

Stormwater Management Study

Northern Pass Transmission, LLC.

Transition Station #2 Project No. 58466

RE-ISSUED FOR PERMITTING December 13, 2016

Stormwater Management Study

prepared for

Northern Pass Transmission, LLC.

Transition Station #2 Clarksville, Coos County, NH, 03592

Project No. 58466

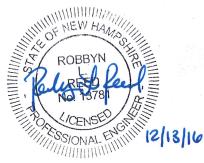
RE-ISSUED FOR PERMITTING December 13, 2016

prepared by

Burns & McDonnell Engineering Company, Inc.

COPYRIGHT © 2016 BURNS & McDONNELL ENGINEERING COMPANY, INC.

INDEX AND CERTIFICATION


Northern Pass Transmission, LLC. Stormwater Management Study Transition Station #2 – Project No. 58466 RE-ISSUED FOR PERMITTING – December 13, 2016

Report Index

<u>Number</u>	Section Title	of Pages
1.0 2.0 3.0 4.0 Appendix A Appendix B Appendix C Appendix D Appendix E	Section Title Introduction Hydrology and Hydraulics Best Management Practices Conclusion Pre- and Post-Development Watershed Maps Hydrology Model (Pondpack) Hydraulic and Stability Calculations NH DES Worksheets Operations and Maintenance Plan	<u>of Pages</u> 7 5 3 1
Appendix H Appendix J	Infiltration Feasibility Report Pollutant Loading Calculations	

Certification

I hereby certify, as a Professional Engineer in the State of New Hampshire, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Northern Pass Transmission, LLC. or others without specific verification or adaptation by the Engineer.

Robbyn Reed, P.E.

Date

Number

Additional reference information provided by others and not certified by the above sealing Engineer.

Section Number	Section Title	
Appendix F	FEMA Flood Insurance Rate Map	
Appendix G	Soil Survey Reports (By Others)	
Appendix H	Geotechnical Report (By Others)	
Appendix I	Wetland Delineation Report (By Others)	

Northern Pass

Section

Burns & McDonnell

TABLE OF CONTENTS

Page No.

1.0	PRO	JECT OVERVIEW1-	1
	1.1	Location and Project Summary1-	1
	1.2	Existing Conditions Survey Information1-	3
	1.3	Geotechnical Investigations1-	3
	1.4	Soils1-	
	1.5	Wetlands, Rivers, Streams and Vernal Pools1-	6
	1.6	Floodplain1-	6
	1.7	Receiving Surface Waters1-	
	1.8	Pre-Development Site Conditions1-	6
	1.9	Post-Development Site Conditions 1-	7
2.0	HYDF	ROLOGY AND HYDRAULICS	1
	2.1	Methodology and Design Criteria2-	1
		2.1.1 Rainfall Data	1
		2.1.2 Runoff Data	1
	2.2	Stormwater Modeling Results	3
	2.3	Infiltration Basin Design2-	4
	2.4	Stormwater Swales	4
	2.5	Basin Spillway	5
3.0	BEST	MANAGEMENT PRACTICES	1
	3.1	Groundwater Recharge Volume & Water Quality Volume	1
	3.2	Temporary Erosion Controls	
	3.3	Permanent Erosion Controls	1
		3.3.1 Crushed Rock	1
		3.3.2 Seeding	2
		3.3.3 Stormwater Swale & Spillway Lining	2
		3.3.4 Flood Protection Analysis	2
		3.3.5 Antidegredation	2
4.0	CON	CLUSION	1
			-
		A – PRE- AND POST-DEVELOPMENT WATERSHED MAPS	
		B – HYDROLOGY MODEL (PONDPACK) C – HYDRAULIC AND STABILITY CALCULATIONS	
		D – NH DES WORKSHEETS	
		E – OPERATIONS AND MAINTENANCE PLAN F – FEMA FLOOD INSURANCE RATE MAP	
APPE		G – SOIL SURVEY REPORTS (BY OTHERS)	
		H – GEOTECHNICAL REPORT (BY OTHERS)	
		I – WETLAND DELINEATION REPORT (BY OTHERS)	
APPE		J - POLLUTANT LOADING CALCULATIONS	

LIST OF TABLES

Page No.

Table 1-1:	Soil Types	. 1-4
Table 2-1:	24-Hour Type II Rainfall Data	
Table 2-2:	Standard SCS Runoff Curve Numbers	. 2-2
Table 2-3:	Pre-Developed Model Data	. 2-2
Table 2-4:	Post-Developed Model Data	. 2-2
Table 2-5:	Manning's Roughness Coefficients	. 2-2
Table 2-6:	Outlet-1 Flow	. 2-3
Table 2-7:	Outlet-2 Flow	. 2-3
Table 2-8:	Infiltration Basin Storage Volume	. 2-4
Table 2-9:	Infiltration Basin Water Surface Elevation	. 2-4
Table 2-10:	Stormwater Swale Summary	. 2-5
Table 2-11:	Stormwater Swale Stability	. 2-5
Table 2-12:	Basin Spillway Summary & Stability	. 2-5

LIST OF FIGURES

Page No.

Figure 1-1:	USGS Site Location Map		-2)
-------------	------------------------	--	----	---

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
BMcD	Burns & McDonnell
BMP	Best Management Practice
CFS	Cubic Feet per Second
E&S	Erosion and Sedimentation Control
FPS	Feet per Second
FT	Feet
LF	Linear Feet
LiDAR	Light Detection and Ranging
NAD	North American Datum
NAVD	North American Vertical Datum
NH DES	New Hampshire Department of Environmental Services
NPT	Northern Pass Transmission, LLC.
ORW	Outstanding Resource Water
ROW	Right-of-way
TMDL	Total Maximum Daily Loads
TN	Total Nitrogen
TP	Total Phosphorus
TSS	Total Suspended Solids
WQF	Water Quality Flow
WQV	Water Quality Volume

1.0 **PROJECT OVERVIEW**

1.1 Location and Project Summary

Northern Pass Transmission, LLC. (NPT) plans to construct Transition Station #2 (Project), a new transition station located on Eversource owned property on US-3 (45.018593 latitude and -71.462250 longitude) in Clarksville, Coos County, NH (Site). Refer to Figure 1-1: USGS Site Location Map.

The Site is part of an active gravel pit operation on the western slope of a hill overlooking the Connecticut River. Access to the site is from US Route 3 along a gravel road. The Site is bounded by gravel to the north and west, and woodland to the east and south. The Site is located within the surface watershed of the Connecticut River.

Pre-development conditions primarily consist of undeveloped woodland and existing gravel areas. Stormwater runoff in existing conditions generally sheet flows overland from east to west to existing wetlands located on the southern portion of the Site.

The post-development conditions of the Site include construction of a transition station associated with the Northern Pass Transmission (NPT) project. The NPT project is an approximately 200-mile AC and DC transmission line route extending from the United States/Canadian border in Pittsburg, NH to Deerfield, NH. The station development consists of a gravel pad approximately 80-ft by 135-ft with a perimeter fence and access gates. The post-development conditions will increase the impervious area of the Site and as a result, stormwater infiltration systems will be implemented. Wherever possible, the predevelopment drainage and grading patterns were maintained in the post-development conditions.

A hydrologic model was developed to evaluate the pre- and post-development drainage conditions on the Site for the 2-, 10-, and 50-year design frequency storm events. The results of the analysis indicate that there is no increase in peak discharge rates in post-development conditions from pre-development conditions. The analyses summary, results, and model output are located in further sections.

The Project Site property area is 62.50 acres. The Project will result in approximately 1.01 acres of disturbance, all of which is on-site. The existing impervious area within the property line is 4.59 acres and the additional impervious cover as a result of the project is 0.03 acres which accounts for structure footings, structures and pads and the basin area. The total impervious cover within the property is 4.62 acres. The total undisturbed cover of the property is 57.24 acres.

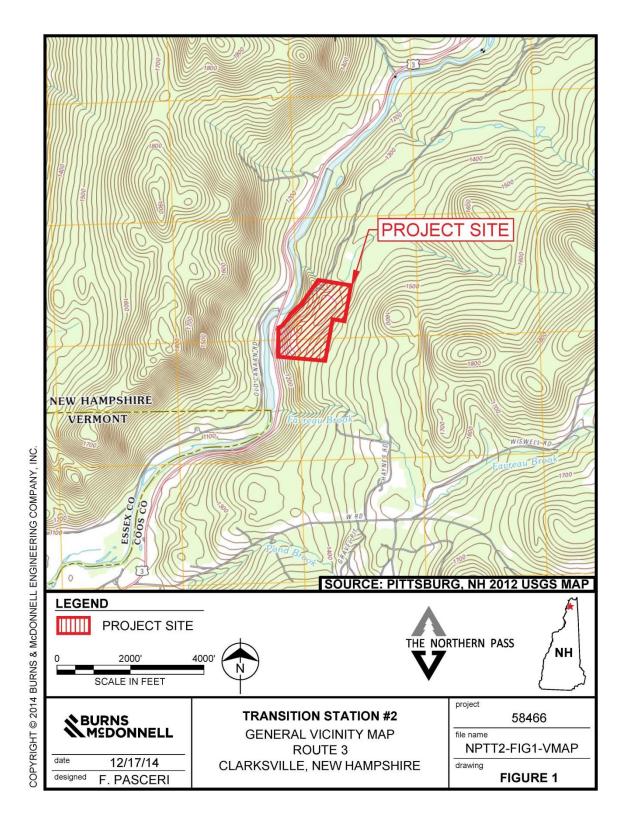


Figure 1-1: USGS Site Location Map

1.2 Existing Conditions Survey Information

An Existing Conditions Plan with topography was prepared for the Project and was used as a base throughout the analysis and design of the Site Development Plans and Stormwater Management Study. In the instance where the watershed areas extended outside the survey topography limits, State published LiDAR was obtained from the New Hampshire GRANIT Statewide GIS Clearinghouse and used to determine the watershed limits.

<u>Horizontal Datum</u>: The survey references the New Hampshire State Plane Coordinate System, NAD 83. The Site Development Plans are drawn in the same state plane coordinate system.

<u>Vertical Datum</u>: North American Vertical Datum of 1988 (NAVD88). The proposed elevations referenced within the Site Development Plans refer to the same vertical datum.

1.3 Geotechnical Investigations

A Geotechnical Engineering Report has been prepared for NPT.

• "Geotechnical Engineering Report, Transition Station #2 Project, Northern Pass Transmission Line, Clarksville, New Hampshire" by Quanta Subsurface.

Furthermore infiltration testing has been completed for the site at specified locations relevant to the Stormwater Management Study. Refer to the Infiltration Feasibility Report included in Appendix H.

The geotechnical investigation report can be found in Appendix H.

1.4 Soils

National Resource Conservation Service (NRCS) Web Soil Survey describes the soil within the Site watershed as Sheepscot cobbly very fine sandy loam, Colton gravelly fine sandy loam, Madawaska very fine sandy loam, Tunbridge-Lyman-Rock outcrop complex, Charles silt loam, Stetson fine sandy loam, Tunbridge-Plaisted-Lyman complex, Bangor silt loam, Dixmont very fine sandy loam, Cabot silt loam, and Tunbridge-Berkshire-Lyman complex. The soils were classified as hydrologic soil groups A, B, C, and D. The NRCS Web Soil Survey information is located in Appendix G.

There is also a soil survey report for the Site, entitled "Northern Pass Transmission Project, Soil Survey Report for Transition Stations, Substation Expansions, and Converter Terminal" by Normandeau Environmental Consultants, dated February 6, 2015. Station specific excerpts from the soil survey report can be found in Appendix G. The soils were classified as hydrologic soil groups B, C, and D. Thirty-two soil types are present on and in the vicinity of the Project Site according to the US Department of Agriculture Soil Conservation Service Soil Survey for Coos County, New Hampshire (Version 20, September 15, 2014) and the aforementioned soil survey report for the Project Site by Normandeau. Four of the mapped soil types are disturbed soils from excavation for sand and gravel: Udipsamments (300); Udorthents, sandy or gravelly (400); Udorthents, loamy (500) and Rubble land (727). Rubble land indicates areas where materials have been sorted and stored. As the Project Site is actively worked, these areas may change in size and location. Table 1-1 below lists the soil types and hydrologic soil groups.

Map Legend	Soil Type	Hydrologic Soil Group
14B	Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes	В
22E	Colton gravelly fine sandy loam, 15 to 60 percent slopes	A
28B	Madawaska very fine sandy loam, 3 to 8 percent slopes	С
61C	Tunbridge-Lyman-Rock outcrop complex, 8 to 15 percent slopes	С
61D	Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent slopes	С
61E	Tunbridge-Lyman-Rock outcrop complex, 25 to 60 percent slopes	С
209A	Charles silt loam, 0 to 2 percent slopes, frequently flooded	B/D
300B/cbaab	Udipsamments, 3 to 8 percent slopes	
300E/cbaab	b Udipsamments, 25 to 50 percent slopes	
400A/cbaab	ab Udorthents, sandy or gravely, 0 to 3 percent slopes	
400B/cbaab	Udorthents, sandy or gravely, 3 to 8 percent slopes	В
400E/cbaab	Udorthents, sandy or gravely, 25 to 50 percent slopes	В

Table 1-1:	Soil	Types
------------	------	-------

Map Legend	Soil Type	
500A	Udorthents, loamy, 0 to 3 percent slopes	В
523B	Stetson fine sandy loam, 3 to 8 percent slopes	В
523C	Stetson fine sandy loam, 8 to 15 percent slopes	В
523E	Stetson fine sandy loam, 15 to 60 percent slopes	A/B
560C	Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes	В
560D	Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes	В
560E	Tunbridge-Plaisted-Lyman complex, 25 to 35 percent slopes	В
561B	Tunbridge-Plaisted-Lyman complex, 3 to 8 percent slopes, very stony	В
561C	Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes, very stony	В
573C	Bangor silt loam, 8 to 15 percent slopes, very stony	
573D	Bangor silt loam, 15 to 25 percent slopes, very stony	
573E	Bangor silt loam, 25 to 35 percent slopes, very stony	
578B	Dixmont very fine sandy loam, 3 to 8 percent slopes	B/D
579B	Dixmont very fine sandy loam, 3 to 8 percent slopes, very stony	
579C	Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony	
579D	Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony	
590B	Cabot silt loam, 0 to 8 percent slopes, very stony	D

Map Legend	Soil Type	Hydrologic Soil Group
590C	Cabot silt loam, 8 to 15 percent slopes, very stony	D
670D	Tunbridge-Berkshire-Lyman complex, 15 to 25 percent slopes	В
727	Rubble land, one to 50 percent slopes	unknown

This soil series has an erosion factor K of 0.05-0.37 or is not rated. The erosion factor K, with values ranging from 0.02 to 0.69, signifies how susceptible a soil is to erosion. The larger the K value the more susceptible the soil is to erosion by water. The K factor for the Project Site indicates that the soils are moderately susceptible to erosion by water. The susceptibility of the soils to moderate erosion will be resolved by the site stabilization with rock and native vegetation.

1.5 Wetlands, Rivers, Streams and Vernal Pools

A report entitled "Wetlands, Rivers, Streams and Vernal Pools Resource Report and Impact Analysis" by Normandeau Environmental Consultants, dated October 1, 2015 has been prepared for the NPT Project. Environmentally sensitive areas were found within the Project Site. Refer to Appendix I for a copy of this report.

1.6 Floodplain

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Map No. 33007C0215D for Coos County, New Hampshire, Effective Date February 20, 2013, the Project Site is located in Zone 'AE', special flood hazard areas subject to inundation by the 1% annual chance flood and Zone 'X', areas determined to be outside the 0.2% annual chance floodplain. The FIRM Map is located in Appendix F.

1.7 Receiving Surface Waters

The Site is within the Upper Connecticut River Watershed. The Site and onsite streams and wetlands directly discharge to the Connecticut River.

1.8 Pre-Development Site Conditions

The Pre-developed site consists of heavily forested rolling hill terrain, gravel pit areas and associated gravel access roads that drain east to west toward existing onsite wetlands. There are two discharge points from this Site. Outlet O-2 receives surface runoff from a small portion of an existing gravel access road crossing through the Site. Outlet O-1 receives surface runoff from the above-described Site area draining to the existing onsite wetlands.

1.9 Post-Development Site Conditions

Pre-developed stormwater drainage patterns are mimicked in post-developed conditions and utilize the same two aforementioned Site discharge points as pre-development. Pre- and Post-development watershed maps are located in Appendix A. The post-development peak stormwater discharge rates are the same or below pre-development rates.

No new water or septic/sanitary sewer services are required for the Project.

No proposed improvements are located within a FEMA 100-year flood plain, as a result, there are no adverse impacts to properties.

* * * * *

2.0 HYDROLOGY AND HYDRAULICS

The stormwater management for the Project has been developed to minimize the downstream effects of development at the Site. The stormwater requirements set forth by the New Hampshire Department of Environmental Services Stormwater Manual Volumes 1, 2, & 3, dated December 2008 and the New Hampshire Department of Transportation Manual on Design for Highways, Revision Date April 1998 were followed to the maximum extent practical for the design of the Site Development Plans and this Report.

The development of the Site results in the need to infiltrate stormwater onsite. One above-ground infiltration basin is proposed and is discussed in further detail below. The following is the data used in the stormwater management analysis.

2.1 Methodology and Design Criteria

2.1.1 Rainfall Data

Type II 24-hour rainfall depths for Clarksville, NH were obtained from the Northeast Regional Climate Center – <u>http://precip.eas.cornell.edu/</u>.

Return Frequency	24 Hour Depth (in)
(yr)	
2	2.20
10	3.08
50	4.31

Table 2-1: 24-Hour Type II Rainfall Data

2.1.2 Runoff Data

The stormwater runoff calculations were completed using the USDA NRCS/SCS TR-55 runoff curve number method in Bentley's PondPack v8i modeling software. Refer to Appendix B for the inputs and generated outputs. The input values that were used in the PondPack model are shown in the tables below.

Maximum sheet flow length for unpaved areas according to the NH DES Stormwater Manual is 100-ft. Below are the standard SCS runoff curve numbers used in the hydrology modeling and the predevelopment and post-development watershed cover data used in the hydrology modeling.

Land Type	Hydrologic Soil Group	Curve Number
Woods	В	55
Woods	С	70
Woods	D	77
Meadow	В	58
Meadow	С	71
Gravel	В	85
Gravel	С	89
Gravel	D	91
Impervious (Asphalt Pavement, Water, Structures, Foundations)	-	98

Table 2-2: Standard SCS Runoff Curve Numbers

Table 2-3: Pre-Developed Model Data

Subarea	Area (ac)	Curve Number	Time of Concentration (Minutes)
1	114.161	69	48.7
2	0.117	85	5
Total	114.278	-	-

Table 2-4: Post-Developed Model Data

Subarea	Area (ac) Composite Curve Number		Time of Concentration (Minutes)	
1A	113.645	68	50	
1B	0.573	82	11.8	
2	0.060	75	5	
Total	114.278	-	-	

The below table summarizes the Manning's roughness coefficients used in the analysis.

Table 2-5:	Manning's	Roughness	Coefficients
------------	-----------	-----------	--------------

Surface Description	Manning's n
Grass, Dense grasses (sheet)	0.240
Smooth Surface Gravel (sheet)	0.100
Woods, Light underbrush (sheet)	0.400
Woods, Dense underbrush (sheet)	0.800
Earth-Straight Channel	0.030
Grass w/ NAG Stabilization	0.045

2.2 Stormwater Modeling Results

For the proposed Project, a new infiltration basin is proposed to be constructed on the north side of the transition station pad. Runoff from the transition station pad will discharge to the basin via a pretreatment swale (Swale SW-1) on the east side of the station pad. Runoff from the hill area east of the Site will collect in Swale SW-2 which will convey runoff to Outlet O-1. Remaining areas within the watershed not draining to the basin will drain to the same discharge points as the pre-development runoff. The infiltration basin is designed with a vegetated spillway to convey the 2, 10, 50 and 100-year storm events. Runoff from the vegetated spillway travels to Outlet O-1 via Swale SW-2.

The proposed infiltration basin was analyzed to mitigate the impacts of stormwater runoff from changes in drainage patterns that would result from the construction of this project. The hydrology model was analyzed using an infiltration rate of 2.7 inches per hour (based on results from field data). The following tables summarize flow conditions for the Project and the reduction of flow achieved by the infiltration basin.

There are two Analysis Points for the Site. The tables below summarize the pre- and post-developed peak discharge runoff rates from each respective analysis point. Refer to Appendix A for the Pre-Developed and Post-Developed Watershed Maps. Modeling results and output can be found in Appendix B.

Return Frequency (yr)	Pre-Developed Flow (cfs)	Post-Developed Flow (cfs)	
2	12.78	10.77	
10	41.46	36.88	
50	96.07	88.96	
100	130.53	122.18	

Table 2-6: Outlet-1 Flow

Table 2-7: Outlet-2 Flow

Return Frequency (yr)	Pre-Developed Flow (cfs)	Post-Developed Flow (cfs)
2	0.17	0.04
10	0.31	0.09
50	0.50	0.18
100	0.61	0.23

2.3 Infiltration Basin Design

The infiltration basin was designed and analyzed to provide long term stormwater attenuation, water quality treatment, and infiltration once the Project has been constructed. The basin has been designed to meet the requirements in the NH DES Stormwater Manual. The infiltration basin fully contains and infiltrates a volume larger than both the required Water Quality Volume and Groundwater Recharge Volume, as further discussed in Section 3.1. A vegetated spillway is designed to convey the 2-, 10-, 50- and 100-year design storms. The infiltration basin has been designed as to not require a State Dam permit. The below tables summarize the infiltration basin storage volumes and water surface elevations with respect to the design storm events.

