of the bottom of the pond	
3.00 iph	$I_{DESIGN} = design infiltration rate2$	
21.5 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
298.50 feet	E_{BTM} = elevation of the bottom of the practice	
feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
298.50 feet	D_{SHWT} = separation from SHWT ³	$\leftarrow \geq *^3$
298.5 feet	D_{ROCK} = separation from bedrock ³	← ≥ * °
N/A ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
N/A Yes/No	If a trench or underground system is proposed, observation well provi	ded
N/A	If a trench is proposed, material in trench	
Sand/Gravel	If a basin is proposed, basin floor material	
Yes Yes/No	If a basin is proposed, the perimeter should be curvilinear.	_
3.0 :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
298.84 ft	Peak elevation of the 10-year storm event (infiltration can be used in a	•
299.89 ft	Peak elevation of the 50-year storm event (infiltration can be used in a	•
302.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of t	
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Designer's Notes: Test pits not yet taken to determine elevation of SHWT and separation from bedrock.

NHDES Alteration of Terrain Last Revised: August 2013

BURNS	С	lient E	versource		Client Eversource Project Northern Pass Date Deerfield Impervious Area Summary										
MEDONNE	LL. P	roject	Northern F	ass	Date	Made By									
		,	Deerfield			Checked By									
			Imperviou	s Area Sumi	marv	Preliminary	Final								
			Impervieu		nary										
	Canal E														
BMP: Surface			ining to the	e practice = <u>(</u>											
(Contri	buting	waters	heds: Post-	Area 1B, Pos	st-Area 1C)										
0.2	0 ac	Statio	on (roof top	os and concr	ete foundation)										
0.2	0 ac	TOTA	L Impervic	ous Area Con	tributing to BMP:	Surface Sand Filter									
			+ $+$ $+$ $+$				- - - -								
							$\left \left \left$								
							- - - -								
+ + + + + + + + + + + + + + + + + + + +															

Z:\Clients\TND\NUSC\58466_NPT\Design\Substation\600-Deerfield\Civil\Stormwater\Stormwater Management Study\Appendix D - NH DES Worksheets\NPT-Deerfield_BMP_Imp_Summary.xlsx 8/5/2016 12:49 PM

Surface Sand Filter SF-1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-W	′q 1508.06(b)?
<u>3.98</u> ac	A = Area draining to the practice1	
0.20 ac	A_{I} = Impervious area draining to the practice	
0.05 decimal	I = percent impervious area draining to the practice, in decimal form	
0.10 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.38 ac-in	WQV = 1" x Rv x A	
1,376 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
<u>344</u> cf	25% x WQV (check calc for sediment forebay volume)	
1,032 cf	75% x WQV (check calc for surface sand filter volume)	
Sediment Forebay		
<u>364</u> cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
<u>906</u> sf	$A_{SA} = surface area of the practice$	
0.50 iph	$I_{\text{DESIGN}} = \text{design infiltration rate}^2$	
Yes Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
36.4 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
374.75 feet	E_{FC} = elevation of the bottom of the filter course material	
373.00 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
372.90 feet	E_{BTM} = elevation of the bottom of the practice (i.e., bottom of the stone)	e reservoir).
368.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
364.00 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
1.75 feet	$D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course ³	← ≥ 1'
10.75 feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course ³	← ≥ 1'
6.75 feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}^3$	← ≥ 1'
4.90 feet	$D_{BTM \text{ to } SHWT}$ = depth to SHWT from the bottom of the practice ³	← ≥ 2'
378.42 ft	Peak elevation of the 10-year storm event (infiltration can be used in a	nalysis)
379.00 ft	Elevation of the top of the practice	
YES	10 peak elevation \leq Elevation of the top of the practice	← yes
If a surface sand fi	ter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
2,337 cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	← ≥75%WQV
24.0 inches	D _{FC} = filter course thickness	← 18"
Sheet C50	9 Note what sheet in the plan set contains the filter course specification	
Yes Yes/No	Access grate provided?	← yes
Stone Fill	The filter shall not be covered in grass. What is covering the filter?	
	sand filter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
cf	$V = volume of storage^{4, 5}$ (attach a stage-storage table)	$\leftarrow \geq 75\% WQV$
inches	$D_{FC} = filter$ course thickness	← 24''
Sheet	Note what sheet in the plan set contains the filter course specification	
Yes/No	Access grate provided?	← yes

If a bioretention area is proposed:

3.0 inches

Sheet

YES ac	Drainage Area no larger than 5 ac?	← yes
cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	$\leftarrow \geq WQV$
inches	D_{FC} = filter course thickness	← 18''
Sheet	Note what sheet in the plan set contains the filter course specification	n
:1	Pond side slopes	← <u>≥</u> 2:1
Sheet	Note what sheet in the plan set contains the planting plans and surfa	ce cover
lf porous pavemer	nt is proposed:	
	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
acres	A_{SA} = surface area of the pervious pavement	
- :1	ratio of the contributing area to the pervious surface area	← 5:1
3.0 inches	D_{FC} = filter course thickness	← 12"

1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre

 D_{FC} = filter course thickness

2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.

Note what sheet in the plan set contains the filter course spec.

3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.

4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.

5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Designer's Notes:

NHDES Alteration of Terrain Last Revised: August 2013

← 304.1 sand

B	UR M⊆[NS DO	NN	EL	.L.	Cli Pro	ent ojeo	<u>Ev</u> ct	vers No	our rthe	ce ern I	Pas	s					Da	te					Pa Ma	ge ide	By		1	of			
									Sc	obi	e P	onc	1					-						Ch	eck	ed	Bv		 			
									Im	ner		19 4	1re:	a S	IIM	mai	v							Pre	lim	ina	- ,		Fin	al		
										001	viot	10 7	1/00	10	um	nai	у										цу			a		
_																																
-	_	-																				_										
B	MP:	Inf	iltra	<u>atio</u>	n B	asiı	<u>1</u>				<u> </u>																					
	A	= In	npe	rvi	ous	are	ea c	Irai	nin	g to	b th	e p	rac	tice	<u>e = (</u>	0.20) ac	2														
Τ																																
1							_						_	_				_									_					
\uparrow		-		0.	20		Sta	atio	n (r	00	f to	ns a	and	l co	ncr	ete	foi	inc	latio	on)							-	-			_	
+	-	-	-	0.		-						p5 (101															
+	+	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	<u> </u>	-		-			-	-	<u> </u>				-	-	$\left - \right $			
+	_	-		•	20						. •							• • •														
-	-	_		<u>U.</u>	<u>20</u>		10	AΙΥ	LIN	npe	rvi	ous	Ar	ea	cor	itri	out	ing	τΟ	ыv	16:	Infi	iitra	τιο	пB	ası	n	<u> </u>				
\downarrow							L				L	L	L	L		L		L				<u> </u>					L	L				
1	1																															
+	-	-																												_		
+	+	-	-	-	-	-	-	-	-		-	-	-	-		-		-			-	-					-	-				-
+	-	-																				-										
+	_	_																														
-		-					-				-	-	-	-		-		-									-	-			_	
+	-	-	-		-	-		-	-												-											
-	-	-	-		-	-		-	-													-										
+	-	-	-	-	-	-	-	-	-				-	-				-			-	-					-					
+	-	-	<u> </u>		<u> </u>		-	<u> </u>	<u> </u>				-	-				-			_	-					-					
_	_						L				L	L	L	L		L		L									L	L				
Τ																																
\uparrow	+	-				<u> </u>																1										
+	-	-	-	-	-	-	-	-	-				-	-				-			-	-					-					-
+	-	-	-		-	-		-	-	<u> </u>					<u> </u>						-	-	<u> </u>						$\left - \right $			
+	-	-	-	<u> </u>	-	-	-	-	-				-	-				-				-					-					
+	_	-		<u> </u>			<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>				<u> </u>					<u> </u>	<u> </u>				
							L				L	L	L	L		L		L									L	L				
Γ																																
\uparrow	+	\vdash																														
+	+	-	-	-	-	-	-	-	-	<u> </u>			-	-	<u> </u>			-			-	-	<u> </u>				-		\vdash			
+	+-	-	-		-	<u> </u>	-	-	-				-	-				-			_	-					-					
+	_						L				L	L	L	L		L		L				-					L	L				

 Type/Node Name:
 Infiltration Basin (IF-1)