Elevation (feet-NAVD88)	Surface Area (SF)	Cumulative Storage Volume (CF)
1303.00	664	-
1303.83	923	659
1304.00	996	822
1305.00	1381	2010

 Table 2-8:
 Infiltration Basin Storage Volume

Table 2-9: Infiltration Basin Water Surface Elevation

Return Frequency (yr)	Maximum Water Surface Elevation (ft)
2	1303.83
10	1303.91
50	1303.99
100	1304.02

2.4 Stormwater Swales

The Stormwater swales are designed for the 10-year storm event with a minimum of one foot of freeboard. In addition, all open swales are expected to convey the 100-year storm event without overtopping. The open swales will be vegetated as specified in the Site Development Plans. The following table summarizes the design criteria as well as the proposed lining for the proposed open swales. The results show that the swales will be stable for storms up to the 10 year flow.

Swale	10 Year Max. Flow (cfs)	10 Year Velocity (ft/s)	100 Year Max. Flow (cfs)	100 Year Velocity (ft/s)	Swale Depth (ft)	Swale Bottom Width (ft)	Side Slopes (H:V ft)	Slope (%)
SW-1	1.08	1.11	2.29	1.43	1.5	4.0	3:1	1.1
SW-2	36.76	2.35	121.86	3.24	3.0	6.0	3:1	0.5

Refer to Appendix C for the FlowMaster model results for the Swales.

The table below summarizes the stormwater swale stabilization types. The calculations can be found in Appendix C.

Swale	Stabilization Type	10 Yr. Design Discharge (cfs)	Allowable Shear Stress (psf)	Calculated Shear Stress (psf)
SW-1	Unreinforced Vegetation	1.08	4.2	0.37
SW-2	Unreinforced Vegetation	36.76	5.73	0.72

Table 2-11: Stormwater Swale Stability

2.5 Basin Spillway

The basin spillway is designed for the 100-year storm event without overtopping the basin. The basin spillway will be vegetated as specified in the Site Development Plans. The following table summarizes the design criteria as well as the proposed lining for the basin spillway. The results show that the basin spillway will be stable for storms up to the 100 year flow.

100 Year Max. Flow (cfs)	100 Year Velocity (ft/s)	Spillway (Weir) Width (ft)	eir) Slopes Down		Allowable Shear Stress (psf)	Calculated Shear Stress (psf)
2.29	0.83	9	3:1	5	4.2	0.96

Refer to Appendix C for the stabilization calculation results for the Basin Spillway.

* * * * *

3.0 BEST MANAGEMENT PRACTICES

The proposed Stormwater Management System contains Best Management Practices (BMPs) that will, if maintained properly, will provide treatment of Site generated stormwater runoff. The proposed BMPs are described below.

3.1 Groundwater Recharge Volume & Water Quality Volume

The infiltration basin will treat and recharge runoff from the structures and foundations on the transition station pad. The Water Quality Volume (WQV) that is required to be treated from these areas is 140 cubic feet. The Groundwater Recharge Volume (GRV) that is required to be infiltrated from these areas is 9 cubic feet. The infiltration basin has a volume of 659 cubic feet below the lowest outlet (basin spillway), which is larger than both the WQV and the GRV. All runoff stored in the infiltration basin receives pretreatment in Swale SW-1, designed in accordance with pretreatment swale requirements. Additional pretreatment is provided as surface runoff travels via sheet flow across the crushed rock surfacing of the station pad and parking areas. The worksheets for the infiltration basin and GRV calculation are located in Appendix D.

3.2 Temporary Erosion Controls

During construction of the proposed station, the Contractor will be responsible for installation, implementation, and maintenance of temporary erosion and sedimentation control measures, that if implemented and maintained properly, will help to prevent off-site tracking and conveyance of waterborne loss of sediment and debris. The specific measures proposed are located in the Site Development Plans, which are under separate cover.

Temporary erosion and sedimentation controls shall not be removed until construction is complete and site stabilization is achieved.

3.3 Permanent Erosion Controls

Upon completion of construction, the Site shall be stabilized by one or more of the following measures in accordance with the Site Development Plans (under separate cover):

3.3.1 Crushed Rock

Crushed rock will be installed on the station pad area and access roads. Additional rock may be required during final stabilization as a result of the original crushed rock application being disturbed during construction.

3.3.2 Seeding

Any disturbed area not proposed as an impervious or gravel surface will be restored to natural meadow vegetation over 4" of topsoil. Planting and mulching of permanent seed will occur as soon as practical after final grading, placement of topsoil, and soil preparation has been completed. Seeding should occur during the growing season.

3.3.3 Stormwater Swale & Spillway Lining

Stormwater swales and the basin spillway will be vegetated as to help prevent erosion.

3.3.4 Flood Protection Analysis

Flood protection has been implemented for the infiltration basin as follows:

- Swales have been designed to convey the 10-year, 24-hour storm event with minimum 1.0 ft of freeboard;
- Swales have been designed to convey the 100-year, 24-hour storm event;
- The infiltration basin will detain the 2-year through 100-year, 24-hour storm events;
- A basin spillway will be used to convey the 2-year through 100-year, 24-hour storm events.

3.3.5 Antidegredation

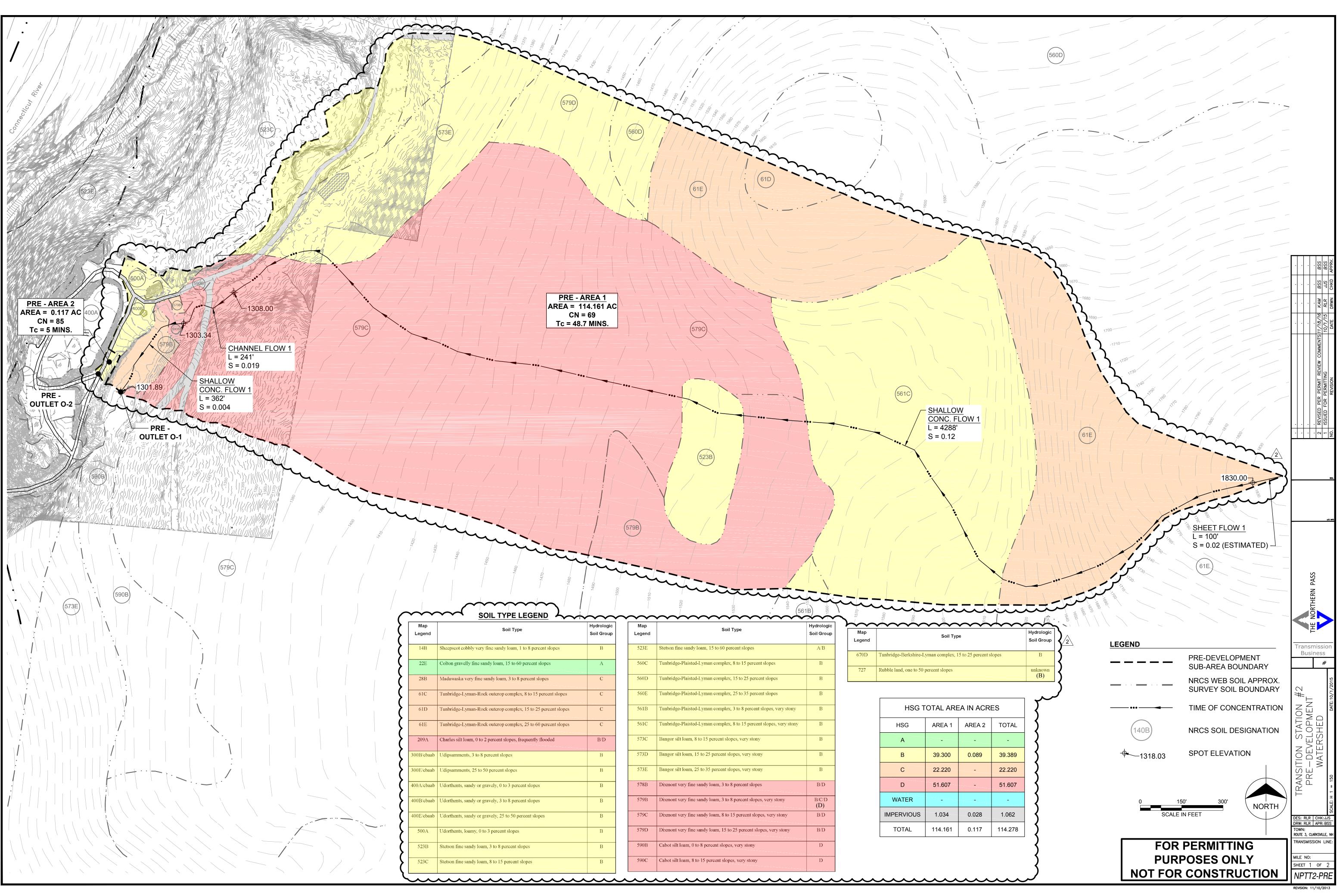
There is no greater than 10% effective impervious cover (EIC) and no less than 65% undisturbed cover within the property boundary of the Site, therefore the Site satisfies the NHDES 1065 Rule. Refer to the Site Cover Plan located in Appendix A.

The Site stormwater runoff discharges to an Outstanding Resource Water (ORW) according to the New Hampshire Department of Environmental Services (NH DES) OneStop GIS mapper. As a result, pollutant loading calculations were performed using the NH DES standard Simple Method worksheet to demonstrate that there is no increase in Total Suspended Solids (TSS), Total Phosphorus (TP), and Total Nitrogen (TN) resulting from the Project. The pollutant loading calculations and other supporting information are located in Appendix J. Also, an impervious area summary table has been prepared to outline the impervious areas draining to the proposed BMP, refer to Appendix D.

The Simple Method generates pollutant loads based on the pre- and post- drainage areas indicated on the Watershed Maps located in Appendix A. The proposed BMP is designed to remove a percentage of the pollutants. Sub-watershed Post-Area 1B is considered disconnected impervious area because it drains

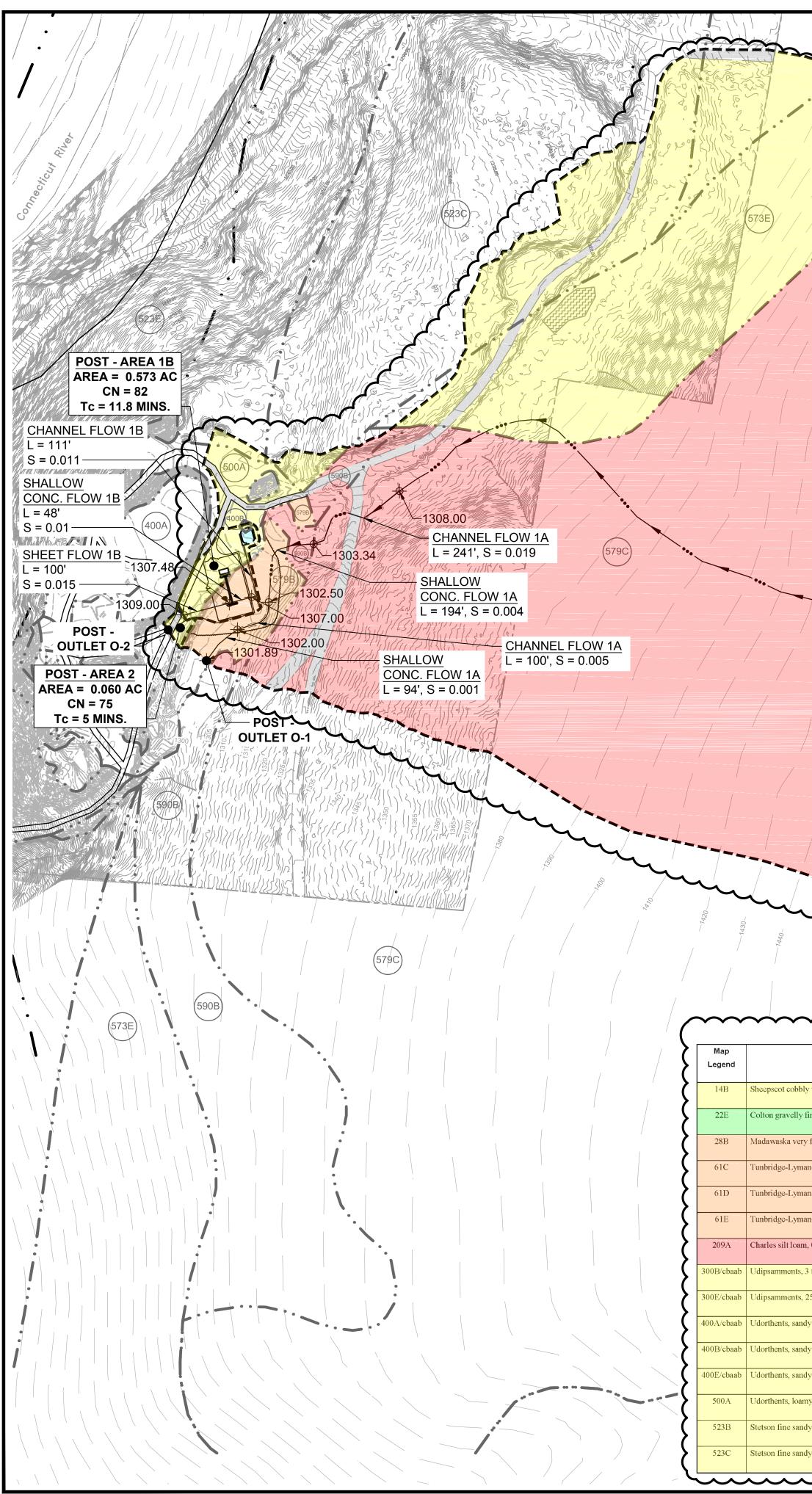
through a vegetated swale to the infiltration basin for treatment. The disconnected impervious credit and the treatment BMP provides water quality and limits post-development pollutant levels to less than the pre-development condition.

The Site lies within the NE Regional Mercury Total Maximum Daily Load (TMDL) according to EPA 2008 Waterbody Report for the Connecticut River. The Project is not anticipated to produce mercury byproducts, thus restrictions from the NE Regional Mercury TMDL are not applicable.

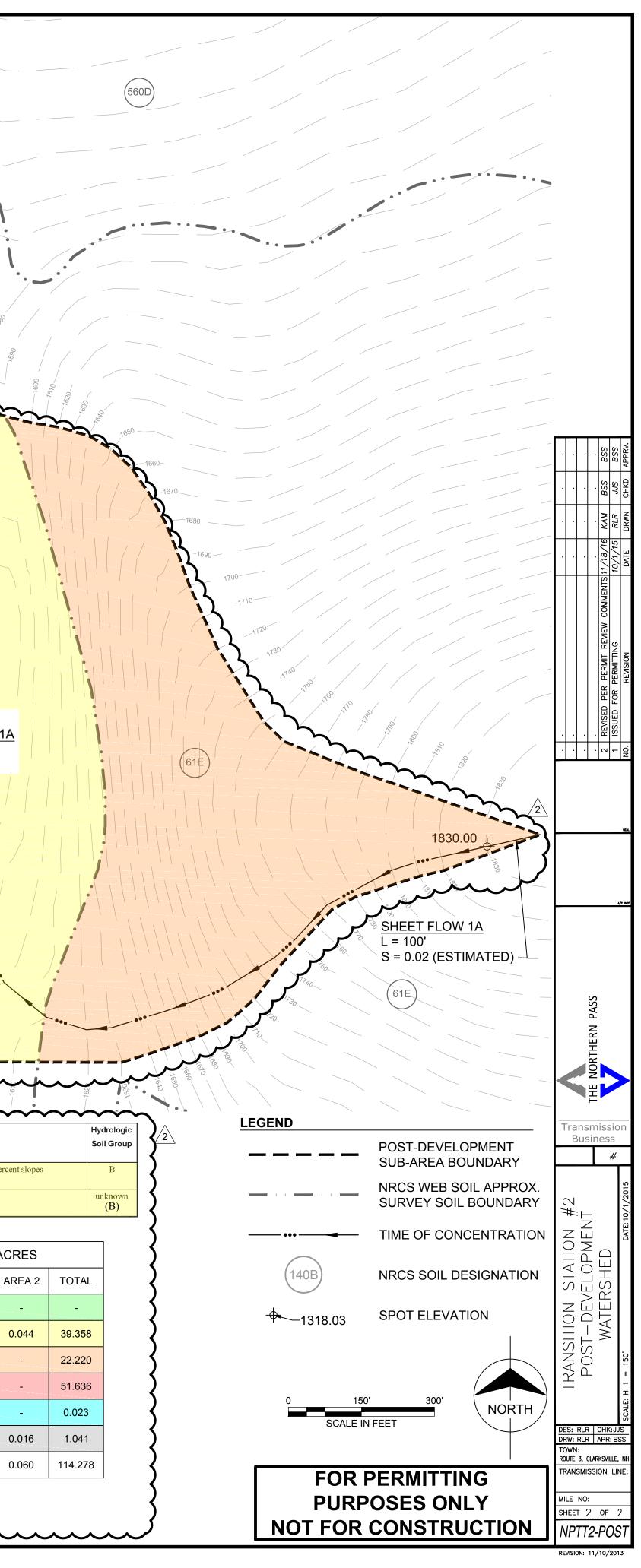

* * * *

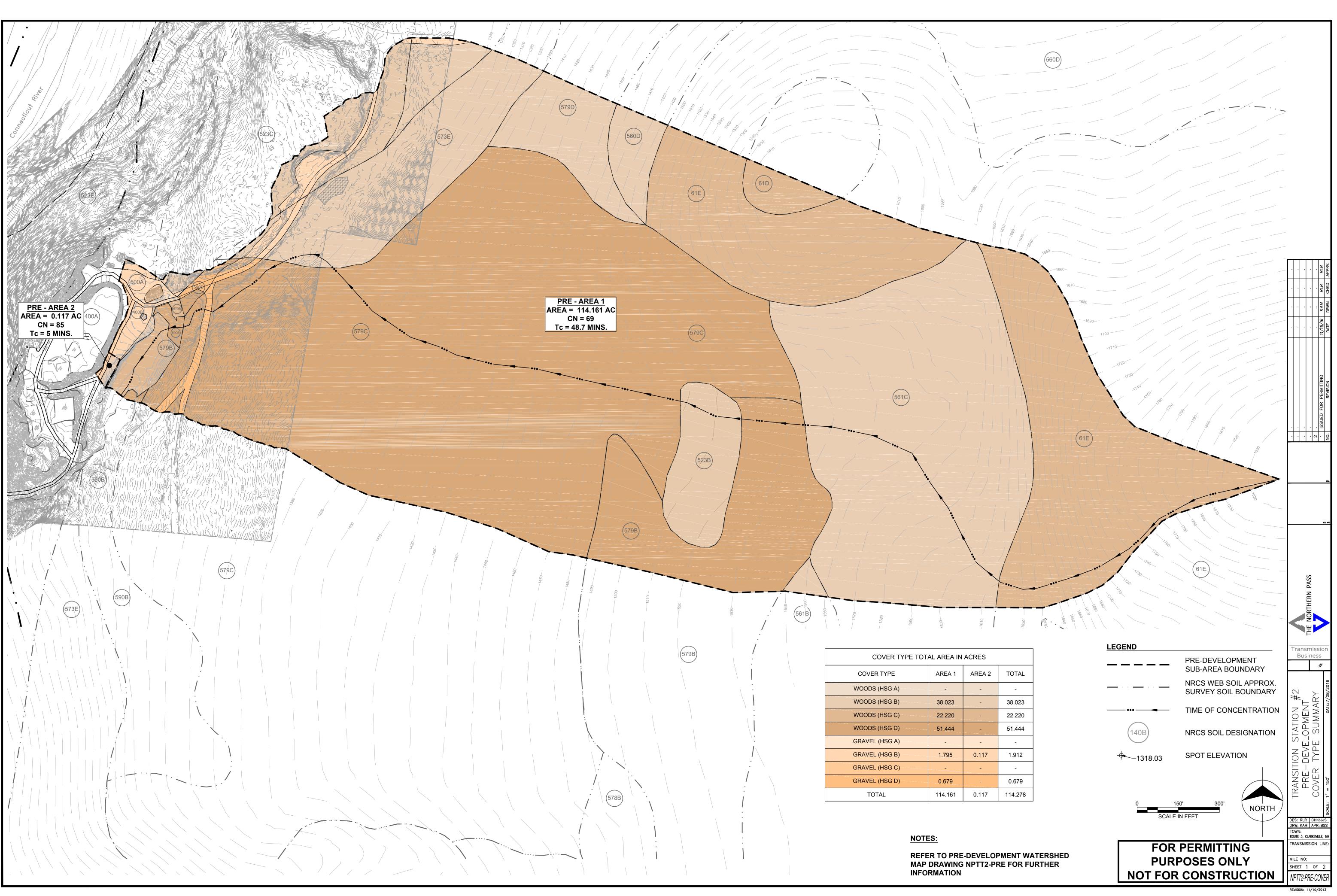
4.0 CONCLUSION

In order to mitigate the impacts of stormwater runoff caused by the addition of the transition station, several BMPs were implemented. Those BMPs include the addition of vegetated swales and an infiltration basin. The results of the hydrologic analysis indicate that there is no increase in peak discharge rates in post-development conditions from pre-development conditions, however there is an increase in impervious area. The infiltration basin fully contains and infiltrates a volume larger than both the required Water Quality Volume and Groundwater Recharge Volume. The infiltration basin will also hold and attenuate the 2-year through the 100-year storm events. The on-site BMPs have been designed in accordance with the New Hampshire Department of Environmental Services Stormwater Manual Volumes 1, 2, & 3.

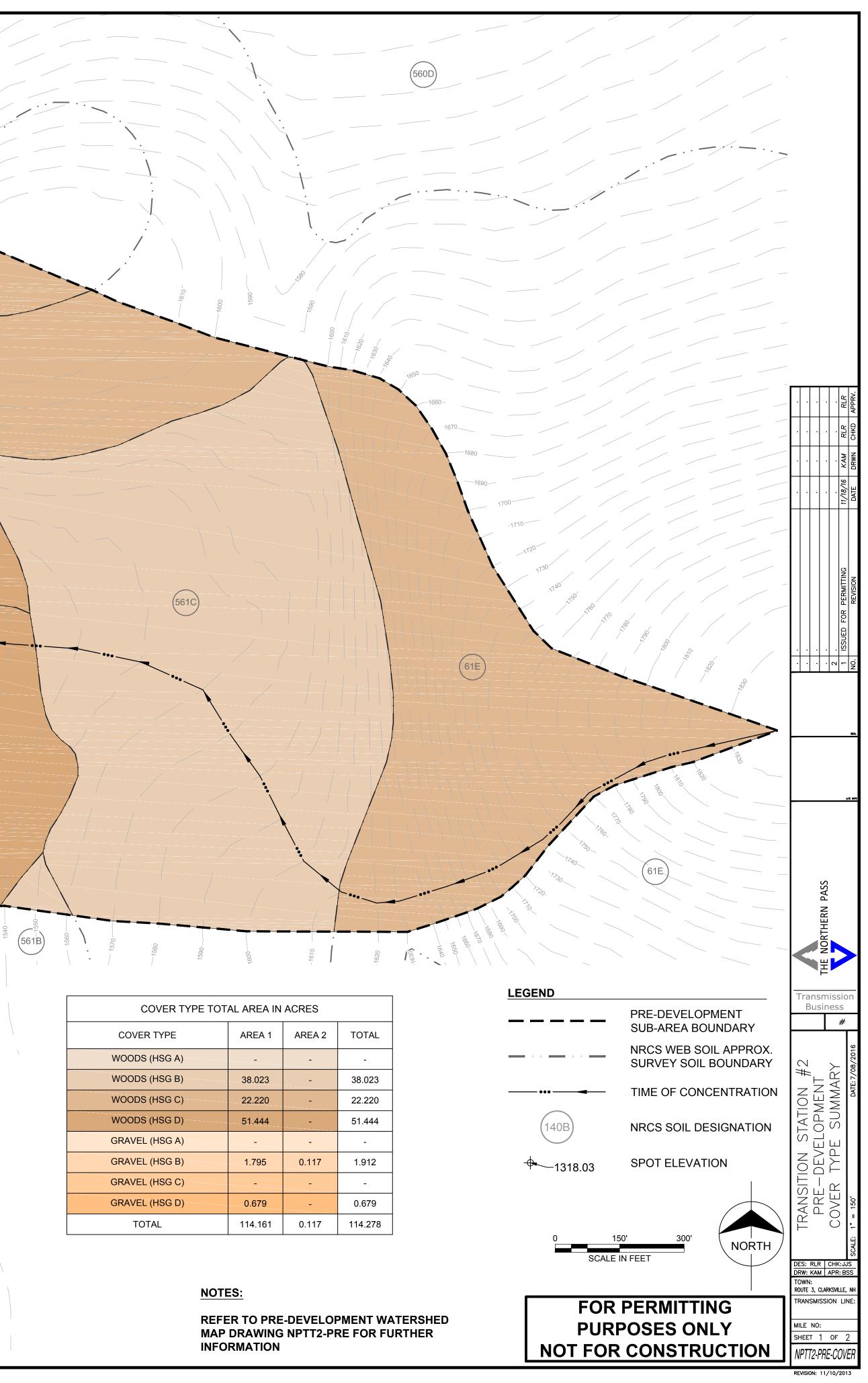

* * * * *

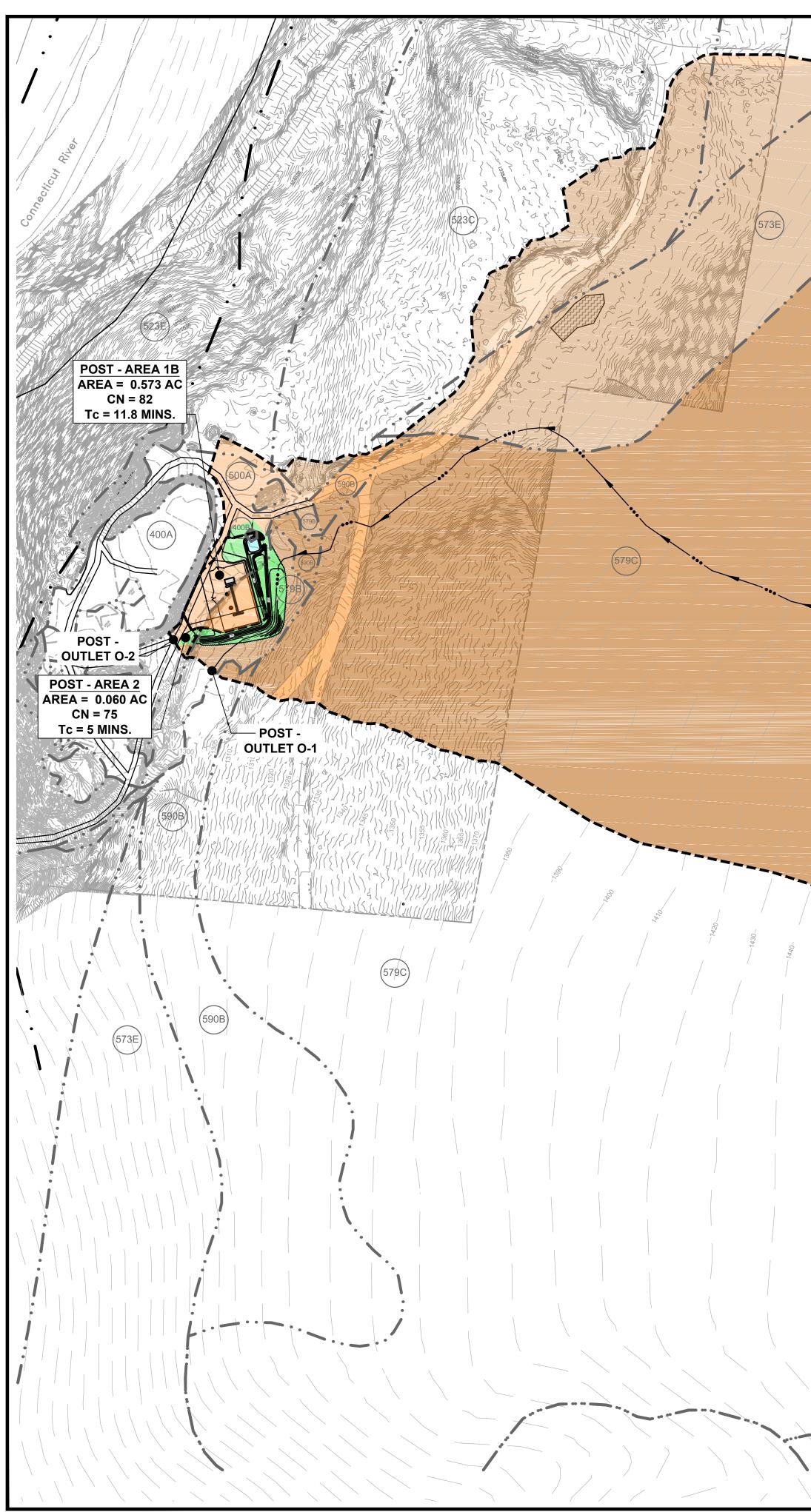
APPENDIX A – PRE- AND POST-DEVELOPMENT WATERSHED MAPS

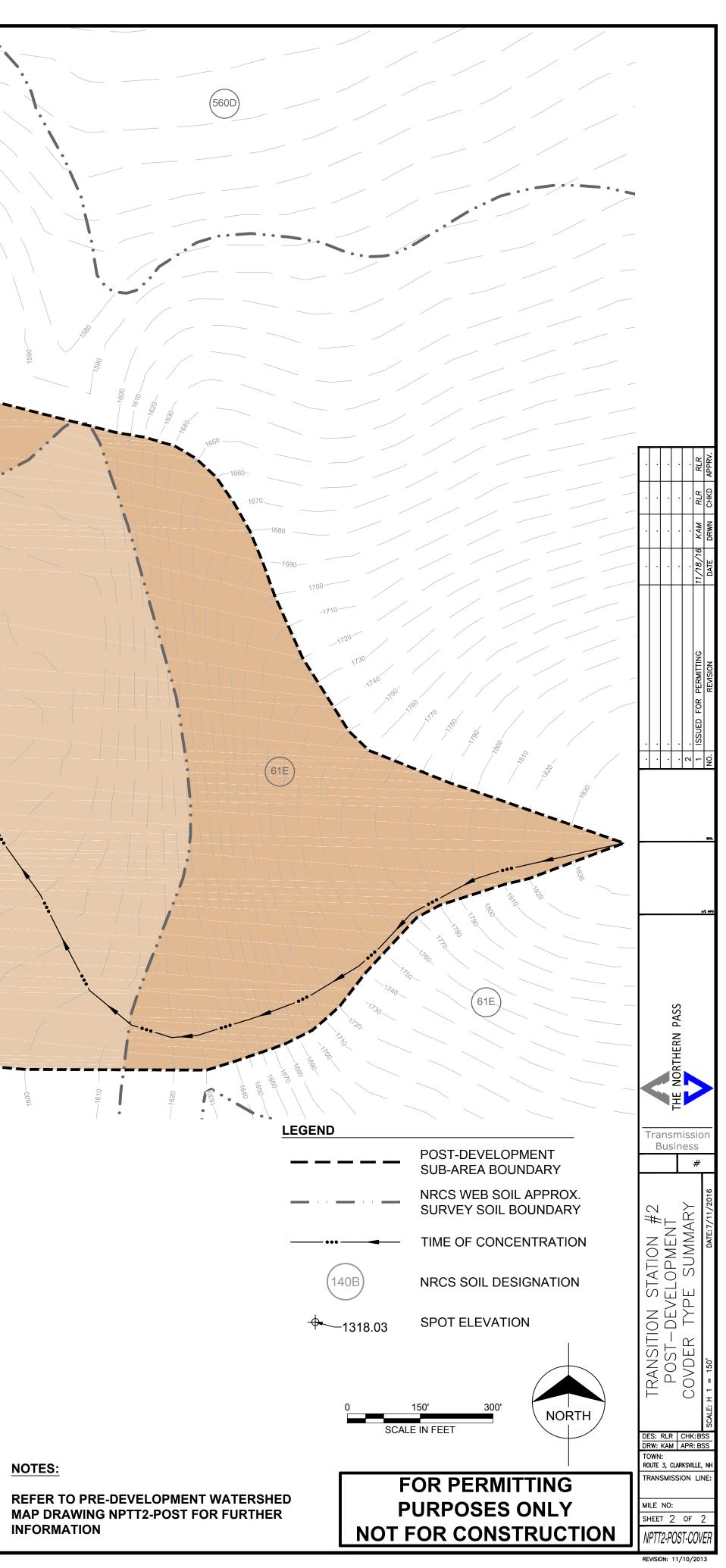


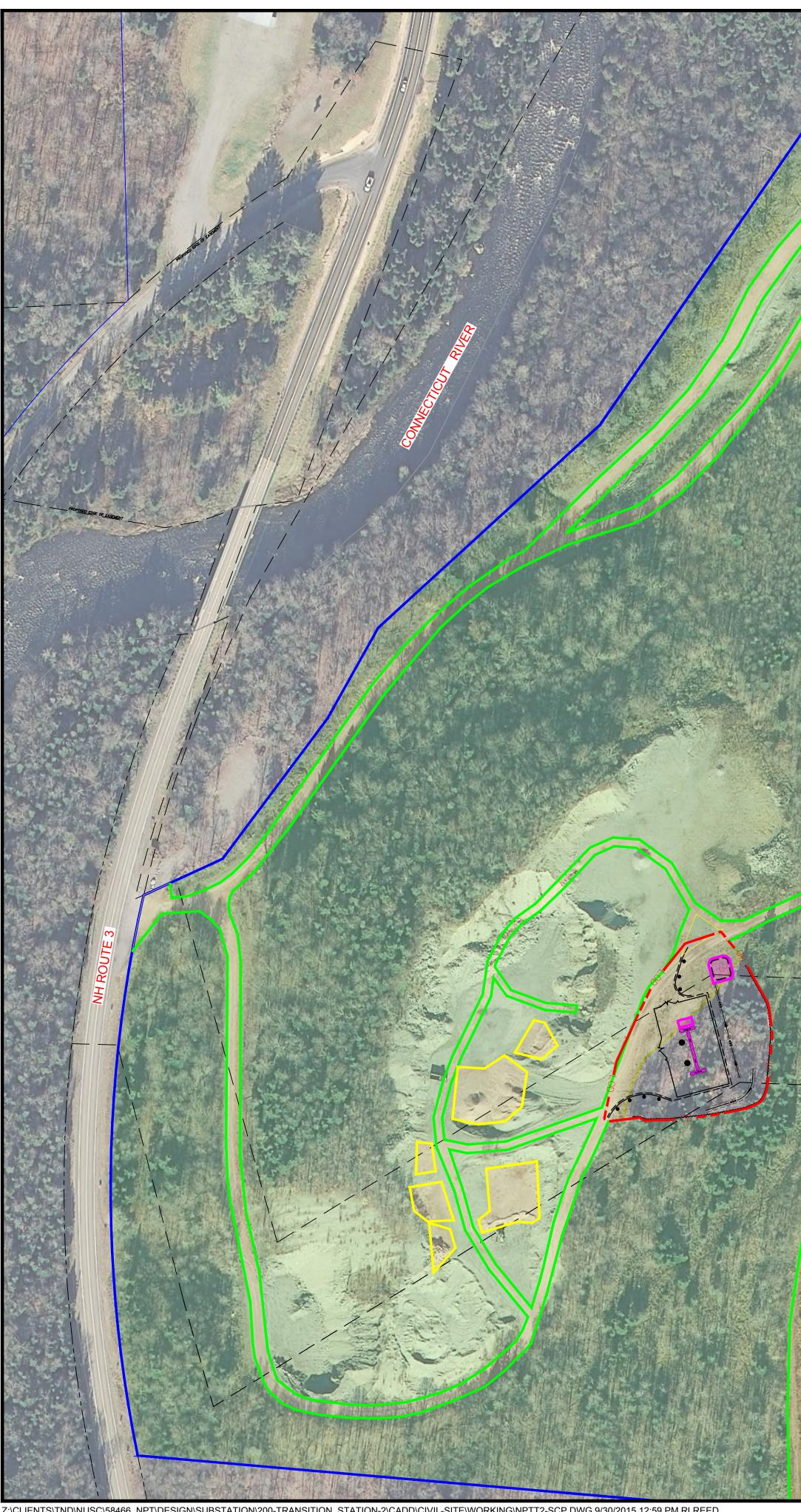

y fine sandy loam, 1 to 8 percent slopes	В	523E	Stetson fine sandy loam, 15 to 60 percent slopes	A/B
andy loam, 15 to 60 percent slopes	А	560C	Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes	В
e sandy loam, 3 to 8 percent slopes	C	560D	Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes	В
ock outcrop complex, 8 to 15 percent slopes	С	560E	Tunbridge-Plaisted-Lyman complex, 25 to 35 percent slopes	В
ock outcrop complex, 15 to 25 percent slopes	С	561B	Tunbridge-Plaisted-Lyman complex, 3 to 8 percent slopes, very stony	В
ock outcrop complex, 25 to 60 percent slopes	С	561C	Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes, very stony	В
2 percent slopes, frequently flooded	B/D	573C	Bangor silt loam, 8 to 15 percent slopes, very stony	В
3 percent slopes	В	573D	Bangor silt loam, 15 to 25 percent slopes, very stony	В
50 percent slopes	В	573E	Bangor silt loam, 25 to 35 percent slopes, very stony	В
gravely, 0 to 3 percent slopes	В	578B	Dixmont very fine sandy loam, 3 to 8 percent slopes	B/D
gravely, 3 to 8 percent slopes	В	579B	Dixmont very fine sandy loam, 3 to 8 percent slopes, very stony	B/C/D (D)
gravely, 25 to 50 percent slopes	В	579C	Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony	B/D
to 3 percent slopes	В	579D	Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony	B/D
am, 3 to 8 percent slopes	В	590B	Cabot silt loam, 0 to 8 percent slopes, very stony	D
am, 8 to 15 percent slopes	В	590C	Cabot silt loam, 8 to 15 percent slopes, very stony	D

HSG T	OTAL ARE	EA IN AC
HSG	AREA 1	AREA 2
А	<u>-</u>	·
В	39.300	0.089
С	22.220	-
D	51.607	
WATER	<u>-</u>	-
IMPERVIOUS	1.034	0.028
TOTAL	114.161	0.117



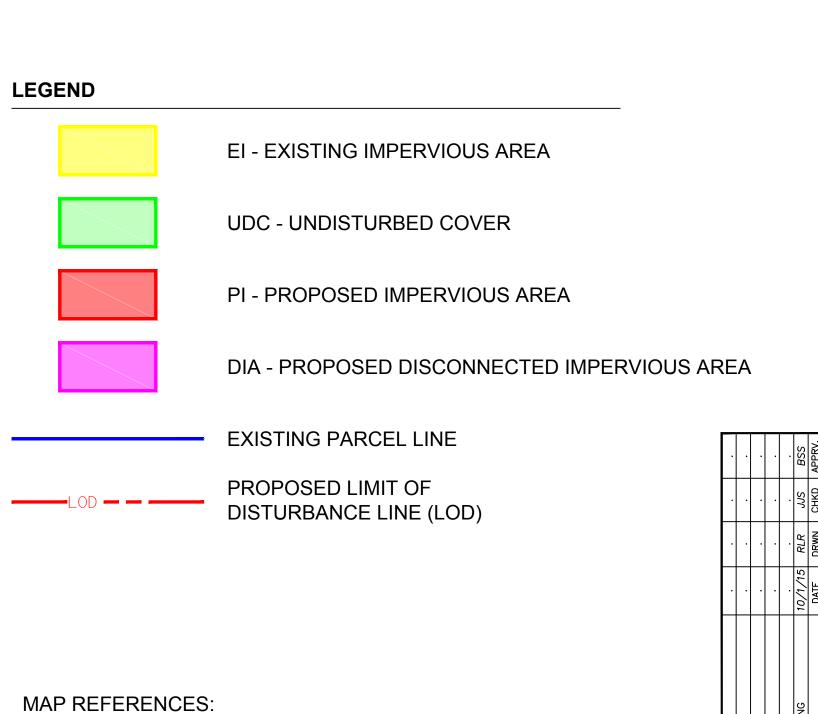

573E		
POST - AREA 1A AREA = 113.645 AC CN = 68 Tc = 50 MINS.	5790 5790 523B	6610 SHALLOW CONC. FLOW 1A L = 4288' S = 0.12
1500 1490 1470 146	mini	
SOIL TYPE LEGEND		minine a state of the
Map Hydrologic Legend Soil Type Soil Group	Map Hydrologic Legend Soil Type	
14B Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes B	523E Stetson fine sandy loam, 15 to 60 percent slopes A/B	Map Soil Type Hydrologic
22E Colton gravelly fine sandy loam, 15 to 60 percent slopes A	560C Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes B	Legend Soil Group
28B Madawaska very fine sandy loam, 3 to 8 percent slopes C	560D Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes B	670D Tunbridge-Berkshire-Lyman complex, 15 to 25 percent slopes B
61C Tunbridge-Lyman-Rock outcrop complex, 8 to 15 percent slopes C	560E Tunbridge-Plaisted-Lyman complex, 25 to 35 percent slopes B	727 Rubble land, one to 50 percent slopes unknown (B)
61D Tunbridge-Lyman-Rock outerop complex, 15 to 25 percent slopes C	561B Tunbridge-Plaisted-Lyman complex, 3 to 8 percent slopes, very stony B	HSG TOTAL AREA IN ACRES
61E Tunbridge-Lyman-Rock outcrop complex, 25 to 60 percent slopes C	561C Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes, very stony B	HSG AREA 1A AREA 1B AREA 2 TOTAL
209A Charles silt loam, 0 to 2 percent slopes, frequently flooded B/D	573C Bangor silt loam, 8 to 15 percent slopes, very stony B	
300B/cbaab Udipsamments, 3 to 8 percent slopes	573D Bangor silt loam, 15 to 25 percent slopes, very stony B	A
300E/cbaab Udipsamments, 25 to 50 percent slopes B	573E Bangor silt loam, 25 to 35 percent slopes, very stony B	B 38.995 0.319 0.044 39.358
400A/cbaab Udorthents, sandy or gravely, 0 to 3 percent slopes B	578B Dixmont very fine sandy loam, 3 to 8 percent slopes B/D	C 22.000 0.220 - 22.220
400B/cbaab Udorthents, sandy or gravely, 3 to 8 percent slopes B	579B Dixmont very fine sandy loam, 3 to 8 percent slopes, very stony B/C/D	D 51.636 - 51.636
	(D)	WATER - 0.023 - 0.023
400E/cbaab Udorthents, sandy or gravely, 25 to 50 percent slopes B	579C Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony B/D	IMPERVIOUS 1.014 0.011 0.016 1.041
500A Udorthents, loamy, 0 to 3 percent slopes B	579D Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony B/D	TOTAL 113.645 0.573 0.060 114.278
523B Stetson fine sandy loam, 3 to 8 percent slopes B	590B Cabot silt loam, 0 to 8 percent slopes, very stony D	
523C Stetson fine sandy loam, 8 to 15 percent slopes B	590C Cabot silt loam, 8 to 15 percent slopes, very stony D	