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

yesHave you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allowed?2.43acA = Area draining to the practice0.20acA ₁ = Impervious area draining to the practice0.20acA ₁ = Impervious area draining to the practice0.08decimalI = percent impervious area draining to the practice, in decimal form0.12unitlessRv = Runoff coefficient = 0.05 + (0.9 x I)0.30ac-inWQV = 1" x Rv x A1.095cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")274cf25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889cfV sED = sediment forebay volume, if used for pretreatment $\phi \ge 25\%WQV$ 3,485cfV = volume ¹ (attach a stage-storage table) $\phi \ge WQV$ 1,969sfA _{SA} = surface area of the bottom of the pond0.50iphIDESIGN = design infiltration rate ² $t_{2.5}$ hours $t_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ $\phi \le 72$ -hrs354.00feet $s_{SHWT} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)350.00feet $E_{ROCK} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feetD _{ROCK} = separation from SHWT ³ $\phi \ge *^3$ 2.00ftDredepth of trench, if trench proposed $\phi \ge *^3$
0.20ac A_{I} = Impervious area draining to the practice0.08decimalI = percent impervious area draining to the practice, in decimal form0.12unitless $Rv = Runoff$ coefficient = 0.05 + (0.9 x I)0.30ac-in $WQV = 1^{\circ}x Rv x A$ 1.095cf WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")274cf25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \geq 25\%WQV$ 3,485cf $V = volume^{1}$ (attach a stage-storage table) $\leftarrow \geq WQV$ 1,969sf A_{SA} = surface area of the bottom of the pond0.50iph I_{DESIGN} = design infiltration rate ² 42.5hours T_{DRAIN} = drain time = $V / (A_{SA} * I_{DESIGN})$ $\leftarrow \leq 72$ -hrs354.00feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feet D_{SHWT} = separation from SHWT ³ $\leftarrow \geq *^{3}$ 4.00 feet D_{ROCK} = separation from bedrock ³ $\leftarrow \geq *^{3}$ 0 feet 0 $feet$
0.08decimal I = percent impervious area draining to the practice, in decimal form0.12unitless $Rv = Runoff coefficient = 0.05 + (0.9 x I)$ 0.30ac-in $WQV = 1^{"} x Rv x A$ 1.095cf WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")274cf25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889cf $V_{SED} =$ sediment forebay volume, if used for pretreatment $\leftarrow \geq 25\%WQV$ 3.485cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \geq WQV$ 1.969sf $A_{SA} =$ surface area of the bottom of the pond0.50iph $I_{DESIGN} =$ design infiltration rate ² 42.5 hours $T_{DRAIN} =$ drain time = $V / (A_{SA} * I_{DESIGN})$ $\leftarrow \leq 72$ -hrs 354.00 feet $E_{SHWT} =$ elevation of the bottom of the practice 350.00 feet $E_{ROCK} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit) 350.00 feet $B_{ROCK} =$ separation from SHWT ³ $\leftarrow \geq *^3$ 4.0 feet $D_{ROCK} =$ separation from bedrock ³ $\leftarrow \geq *^3$ 2.00 ft
0.12unitless $Rv = Runoff coefficient = 0.05 + (0.9 x I)$ 0.30ac-in $WQV = 1" x Rv x A$ 1,095cf WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")274cf25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889cf $V_{SED} =$ sediment forebay volume, if used for pretreatment $\leftarrow \geq 25\%WQV$ 3,485cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \geq WQV$ 1,969sf $A_{SA} =$ surface area of the bottom of the pond0.50iph $I_{DESIGN} =$ design infiltration rate ² 42.5hours $T_{DRAIN} =$ drain time = $V / (A_{SA} * I_{DESIGN})$ $\leftarrow \leq 72$ -hrs354.00feet $E_{BTM} =$ elevation of the bottom of the practice350.00feet $E_{ROCK} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)350.00feet $B_{ROCK} =$ separation from SHWT ³ $\leftarrow \geq *^3$ 4.0feet $D_{ROCK} =$ separation from bedrock ³ $\leftarrow \geq *^3$ 2.00ft $D_T =$ depth of trench, if trench proposed $\leftarrow 4 - 10$ ft
0.30ac-inWQV=1" x Rv x A1,095cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")274cf25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889cf V_{SED} = sediment forebay volume, if used for pretreatment $4 \ge 25\%$ WQV $3,485$ cf $4 \ge 25\%$ V = volume ¹ (attach a stage-storage table) $4 \ge 25\%$ WQV $3,485$ cf $4 \ge 25\%$ MQV $1,969$ sf $4 \ge 5$ hours 1_{DESIGN} = design infiltration rate ² $4 \ge 5$ hours $1_{DRAIN} =$ drain time = $V / (A_{SA} * I_{DESIGN})$ $4 \ge 72$ -hrs 354.00 feet 1_{SHWT} = elevation of the bottom of the practice 350.00 feet 1_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit) 4.00 feet 1_{SHWT} = separation from SHWT ³ 4.0 feet 1_{CKK} = separation from bedrock ³ 4.0 1_{CK} 1_{CKK} 1_{CKK}
1,095cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12") 25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ $3,485$ cf V = volume ¹ (attach a stage-storage table) $\leftarrow \ge WQV$ $1,969$ sf A_{SA} = surface area of the bottom of the pond 0.50 iph I_{DESIGN} = design infiltration rate ² 42.5 hours T_{DRAIN} = drain time = $V / (A_{SA} * I_{DESIGN})$ 354.00 feet E_{BTM} = elevation of the bottom of the practice 350.00 feet E_{BTM} = elevation of SHWT (if none found, enter the lowest elevation of the test pit) 4.00 feet D_{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ $\leftarrow \ge *^3$ 4.0 feet D_{ROCK} = separation from bedrock ³ $\leftarrow \ge *^3$ $\leftarrow \ge *^3$ 2.00 ft D_T = depth of trench, if trench proposed
274 cf25% x WQV (check calc for sediment forebay volume)ForebayMethod of pretreatment? (not required for clean or roof runoff)889 cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ 3,485 cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \ge WQV$ 1,969 sf A_{SA} = surface area of the bottom of the pond $\leftarrow \ge WQV$ 0.50 iph I_{DESIGN} = design infiltration rate ² $\leftarrow \le 72$ -hrs42.5 hours T_{DRAIN} = drain time = $V / (A_{SA} * I_{DESIGN})$ $\leftarrow \le 72$ -hrs354.00 feet E_{BTM} = elevation of the bottom of the practice350.00 feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00 feet E_{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ $\leftarrow \ge *^3$ 4.00 feet D_{SHWT} = separation from bedrock ³ $\leftarrow \ge *^3$ $\leftarrow \ge *^3$ 2.00 ft D_T = depth of trench, if trench proposed