)T	ES:	

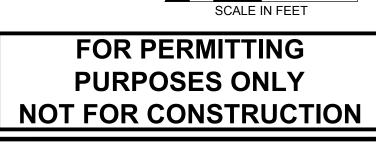
		/ /	/			
- 1340- 1350 1370 80 80						
12300 123000 1200000000						
1 440 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480 - 1480	i					
009FL 025L 009FL 009FL 009FL					_	
579D	• • • • • • • • • • • • • • • • • • •					
					·	\mathbf{i}
(560D)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c10			I)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			•	
			~			
	61E			-	- <i>0L</i>	
		•••••	- · · · · · · · · · · · · · · · · · · ·		16	1500
						./\
	the states of th					
POST - AREA 1A		P				
AREA = 113.645 AC CN = 68						
<u>Tc = 50 MINS.</u>	(579C)					
		j				
•••						
		<u>}</u>				
					(561C)	
	***					
					•	
	Fran					
	(523B)					
(579B)			1			
						•
14, 14, 14, 14, 14, 14, 14, 14, 14, 14,						1
1480 - 1480 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -						
	- 1520	1240	1550- 1560	270		
				12	1580	1600
			1			ł
	COVER TYP	PE TOTAL AR	REA IN ACRE	ES		
	COVER TYPE	AREA 1A	AREA 1B	AREA 2	TOTAL	
	WOODS (HSG A) WOODS (HSG B)	37.960		-	- 37.960	
	WOODS (HSG C)	-21.700			21.700	
	WOODS (HSG D)			-	51.430	
	GRAVEL (HSG A)	1 510	-	-	-	
	GRAVEL (HSG B) GRAVEL (HSG C)	- 1.510	0.230	0.037	1.777 0.178	
	GRAVEL (HSG D)	- 0.680		-	0.680	
(578B)	MEADOW (HSG B)	0.065	0.089	0.023	0.177	
	MEADOW (HSG C) MEADOW (HSG D)	0.300	0.042		0.342	
$\sum_{i} \sum_{i} \sum_{j} \sum_{i} \sum_{j$	IMPERVIOUS (HSG B)		0.011		0.011	NOTES:
	WATER (HSG B)		0.023	-	0.023	REFER TO PRE
	TOTAL	113.645	0.573	0.060	114.278	MAP DRAWING






Z:\CLIENTS\TND\NUSC\58466_NPT\DESIGN\SUBSTATION\200-TRANSITION_STATION-2\CADD\CIVIL-SITE\WORKING\NPTT2-SCP.DWG 9/30/2015 12:59 PM RLREED

	SITE COVER AREA					
ITEM	DESCRIPTION	AREA (SF)	AREA (AC)			
PS	PARCEL SIZE	2,722,455	62.50			
EI	EXISTING IMPERVIOUS	200,061	4.59			
PI	PROPOSED IMPERVIOUS	1,394	0.03			
PDA	PROPOSED DISTURBED AREA	44,060	1.01			
UDC	UNDISTURBED COVER	2,493,524	57.24			
DIA	PROPOSED DISCONNECTED IMPERVIOUS AREA	1,394	0.03			


a strend utto

	SITE COVER TABULATION					
ITEM	DESCRIPTION	FORMULA	TOTAL			
TIC	TOTAL IMPERVIOUS COVER (ACRES)	EI + PI	4.62 AC			
EIC	EFFECTIVE IMPERVIOUS COVER (ACRES)	TIC - DIA	4.59 AC			
EIC %	EIC PERCENTAGE	EIC / PS	7.3%			
UDC %	UDC PERCENTAGE	UDC / PS	91.6%			

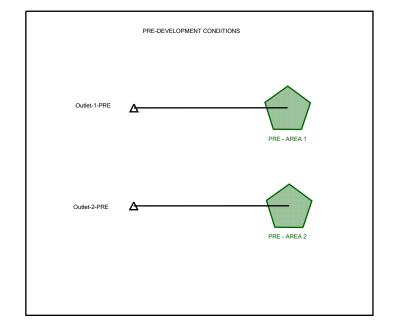


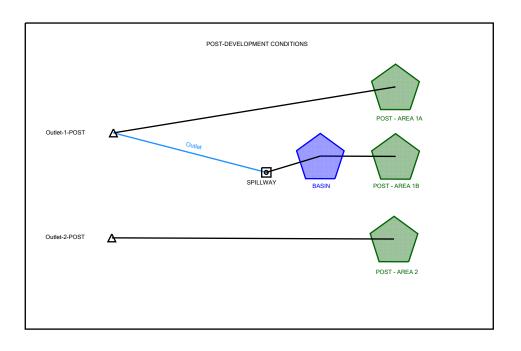
1. 2011 ORTHOIMAGERY OBTAINED IN .SID FORMAT FROM NH STATEWIDE GIS CLEARINGHOUSE WEBSITE AT www.granit.unh.edu. TILES USED: 1035009150 & 1035009200





NORTH


200


REVISION: 11/10/2013

MILE NO: SHEET 1 OF 1

NPTT2-SCF

APPENDIX B – HYDROLOGY MODEL (PONDPACK)





	Northern Pass
Title	Transition Station
THE	#2 Stormwater
	Model
Engineer	R. Reed
Compony	Burns &
Company	McDonnell
Date	11/16/2016

# **Catchments Summary**

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
PRE - AREA 1	Clarksville, NH - Synthetic Curve, 2 yrs	2	2.721	12.550	12.78
PRE - AREA 1	Clarksville, NH - Synthetic Curve, 10 yrs	10	6.668	12.450	41.46
PRE - AREA 1	Clarksville, NH - Synthetic Curve, 50 yrs	50	13.807	12.450	96.07
PRE - AREA 1	Clarksville, NH - Synthetic Curve, 100 yrs	100	18.303	12.350	130.53
POST - AREA 1A	Clarksville, NH - Synthetic Curve, 2 yrs	2	2.458	12.550	10.74
POST - AREA 1A	Clarksville, NH - Synthetic Curve, 10 yrs	10	6.216	12.450	36.76
POST - AREA 1A	Clarksville, NH - Synthetic Curve, 50 yrs	50	13.111	12.425	88.70
POST - AREA 1A	Clarksville, NH - Synthetic Curve, 100 yrs	100	17.485	12.425	121.86
PRE - AREA 2	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.009	11.925	0.17
PRE - AREA 2	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.016	11.925	0.31
PRE - AREA 2	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.027	11.925	0.50
PRE - AREA 2	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.033	11.925	0.61
POST - AREA 2	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.002	11.950	0.04
POST - AREA 2	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.005	11.925	0.09
POST - AREA 2	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.010	11.925	0.18
POST - AREA 2	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.012	11.925	0.23
POST - AREA 1B	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.037	12.025	0.58
POST - AREA 1B	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.069	12.025	1.08
POST - AREA 1B	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.118	12.000	1.85

# **Catchments Summary**

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
POST - AREA 1B	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.146	12.000	2.29

# Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Outlet-1-PRE	Clarksville, NH - Synthetic Curve, 2 yrs	2	2.721	12.550	12.78
Outlet-1-PRE	Clarksville, NH - Synthetic Curve, 10 yrs	10	6.668	12.450	41.46
Outlet-1-PRE	Clarksville, NH - Synthetic Curve, 50 yrs	50	13.807	12.450	96.07
Outlet-1-PRE	Clarksville, NH - Synthetic Curve, 100 yrs	100	18.303	12.350	130.53
Outlet-1-POST	Clarksville, NH - Synthetic Curve, 2 yrs	2	2.459	12.550	10.77
Outlet-1-POST	Clarksville, NH - Synthetic Curve, 10 yrs	10	6.236	12.450	36.88
Outlet-1-POST	Clarksville, NH - Synthetic Curve, 50 yrs	50	13.167	12.425	88.96
Outlet-1-POST	Clarksville, NH - Synthetic Curve, 100 yrs	100	17.562	12.425	122.18
Outlet-2-PRE	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.009	11.925	0.17
Outlet-2-PRE	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.016	11.925	0.31
Outlet-2-PRE	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.027	11.925	0.50
Outlet-2-PRE	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.033	11.925	0.61
Outlet-2-POST	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.002	11.950	0.04
Outlet-2-POST	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.005	11.925	0.09
Outlet-2-POST	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.010	11.925	0.18
Outlet-2-POST	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.012	11.925	0.23

# **Pond Summary**

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
BASIN (IN)	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.037	12.025	0.58	(N/A)	(N/A)
BASIN (OUT)	Clarksville, NH - Synthetic Curve, 2 yrs	2	0.001	12.475	0.03	1,303.83	0.015
BASIN (IN)	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.069	12.025	1.08	(N/A)	(N/A)
BASIN (OUT)	Clarksville, NH - Synthetic Curve, 10 yrs	10	0.021	12.075	0.94	1,303.91	0.017
BASIN (IN)	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.118	12.000	1.85	(N/A)	(N/A)
BASIN (OUT)	Clarksville, NH - Synthetic Curve, 50 yrs	50	0.056	12.025	1.76	1,303.99	0.019
BASIN (IN)	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.146	12.000	2.29	(N/A)	(N/A)
BASIN (OUT)	Clarksville, NH - Synthetic Curve, 100 yrs	100	0.078	12.025	2.22	1,304.02	0.019

Time-Depth Curve:	100-Year Type II 24-Hour
Label	100-Year Type II 24-Hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	100 years

Time	ne on leit rep				
(hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.1		0.1	0.1	0.1
2.000	0.1	0.1 0.1	0.1	0.1	
					0.1
2.500	0.1	0.1	0.2	0.2	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2 0.2	0.2 0.2	0.2	0.2	0.2
4.000			0.3	0.3	0.3
4.500	0.3	0.3	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.4	0.4	0.4	0.4	0.4
6.000	0.4	0.4	0.4	0.4	0.4
6.500	0.4	0.5	0.5	0.5	0.5
7.000	0.5	0.5	0.5	0.5	0.5
7.500	0.5	0.6	0.6	0.6	0.6
8.000	0.6	0.6	0.6	0.6	0.6
8.500	0.7	0.7	0.7	0.7	0.7
9.000	0.7	0.7	0.8	0.8	0.8
9.500	0.8	0.8	0.8	0.9	0.9
10.000	0.9	0.9	0.9	1.0	1.0
10.500	1.0	1.0	1.1	1.1	1.1
11.000	1.2	1.2	1.3	1.3	1.4
11.500	1.4	1.5	1.8	2.1	2.8
12.000	3.3	3.4	3.5	3.6	3.6
12.500	3.7	3.7	3.7	3.8	3.8
13.000	3.9	3.9	3.9	3.9	4.0
13.500	4.0	4.0	4.0	4.1	4.1
14.000	4.1 4.2	4.1 4.2	4.1	4.1	4.2
14.500 15.000	4.2	4.2	4.2 4.3	4.2 4.3	4.2 4.3
	4.3				
15.500		4.3	4.4	4.4	4.4
16.000	4.4	4.4	4.4 4.5	4.4	4.4
16.500	4.4	4.5	4.5	4.5 4 F	4.5
17.000	4.5	4.5	4.5	4.5	4.5
17.500	4.5	4.6	4.6	4.6	4.6
18.000	4.6	4.6	4.6	4.6	4.6
18.500	4.6	4.6	4.7	4.7	4.7
19.000	4.7	4.7	4.7	4.7	4.7
19.500	4.7	4.7	4.7	4.7	4.7
20.000	4.8	4.8	4.8	4.8	4.8
20.500	4.8	4.8	4.8	4.8	4.8
21.000	4.8	4.8	4.8	4.8	4.8
21.500	4.8	4.9	4.9	4.9	4.9

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
22.000	4.9	4.9	4.9	4.9	4.9
22.500	4.9	4.9	4.9	4.9	4.9
23.000	4.9	4.9	4.9	5.0	5.0
23.500	5.0	5.0	5.0	5.0	5.0
24.000	5.0	(N/A)	(N/A)	(N/A)	(N/A)

Time-Depth Curve:	10-Year Type II 24-Hour
Label	10-Year Type II 24-Hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	10 years

	lime on left represents time for first value in each row.						
Time	Depth	Depth	Depth	Depth	Depth		
(hours)	(in)	(in)	(in)	(in)	(in)		
0.000	0.0	0.0	0.0	0.0	0.0		
0.500	0.0	0.0	0.0	0.0	0.0		
1.000	0.0	0.0	0.0	0.0	0.0		
1.500	0.0	0.1	0.1	0.1	0.1		
2.000	0.1	0.1	0.1	0.1	0.1		
2.500	0.1	0.1	0.1	0.1	0.1		
3.000	0.1	0.1	0.1	0.1	0.1		
3.500	0.1	0.1	0.1	0.1	0.1		
4.000	0.1	0.2	0.2	0.2	0.2		
4.500	0.2	0.2	0.2	0.2	0.2		
5.000	0.2	0.2	0.2	0.2	0.2		
5.500	0.2	0.2	0.2	0.2	0.2		
6.000	0.2	0.3	0.3	0.3	0.3		
6.500	0.3	0.3	0.3	0.3	0.3		
7.000	0.3	0.3	0.3	0.3	0.3		
7.500	0.3	0.3	0.3	0.4	0.4		
8.000	0.4	0.4	0.4	0.4	0.4		
8.500	0.4	0.4	0.4	0.4	0.4		
9.000	0.5	0.5	0.5	0.5	0.5		
9.500	0.5	0.5	0.5	0.5	0.5		
10.000	0.6	0.6	0.6	0.6	0.6		
10.500	0.6	0.6	0.7	0.7	0.7		
11.000	0.7	0.7	0.8	0.8	0.8		
11.500	0.9	0.9	1.1	1.3	1.7		
12.000	2.0	2.1	2.2	2.2	2.2		
12.500	2.3	2.3	2.3	2.3	2.4		
13.000	2.4	2.4	2.4	2.4	2.4		
13.500	2.5	2.5	2.5	2.5	2.5		
14.000	2.5	2.5	2.5	2.6	2.6		
14.500	2.6	2.6	2.6	2.6	2.6		
15.000	2.6	2.6	2.6	2.7	2.7		
15.500	2.7	2.7	2.7	2.7	2.7		
16.000	2.7	2.7	2.7	2.7	2.7		
16.500	2.7	2.8	2.8	2.8	2.8		
17.000	2.8	2.8	2.8	2.8	2.8		
17.500	2.8	2.8	2.8	2.8	2.8		
18.000	2.8	2.8	2.8	2.9	2.9		
18.500	2.9	2.9	2.9	2.9	2.9		
19.000	2.9	2.9	2.9	2.9	2.9		
19.500	2.9	2.9	2.9	2.9	2.9		
20.000	2.9	2.9	2.9	2.9	2.9		
20.500	3.0	3.0	3.0	3.0	3.0		
21.000	3.0	3.0	3.0	3.0	3.0		
21.500	3.0	3.0	3.0	3.0	3.0		

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
22.000	3.0	3.0	3.0	3.0	3.0
22.500	3.0	3.0	3.0	3.0	3.0
23.000	3.0	3.0	3.1	3.1	3.1
23.500	3.1	3.1	3.1	3.1	3.1
24.000	3.1	(N/A)	(N/A)	(N/A)	(N/A)

Time-Depth Curve: 2-Year Type II 24-Hour		
Label	2-Year Type II 24- Hour	
Start Time	0.000 hours	
Increment	0.100 hours	
End Time	24.000 hours	
Return Event	2 years	

	ne on lett rep	JIESEIILS LIIII		ue in each ro	
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.0	0.0	0.0	0.0
2.000	0.0	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.1	0.1
4.500	0.1	0.1	0.1	0.1	0.1
5.000	0.1	0.1	0.1	0.1	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.2
6.500	0.2	0.2	0.2	0.2	0.2
7.000	0.2	0.2	0.2	0.2	0.2
7.500	0.2	0.2	0.2	0.3	0.3
8.000	0.3	0.3	0.3	0.3	0.3
8.500	0.3	0.3	0.3	0.3	0.3
9.000	0.3	0.3	0.3	0.3	0.4
9.500	0.4	0.4	0.4	0.4	0.4
10.000	0.4	0.4	0.4	0.4	0.4
10.500	0.4	0.5	0.5	0.5	0.5
11.000	0.5	0.5	0.6	0.6	0.6
11.500	0.6	0.7	0.8	0.9	1.2
12.000	1.5	1.5	1.5	1.6	1.6
12.500	1.6	1.6	1.7	1.7	1.7
13.000	1.7	1.7	1.7	1.7	1.7
13.500	1.8	1.8	1.8	1.8	1.8
14.000	1.8	1.8	1.8	1.8	1.8
14.500	1.8	1.9	1.9	1.9	1.9
15.000	1.9	1.9	1.9	1.9	1.9
15.500	1.9	1.9	1.9	1.9	1.9
16.000	1.9	1.9	1.9	2.0	2.0
16.500	2.0	2.0	2.0	2.0	2.0
17.000	2.0	2.0	2.0	2.0	2.0
17.500	2.0	2.0	2.0	2.0	2.0
18.000	2.0	2.0	2.0	2.0	2.0
18.500	2.0	2.0	2.1	2.1	2.1
19.000	2.1	2.1	2.1	2.1	2.1
19.500	2.1	2.1	2.1	2.1	2.1
20.000	2.1	2.1	2.1	2.1	2.1
20.500	2.1	2.1	2.1	2.1	2.1
21.000	2.1	2.1	2.1	2.1	2.1
21.500	2.1	2.1	2.1	2.1	2.1

	-				
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
22.000	2.1	2.2	2.2	2.2	2.2
22.500	2.2	2.2	2.2	2.2	2.2
23.000	2.2	2.2	2.2	2.2	2.2
23.500	2.2	2.2	2.2	2.2	2.2
24.000	2.2	(N/A)	(N/A)	(N/A)	(N/A)

Time-Depth Curves	50-Year Type II 24-Hour
Label	50-Year Type II 24-Hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	50 years

Time (hours)Depth (in)Depth (in)Depth (in)Depth (in)Depth (in)0.0000.000.00.00.00.00.5000.00.00.00.00.00.5000.00.10.10.10.11.0000.00.10.10.10.11.5000.10.10.10.10.12.0000.10.10.10.10.12.5000.10.20.20.20.23.5000.20.20.20.20.24.0000.20.20.20.20.24.5000.30.30.30.30.35.5000.30.30.30.30.36.0000.30.40.40.40.47.0000.40.40.40.47.5000.50.50.50.58.6000.60.60.60.69.6000.60.60.60.69.5000.70.70.70.79.5000.70.70.70.79.5000.70.70.70.79.5000.70.70.70.79.5000.23.23.23.310.0000.80.80.80.80.500.70.70.70.79.5000.70.70.70.711.5001.21.3<
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
4.0000.20.20.20.20.24.5000.20.30.30.30.35.0000.30.30.30.30.35.5000.30.30.30.30.36.0000.30.40.40.40.46.5000.40.40.40.47.0000.40.40.40.57.5000.50.50.50.58.0000.50.50.50.59.5000.60.60.60.69.0000.60.60.70.79.5000.70.70.70.79.5000.90.90.91.011.0001.01.11.11.211.5001.21.31.51.92.412.0002.92.93.03.113.0003.33.43.43.413.5003.43.53.53.514.0003.53.63.63.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
7.5000.50.50.50.58.0000.50.50.50.50.68.5000.60.60.60.60.69.0000.60.60.70.70.79.5000.70.70.70.70.810.0000.80.80.80.80.80.910.5000.90.90.91.01.011.0001.01.01.11.11.211.5001.21.31.51.92.412.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
8.0000.50.50.50.68.5000.60.60.60.60.69.0000.60.60.70.70.79.5000.70.70.70.70.810.0000.80.80.80.80.80.910.5000.90.90.91.01.011.0001.01.01.11.11.211.5001.21.31.51.92.412.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
9.0000.60.60.70.70.79.5000.70.70.70.70.810.0000.80.80.80.80.810.5000.90.90.91.01.011.0001.01.01.11.11.211.5001.21.31.51.92.412.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
9.5000.70.70.70.70.810.0000.80.80.80.80.910.5000.90.90.91.01.011.0001.01.01.11.11.211.5001.21.31.51.92.412.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
10.0000.80.80.80.80.910.5000.90.90.91.01.011.0001.01.01.11.11.211.5001.21.31.51.92.412.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
10.5000.90.90.91.01.011.0001.01.01.11.11.211.5001.21.31.51.92.412.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
11.0001.01.01.11.11.211.5001.21.31.51.92.412.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
11.5001.21.31.51.92.412.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
12.0002.92.93.03.13.112.5003.23.23.23.33.313.0003.33.43.43.43.413.5003.43.53.53.53.514.0003.53.63.63.63.6
12.5003.23.23.23.313.0003.33.43.43.413.5003.43.53.53.514.0003.53.63.63.6
13.0003.33.43.43.413.5003.43.53.53.514.0003.53.63.63.6
13.5003.43.53.53.514.0003.53.63.63.6
14.000 3.5 3.6 3.6 3.6 3.6
14.500 3.6 3.6 3.6 3.7 3.7
15.000 3.7 3.7 3.7 3.7 3.7
15.500 3.7 3.8 3.8 3.8 3.8
16.000         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8<
16.500         3.8         3.9         3.9         3.9         3.9
17.000 3.9 3.9 3.9 3.9 3.9
17.500 3.9 3.9 3.9 4.0 4.0
18.000         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0<
18.500         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0<
19.000         4.0         4.0         4.1         4.1         4.1
19.500         4.1         4.1         4.1         4.1
20.000 4.1 4.1 4.1 4.1 4.1
20.500 4.1 4.1 4.1 4.1 4.2
21.000 4.2 4.2 4.2 4.2 4.2 4.2
21.500 4.2 4.2 4.2 4.2 4.2

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
22.000	4.2	4.2	4.2	4.2	4.2
22.500	4.2	4.2	4.2	4.3	4.3
23.000	4.3	4.3	4.3	4.3	4.3
23.500	4.3	4.3	4.3	4.3	4.3
24.000	4.3	(N/A)	(N/A)	(N/A)	(N/A)

	Return Event: 2 years
Storm Event:	2-Year Type II 24-Hour

Time of Concentration Results

Time of Concentration Results			
Segment #1: TR-55 Sheet Flow	Segment #1: TR-55 Sheet Flow		
Hydraulic Length	100.00 ft		
Manning's n	0.400		
Slope	0.020 ft/ft		
2 Year 24 Hour Depth	2.4 in		
Average Velocity	0.07 ft/s		
Segment Time of	0.413 hours		
Concentration	0.413 110013		
Segment #2: TR-55 Shallow Co	oncentrated Flow		
Hydraulic Length	4,288.00 ft		
Is Paved?	False		
Slope	0.120 ft/ft		
Average Velocity	5.59 ft/s		
Segment Time of	0.213 hours		
Concentration	0.215 10013		
Segment #3: TR-55 Channel F	low		
Flow Area	1.3 ft ²		
Hydraulic Length	241.00 ft		
Manning's n	0.120		
Slope	0.019 ft/ft		
Wetted Perimeter	4.16 ft		
Average Velocity	0.77 ft/s		
Segment Time of	0.087 hours		
Concentration	0.067 110013		
Segment #4: TR-55 Shallow Co	oncentrated Flow		
Hydraulic Length	194.00 ft		
Is Paved?	False		
Slope	0.004 ft/ft		
Average Velocity	0.95 ft/s		
Segment Time of	0.056 hours		
Concentration	0.056 10015		
Segment #5: TR-55 Channel F	low		
Flow Area	15.7 ft ²		
Hydraulic Length	100.00 ft		
Manning's n	0.045		
Slope	0.005 ft/ft		
Slope Wetted Perimeter	0.005 ft/ft 15.50 ft		
•			
Wetted Perimeter	15.50 ft 2.36 ft/s		
Wetted Perimeter Average Velocity	15.50 ft		
Wetted Perimeter Average Velocity Segment Time of	15.50 ft 2.36 ft/s 0.012 hours		
Wetted Perimeter Average Velocity Segment Time of Concentration	15.50 ft 2.36 ft/s 0.012 hours		
Wetted Perimeter Average Velocity Segment Time of Concentration Segment #6: TR-55 Shallow Co	15.50 ft 2.36 ft/s 0.012 hours		
Wetted Perimeter Average Velocity Segment Time of Concentration Segment #6: TR-55 Shallow Co Hydraulic Length	15.50 ft 2.36 ft/s 0.012 hours oncentrated Flow 94.00 ft		
Wetted Perimeter Average Velocity Segment Time of Concentration Segment #6: TR-55 Shallow Co Hydraulic Length Is Paved?	15.50 ft 2.36 ft/s 0.012 hours oncentrated Flow 94.00 ft False		

# Subsection: Time of Concentration Calculations Label: POST - AREA 1A

	Return Event:	2 years
Storm Event:	2-Year Type II	24-Hour

Segment #6: TR-55 Shallow Concen	trated Flow	
Segment Time of Concentration	0.051 hours	
Time of Concentration (Composite)		
Time of Concentration (Composite)	0.833 hours	

### ==== SCS Channel Flow

$\begin{array}{l} R = Qa \\ V = (1. \end{array}$	n / Wp 49 * (R**(2/3)) * (Sf**-0.5)) / n
$ \begin{array}{c} R = Hyc \\ Aq = Fle \\ Wp = W \\ V = Vel \\ Sf = Slc \\ n = Mar \\ Tc = Tir \end{array} $	<ul> <li>/ 3600</li> <li>draulic radius</li> <li>ow area, square feet</li> <li>/etted perimeter, feet</li> <li>ocity, ft/sec</li> <li>ope, ft/ft</li> <li>oning's n</li> <li>me of concentration, hours</li> <li>w length, feet</li> </ul>

# ==== SCS TR-55 Shallow Concentration Flow

	Unpaved surface: V = 16.1345 * (Sf**0.5)
Tc =	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

# ==== SCS TR-55 Sheet Flow

(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
Tc= Time of concentration, hours
n= Manning's n
Lf= Flow length, feet
P= 2yr, 24hr Rain depth, inches
Sf= Slope, %

	Return Event: 2 years
Storm Event:	2-Year Type II 24-Hour

Time of Concentration Results

Segment #1: TR-55 Sheet Flow		
Hydraulic Length	100.00 ft	
Manning's n	0.100	
Slope	0.015 ft/ft	
2 Year 24 Hour Depth	2.2 in	
Average Velocity	0.17 ft/s	
Segment Time of Concentration	0.160 hours	
Segment #2: TR-55 Shallow Concentrated Flow		
Hydraulic Length	48.00 ft	
Is Paved?	False	
Slope	0.010 ft/ft	
Average Velocity	1.61 ft/s	
Segment Time of Concentration	0.008 hours	
Segment #3: TR-55 Channel Flow		
Flow Area	0.9 ft ²	
Hydraulic Length	111.00 ft	
Manning's n	0.045	
Slope	0.011 ft/ft	
Wetted Perimeter	5.30 ft	
Average Velocity	1.06 ft/s	
Segment Time of Concentration	0.029 hours	
Time of Concentration (Composite)		
Time of Concentration (Composite)	0.197 hours	

#### ==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n
Where:	(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

# ==== SCS TR-55 Shallow Concentration Flow

	Unpaved surface: V = 16.1345 * (Sf**0.5)
Tc =	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

# ==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
	Tc= Time of concentration, hours
	n= Manning's n
Where:	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %
	Sf= Slope, %

	Return Event: 2 years
Storm Event:	2-Year Type II 24-Hour

Time of Concentration Results

Segment #1: TR-55 Sheet Fl	ow
Hydraulic Length	100.00 ft
Manning's n	0.400
Slope	0.020 ft/ft
2 Year 24 Hour Depth	2.4 in
Average Velocity	0.07 ft/s
Segment Time of Concentration	0.413 hours
Segment #2: TR-55 Shallow	Concentrated Flow
Hydraulic Length	4,288.00 ft
Is Paved?	False
Slope	0.120 ft/ft
Average Velocity	5.59 ft/s
Segment Time of Concentration	0.213 hours
Segment #3: TR-55 Channel	Flow
Flow Area	1.3 ft ²
Hydraulic Length	241.00 ft
Manning's n	0.120
Slope	0.019 ft/ft
Wetted Perimeter	4.16 ft
Average Velocity	0.77 ft/s
Segment Time of Concentration	0.087 hours
Segment #4: TR-55 Shallow	Concentrated Flow
Hydraulic Length	362.00 ft
Is Paved?	False
Slope	0.004 ft/ft
Average Velocity	1.02 ft/s
Segment Time of Concentration	0.099 hours
Time of Concentration (Comp	osite)
Time of Concentration (Composite)	0.812 hours

### ==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n
Where:	(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

# ==== SCS TR-55 Shallow Concentration Flow

	Unpaved surface: V = 16.1345 * (Sf**0.5)
Tc =	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

# ==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
	Tc= Time of concentration, hours
	n= Manning's n
Where:	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %
	Sf= Slope, %

# Subsection: Time of Concentration Calculations Label: PRE - AREA 2

# Return Event: 2 years Storm Event: 2-Year Type II 24-Hour

Time of Concentration Results

Segment #1: User Defined Tc

Time of Concentration0.083 hours

Time of Concentration (Composite)	
Time of Concentration (Composite)	0.083 hours

Subsection: Time of Concentration Calculations Label: PRE - AREA 2 Return Event: 2 years Storm Event: 2-Year Type II 24-Hour

#### ==== User Defined

Tc =Value entered by userWhere:Tc= Time of concentration, hours

Subsection: Runoff CN-Area Label: POST - AREA 1A

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil B	55.000	37.960	0.0	0.0	55.000
Woods - good - Soil C	70.000	21.700	0.0	0.0	70.000
Woods - good - Soil D	77.000	51.430	0.0	0.0	77.000
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	1.510	0.0	0.0	85.000
Impervious Areas - Gravel (w/ right-of- way) - Soil D	91.000	0.680	0.0	0.0	91.000
Meadow - cont. grass (non grazed) Soil B	58.000	0.065	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.300	0.0	0.0	71.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	113.645	(N/A)	(N/A)	68.478

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.230	0.0	0.0	85.000
Impervious Areas - Gravel (w/ right-of- way) - Soil C	89.000	0.178	0.0	0.0	89.000
Meadow - cont. grass (non grazed) Soil B	58.000	0.089	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.042	0.0	0.0	71.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil B	98.000	0.011	0.0	0.0	98.000
Water/Ponds Soil B	98.000	0.023	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.573	(N/A)	(N/A)	81.794

# Subsection: Runoff CN-Area Label: POST - AREA 2

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.037	0.0	0.0	85.000
Meadow - cont. grass (non grazed) Soil B	58.000	0.023	0.0	0.0	58.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.060	(N/A)	(N/A)	74.650

Subsection: Runoff CN-Area Label: PRE - AREA 1

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil B	55.000	38.023	0.0	0.0	55.000
Woods - good - Soil C	70.000	22.220	0.0	0.0	70.000
Woods - good - Soil D	77.000	51.444	0.0	0.0	77.000
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	1.795	0.0	0.0	85.000
Impervious Areas - Gravel (w/ right-of- way) - Soil D	91.000	0.679	0.0	0.0	91.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	114.161	(N/A)	(N/A)	68.519

Subsection: Runoff CN-Area Label: PRE - AREA 2

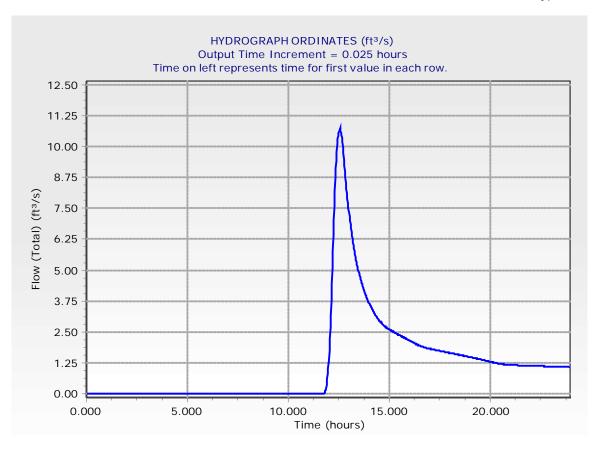
Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.117	0.0	0.0	85.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.117	(N/A)	(N/A)	85.000

Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.833 hours
Area (User Defined)	113.645 acres
Computational Time Increment	0.111 hours
Time to Peak (Computed)	12.550 hours
Flow (Peak, Computed)	10.74 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	12.550 hours
Interpolated Output) Flow (Peak Interpolated	
Output)	10.74 ft ³ /s
Drainage Area	
SCS CN (Composite)	68.000
Area (User Defined)	113.645 acres
Maximum Retention (Pervious)	4.7 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.3 in
Runoff Volume (Pervious)	2.516 ac-ft
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	2.458 ac-ft
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	0.833 hours
Computational Time	0.111 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	154.59 ft ³ /s
Unit peak time, Tp	0.555 hours
Unit receding limb, Tr	2.221 hours
Total unit time, Tb	2.777 hours

=

Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.833 hours
Area (User Defined)	113.645 acres

### HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.


Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.750	0.00	0.00	0.05	0.10	0.15
11.875	0.19	0.35	0.58	0.80	1.02
12.000	1.30	1.76	2.22	2.68	3.15
12.125	3.77	4.44	5.10	5.77	6.41
12.250	7.00	7.58	8.17	8.75	9.11
12.375	9.44	9.77	10.11	10.33	10.44
12.500	10.54	10.64	10.74	10.64	10.55
12.625	10.46	10.36	10.19	9.95	9.72
12.750	9.48	9.24	9.01	8.78	8.54
12.875	8.31	8.10	7.91	7.72	7.53
13.000	7.34	7.18	7.02	6.86	6.69
13.125	6.55	6.41	6.26	6.12	5.99
13.250	5.87	5.75	5.64	5.52	5.42
13.375	5.32	5.23	5.13	5.04	4.95
13.500	4.87	4.79	4.70	4.63	4.56
13.625	4.49	4.42	4.36	4.30	4.24
13.750	4.17	4.11	4.06	4.01	3.95
13.875	3.90	3.85	3.81	3.76	3.71
14.000	3.66	3.62	3.58	3.54	3.50
14.125	3.46	3.42	3.38	3.34	3.31
14.250	3.27	3.24	3.20	3.17	3.14
14.375	3.11	3.08	3.05	3.02	2.99
14.500	2.96	2.94	2.91	2.89	2.86
14.625	2.84	2.82	2.80	2.78	2.76
14.750	2.74	2.73	2.71	2.70	2.68
14.875	2.67	2.65	2.64	2.62	2.61
15.000	2.60	2.59	2.57	2.56	2.55
15.125	2.54	2.53	2.51	2.50	2.49
15.250	2.48	2.47	2.46	2.45	2.44
15.375	2.43	2.41	2.40	2.39	2.38
15.500	2.37	2.36	2.35	2.34	2.33
15.625	2.32	2.31	2.30	2.28	2.27
15.750	2.26	2.25	2.24	2.23	2.22
15.875 16.000	2.21 2.15	2.20 2.14	2.19	2.17 2.12	2.16
	2.15	2.14	2.13		2.11
16.125 16.250	2.10	2.09	2.07 2.02	2.06 2.01	2.05 2.00
16.250	2.04 1.99	2.03 1.98	2.02	2.01	2.00 1.95
16.500	1.99	1.96	1.97	1.90	1.95
16.625	1.94	1.94	1.93	1.92	1.91
16.750	1.90	1.90	1.86	1.85	1.85
16.875	1.84	1.84	1.83	1.83	1.83
17.000	1.82	1.81	1.81	1.80	1.80
17.000	1.02	1.01	1.01	1.00	1.00

### HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.							
Time (hours)	Flow (ft ³ /s)						
17.125	1.79	1.79	1.79	1.78	1.78		
17.250	1.77	1.77	1.76	1.76	1.76		
17.375	1.75	1.75	1.74	1.74	1.74		
17.500	1.73	1.73	1.72	1.72	1.72		
17.625	1.71	1.71	1.70	1.70	1.69		
17.750	1.69	1.69	1.68	1.68	1.67		
17.875	1.67	1.67	1.66	1.66	1.65		
18.000	1.65	1.65	1.64	1.64	1.63		
18.125	1.63	1.63	1.62	1.62	1.61		
18.250	1.61	1.61	1.60	1.60	1.59		
18.375	1.59	1.58	1.58	1.58	1.57		
18.500	1.57	1.56	1.56	1.55	1.55		
18.625	1.55	1.54	1.54	1.53	1.53		
18.750	1.52	1.52	1.52	1.51	1.51		
18.875	1.50	1.50	1.49	1.49	1.48		
19.000	1.48	1.48	1.47	1.47	1.46		
19.125	1.46	1.45	1.45	1.44	1.44		
19.250	1.44	1.43	1.43	1.42	1.42		
19.375	1.41	1.41	1.40	1.40	1.39		
19.500	1.39	1.38	1.38	1.37	1.37		
19.625	1.37	1.36	1.36	1.35	1.35		
19.750	1.34	1.34	1.33	1.33	1.32		
19.875	1.32	1.31	1.31	1.30	1.30		
20.000	1.29	1.29	1.28	1.28	1.27		
20.125	1.27	1.26	1.26	1.26	1.25		
20.250	1.25	1.24	1.24	1.23	1.23		
20.375	1.22	1.22	1.22	1.21	1.21		
20.500	1.21	1.20	1.20	1.20	1.19		
20.625	1.19	1.19	1.19	1.18	1.18		
20.750	1.18	1.18	1.18	1.17	1.17		
20.875	1.17	1.17	1.17	1.17	1.16		
21.000	1.16	1.16	1.16	1.16	1.16		
21.125	1.16	1.16	1.16	1.15	1.15		
21.250	1.15	1.15	1.15	1.15	1.15		
21.375	1.15	1.15	1.15	1.15	1.14		
21.500	1.14	1.14	1.14	1.14	1.14		
21.625	1.14	1.14	1.14	1.14	1.14		
21.750	1.14	1.14	1.13	1.13	1.13		
21.875	1.13	1.13	1.13	1.13	1.13		
22.000	1.13	1.13	1.13	1.13	1.13		
22.125	1.13	1.12	1.12	1.12	1.12		
22.250	1.12	1.12	1.12	1.12	1.12		
22.375	1.12	1.12	1.12	1.12	1.12		
22.500 22.625	1.11	1.11	1.11	1.11	1.11		
	1.11	1.11	1.11	1.11	1.11		
22.750	1.11	1.11	1.11	1.10	1.10		
22.875	1.10	1.10	1.10	1.10	1.10		
23.000 23.125	1.10 1.10	1.10 1.10	1.10 1.09	1.10 1.09	1.10 1.09		
23.125	1.10	1.10	1.09	1.09	1.09		
23.250	1.09	1.09	1.09	1.09	1.09		
23.500	1.09	1.09	1.09	1.09	1.09		
23.000	1.00	1.00	1.00	1.00	1.00		

## HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.

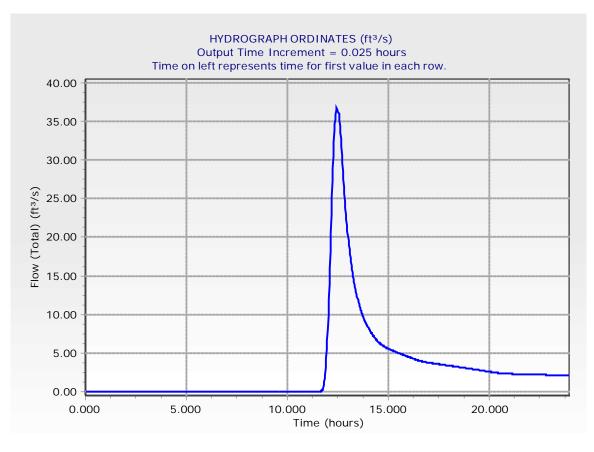
Time (hours)	Flow (ft ³ /s)				
23.625	1.08	1.08	1.08	1.08	1.08
23.750	1.08	1.08	1.07	1.07	1.07
23.875	1.07	1.07	1.07	1.07	1.07
24.000	1.07	(N/A)	(N/A)	(N/A)	(N/A)



Storm Event	10-Year Type II 24-Hour				
Return Event	10 years				
Duration	24.000 hours				
Depth	3.1 in				
Time of Concentration (Composite)	0.833 hours				
Area (User Defined)	113.645 acres				
Computational Time	0.111 hours				
Increment	12.439 hours				
Time to Peak (Computed) Flow (Peak, Computed)	36.85 ft ³ /s				
Output Increment	0.025 hours				
Time to Flow (Peak	0.025 110013				
Interpolated Output)	12.450 hours				
Flow (Peak Interpolated Output)	36.76 ft ³ /s				
Drainage Area					
SCS CN (Composite)	68.000				
Area (User Defined)	113.645 acres				
Maximum Retention (Pervious)	4.7 in				
Maximum Retention (Pervious, 20 percent)	0.9 in				
Cumulative Runoff					
Cumulative Runoff Depth (Pervious)	0.7 in				
Runoff Volume (Pervious)	6.330 ac-ft				
Hydrograph Volume (Area ur	nder Hydrograph curve)				
Volume	6.216 ac-ft				
SCS Unit Hydrograph Parameters					
Time of Concentration (Composite)	0.833 hours				
Computational Time Increment	0.111 hours				
Unit Hydrograph Shape Factor	483.432				
K Factor	0.749				
Receding/Rising, Tr/Tp	1.670				
Unit peak, qp	154.59 ft ³ /s				
Unit peak time, Tp	0.555 hours				
Unit receding limb, Tr	2.221 hours				
Total unit time, Tb	2.777 hours				