ForebayMethod of pretreatment? (not required for clean or roof runoff)889 cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ 3,485 cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \ge WQV$ 1,969 sf A_{SA} = surface area of the bottom of the pond $\leftarrow \ge WQV$ 0.50 iph I_{DESIGN} = design infiltration rate ² $\leftarrow \le 72$ -hrs42.5 hours T_{DRAIN} = drain time = $V / (A_{SA} * I_{DESIGN})$ $\leftarrow \le 72$ -hrs354.00 feet E_{BTM} = elevation of the bottom of the practice $= 350.00$ feet350.00 feet E_{ROCK} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)4.00 feet D_{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ 4.00 feet D_{ROCK} = separation from bedrock ³ $\leftarrow \ge *^3$ 2.00 ft D_T = depth of trench, if trench proposed $\leftarrow 4 - 10$ ft
889 cf V_{SED} = sediment forebay volume, if used for pretreatment $\Leftarrow \ge 25\%WQV$ 3,485 cfV = volume ¹ (attach a stage-storage table) $\Leftarrow \ge WQV$ 1,969 sf A_{SA} = surface area of the bottom of the pond $\leftarrow \ge WQV$ 0.50 iph I_{DESIGN} = design infiltration rate ² $\leftarrow \le 72$ -hrs42.5 hours T_{DRAIN} = drain time = V / ($A_{SA} * I_{DESIGN}$) $\leftarrow \le 72$ -hrs354.00 feet E_{BTM} = elevation of the bottom of the practice350.00 feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00 feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00 feet D_{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ 4.0 feet D_{ROCK} = separation from bedrock ³ $\leftarrow \ge *^3$ 2.00 ft D_T = depth of trench, if trench proposed $\leftarrow 4 - 10$ ft
$3,485$ cf $V = volume^1$ (attach a stage-storage table) $\bigstar \ge WQV$ $1,969$ sf $A_{SA} = surface area of the bottom of the pond0.50iphI_{DESIGN} = design infiltration rate^242.5hoursT_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})54.00feetE_{BTM} = elevation of the bottom of the practice350.00feetE_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feetD_{SHWT} = separation from SHWT^34.00feetD_{SHWT} = separation from bedrock^34.00feetD_{ROCK} = separation from bedrock^34.00feetD_{T} = depth of trench, if trench proposed4.00ftD_T = depth of trench, if trench proposed$
1,969sf A_{SA} = surface area of the bottom of the pond0.50iph I_{DESIGN} = design infiltration rate ² 42.5hours T_{DRAIN} = drain time = V / $(A_{SA} * I_{DESIGN})$ 354.00feet E_{BTM} = elevation of the bottom of the practice350.00feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feet D_{SHWT} = separation from SHWT ³ 4.00feet D_{ROCK} = separation from bedrock ³ 2.00ft D_T = depth of trench, if trench proposed
0.50 iph $I_{DESIGN} = design infiltration rate^2$ 42.5 hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ 354.00 feet $E_{BTM} = elevation of the bottom of the practice350.00 feetE_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00 feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00 feetD_{SHWT} = separation from SHWT^3\leftarrow \ge *^34.0 feetD_{ROCK} = separation from bedrock^3\leftarrow \ge *^32.00 ftD_T = depth of trench, if trench proposed\leftarrow 4 - 10 ft$
42.5 hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ $\bigstar \le 72$ -hrs354.00feet $E_{BTM} = elevation of the bottom of the practice350.00feetE_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feetD_{SHWT} = separation from SHWT^3\bigstar \ge *^34.0feetD_{ROCK} = separation from bedrock^3\bigstar \ge *^32.00ftD_T = depth of trench, if trench proposed\bigstar 4 - 10 ft$
354.00feet E_{BTM} = elevation of the bottom of the practice350.00feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feet D_{SHWT} = separation from SHWT ³ 4.0feet D_{ROCK} = separation from bedrock ³ 2.00ft D_T = depth of trench, if trench proposed
350.00feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)350.00feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feet D_{SHWT} = separation from SHWT ³ $\boldsymbol{\leftarrow} \geq *^3$ 4.0feet D_{ROCK} = separation from bedrock ³ $\boldsymbol{\leftarrow} \geq *^3$ 2.00ft D_T = depth of trench, if trench proposed $\boldsymbol{\leftarrow}$ 4 - 10 ft
350.00feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)4.00feet D_{SHWT} = separation from SHWT ³ $\leftarrow \geq *^3$ 4.0feet D_{ROCK} = separation from bedrock ³ $\leftarrow \geq *^3$ 2.00ft D_T = depth of trench, if trench proposed $\leftarrow 4 - 10$ ft
4.00feet $D_{SHWT} = separation from SHWT^3$ $\bigstar \ge *^3$ 4.0feet $D_{ROCK} = separation from bedrock^3$ $\bigstar \ge *^3$ 2.00ft $D_T = depth of trench, if trench proposed$ $\bigstar 4 - 10 ft$
4.0 feet $D_{ROCK} = separation from bedrock^3$ $\leftarrow \geq *^3$ 2.00 ft $D_T = depth of trench, if trench proposed$ $\leftarrow 4 - 10 ft$
$\frac{2.00}{\text{ft}} \text{ ft} \qquad D_{\text{T}} = \text{depth of trench, if trench proposed} \qquad \qquad \boldsymbol{\leftarrow} 4 - 10 \text{ ft}$
$D_1 = depth of definition proposed$
N/A Yes/No If a trench or underground system is proposed, observation well provided
If a trench is proposed, material in trench
If a basin is proposed, basin floor material
yes Yes/No If a basin is proposed, the perimeter should be curvilinear.
$3.0:1$ If a basin is proposed, pond side slopes $\leftarrow \geq 3:1$
356.18 ft Peak elevation of the 10-year storm event (infiltration can be used in analysis)
357.26ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)
359.00 ft Elevation of the top of the practice (if a basin, this is the elevation of the berm)
YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes
YES If a basin is proposed, 50-year peak elevation \leq Elevation of berm? \leftarrow yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Groundwater Recharge Volume (GRV) Calculation