Ξ

Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.833 hours
Area (User Defined)	113.645 acres


## HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.550	0.00	0.01	0.01	0.02	0.03
11.675	0.07	0.15	0.23	0.31	0.42
11.800	0.86	1.29	1.73	2.17	3.09
11.925	4.28	5.47	6.65	8.02	10.01
12.050	12.01	14.01	16.01	18.25	20.57
12.175	22.88	25.20	27.29	28.94	30.59
12.300	32.23	33.88	34.62	35.25	35.87
12.425	36.50	36.76	36.56	36.36	36.16
12.550	35.96	35.16	34.35	33.54	32.73
12.675	31.77	30.70	29.62	28.54	27.48
12.800	26.55	25.63	24.70	23.78	22.99
12.925	22.27	21.55	20.83	20.15	19.56
13.050	18.98	18.40	17.81	17.31	16.82
13.175	16.34	15.85	15.40	15.02	14.63
13.300	14.25	13.86	13.54	13.22	12.91
13.425	12.60	12.31	12.05	11.80	11.54
13.550	11.28	11.07	10.86	10.65	10.44
13.675	10.25	10.07	9.90	9.72	9.55
13.800	9.40	9.25	9.10	8.95	8.81
13.925	8.68	8.55	8.42	8.30	8.19
14.050	8.08	7.96	7.85	7.75	7.65
14.175	7.55	7.45	7.36	7.27	7.18
14.300	7.09	7.00	6.92	6.84	6.76
14.425	6.69	6.61	6.54	6.47	6.40
14.550	6.33	6.27	6.22	6.16	6.10
14.675	6.05	6.01	5.97	5.92	5.88
14.800	5.84	5.80	5.77	5.73	5.70
14.925	5.66	5.63	5.60	5.57	5.54
15.050	5.51	5.48	5.45	5.42	5.39
15.175	5.36	5.33	5.31	5.28	5.25
15.300	5.23	5.20	5.17	5.15	5.12
15.425	5.10	5.07	5.04	5.02	4.99
15.550	4.97	4.94	4.92	4.89	4.87
15.675	4.84 4.71	4.82 4.69	4.79	4.77	4.74
15.800 15.025	4.71 4.59	4.69 4.56	4.66 4.54	4.64 4.51	4.61 4.49
15.925 16.050	4.59 4.46	4.56	4.54 4.41	4.51 4.39	4.49 4.36
16.050	4.40	4.44	4.41	4.39	4.30
16.300	4.34	4.31	4.29	4.20	4.24
16.425	4.22	4.08	4.17	4.13	4.13
16.550	4.01	3.99	3.97	3.95	3.94
16.675	3.92	3.91	3.89	3.88	3.86
16.800	3.85	3.84	3.82		3.80
10.000	5.05	5.04	5.02	5.01	5.00

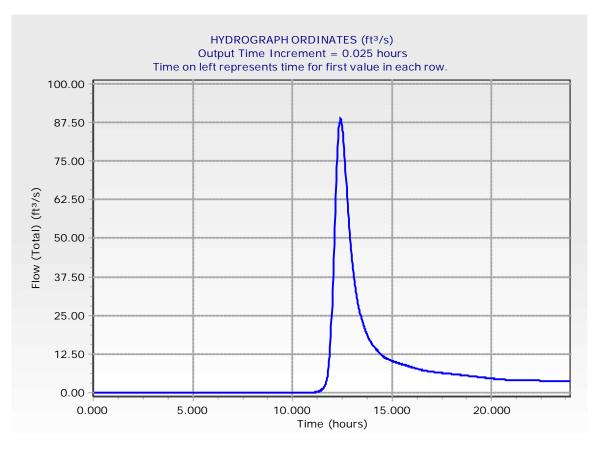
NPTT2-Watershed.ppc 11/22/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	ie on iert rep				
Time (hours)	Flow (ft ³ /s)				
16.925	3.79	3.78	3.76	3.75	3.74
17.050	3.73	3.72	3.71	3.70	3.69
17.175	3.68	3.67	3.66	3.65	3.64
17.300	3.63	3.62	3.61	3.60	3.59
17.425	3.58	3.57	3.56	3.55	3.54
17.550	3.54	3.53	3.52	3.51	3.50
17.675	3.49	3.48	3.47	3.46	3.45
17.800	3.44	3.43	3.42	3.42	3.41
17.925	3.40	3.39	3.38	3.37	3.36
18.050	3.35	3.34	3.33	3.32	3.31
18.175	3.31	3.30	3.29	3.28	3.27
18.300	3.26	3.25	3.24	3.23	3.22
18.425	3.21	3.20	3.19	3.18	3.17
18.550	3.16	3.16	3.15	3.14	3.13
18.675	3.12	3.11	3.10	3.09	3.08
18.800	3.07	3.06	3.05	3.04	3.03
18.925	3.02	3.01	3.00	2.99	2.98
19.050	2.97	2.96	2.95	2.94	2.93
19.175	2.93	2.92	2.91	2.90	2.89
19.300	2.88	2.87	2.86	2.85	2.84
19.425	2.83	2.82	2.81	2.80	2.79
19.550	2.78	2.77	2.76	2.75	2.74
19.675	2.73	2.72	2.71	2.70	2.69
19.800	2.68	2.67	2.66	2.65	2.64
19.925	2.63	2.62	2.61	2.59	2.58
20.050	2.57	2.56	2.55	2.54	2.53
20.175	2.52	2.51	2.51	2.50	2.49
20.300	2.48	2.47	2.46	2.45	2.44
20.425	2.43	2.43	2.42	2.41	2.41
20.550	2.40	2.39	2.39	2.38	2.37
20.675	2.37	2.36	2.36	2.36	2.35
20.800	2.35	2.34	2.34	2.34	2.33
20.925	2.33	2.33	2.32	2.32	2.32
21.050	2.31	2.31	2.31	2.31	2.30
21.175	2.30	2.30	2.30	2.29	2.29
21.300	2.29	2.29	2.28	2.28	2.28
21.425	2.28	2.28	2.27	2.27	2.27
21.550	2.27	2.27	2.27	2.26	2.26
21.675	2.26	2.26	2.26	2.25	2.25
21.800	2.25	2.25	2.25	2.25	2.24
21.925	2.24	2.24	2.24	2.24	2.23
22.050	2.23	2.23	2.23	2.23	2.23
22.175	2.22	2.22	2.22	2.22	2.22
22.300	2.22	2.21	2.21	2.21	2.21
22.425	2.21	2.21	2.20	2.20	2.20
22.550	2.20	2.20	2.20	2.19	2.19
22.675	2.19	2.19	2.19	2.18	2.18
22.800	2.18	2.18	2.18	2.18	2.17
22.925	2.17	2.17	2.17	2.17	2.17
23.050	2.16	2.16	2.16	2.16	2.16
23.175	2.16	2.15	2.15	2.15	2.15
23.300	2.15	2.14	2.14	2.14	2.14

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
23.425	2.14	2.14	2.13	2.13	2.13
23.550	2.13	2.13	2.12	2.12	2.12
23.675	2.12	2.12	2.12	2.11	2.11
23.800	2.11	2.11	2.11	2.10	2.10
23.925	2.10	2.10	2.10	2.09	(N/A)



Storm Event	50-Year Type II 24-Hour			
Return Event	50 years			
Duration	24.000 hours			
Depth	4.3 in			
Time of Concentration (Composite)	0.833 hours			
Area (User Defined)	113.645 acres			
Computational Time Increment	0.111 hours			
Time to Peak (Computed)	12.439 hours			
Flow (Peak, Computed)	89.10 ft ³ /s			
Output Increment	0.025 hours			
Time to Flow (Peak	12 425 hours			
Interpolated Output)	12.425 hours			
Flow (Peak Interpolated Output)	88.70 ft ³ /s			
Drainage Area				
SCS CN (Composite)	68.000			
Area (User Defined)	113.645 acres			
Maximum Retention (Pervious)	4.7 in			
Maximum Retention (Pervious, 20 percent)	0.9 in			
Cumulative Runoff				
Cumulative Runoff Depth (Pervious)	1.4 in			
Runoff Volume (Pervious)	13.311 ac-ft			
Hydrograph Volume (Area un	der Hydrograph curve)			
Volume	13.111 ac-ft			
SCS Unit Hydrograph Parameters				
Time of Concentration (Composite)	0.833 hours			
Computational Time Increment	0.111 hours			
Unit Hydrograph Shape Factor	483.432			
K Factor	0.749			
Receding/Rising, Tr/Tp	1.670			
Unit peak, qp	154.59 ft ³ /s			
Unit peak time, Tp	0.555 hours			
Unit receding limb, Tr	2.221 hours			
Total unit time, Tb	2.777 hours			


Ξ

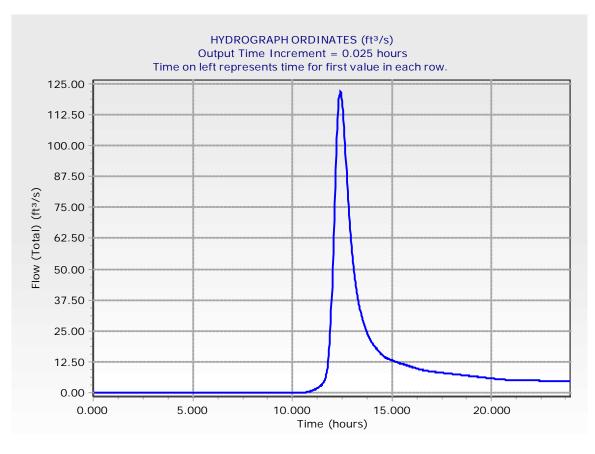
Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.833 hours
Area (User Defined)	113.645 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
10.775	0.00	0.00	0.00	0.00	0.00
10.900	0.01	0.01	0.02	0.02	0.03
11.025	0.04	0.06	0.07	0.08	0.11
11.150	0.14	0.17	0.20	0.23	0.28
11.275	0.34	0.39	0.44	0.52	0.60
11.400	0.68	0.76	0.86	0.98	1.11
11.525	1.24	1.36	1.61	1.85	2.10
11.650	2.35	2.79	3.39	3.99	4.59
11.775	5.30	6.94	8.58	10.23	11.87
11.900	14.64	18.00	21.36	24.72	28.42
12.025	33.34	38.25	43.17	48.08	53.14
12.150	58.23	63.33	68.42	72.88	76.06
12.275	79.24	82.42	85.60	86.58	87.29
12.400	88.00	88.70	88.58	87.43	86.28
12.525	85.13	83.98	81.60	79.22	76.84
12.650	74.46	71.86	69.09	66.33	63.56
12.775	60.85	58.57	56.29	54.01	51.73
12.900	49.82	48.07	46.33	44.59	42.93
13.025	41.53	40.14	38.75	37.36	36.17
13.150	35.03	33.90	32.76	31.71	30.83
13.275	29.94	29.05	28.16	27.43	26.72
13.400	26.00	25.29	24.64	24.06	23.49
13.525	22.91	22.34	21.88	21.41	20.95
13.650	20.49	20.07	19.68	19.30	18.91
13.775	18.54	18.22	17.89	17.57	17.25
13.900	16.96	16.69	16.41	16.14	15.88
14.025	15.64	15.41	15.17	14.94	14.73
14.150	14.52	14.32	14.11	13.92	13.73
14.275	13.55	13.37	13.19	13.02	12.86
14.400	12.70	12.53	12.38	12.24	12.09
14.525	11.95	11.81	11.70	11.58	11.47
14.650	11.36	11.26	11.17	11.09	11.00
14.775	10.92	10.84	10.77	10.70	10.62
14.900	10.56	10.49	10.43	10.36	10.30
15.025	10.24	10.18	10.12	10.06	10.01
15.150 15.275	9.95 9.68	9.90 9.63	9.84 9.58	9.79 9.53	9.74 9.48
15.400 15.525	9.43 9.17	9.37 9.12	9.32 9.08	9.27 9.03	9.22 8.98
15.650	9.17 8.93	9.12 8.88	9.08	9.03 8.78	8.98 8.73
15.000	8.68	o.oo 8.64	8.59	8.54	8.49
15.775	8.44	8.39	8.34	8.30	8.25
16.025	8.20	8.15	8.10		8.25
10.025	0.20	0.13	0.10	0.05	0.01

	e on left rep				
Time (hours)	Flow (ft ³ /s)				
16.150	7.96	7.91	7.87	7.82	7.77
16.275	7.73	7.68	7.64	7.60	7.55
16.400	7.51	7.47	7.43	7.39	7.36
16.525	7.32	7.28	7.25	7.22	7.19
16.650	7.15	7.12	7.10	7.07	7.04
16.775	7.01	6.99	6.96	6.94	6.91
16.900	6.89	6.87	6.84	6.82	6.80
17.025	6.78	6.76	6.74	6.72	6.70
17.150	6.68	6.66	6.64	6.62	6.60
17.275	6.58	6.56	6.54	6.53	6.51
17.400	6.49	6.47	6.45	6.43	6.42
17.525	6.40	6.38	6.36	6.34	6.33
17.650	6.31	6.29	6.27	6.25	6.24
17.775	6.22	6.20	6.18	6.17	6.15
17.900	6.13	6.11	6.10	6.08	6.06
18.025	6.04	6.03	6.01	5.99	5.98
18.150	5.96	5.94	5.92	5.91	5.89
18.275	5.87	5.85	5.84	5.82	5.80
18.400	5.78	5.76	5.75	5.73	5.71
18.525	5.69	5.68	5.66	5.64	5.62
18.650	5.60	5.59	5.57	5.55	5.53
18.775	5.52	5.50	5.48	5.46	5.44
18.900	5.43	5.41	5.39	5.37	5.35
19.025	5.34	5.32	5.30	5.28	5.26
19.150	5.25	5.23	5.21	5.19	5.17
19.275	5.16	5.14	5.12	5.10	5.08
19.400	5.06	5.05	5.03	5.01	4.99
19.525	4.97	4.95	4.94	4.92	4.90
19.650	4.88	4.86	4.84	4.82	4.81
19.775	4.79	4.77	4.75	4.73	4.71
19.900	4.69	4.68	4.66	4.64	4.62
20.025	4.60	4.58	4.56	4.55	4.53
20.150	4.51	4.49	4.47	4.46	4.44
20.275	4.42	4.40	4.39	4.37	4.36
20.400	4.34	4.33	4.31	4.30	4.29
20.525	4.27	4.26	4.25	4.24	4.23
20.650	4.22	4.21	4.20	4.19	4.18
20.775	4.17	4.16	4.16	4.15	4.14
20.900	4.14	4.13	4.12	4.12	4.11
21.025	4.11	4.10	4.10	4.09	4.09
21.150	4.08	4.08	4.07	4.07	4.06
21.275	4.06	4.05	4.05	4.05	4.04
21.400	4.04	4.03	4.03	4.03	4.02
21.525	4.02	4.02	4.01	4.01	4.00
21.650	4.00	4.00	3.99	3.99	3.99
21.775	3.98	3.98	3.98	3.97	3.97
21.900	3.97	3.96	3.96	3.96	3.95
22.025	3.95	3.95	3.94	3.94	3.94
22.150	3.93	3.93	3.93	3.92	3.92
22.275	3.91	3.91	3.91	3.90	3.90
22.400	3.90	3.89	3.89	3.89	3.88
22.525	3.88	3.88	3.87	3.87	3.87

Time (hours)	Flow (ft ³ /s)				
22.650	3.86	3.86	3.86	3.85	3.85
22.775	3.85	3.84	3.84	3.84	3.83
22.900	3.83	3.83	3.82	3.82	3.82
23.025	3.81	3.81	3.81	3.80	3.80
23.150	3.80	3.79	3.79	3.79	3.78
23.275	3.78	3.78	3.77	3.77	3.77
23.400	3.76	3.76	3.76	3.75	3.75
23.525	3.75	3.74	3.74	3.74	3.73
23.650	3.73	3.73	3.72	3.72	3.71
23.775	3.71	3.71	3.70	3.70	3.70
23.900	3.69	3.69	3.69	3.68	3.68




Storm Event100-Year Type II 24-HourReturn Event100 yearsDuration24.000 hoursDepth5.0 inTime of Concentration (Composite)0.833 hoursArea (User Defined)113.645 acresComputational Time IncrementTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)121.86 ft³/sFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000 Area (User Defined)Maximum Retention (Pervious)0.9 inMaximum Retention (Pervious)0.9 inCumulative Runoff1.9 in Runoff Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph Parameters0.833 hoursTime of Concentration (Composite)0.833 hoursComputational Time (Duritional Time)0.111 hoursHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749Receding/Rising Tr/Tp1.670					
Duration24.000 hoursDepth5.0 inTime of Concentration (Composite)0.833 hoursArea (User Defined)113.645 acresComputational Time Increment0.111 hoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)0.9 inCumulative Runoff0.9 inCumulative Runoff17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters0.833 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Storm Event				
Depth5.0 inTime of Concentration (Composite)0.833 hoursArea (User Defined)113.645 acresComputational Time Increment0.111 hoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative RunoffCumulative RunoffCumulative Runoff Depth (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Return Event	100 years			
Time of Concentration (Composite)0.833 hoursArea (User Defined)113.645 acresComputational Time Increment0.111 hoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft ³ /sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft ³ /sOutput)121.86 ft ³ /sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph Parameters111 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Duration	24.000 hours			
(Composite)0.833 hoursArea (User Defined)113.645 acresComputational Time Increment0.111 hoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)0.9 inCumulative Runoff0.9 inCumulative Runoff1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)Computational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432 K FactorK Factor0.749	Depth	5.0 in			
Computational Time Increment0.111 hoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft ³ /sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft ³ /sOutput)121.86 ft ³ /sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff1.9 inCumulative Runoff Depth (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters111 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749		0.833 hours			
Increment0.111 HoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph Parameters0.833 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749		113.645 acres			
Increment0.111 HoursTime to Peak (Computed)12.439 hoursFlow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph Parameters0.833 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749					
Flow (Peak, Computed)122.23 ft³/sOutput Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage Area21.86 ft³/sSCS CN (Composite)68.000 Area (User Defined)Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve) Volume17.485 ac-ftSCS Unit Hydrograph Parameters111 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432 K FactorK Factor0.749	-	0.111 hours			
Output Increment0.025 hoursTime to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage Area2SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff1.9 inCumulative Runoff17.733 ac-ftHydrograph Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters111 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Time to Peak (Computed)	12.439 hours			
Time to Flow (Peak Interpolated Output)12.425 hoursFlow (Peak Interpolated Output)121.86 ft³/sDrainage Area21.86 ft³/sSCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff Depth (Pervious)17.733 ac-ftHydrograph Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters111 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749		122.23 ft ³ /s			
Interpolated Output)12.425 noursFlow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative RunoffCumulative Runoff1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)Computational Time Increment0.111 hoursUnit Hydrograph Shape Factor K Factor483.432 (A324	Output Increment	0.025 hours			
Interpolated Output)Flow (Peak Interpolated Output)121.86 ft³/sDrainage AreaSCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 in (Pervious, 20 percent)0.9 inCumulative RunoffCumulative Runoff (Pervious)Cumulative Runoff Depth (Pervious)1.9 in Runoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)Computational Time IncrementUnit Hydrograph Shape Factor483.432 FactorK Factor0.749	Time to Flow (Peak	12 /25 hours			
Output)121.86 ft9/sDrainage AreaSCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention4.7 in(Pervious)0.9 inCumulative Runoff0.9 inCumulative Runoff Depth1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749		12.420 110015			
SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative RunoffCumulative Runoff Depth (Pervious)Runoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749		121.86 ft ³ /s			
SCS CN (Composite)68.000Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative RunoffCumulative Runoff Depth (Pervious)Runoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749					
Area (User Defined)113.645 acresMaximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative RunoffCumulative Runoff Depth (Pervious)1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Drainage Area				
Maximum Retention (Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff Depth (Pervious)1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters0.833 hoursTime of Concentration (Composite)0.111 hoursUnit Hydrograph Shape Factor K Factor483.432K Factor0.749	SCS CN (Composite)	68.000			
(Pervious)4.7 inMaximum Retention (Pervious, 20 percent)0.9 inCumulative Runoff0.9 inCumulative Runoff Depth (Pervious)1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)VolumeVolume17.485 ac-ftSCS Unit Hydrograph Parameters10.833 hoursTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor K Factor483.432K Factor0.749	Area (User Defined)	113.645 acres			
(Pervious, 20 percent)0.9 inCumulative RunoffCumulative Runoff Depth (Pervious)1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor K Factor483.432K Factor0.749		4.7 in			
Cumulative Runoff Depth (Pervious)1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor K Factor483.432K Factor0.749		0.9 in			
(Pervious)1.9 inRunoff Volume (Pervious)17.733 ac-ftHydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor K Factor483.432 0.749	Cumulative Runoff				
Hydrograph Volume (Area under Hydrograph curve)Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor K Factor483.432K Factor0.749		1.9 in			
Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Runoff Volume (Pervious)	17.733 ac-ft			
Volume17.485 ac-ftSCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749					
SCS Unit Hydrograph ParametersTime of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Hydrograph Volume (Area ur	nder Hydrograph curve)			
Time of Concentration (Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	Volume	17.485 ac-ft			
(Composite)0.833 hoursComputational Time Increment0.111 hoursUnit Hydrograph Shape Factor483.432K Factor0.749	SCS Unit Hydrograph Parameters				
Increment 0.111 Hours Unit Hydrograph Shape 483.432 Factor 0.749		0.833 hours			
Factor483.432K Factor0.749	-	0.111 hours			
K Factor 0.749	, , ,	483.432			
Receding/Rising Tr/Tn 1670	K Factor	0.749			
	Receding/Rising, Tr/Tp	1.670			
Unit peak, qp 154.59 ft ³ /s		154.59 ft ³ /s			
Unit peak time, Tp 0.555 hours		0.555 hours			
	Unit receding limb, Tr	2.221 hours			
	Total unit time, Tb	2.777 hours			
		2 777 hours			

Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.833 hours
Area (User Defined)	113.645 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
10.225	0.00	0.00	0.00	0.00	0.00
10.350	0.01	0.01	0.02	0.02	0.03
10.475	0.04	0.05	0.06	0.07	0.09
10.600	0.11	0.13	0.15	0.17	0.21
10.725	0.24	0.27	0.31	0.36	0.41
10.850	0.45	0.50	0.56	0.63	0.69
10.975	0.76	0.82	0.91	0.99	1.07
11.100	1.16	1.26	1.36	1.46	1.57
11.225	1.68	1.81	1.94	2.07	2.21
11.350	2.37	2.53	2.70	2.87	3.06
11.475	3.29	3.52	3.75	3.97	4.38
11.600	4.79	5.20	5.61	6.31	7.25
11.725	8.18	9.12	10.21	12.60	15.00
11.850	17.39	19.79	23.71	28.41	33.12
11.975	37.83	42.96	49.66	56.35	63.05
12.100	69.74	76.49	83.24	90.00	96.75
12.225	102.61	106.66	110.70	114.74	118.79
12.350	119.84	120.51	121.19	121.86	121.43
12.475	119.61	117.80	115.99	114.17	110.76
12.600	107.35	103.93	100.52	96.87	93.02
12.725	89.17	85.33	81.56	78.42	75.28
12.850	72.14	69.00	66.36	63.97	61.58
12.975	59.19	56.91	55.01	53.11	51.20
13.100	49.30	47.68	46.14	44.60	43.05
13.225 13.350	41.63 35.83	40.43	39.22 33.90	38.02	36.82
13.350	30.83 31.29	34.86 30.52	29.74	32.93 28.98	32.06 28.36
13.475	27.73	27.11	29.74 26.49	25.93	25.42
13.725	24.91	24.40	23.89	23.43	23.04
13.850	22.61	22.18	21.80	21.44	21.08
13.000	20.72	20.37	20.06	19.75	19.44
14.100	19.13	18.86	18.59	18.32	18.05
14.225	17.79	17.55	17.31	17.07	16.83
14.350	16.61	16.40	16.19	15.97	15.77
14.475	15.58	15.40	15.21	15.03	14.88
14.600	14.73	14.59	14.44	14.31	14.20
14.725	14.09	13.98	13.87	13.77	13.68
14.850	13.58	13.49	13.40	13.32	13.23
14.975	13.15	13.07	12.99	12.92	12.84
15.100	12.76	12.69	12.62	12.55	12.48
15.225	12.41	12.34	12.27	12.21	12.14
15.350	12.07	12.01	11.94	11.87	11.81
15.475	11.75	11.68	11.62	11.55	11.49

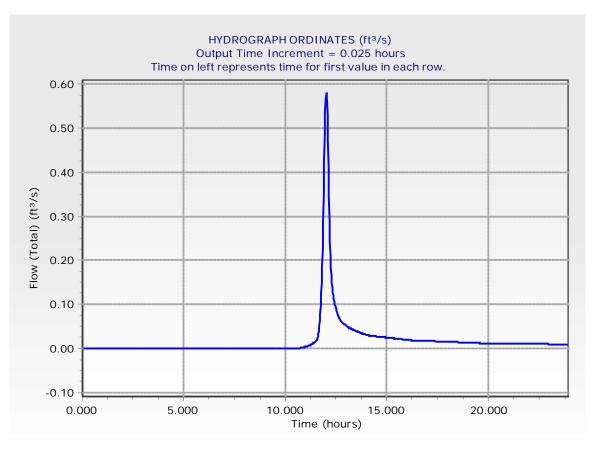
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
15.600	11.43	11.36	11.30	11.24	11.17
15.725	11.11	11.05	10.98	10.92	10.86
15.850	10.80	10.74	10.67	10.61	10.55
15.975	10.49	10.43	10.36	10.30	10.24
16.100	10.18	10.12	10.06	10.00	9.94
16.225	9.88	9.82	9.76	9.70	9.64
16.350	9.59	9.54	9.48	9.43	9.38
16.475	9.33	9.29	9.24	9.19	9.15
16.600	9.11	9.07	9.02	8.99	8.95
16.725	8.91	8.88	8.84	8.81	8.78
16.850	8.75	8.72	8.69	8.66	8.63
16.975	8.60	8.57	8.54	8.52	8.49
17.100	8.46	8.44	8.41	8.39	8.36
17.225	8.34	8.31	8.29	8.27	8.24
17.350	8.22	8.19	8.17	8.15	8.12
17.475	8.10	8.08	8.05	8.03	8.01
17.600	7.98	7.96	7.94	7.92	7.89
17.725	7.87	7.85	7.83	7.80	7.78
17.850	7.76	7.74	7.71	7.69	7.67
17.975	7.65	7.62	7.60	7.58	7.56
18.100	7.53	7.51	7.49	7.47	7.45
18.225	7.42	7.40	7.38	7.36	7.33
18.350	7.31	7.29	7.27	7.24	7.22
18.475	7.20	7.18	7.15	7.13	7.11
18.600	7.08	7.06	7.04	7.02	6.99
18.725	6.97	6.95	6.93	6.90	6.88
18.850	6.86	6.83	6.81	6.79	6.77
18.975	6.74	6.72	6.70	6.67	6.65
19.100	6.63	6.61	6.58	6.56	6.54
19.225	6.51	6.49	6.47	6.45	6.42
19.350	6.40	6.38	6.35	6.33	6.31
19.475	6.28	6.26	6.24	6.21	6.19
19.600	6.17	6.14	6.12	6.10	6.07
19.725	6.05	6.02	6.00	5.98	5.95
19.850	5.93	5.91	5.88	5.86	5.84
19.975	5.81	5.79	5.77	5.74	5.72
20.100	5.70	5.67	5.65	5.63	5.61
20.225	5.58	5.56	5.54	5.52	5.50
20.350	5.48	5.46	5.44	5.42	5.40
20.475	5.38	5.37	5.35	5.33	5.32
20.600	5.31	5.29	5.28	5.27	5.26
20.725	5.24	5.23	5.22	5.21	5.20
20.850	5.20 5.15	5.19 5.15	5.18 5.14	5.17	5.16
20.975	5.15	5.15	5.14	5.13	5.13
21.100	5.12 5.00	5.11	5.11	5.10	5.10
21.225	5.09	5.08 5.04	5.08 5.05	5.07	5.07
21.350	5.06 5.04	5.06 5.02	5.05	5.05	5.04
21.475	5.04	5.03 5.01	5.03 5.00	5.02	5.02
21.600	5.01 4.99	5.01	5.00	5.00	4.99
21.725 21.850	4.99 4.97	4.98 4.96	4.98 4.96	4.98 4.95	4.97 4.95
21.975	4.94	4.94	4.94	4.93	4.93

Time (hours)	Flow (ft ³ /s)				
(nours)	(11975)	(113/5)	(113/5)	(11975)	(110/5)
22.100	4.92	4.92	4.91	4.91	4.91
22.225	4.90	4.90	4.89	4.89	4.88
22.350	4.88	4.88	4.87	4.87	4.86
22.475	4.86	4.85	4.85	4.85	4.84
22.600	4.84	4.83	4.83	4.82	4.82
22.725	4.81	4.81	4.81	4.80	4.80
22.850	4.79	4.79	4.78	4.78	4.78
22.975	4.77	4.77	4.76	4.76	4.75
23.100	4.75	4.75	4.74	4.74	4.73
23.225	4.73	4.72	4.72	4.71	4.71
23.350	4.71	4.70	4.70	4.69	4.69
23.475	4.68	4.68	4.68	4.67	4.67
23.600	4.66	4.66	4.65	4.65	4.64
23.725	4.64	4.64	4.63	4.63	4.62
23.850	4.62	4.61	4.61	4.60	4.60
23.975	4.60	4.59	(N/A)	(N/A)	(N/A)



Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres
Computational Time Increment	0.026 hours
Time to Peak (Computed)	12.028 hours
Flow (Peak, Computed)	0.58 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	12.025 hours
Interpolated Output)	12.025 110015
Flow (Peak Interpolated Output)	0.58 ft ³ /s
Drainage Area	
SCS CN (Composite)	82.000
Area (User Defined)	0.573 acres
Maximum Retention (Pervious)	2.2 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.8 in
Runoff Volume (Pervious)	0.037 ac-ft
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	0.037 ac-ft
SCS Unit Hydrograph Paran	neters
Time of Concentration (Composite)	0.197 hours
Computational Time Increment	0.026 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	3.30 ft ³ /s
Unit peak time, Tp	0.131 hours
Unit receding limb, Tr	0.525 hours
Total unit time, Tb	0.657 hours

=


Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
10.700	0.00	0.00	0.00	0.00	0.00
10.825	0.00	0.00	0.00	0.00	0.00
10.950	0.00	0.00	0.00	0.00	0.00
11.075	0.01	0.01	0.01	0.01	0.01
11.200	0.01	0.01	0.01	0.01	0.01
11.325	0.01	0.01	0.01	0.01	0.01
11.450	0.01	0.02	0.02	0.02	0.02
11.575	0.02	0.03	0.03	0.04	0.05
11.700	0.06	0.08	0.10	0.12	0.15
11.825	0.18	0.23	0.28	0.35	0.42
11.950	0.49	0.54	0.57	0.58	0.57
12.075	0.53	0.47	0.41	0.35	0.29
12.200	0.24	0.21	0.18	0.16	0.15
12.325	0.14	0.13	0.12	0.11	0.11
12.450	0.10	0.10	0.09	0.09	0.08
12.575	0.08	0.07	0.07	0.07	0.07
12.700	0.06	0.06	0.06	0.06	0.06
12.825	0.06	0.06	0.06	0.06	0.05
12.950	0.05	0.05	0.05	0.05	0.05
13.075	0.05	0.05	0.05	0.05	0.05
13.200	0.05 0.04	0.05 0.04	0.04 0.04	0.04 0.04	0.04 0.04
13.325	0.04	0.04		0.04	
13.450 13.575	0.04	0.04	0.04 0.04	0.04	0.04
13.700	0.04	0.04	0.04	0.04	0.04
13.825	0.04	0.04	0.04	0.03	0.03 0.03
13.950	0.03	0.03	0.03	0.03	0.03
14.075	0.03	0.03	0.03	0.03	0.03
14.200	0.03	0.03	0.03	0.03	0.03
14.325	0.03	0.03	0.03	0.03	0.03
14.450	0.03	0.03	0.03	0.03	0.03
14.575	0.03	0.03	0.03	0.03	0.03
14.700	0.03	0.03	0.03	0.03	0.03
14.825	0.03	0.03	0.03	0.03	0.03
14.950	0.03	0.03	0.03	0.02	0.02
15.075	0.02	0.02	0.02	0.02	0.02
15.200	0.02	0.02	0.02	0.02	0.02
15.325	0.02	0.02	0.02	0.02	0.02
15.450	0.02	0.02	0.02	0.02	0.02
15.575	0.02	0.02	0.02	0.02	0.02
15.700	0.02	0.02	0.02	0.02	0.02
15.825	0.02	0.02	0.02	0.02	0.02
15.950	0.02	0.02	0.02		0.02

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
16.075	0.02	0.02	0.02	0.02	0.02
16.200	0.02	0.02	0.02	0.02	0.02
16.325	0.02	0.02	0.02	0.02	0.02
16.450	0.02	0.02	0.02	0.02	0.02
16.575	0.02	0.02	0.02	0.02	0.02
16.700	0.02	0.02	0.02	0.02	0.02
16.825	0.02	0.02	0.02	0.02	0.02
16.950	0.02	0.02	0.02	0.02	0.02
17.075	0.02	0.02	0.02	0.02	0.02
17.200	0.02	0.02	0.02	0.02	0.02
17.325	0.02	0.02	0.02	0.02	0.02
17.450	0.02	0.02	0.02	0.02	0.02
17.575	0.02	0.02	0.02	0.02	0.02
17.700	0.02	0.02	0.02	0.02	0.02
17.825	0.02	0.02	0.02	0.02	0.02
17.950	0.02	0.02	0.02	0.02	0.02
18.075	0.02	0.02	0.02	0.02	0.02
18.200	0.02	0.02	0.01	0.01	0.01
18.325	0.01	0.01	0.01	0.01	0.01
18.450	0.01	0.01	0.01	0.01	0.01
18.575	0.01	0.01	0.01	0.01	0.01
18.700	0.01	0.01	0.01	0.01	0.01
18.825	0.01	0.01	0.01	0.01	0.01
18.950	0.01	0.01	0.01	0.01	0.01
19.075	0.01	0.01	0.01	0.01	0.01
19.200	0.01	0.01	0.01	0.01	0.01
19.325	0.01	0.01	0.01	0.01	0.01
19.450	0.01	0.01	0.01	0.01	0.01
19.575	0.01	0.01	0.01	0.01	0.01
19.700	0.01	0.01	0.01	0.01	0.01
19.825	0.01	0.01	0.01	0.01	0.01
19.950	0.01	0.01	0.01	0.01	0.01
20.075	0.01	0.01	0.01	0.01	0.01
20.200	0.01	0.01	0.01	0.01	0.01
20.325	0.01	0.01	0.01	0.01	0.01
20.450	0.01	0.01	0.01	0.01	0.01
20.575	0.01	0.01	0.01	0.01	0.01
20.700	0.01	0.01	0.01	0.01	0.01
20.825	0.01	0.01	0.01	0.01	0.01
20.950	0.01	0.01	0.01	0.01	0.01
21.075	0.01	0.01	0.01	0.01	0.01
21.200	0.01	0.01	0.01	0.01	0.01
21.325	0.01	0.01	0.01	0.01	0.01
21.450	0.01	0.01	0.01	0.01	0.01
21.575	0.01	0.01	0.01	0.01	0.01
21.700	0.01	0.01	0.01	0.01	0.01
21.825	0.01	0.01	0.01	0.01	0.01
21.950	0.01	0.01	0.01	0.01	0.01
22.075	0.01	0.01	0.01	0.01	0.01
22.200	0.01	0.01	0.01	0.01	0.01
22.325	0.01	0.01	0.01	0.01	0.01
22.450	0.01	0.01	0.01	0.01	0.01

Time (hours)	Flow (ft ³ /s)				
22.575	0.01	0.01	0.01	0.01	0.01
22.700	0.01	0.01	0.01	0.01	0.01
22.825	0.01	0.01	0.01	0.01	0.01
22.950	0.01	0.01	0.01	0.01	0.01
23.075	0.01	0.01	0.01	0.01	0.01
23.200	0.01	0.01	0.01	0.01	0.01
23.325	0.01	0.01	0.01	0.01	0.01
23.450	0.01	0.01	0.01	0.01	0.01
23.575	0.01	0.01	0.01	0.01	0.01
23.700	0.01	0.01	0.01	0.01	0.01
23.825	0.01	0.01	0.01	0.01	0.01
23.950	0.01	0.01	0.01	(N/A)	(N/A)

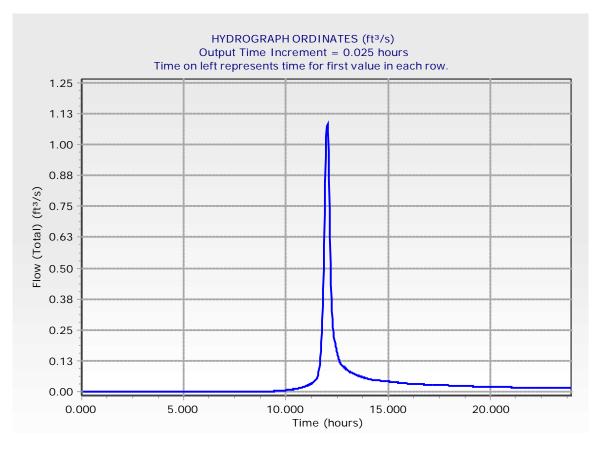
# Subsection: Unit Hydrograph (Hydrograph Table) Label: POST - AREA 1B



Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres
Computational Time	0.02/ hours
Increment	0.026 hours
Time to Peak (Computed)	12.028 hours
Flow (Peak, Computed)	1.08 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak Interpolated Output)	12.025 hours
Flow (Peak Interpolated Output)	1.08 ft ³ /s
Drainage Area	
SCS CN (Composite)	82.000
Area (User Defined)	0.573 acres
Maximum Retention (Pervious)	2.2 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.4 in
Runoff Volume (Pervious)	0.069 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	0.069 ac-ft
SCS Unit Hydrograph Param	eters
Time of Concentration (Composite)	0.197 hours
	0.197 hours 0.026 hours
(Composite) Computational Time	
(Composite) Computational Time Increment Unit Hydrograph Shape	0.026 hours
(Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.026 hours 483.432
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.026 hours 483.432 0.749
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.026 hours 483.432 0.749 1.670
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.026 hours 483.432 0.749 1.670 3.30 ft ³ /s