-	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
0.20	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
-	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
-	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.25	inches	Rd = weighted groundwater recharge depth	
0.05	ac-in	GRV = AI * Rd	
182	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

	Client E	/ersource		Page	1	of	
NELL.	Project	Northern Pass	Date	Made By			
		Transition Station #5	-	Checked By			
		Impervious Area Summary		Preliminary		Final	
				-		_	

	<u>Undergr</u> = Imperv	<u>ound</u>	Sand	l Filt	er	 0 th		rac	ticc) – (ገ በባ	5.20							_							+
										<u> </u>	5.0.		<u>.</u>		_			_	_							_
	(Contrik	Juting	wate		eus. I		AI	ed.	1)				_		_			_	_				_			+
			_	\vdash		-							_					_	_				_			-
	0.01		Cto		. (- + -	fa						_	_							+
	0.0				n (roo					ncr	ete	τοι	ina	atio	on)			_								+
	0.02				t Pav													_								_
	0.02	2 ac	Re	tain	ing V	Vall													_						\square	_
	<u>0.0</u>	<u>5 ac</u>	TC	TAL	Imp	ervi	ous	Ar	ea	Cor	ntril	but	ing	to	BN	1P:	Unc	der	gro	und	d Sa	and	Fil	ter		
																										\neg
				\square																						\neg
													_		_											-
			-			1							_		_											-
					_	+			-				_		_	-				_			-			-
					_	-					_	_						_	_				-			+
						-			-				_		_			-	-				-			+
				\vdash		+-				-						-		_	_				_		_	+
	_		_		_	-												_	_							+
			_	$ \rightarrow $		-												_	_							+
			_			-												_								+
			_			-												_	_							_
			_																							_
			_																_						\square	_
				\square																						\uparrow
		+-+-		\square		-							_						-							+
+		+-+-		\vdash		-			<u> </u>				_						-							+
+				\square	_	-				$\left - \right $							\vdash	_	_				_	$\left - \right $	-+	+
$ \rightarrow $			_	\square		-													_						_	_
			1	1 1		1																				

Z:\Clients\TND\NUSC\58466_NPT\Design\Substation\801-Transition_Station-5a\Engr\Stormwater\Stormwater Management Study\01 Calculations\NH DES Worksheet\NPT-TS5_BMP_Imp_Summary.xlsx 8/5/2016 2:41 PM

Type/Node Name:

Underground Sand Filter SF-1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-We	q 1508.06(b)?
0.68 ac	A = Area draining to the practice1	
0.05 ac	A_{I} = Impervious area draining to the practice	
0.07 decimal		
0.12 unitless		
0.08 ac-in	WQV= 1" x Rv x A	
287 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
72 cf	25% x WQV (check calc for sediment forebay volume)	
215 cf	75% x WQV (check calc for surface sand filter volume)	
262 cf	asir Method of Pretreatment? (not required for clean or roof runoff) V_{i} = addiment for above volume, if used for pretreatment	$\epsilon \geq 25\%$ WQV
	V_{SED} = sediment forebay volume, if used for pretreatment	<u>2370wQv</u>
<u>85</u> sf	A_{SA} = surface area of the practice	
1.75 iph	$I_{DESIGN} = design infiltration rate2$	
Yes Yes/No		
23.3 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
1,087.65 feet	E_{FC} = elevation of the bottom of the filter course material	
1,086.65 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
1,086.65 feet	E_{BTM} = elevation of the bottom of the practice (i.e., bottom of the stone)	e reservoir).
1,082.80 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
1,080.80 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
1.00 feet	$D_{FC \text{ to UD}} = \text{depth to UD from the bottom of the filter course}^3$	← ≥ 1'
6.85 feet	$D_{FC \text{ to ROCK}} = \text{depth to bedrock from the bottom of the filter course}^3$	← ≥ 1'
4.85 feet	$D_{FC to SHWT}$ = depth to SHWT from the bottom of the filter course ³	← ≥ 1'
3.85 feet	$D_{BTM \text{ to SHWT}} = \text{depth to SHWT from the bottom of the practice}^3$	← ≥ 2'
1,091.75 ft	Peak elevation of the 10-year storm event (infiltration can be used in a	nalysis)
1,093.65 ft	Elevation of the top of the practice	
YES	10 peak elevation \leq Elevation of the top of the practice	← yes
If a surface sand f		
YES ac	Drainage Area check.	← < 10 ac
cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	$\leftarrow \geq 75\%$ WQV
inches	D_{FC} = filter course thickness	← 18"
Sheet	Note what sheet in the plan set contains the filter course specification	_
Yes/No	e i	← yes
	The filter shall not be covered in grass. What is covering the filter?	
	sand filter is proposed:	10
YES ac	Drainage Area check.	← < 10 ac
<u>477</u> cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	$\leftarrow \geq 75\% WQV$
24.0 inches	$D_{FC} = $ filter course thickness	← 24''
Yes Yes/No	Note what sheet in the plan set contains the filter course specification	← yes
Yes Yes/No	Access grate provided?	x yts

If a bioretention area is proposed:

II a bioi etention	
YES ac	Drainage Area no larger than 5 ac? \leftarrow yes
cf	V = volume of storage ^{4,5} (attach a stage-storage table) $\leftarrow \geq WQV$
inche	s D_{FC} = filter course thickness \leftarrow 18"
Sheet	Note what sheet in the plan set contains the filter course specification
:1	Pond side slopes $\leftarrow \ge 2:1$
Sheet	Note what sheet in the plan set contains the planting plans and surface cover
lf porous pavem	ent is proposed:
	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)
acres	A_{SA} = surface area of the pervious pavement
- :1	ratio of the contributing area to the pervious surface area $\leftarrow 5:1$
3.0 inches	s D_{FC} = filter course thickness \leftarrow 12"
Sheet	Note what sheet in the plan set contains the filter course spec. \leftarrow 304.1 sand

1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre

2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.

3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.

4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.

5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Designer's Notes:

1. Assumed the limiting layer is the sand layer which has a permeability rate (K) of 3.5 ft/day (1.75 in/hr).

2. A waterproof coating will be applied to the exterior walls of the concrete chamber.

NHDES Alteration of Terrain Last Revised: August 2013

N BURNS	Client E	versource		Page	1	of	1
	Project	Northern Pass	Date	Made By			
		Transition Station #6	_	Checked B	y		
		Impervious Area Summary		Preliminary		Final	

BN	ИP:	Nor	rth	Infi	ltrati	on E	Basi	<u>n</u>																						
	A _l =	= Im	pe	rvic	ous a	rea	drai	nin	g to	o th	e p	rac	tice	e = (0.25	5 ac	2													
		(Co	nti	ribu	iting	wat	ersł	ned	s: P	ost	-Ar	ea :	1)										_		_					
			0.	24	ас	As	spha	alt F	Pave	emo	ent												_	_	_				-	
			0.	01	ac	St	atio	n (I	roo	f to	ps a	and	l co	ncr	ete	fo	und	lati	on)											
																													_	
			<u>0.</u>	<u>25</u> :	<u>ac</u>	тс	ЭΤΑ	LIn	npe	ervi	ous	Ar	ea	Cor	ntri	but	ing	to	BIV	IP:	Nor	rth	Inti	ltra	itio	on E	Basi	n	_	
	-					-	-	-					-	-							_	_	_	_	_		-		_	
	\vdash					+-	-	-	-	-			-	-								-	_	_	_			$\left - \right $	\neg	
						+	-	-	-	-			-	-									-		-				\neg	
						+	+																						+	
BN					ltrati																									
	A _l =				ous a									e = (0.12	2 ac	2													
		(Cc	onti	ribu	iting	wat	ersł	ned	s: P	ost	-Ar	ea 2	2)																	
							<u> </u>																							
			0.	12 :	ас	As	spha	alt F	Pave	em	ent											_	_		_				$ \rightarrow$	
			0	17	20	т) DTA	1.10				٨٣			.+ <i>r</i> i	h+	ina	+0		חו.	601	+h	Infi	ltra	+10	n F			_	
			<u>U.</u>	<u>12</u> :	<u>ac</u>				npe	rvi	ous	Aſ	ea	Cor	itri	bul	ing	ιο	DIV	IP:	50u	lun	INII	ILFa	ilio	on c	basi	n	\rightarrow	
						-	-						-	-								-	_	_	_		-		-	
						-	-																-		-				-	
						-	-																							
						_	_																_		_					
						_	-						-	-								_	_		_				\neg	
						+-	\vdash	-					-	-								_	_	_	_			$\mid \mid \mid$	_	
						+-	-	-					-	-								-	-		-				\neg	
						+	-				\square		-	-									-		-				\neg	
						+	-																							
								1																						
						_	-	-					_	_																

Type/Node Name: North Infiltration Basin

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

YesHave you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allowed? 2.09 acA = Area draining to the practice 0.25 acA _I = Impervious area draining to the practice 0.12 decimalI = percent impervious area draining to the practice, in decimal form 0.16 unitlessRv = Runoff coefficient = $0.05 + (0.9 \text{ x I})$ 0.33 ac-inWQV= 1" x Rv x A	
0.25 ac A_I = Impervious area draining to the practice 0.12 decimalI = percent impervious area draining to the practice, in decimal form 0.16 unitlessRv = Runoff coefficient = $0.05 + (0.9 \text{ x I})$	
$\begin{array}{c c} 0.12 \\ \hline 0.16 \\ \hline 0.1$	
0.16 unitless Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.33 ac-in WOV=1" x Ry x A	
1,195 cf WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
299 cf 25% x WQV (check calc for sediment forebay volume)	
Sediment Forebay Method of pretreatment? (not required for clean or roof runoff)	
532 cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%$	%WQV
2,916 cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \ge WO$	γv
418 sf A_{SA} = surface area of the bottom of the pond	
5.00 iph $I_{\text{DESIGN}} = \text{design infiltration rate}^2$	
16.7 hours $T_{DRAIN} = \text{drain time} = V / (A_{SA} * I_{DESIGN})$ $\leftarrow \le 72-1$	ırs
483.00 feet E_{BTM} = elevation of the bottom of the practice	
feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the tes	t pit)
feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the te	st pit)
483.00 feet $D_{SHWT} = separation from SHWT^3$ $\bigstar \geq *^3$	
483.0 feet $D_{ROCK} = \text{separation from bedrock}^3$ $\bigstar \geq *^3$	
ft $D_{\rm T}$ = depth of trench, if trench proposed \leftarrow 4 - 10	ft
No Yes/No If a trench or underground system is proposed, observation well provided	
N/A If a trench is proposed, material in trench	
6" Coarse Sand If a basin is proposed, basin floor material	
Yes Yes/No If a basin is proposed, the perimeter should be curvilinear.	
3.0 :1 If a basin is proposed, pond side slopes $\leftarrow \geq 3:1$	
484.98 ft Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
486.50 ft Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
488.00 ft Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes	
YES If a basin is proposed, 50-year peak elevation \leq Elevation of berm? \leftarrow yes	

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Type/Node Name: South Infiltration Basin

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

YesHave you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allowed?2.10acA = Area draining to the practice0.12acA_1 = Impervious area draining to the practice0.06decimalI = percent impervious area draining to the practice, in decimal form0.10unitlessRv = Ruoff coefficient = 0.05 + (0.9 x I)0.21ac-inWQV = 1" x Rv x A772ofWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")193cf25% x WQV (check calc for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229cfV sED = sediment forebay volume, if used for pretreatment $\notin \geq 25\%$ WQV827cfV = volume ¹ (attach a stage-storage table) $\notin \geq WQV$ 90sfA _{SA} = surface area of the bottom of the pond5.00iphIpEsIGN = design infiltration rate ² 22.1hoursTpEARN = drain time = V / (A _{SA} * IpEsIGN)feetE _{BTM} = elevation of the bottom of the practicefeetE _{SHWT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)feetD _{SHWT} = separation from SHWT ³ $\notin \geq *^3$ 480.65fetN/AIf a trench or underground system is proposed, observation well providedN/AIf a trench is proposed, material in trenchN/AIf a trench is proposed, pasi floor materialYesYes/NoIf a basin is proposed, pasi floor materialYesYes/NoIf a basin is proposed,			
0.12acA _I = Impervious area draining to the practice0.06decimalI = percent impervious area draining to the practice, in decimal form0.10unitlessRv = Runoff coefficient = 0.05 + (0.9 x I)0.21ac-inWQV=1" x Rv x A772cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")193cf25% x WQV (check cale for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229cfV _{SED} = sediment forebay volume, if used for pretreatment€ ≥ 25% WQV827cf90sfA _{SA} = surface area of the bottom of the pond5.00iphI _{DESIGN} = design infiltration rate ² 22.1hoursT _{DRAIN} = drain time = V / (A _{SA} * I _{DESIGN})feetE _{BTM} = elevation of the bottom of the practicefeetE _{SHWT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)feetD _{SHWT} = separation from SHWT ³ $e \ge *^3$ 480.65feetD _{SHWT} = separation from bedrock ³ $e \ge *^3$ $elevalion of the rench, if trench proposedel + 10 ftNoYes/NoIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYesYes/NoIf a basin is proposed, pond side slopese \ge 3:1480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysi$			ved?
0.06decimal I = percent impervious area draining to the practice, in decimal form Rv = Runoff coefficient = 0.05 + (0.9 x I)0.21ac-inWQV = 1" x Rv x A772cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")193cf25% x WQV (check calc for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229cfV sed = sediment forebay volume, if used for pretreatment\$\lefter \ge 25%WQV\$\begin{aligned} 827 \text{ cf}V = volume ¹ (attach a stage-storage table)\$\epsilon = 00 \text{ sign infiltration rate ² 22.1hours\$\begin{aligned} 70 \text{ protect}\$\epsilon = 00 \text{ sign infiltration rate ² 22.1hours\$\epsilon = 00 \text{ sign infiltration rate ² \$\epsilon = 00 \text{ shwT} = elevation of the bottom of the practice\$\epsilon = 6et\$\epsilon = 00 \text{ sign infiltration rate ² \$\epsilon = 00 \text{ shwT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)\$\epsilon = 6et\$\epsilon = 00 \text{ shwT} = separation from SHWT ³ \$\epsilon = 00 som of the obstorek ³ \$\epsilon \leq \leq \text{ sign of the obstorek ³ \$\epsilon = 00 \text{ som of the obstorek ³ \$\epsilon \leq \leq \text{ sign sign of the obstorek ³ \$\epsilon = 00 \text{ som of the obstorek ³ \$\epsilon \leq \leq \text{ sign sign of the obstorek ³ \$\epsilon = 00 \text{ som of the obstorek ³ \$\epsilon \leq \leq \text{ sign sign of the obstorek ³ \$\epsilon = 00 \text{ som of the obstorek ³ \$\epsilon \leq	<u>2.10</u> ac	A = Area draining to the practice	
0.10unitlessRv = Runoff coefficient = 0.05 + (0.9 x I)0.21ac-inWQV = 1" x Rv x A772cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")193cf25% x WQV (check cale for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229cfV _{SED} = sediment forebay volume, if used for pretreatment€ ≥ 25%WQV827cfV = volume ¹ (attach a stage-storage table)€ ≥ WQV90sfA _{SA} = surface area of the bottom of the pond5.00iphI _{DESIGN} = design infiltration rate ² 22.1hoursT _{DRAIN} = drain time = V / (A _{SA} * I _{DESIGN})480.65feetE _{BTM} = elevation of the bottom of the practicefeetE _{SHWT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)feetE _{ROCK} = elevation of bedrock 3'480.75feetD _{SHWT} = separation from SHWT ³ A80.7feetD _{ROCK} = separation from bedrock ³ ftD _T = depth of trench, if trench proposed, observation well providedN/AIf a trench or underground system is proposed, observation well providedN/AIf a basin is proposed, pain flor materialYesYes/NoIf a basin is proposed, pond side slopes€ ≥ 3:1Peak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)481.15FtI0 peak elevatio	0.12 ac	A_{I} = Impervious area draining to the practice	
0.21 0.21 ac-inWQV=1" x Rv x A WQV conversion (ac-in x 43,560 sf/ac x 1ft/12") 25% x WQV (check calc for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229 229 cfV sED = sediment forebay volume, if used for pretreatment€ ≥ 25%WQV € ≥ 7 cf827 90 90 51V = volume ¹ (attach a stage-storage table)€ ≥ 25%WQV € ≥ WQV90 90 90 51A _{SA} = surface area of the bottom of the pond 1DESIGN = design infiltration rate ² TDRAN = drain time = V / (A _{SA} * IDESIGN)€ ≤ 72-hrs480.65 feetE _{BTM} = elevation of the bottom of the practice feetE _{BTM} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65 feetD _{SHWT} = separation from SHWT ³ MCCK = separation from bedrock ³ ft€ ≥ * ³ C ≤ * ³ 480.75 feetD _T = depth of trench, if trench proposed MCK = separation from bedrock ³ ft a trench or underground system is proposed, observation well provided MI f a trench is proposed, material in trench df a basin is proposed, basin floor material MF a basin is proposed, pond side slopes ft€ ≥3:1480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis) eak elevation of the top of the practice (if a basin, this is the elevation of the berm) 10 peak elevation Feat abasin, this is the elevation of the born			
772 193 cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12") 25% x WQV (check calc for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229 229 cfV sED = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ 827 90 sfV = volume ¹ (attach a stage-storage table) $\leftarrow \ge WQV$ 827 90 sfAsA = surface area of the bottom of the pond $\leftarrow \ge WQV$ 90 5.00iphI_DESIGN = design infiltration rate ² $\leftarrow \ge 3WQV$ 22.1 hoursTDRAIN = drain time = V / (AsA * IDESIGN) $\leftarrow \le 72$ -hrs480.65 feetEBTM = elevation of the bottom of the practicefeetESHWT = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feetDSHWT = separation from SHWT ³ $\leftarrow \ge *^3$ 480.75 feetDROCK = separation from bedrock ⁴ $\leftarrow \ge *^3$ ftD _{ROCK} = separation from bedrock ⁴ $\leftarrow \ge *^3$ ftD _T = depth of trench, if trench proposed $\leftarrow 4 - 10$ ftNo Yes/NoIf a trench or underground system is proposed, observation well providedIf a trench is proposed, basin floor materialYes Yes/NoIf a basin is proposed, post shain floor material $\leftarrow \ge 3:1$ 480.73 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)481.69 481.15Fee at levation of the top of the practice (if a basin, this is the elevation of the berm)10 Peak elevation of the	0.10 unitless		
193 cf25% x WQV (check calc for sediment forebay volume)Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229 cfV SED = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ 827 ofV = volume ¹ (attach a stage-storage table) $\leftarrow \ge WQV$ 827 ofV = volume ¹ (attach a stage-storage table) $\leftarrow \ge WQV$ 90 sfA _{SA} = surface area of the bottom of the pond $\leftarrow \ge WQV$ 90 sfhoursT _{DRAIN} = design infiltration rate ² $\leftarrow \le 72$ -hrs22.1 hoursT _{DRAIN} = drain time = V / (A _{SA} * I _{DESIGN}) $\leftarrow \le 72$ -hrs480.65 feetE _{BTM} = elevation of the bottom of the practicefeetE _{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feetD _{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ 480.75 feetD _{ROCK} = separation from bedrock ³ $\leftarrow \ge *^3$ 480.7 feetD _T = depth of trench, if trench proposed $\leftarrow 4 - 10$ ftNo Yes/NoIf a trench or underground system is proposed, observation well providedIf a trench is proposed, material in trench6" Coarse Sand 3.0 :1If a basin is proposed, pond side slopes $\leftarrow \ge 3:1$ 480.73 ftPeak elevation of the JO-year storm event (infiltration can be used in analysis)481.69 ftPeak elevation of the JO-year storm event (infiltration can be used in analysis)481.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)10 peak elevation of the top of the trache, if a basin, this is the	0.21 ac-in	-	
Sediment ForebayMethod of pretreatment? (not required for clean or roof runoff)229cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ 827cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \ge WQV$ 90sf A_{SA} = surface area of the bottom of the pond5.00iph I_{DESIGN} = design infiltration rate ² 22.1hours T_{DRAIN} = drain time = $V / (A_{SA} * I_{DESIGN})$ $\leftarrow \le 72$ -hrs480.65feet E_{BTM} = elevation of the bottom of the practicefeet E_{SHWT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)feet B_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feet D_{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ 480.7 feet D_{SHWT} = separation from bedrock ³ $\leftarrow \ge *^3$ ft D_T = depth of trench, if trench proposed, observation well provided N/A If a trench or underground system is proposed, observation well provided N/A If a basin is proposed, the perimeter should be curvilinear. $3.0:1$ If a basin is proposed, pond side slopes $\leftarrow \ge 3:1$ 480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis) 481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) 484.15 ftElevation of the op of the practice (if a basin, this is the elevation of the berm) 10 peak elevation $\le Elevation of the top of the trench?\leftarrow yes$			
229cf V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \ge 25\%WQV$ 827cf $V = volume^1$ (attach a stage-storage table) $\leftarrow \ge WQV$ 90sf $A_{SA} = surface area of the bottom of the pond5.00iphI_{DESIGN} = design infiltration rate^222.1hoursT_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})\leftarrow \le 72-hrs480.65feetE_{BTM} = elevation of the bottom of the practicefeetE_{SHWT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)feetB_{SHWT} = separation from SHWT^3\leftarrow \ge *^3480.65feetD_{SHWT} = separation from bedrock^3\leftarrow \ge *^3ftD_{T} = depth of trench, if trench proposed\leftarrow 4 - 10 ftN/AIf a trench or underground system is proposed, observation well providedN/AIf a tasin is proposed, basin floor materialYesYes/NoIf a basin is proposed, pond side slopes\leftarrow \ge 3:1480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the practice (if a basin, this is the elevation of the berm)10peak elevation of the top of the practice (if a basin, this is the elevation of the berm)$	193 cf	25% x WQV (check calc for sediment forebay volume)	
827 827 ofV = volume1 (attach a stage-storage table)← ≥ WQV90 90 sfA _{SA} = surface area of the bottom of the pond5.00 5.00 iphIDESIGN DESIGN = design infiltration rate222.1 foursTDRAIN = drain time = V / (A _{SA} * IDESIGN)480.65 feetEBTM = elevation of the bottom of the practicefeetESHWT = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feetEGNCK = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65 feetDSHWT = separation from SHWT3480.7 feetDROCK = separation from bedrock3MOVYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a trench or underground system is proposed, observation well providedM/AIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, pond side slopes480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)480.73 481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)481.69 484.15If peak elevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation ≤ Elevation of the top of the trench?YesYes	Sediment Forebay	Method of pretreatment? (not required for clean or roof runoff)	
90sfA_{SA} = surface area of the bottom of the pond5.00iphI _{DESIGN} = design infiltration rate ² 22.1hoursT _{DRAIN} = drain time = V / (A _{SA} * I _{DESIGN})€ ≤ 72-hrs480.65feet E_{BTM} = elevation of the bottom of the practicefeet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feet D_{SHWT} = separation from SHWT ³ € ≥ * ³ 480.7feet D_{SHWT} = separation from bedrock ³ € ≥ * ³ 480.7feet D_{CCK} = separation from bedrock ³ € ≥ * ³ ft D_T = depth of trench, if trench proposed€ 4 - 10 ftNoYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a basin is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, pond side slopes480.73ft9eak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation ≤ Elevation of the top of the trench? 44	229 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
5.00iph $I_{DESIGN} = design infiltration rate^2$ 22.1hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ $\bigstar \le 72$ -hrs480.65feet $E_{BTM} = elevation of the bottom of the practicefeetE_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feetD_{SHWT} = separation from SHWT^3480.77feetD_{ROCK} = separation from bedrock^3ftD_T = depth of trench, if trench proposedftD_T = depth of trench, if trench proposed, observation well providedN/AIf a trench or underground system is proposed, observation well providedN/AIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, pond side slopes3.0:1If a basin is proposed, pond side slopes480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69 ftElevation of the 50-year storm event (infiltration can be used in analysis)481.69 ftIf elevation of the top of the practice (if a basin, this is the elevation of the berm)10 peak elevation \le Elevation of the top of the trench?\checkmark yes$	827 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
22.1 hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ $\bigstar \le 72$ -hrs480.65feet $E_{BTM} = elevation of the bottom of the practicefeetE_{BTM} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feetD_{SHWT} = separation from SHWT^3480.7feetD_{ROCK} = separation from bedrock^3ftD_T = depth of trench, if trench proposedftD_T = depth of trench, if trench proposed, observation well providedN/AIf a trench or underground system is proposed, observation well providedN/AIf a basin is proposed, material in trenchg'Yes/NoIf a basin is proposed, pond side slopesftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \le Elevation of the top of the trench?YES\checkmark yes$	90 sf	A_{SA} = surface area of the bottom of the pond	
480.65feet E_{BTM} = elevation of the bottom of the practicefeet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feet D_{SHWT} = separation from SHWT ³ 480.7 feet D_{SHWT} = separation from bedrock ³ ft D_{ROCK} = separation from bedrock ³ Ves/No If a trench or underground system is proposed, observation well provided N/A If a trench is proposed, material in trench $6''$ Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, pond side slopes 480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis) 481.69 ftElevation of the 50-year storm event (infiltration can be used in analysis) 484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench?	5.00 iph	$I_{\text{DESIGN}} = \text{design infiltration rate}^2$	
feet $E_{SHWT} =$ elevation of SHWT (if none found, enter the lowest elevation of the test pit)feet $E_{ROCK} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feet $D_{SHWT} =$ separation from SHWT ³ $\leftarrow \ge *^3$ 480.7feet $D_{ROCK} =$ separation from bedrock ³ $\leftarrow \ge *^3$ ft $D_T =$ depth of trench, if trench proposed $\leftarrow 4 - 10$ ftNoYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear.3.0 :1If a basin is proposed, pond side slopes $\leftarrow \ge 3:1$ 480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the top of the practice (if a basin, this is the elevation of the berm)10 peak elevation \le Elevation of the top of the trench? $\leftarrow yes$	22.1 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)480.65feet D_{SHWT} = separation from SHWT ³ $\leftarrow \ge *^3$ 480.7feet D_{ROCK} = separation from bedrock ³ $\leftarrow \ge *^3$ ft D_T = depth of trench, if trench proposed $\leftarrow 4 - 10$ ftNoYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear.3.0 :1If a basin is proposed, pond side slopes $\leftarrow \ge 3:1$ 480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \le Elevation of the top of the trench? \leftarrow yes	480.65 feet	E_{BTM} = elevation of the bottom of the practice	
480.65feet D_{SHWT} = separation from SHWT3 $\bigstar \ge \ast^3$ 480.7feet D_{ROCK} = separation from bedrock3 $\bigstar \ge \ast^3$ ft D_T = depth of trench, if trench proposed $\bigstar 4 - 10$ ftNoYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear.3.0 :1If a basin is proposed, pond side slopes $\bigstar \ge 3:1$ 480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \le Elevation of the top of the trench? \checkmark yes	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
480.7feet $D_{ROCK} = separation from bedrock^3$ $\bigstar \ge \ast^3$ ft $D_T = depth of trench, if trench proposed\bigstar 4 - 10 \text{ ft}NoYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear.3.0 :1If a basin is proposed, pond side slopes480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \le Elevation of the top of the trench?\checkmark yes$	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
ftDT = depth of trench, if trench proposed $\leftarrow 4 - 10 \text{ ft}$ NoYes/NoIf a trench or underground system is proposed, observation well providedN/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear.3.0 :1If a basin is proposed, pond side slopes480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes	480.65 feet	D_{SHWT} = separation from SHWT ³	
NoYes/NoIf a trench or underground system is proposedobservation well providedN/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/No3.0 :1If a basin is proposed, pond side slopes480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15ftI0 peak elevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation of the top of the top of the trench? \checkmark yes	480.7 feet	D_{ROCK} = separation from bedrock ³	
N/AIf a trench is proposed, material in trench6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear.3.0 :1If a basin is proposed, pond side slopes $\leftarrow \geq 3:1$ 480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes	ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
6" Coarse SandIf a basin is proposed, basin floor materialYesYes/NoIf a basin is proposed, the perimeter should be curvilinear. $3.0:1$ If a basin is proposed, pond side slopes $\bigstar \geq 3:1$ 480.73ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench? \bigstar yes	No Yes/No	If a trench or underground system is proposed, observation well provi	ided
YesYes/NoIf a basin is proposed, the perimeter should be curvilinear. $3.0:1$ If a basin is proposed, pond side slopes $\leftarrow \ge 3:1$ 480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis) 481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) 484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \le Elevation of the top of the trench?	N/A	If a trench is proposed, material in trench	
$3.0:1$ If a basin is proposed, pond side slopes $\leftarrow \geq 3:1$ 480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis) 481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) 484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes	6" Coarse Sand	If a basin is proposed, basin floor material	
480.73 ftPeak elevation of the 10-year storm event (infiltration can be used in analysis)481.69 ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench?		If a basin is proposed, the perimeter should be curvilinear.	
481.69ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)484.15ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes	3.0 :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
484.15 ftElevation of the top of the practice (if a basin, this is the elevation of the berm)YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes		Peak elevation of the 10-year storm event (infiltration can be used in	analysis)
YES10 peak elevation \leq Elevation of the top of the trench? \leftarrow yes		Peak elevation of the 50-year storm event (infiltration can be used in	analysis)
			the berm)
YES If a basin is proposed, 50-year peak elevation \leq Elevation of berm? \leftarrow yes			•
	YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.