=

Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres


## HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time	Flow	Flow	Flow	Flow	Flow
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
9.325         0.00         0.00         0.00         0.00         0.00           9.450         0.00         0.00         0.00         0.00         0.00           9.575         0.00         0.00         0.00         0.00         0.00           9.700         0.00         0.00         0.00         0.00         0.00           9.825         0.00         0.01         0.01         0.01         0.01           10.075         0.01         0.01         0.01         0.01         0.01           10.200         0.01         0.01         0.01         0.01         0.01           10.575         0.01         0.01         0.01         0.01         0.01           10.575         0.01         0.01         0.01         0.01         0.01           10.575         0.02         0.02         0.02         0.02         0.02           10.950         0.02         0.02         0.02         0.02         0.02         0.02           10.755         0.03         0.03         0.03         0.03         0.03         0.03           11.825         0.44         0.04         0.04         0.04         0.04				1		
9.450         0.00         0.00         0.00         0.00         0.00           9.755         0.00         0.00         0.00         0.00         0.00           9.700         0.00         0.00         0.00         0.00         0.00           9.825         0.01         0.01         0.01         0.01         0.01           10.75         0.01         0.01         0.01         0.01         0.01           10.200         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.750         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.750         0.03         0.03         0.03         0.03         0.03           11.075         0.03         0.03         0.03         0.03         0.03           11.175         0.07         0.08         0.09         0.11         0.14           11.325         0.44         0.49         0.60         0.72         0.84           11.450         0.55						
9.575         0.00         0.00         0.00         0.00         0.00           9.700         0.00         0.00         0.00         0.00         0.00           9.825         0.00         0.01         0.01         0.01         0.01           9.950         0.01         0.01         0.01         0.01         0.01           10.075         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.450         0.01         0.01         0.01         0.01         0.01           10.775         0.01         0.01         0.01         0.01         0.01           10.700         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.75         0.03         0.03         0.03         0.03         0.03           11.75         0.03         0.03         0.03         0.04         0.04           11.325         0.04         0.04         0.04         0.05         1.05         1.05         1.06         1.05						
9.700         0.00         0.00         0.00         0.00         0.00           9.825         0.00         0.01         0.01         0.01         0.01           9.950         0.01         0.01         0.01         0.01         0.01           10.075         0.01         0.01         0.01         0.01         0.01           10.200         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.575         0.01         0.01         0.01         0.01         0.01           10.700         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.950         0.02         0.02         0.02         0.02         0.02           11.950         0.03         0.03         0.03         0.03         0.03           11.450         0.05         0.05         0.05         0.05           11.450         0.16         0.20         0.24         0.29         0.35           11.450         0.55         0.55						
9.825         0.00         0.00         0.00         0.01           9.950         0.01         0.01         0.01         0.01         0.01           10.075         0.01         0.01         0.01         0.01         0.01           10.200         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.450         0.01         0.01         0.01         0.01         0.01           10.775         0.01         0.01         0.01         0.01         0.01           10.757         0.01         0.01         0.01         0.01         0.01           10.825         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           11.825         0.04         0.04         0.04         0.04         0.04           11.325         0.04         0.04         0.04         0.05         0.05           11.450         0.55         1.03						
9.950         0.01         0.01         0.01         0.01         0.01           10.075         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.450         0.01         0.01         0.01         0.01         0.01           10.575         0.01         0.01         0.01         0.01         0.01           10.700         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.950         0.02         0.02         0.02         0.02         0.02           11.975         0.03         0.03         0.03         0.03         0.03           11.450         0.05         0.05         0.05         0.05         0.05           11.450         0.05         0.05         0.05         0.05         0.05           11.450         0.05         0.05         0.05         0.05         0.05           11.450         0.06						
10.075         0.01         0.01         0.01         0.01         0.01           10.200         0.01         0.01         0.01         0.01         0.01           10.325         0.01         0.01         0.01         0.01         0.01           10.450         0.01         0.01         0.01         0.01         0.01           10.575         0.01         0.01         0.01         0.01         0.01           10.700         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           11.075         0.03         0.03         0.03         0.03         0.03           11.200         0.03         0.03         0.03         0.04         0.04           11.200         0.05         0.05         0.05         0.05         0.06           11.450         0.05         0.05         0.05         0.05         0.06           11.450         0.95         1.03         1.08         1.08         1.05           11.450         0.95         1.03         1.08         1.08         1.05           12.075         0.97						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.200	0.01	0.01	0.01	0.01	0.01
10.575         0.01         0.01         0.01         0.01         0.01           10.700         0.02         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.950         0.02         0.02         0.02         0.02         0.02           11.075         0.03         0.03         0.03         0.03         0.03           11.200         0.03         0.03         0.03         0.04         0.04           11.325         0.04         0.04         0.04         0.05         0.05           11.450         0.05         0.05         0.05         0.05         0.06           11.575         0.07         0.08         0.09         0.11         0.14           11.700         0.16         0.20         0.24         0.29         0.35           11.825         0.41         0.49         0.60         0.72         0.84           11.950         0.95         1.03         1.08         1.08         1.05           12.075         0.97         0.86         0.74         0.62         0.52           12.200         0.43	10.325	0.01	0.01	0.01	0.01	0.01
10.700         0.02         0.02         0.02         0.02           10.825         0.02         0.02         0.02         0.02         0.02           10.950         0.02         0.02         0.02         0.02         0.02           11.075         0.03         0.03         0.03         0.03         0.03           11.200         0.05         0.05         0.05         0.05           11.450         0.05         0.05         0.05         0.06           11.450         0.05         0.05         0.05         0.06           11.575         0.07         0.08         0.09         0.11         0.14           11.700         0.16         0.20         0.24         0.29         0.35           11.825         0.41         0.49         0.60         0.72         0.84           11.950         0.95         1.03         1.08         1.05         1.225           12.000         0.43         0.37         0.33         0.29         0.26           12.325         0.24         0.22         0.21         0.19         0.18           12.450         0.17         0.16         0.16         0.15         0.14	10.450	0.01	0.01	0.01	0.01	0.01
10.825         0.02         0.02         0.02         0.02         0.02           10.950         0.02         0.02         0.02         0.02         0.02           11.075         0.03         0.03         0.03         0.03         0.03           11.200         0.03         0.03         0.03         0.04         0.04           11.325         0.04         0.04         0.04         0.05         0.05           11.450         0.05         0.05         0.05         0.05         0.05           11.575         0.07         0.08         0.09         0.11         0.14           11.700         0.16         0.20         0.24         0.29         0.35           11.825         0.41         0.49         0.60         0.72         0.84           11.950         0.95         1.03         1.08         1.08         1.05           12.075         0.97         0.86         0.74         0.62         0.52           12.200         0.43         0.37         0.33         0.29         0.26           12.325         0.24         0.22         0.21         0.11         1.14           12.450         0.17	10.575	0.01	0.01	0.01	0.01	0.01
10.950         0.02         0.02         0.02         0.02           11.075         0.03         0.03         0.03         0.03         0.03           11.200         0.03         0.03         0.03         0.04         0.04           11.325         0.04         0.04         0.04         0.04         0.05           11.450         0.05         0.05         0.05         0.05         0.05           11.450         0.06         0.07         0.08         0.09         0.11         0.14           11.700         0.16         0.20         0.24         0.29         0.35           11.825         0.41         0.49         0.60         0.72         0.84           11.950         0.95         1.03         1.08         1.08         1.05           12.075         0.97         0.86         0.74         0.62         0.52           12.200         0.43         0.37         0.33         0.29         0.26           12.325         0.24         0.22         0.21         0.19         0.18           12.450         0.17         0.16         0.16         0.15         0.14           12.575         0.13	10.700	0.02	0.02	0.02	0.02	0.02
11.0750.030.030.030.030.0311.2000.030.030.030.040.0411.3250.040.040.040.040.0511.4500.050.050.050.050.0611.5750.070.080.090.110.1411.7000.160.200.240.290.3511.8250.410.490.600.720.8411.9500.951.031.081.081.0512.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.8250.100.100.090.090.0912.8250.100.100.100.090.0912.8250.000.080.080.080.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.060.060.0613.7000.060.060.060.060.0513.9500.050.050.050.050.0514.0750.050.050.050.050.05<	10.825	0.02	0.02	0.02	0.02	0.02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.950	0.02	0.02	0.02	0.02	0.02
11.3250.040.040.040.040.0511.4500.050.050.050.050.0611.5750.070.080.090.110.1411.7000.160.200.240.290.3511.8250.410.490.600.720.8411.9500.951.031.081.081.0512.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.8250.100.100.090.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.7713.4500.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05	11.075	0.03	0.03	0.03	0.03	0.03
11.450         0.05         0.05         0.05         0.06           11.575         0.07         0.08         0.09         0.11         0.14           11.700         0.16         0.20         0.24         0.29         0.35           11.825         0.41         0.49         0.60         0.72         0.84           11.950         0.95         1.03         1.08         1.05         1.05           12.075         0.97         0.86         0.74         0.62         0.52           12.000         0.43         0.37         0.33         0.29         0.26           12.325         0.24         0.22         0.21         0.19         0.18           12.450         0.17         0.16         0.16         0.15         0.14           12.575         0.13         0.13         0.12         0.11         0.11           12.700         0.11         0.11         0.11         0.10         0.09         0.09           12.825         0.10         0.10         0.10         0.09         0.09         0.08           13.075         0.08         0.08         0.08         0.08         0.08         0.08	11.200	0.03	0.03	0.03	0.04	0.04
11.5750.070.080.090.110.1411.7000.160.200.240.290.3511.8250.410.490.600.720.8411.9500.951.031.081.081.0512.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.8250.100.100.100.090.0912.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.8250.060.060.050.050.0513.9500.050.050.050.050.0514.0050.050.050.050.050.0514.2000.050.050.050.050.05						
11.7000.160.200.240.290.3511.8250.410.490.600.720.8411.9500.951.031.081.081.0512.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.4500.070.070.070.070.0613.5750.060.060.060.060.0613.8250.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						0.06
11.8250.410.490.600.720.8411.9500.951.031.081.081.0512.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.7000.110.110.100.090.0912.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0613.5750.060.060.060.060.0613.8250.050.050.050.050.0514.000.050.050.050.050.0514.2000.050.050.050.050.05						0.14
11.9500.951.031.081.081.0512.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.7000.110.110.110.100.1012.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.060.070.070.0713.3250.070.070.070.070.0613.5750.060.060.060.060.0613.8250.060.050.050.050.0513.9500.050.050.050.050.0514.2000.050.050.050.050.05						
12.0750.970.860.740.620.5212.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.070.070.070.0713.4500.070.070.070.060.0613.750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.050.0514.0750.050.050.050.050.050.05						
12.2000.430.370.330.290.2612.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.7000.110.110.110.100.0912.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.070.070.0713.3250.070.070.070.070.0613.5750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
12.3250.240.220.210.190.1812.4500.170.160.160.150.1412.5750.130.130.120.120.1112.7000.110.110.110.100.0912.8250.100.100.090.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.060.060.060.0613.7000.060.060.060.050.0513.8250.060.050.050.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
12.4500.170.160.160.150.1412.5750.130.130.120.120.1112.7000.110.110.110.100.1012.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.7000.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
12.5750.130.130.120.120.1112.7000.110.110.110.110.100.1012.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
12.7000.110.110.110.100.1012.8250.100.100.100.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
12.8250.100.100.010.090.0912.9500.090.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
12.9500.090.090.090.0813.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
13.0750.080.080.080.080.0813.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.060.0613.5750.060.060.060.060.0613.7000.060.060.060.060.0613.8250.060.060.050.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
13.2000.080.080.080.070.0713.3250.070.070.070.070.0713.4500.070.070.070.070.0613.5750.060.060.060.060.0613.7000.060.060.060.060.0613.8250.060.060.050.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
13.3250.070.070.070.0713.4500.070.070.070.0713.5750.060.060.060.0613.7000.060.060.060.0613.8250.060.060.060.0513.9500.050.050.050.0514.0750.050.050.050.0514.2000.050.050.050.05						
13.4500.070.070.070.0613.5750.060.060.060.060.0613.7000.060.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
13.5750.060.060.060.0613.7000.060.060.060.0613.8250.060.060.060.050.0513.9500.050.050.050.050.0514.0750.050.050.050.050.0514.2000.050.050.050.050.05						
13.700         0.06         0.06         0.06         0.06         0.06           13.825         0.06         0.06         0.06         0.05         0.05           13.950         0.05         0.05         0.05         0.05         0.05           14.075         0.05         0.05         0.05         0.05         0.05           14.200         0.05         0.05         0.05         0.05         0.05						
13.825         0.06         0.06         0.06         0.05         0.05           13.950         0.05         0.05         0.05         0.05         0.05           14.075         0.05         0.05         0.05         0.05         0.05           14.200         0.05         0.05         0.05         0.05         0.05						
13.950         0.05         0.05         0.05         0.05           14.075         0.05         0.05         0.05         0.05           14.200         0.05         0.05         0.05         0.05						
14.075         0.05         0.05         0.05         0.05         0.05           14.200         0.05         0.05         0.05         0.05         0.05						
14.200         0.05         0.05         0.05         0.05						
14.450 0.05 0.05 0.05 0.05 0.05						

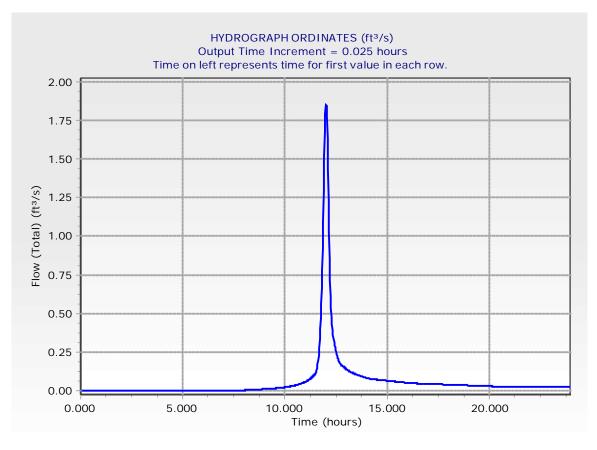
NPTT2-Watershed.ppc 11/22/2016

Time (hours)	Flow (ft ³ /s)				
14.575	0.05	0.04	0.04	0.04	0.04
14.700	0.04	0.04	0.04	0.04	0.04
14.825	0.04	0.04	0.04	0.04	0.04
14.950	0.04	0.04	0.04	0.04	0.04
15.075	0.04	0.04	0.04	0.04	0.04
15.200	0.04	0.04	0.04	0.04	0.04
15.325	0.04	0.04	0.04	0.04	0.04
15.450	0.04	0.04	0.04	0.04	0.04
15.575	0.04	0.04	0.04	0.04	0.04
15.700	0.04	0.03	0.03	0.03	0.03
15.825	0.03	0.03	0.03	0.03	0.03
15.950	0.03	0.03	0.03	0.03	0.03
16.075	0.03	0.03	0.03	0.03	0.03
16.200	0.03	0.03	0.03	0.03	0.03
16.325	0.03	0.03	0.03	0.03	0.03
16.450	0.03	0.03	0.03	0.03	0.03
16.575	0.03	0.03	0.03	0.03	0.03
16.700	0.03	0.03	0.03	0.03	0.03
16.825	0.03	0.03	0.03	0.03	0.03
16.950	0.03	0.03	0.03	0.03	0.03
17.075	0.03	0.03	0.03	0.03	0.03
17.200	0.03	0.03	0.03	0.03	0.03
17.325	0.03	0.03	0.03	0.03	0.03
17.450	0.03	0.03	0.03	0.03	0.03
17.575	0.03	0.03	0.03	0.03	0.03
17.700	0.03	0.03	0.03	0.03	0.03
17.825	0.03	0.03	0.03	0.03	0.03
17.950	0.03	0.03	0.03	0.03	0.03
18.075	0.02	0.02	0.02	0.02	0.02
18.200	0.02	0.02	0.02	0.02	0.02
18.325	0.02	0.02	0.02	0.02	0.02
18.450	0.02	0.02	0.02	0.02	0.02
18.575	0.02	0.02	0.02	0.02	0.02
18.700	0.02	0.02	0.02	0.02	0.02
18.825	0.02	0.02	0.02	0.02	0.02
18.950	0.02	0.02	0.02	0.02	0.02
19.075	0.02	0.02	0.02	0.02	0.02
19.200	0.02	0.02	0.02	0.02	0.02
19.325	0.02	0.02	0.02	0.02	0.02
19.450	0.02	0.02	0.02	0.02	0.02
19.575	0.02	0.02	0.02	0.02	0.02
19.700	0.02	0.02	0.02	0.02	0.02
19.825	0.02	0.02	0.02	0.02	0.02
19.950	0.02	0.02	0.02	0.02	0.02
20.075	0.02	0.02	0.02	0.02	0.02
20.200	0.02	0.02	0.02	0.02	0.02
20.325	0.02	0.02	0.02	0.02	0.02
20.450	0.02	0.02	0.02	0.02	0.02
20.575	0.02	0.02	0.02	0.02	0.02
20.700	0.02	0.02	0.02	0.02	0.02
20.825	0.02	0.02	0.02	0.02	0.02
20.950	0.02	0.02	0.02	0.02	0.02

Time	Flow	Flow	Flow	Flow	Flow	
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	
21.075	0.02	0.02	0.02	0.02	0.02	
21.200	0.02	0.02	0.02	0.02	0.02	
21.325	0.02	0.02	0.02	0.02	0.02	
21.450	0.02	0.02	0.02	0.02	0.02	
21.575	0.02	0.02	0.02	0.02	0.02	
21.700	0.02	0.02	0.02	0.02	0.02	
21.825	0.02	0.02	0.02	0.02	0.02	
21.950	0.02	0.02	0.02	0.02	0.02	
22.075	0.02	0.02	0.02	0.02	0.02	
22.200	0.02	0.02	0.02	0.02	0.02	
22.325	0.02	0.02	0.02	0.02	0.02	
22.450	0.02	0.02	0.02	0.02	0.02	
22.575	0.02	0.02	0.02	0.02	0.02	
22.700	0.02	0.02	0.02	0.02	0.02	
22.825	0.02	0.02	0.02	0.02	0.02	
22.950	0.02	0.02	0.02	0.02	0.02	
23.075	0.02	0.02	0.02	0.02	0.02	
23.200	0.02	0.02	0.02	0.02	0.02	
23.325	0.02	0.02	0.02	0.02	0.02	
23.450	0.02	0.02	0.02	0.02	0.02	
23.575	0.02	0.02	0.02	0.02	0.02	
23.700	0.02	0.02	0.02	0.02	0.02	
23.825	0.02	0.02	0.02	0.02	0.02	
23.950	0.02	0.02	0.02	(N/A)	(N/A)	



Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres
Computational Time Increment	0.026 hours
Time to Peak (Computed)	12.002 hours
Flow (Peak, Computed)	1.85 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	12 000 hours
Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	1.85 ft ³ /s
Drainage Area	
SCS CN (Composite)	82.000
Area (User Defined)	0.573 acres
Maximum Retention (Pervious)	2.2 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.5 in
Runoff Volume (Pervious)	0.118 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	0.118 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.197 hours
(Composite) Computational Time	0.197 hours
(Composite) Computational Time Increment Unit Hydrograph Shape	0.197 hours 0.026 hours
(Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.197 hours 0.026 hours 483.432
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.197 hours 0.026 hours 483.432 0.749
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.197 hours 0.026 hours 483.432 0.749 1.670
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.197 hours 0.026 hours 483.432 0.749 1.670 3.30 ft ³ /s


=

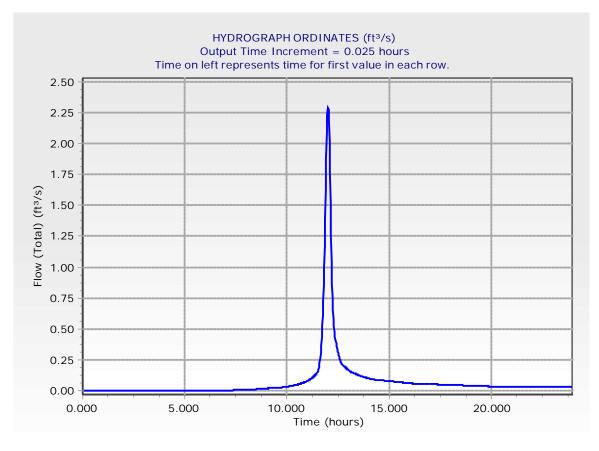
Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
7.550	0.00	0.00	0.00	0.00	0.00
7.675	0.00	0.00	0.00	0.00	0.00
7.800	0.00	0.00	0.00	0.00	0.00
7.925	0.00	0.00	0.00	0.00	0.00
8.050	0.00	0.00	0.00	0.00	0.00
8.175	0.00	0.00	0.00	0.00	0.00
8.300	0.00	0.00	0.00	0.01	0.01
8.425	0.01	0.01	0.01	0.01	0.01
8.550	0.01	0.01	0.01	0.01	0.01
8.675	0.01	0.01	0.01	0.01	0.01
8.800	0.01	0.01	0.01	0.01	0.01
8.925	0.01	0.01	0.01	0.01	0.01
9.050	0.01	0.01	0.01	0.01	0.01
9.175	0.01	0.01	0.01	0.01	0.01
9.300	0.01	0.01	0.01	0.01	0.01
9.425	0.01	0.01	0.01	0.02	0.02
9.550	0.02	0.02	0.02	0.02	0.02
9.675	0.02	0.02	0.02	0.02	0.02
9.800	0.02	0.02	0.02	0.02	0.02
9.925	0.02	0.02	0.02	0.02	0.02
10.050	0.02	0.02	0.02	0.02	0.03
10.175	0.03	0.03	0.03	0.03	0.03
10.300	0.03	0.03	0.03	0.03	0.03
10.425	0.03	0.03	0.03	0.03	0.04
10.550	0.04	0.04	0.04	0.04	0.04
10.675	0.04	0.04	0.04	0.04	0.05
10.800	0.05	0.05	0.05	0.05	0.05
10.925	0.05	0.05	0.06	0.06	0.06
11.050	0.06	0.06	0.06	0.07	0.07
11.175	0.07	0.07	0.08	0.08	0.08
11.300	0.08	0.09	0.09	0.09	0.10
11.425 11.550	0.10 0.13	0.10 0.14	0.11 0.17	0.11 0.19	0.12 0.23
11.675	0.13	0.14	0.17	0.19	0.23
11.800	0.28	0.33	0.40	1.09	1.30
11.800	1.50	1.67	1.79	1.09	1.30
12.050	1.50	1.63	1.44	1.85	1.03
12.000	0.86	0.72	0.61	0.53	0.47
12.300	0.43	0.39	0.36	0.34	0.31
12.425	0.30	0.28	0.26	0.25	0.24
12.550	0.22	0.21	0.20	0.20	0.19
12.675	0.18	0.18	0.17	0.17	0.16
12.800		0.16	0.16		0.15

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
12.925	0.15	0.14	0.14	0.14	0.14
13.050	0.13	0.13	0.13	0.13	0.13
13.175	0.12	0.12	0.12	0.12	0.12
13.300	0.12	0.11	0.11	0.11	0.11
13.425	0.11	0.11	0.11	0.10	0.10
13.550	0.10	0.10	0.10	0.10	0.10
13.675	0.10	0.09	0.09	0.09	0.09
13.800	0.09	0.09	0.09	0.09	0.09
13.925	0.09	0.08	0.08	0.08	0.08
14.050	0.08	0.08	0.08	0.08	0.08
14.175	0.08	0.08	0.08	0.08	0.07
14.300	0.07	0.07	0.07	0.07	0.07
14.425	0.07	0.07	0.07	0.07	0.07
14.550	0.07	0.07	0.07	0.07	0.07
14.675	0.07	0.07	0.07	0.07	0.07
14.800	0.07	0.07	0.07	0.07	0.07
14.925	0.07	0.07	0.07	0.06	0.06
15.050	0.06	0.06	0.06	0.06	0.06
15.175	0.06	0.06	0.06	0.06	0.06
15.300	0.06	0.06	0.06	0.06	0.06
15.425	0.06	0.06	0.06	0.06	0.06
15.550	0.06	0.06	0.06	0.06	0.06
15.675	0.06	0.05	0.05	0.05	0.05
15.800	0.05	0.05	0.05	0.05	0.05
15.925	0.05	0.05	0.05	0.05	0.05
16.050	0.05	0.05	0.05	0.05	0.05
16.175	0.05	0.05	0.05	0.05	0.05
16.300	0.05	0.05	0.05	0.05	0.05
16.425	0.05	0.05	0.05	0.05	0.05
16.550	0.05	0.05	0.05	0.05	0.05
16.675	0.05	0.05	0.05	0.05	0.05
16.800	0.05	0.04	0.04	0.04	0.04
16.925	0.04	0.04	0.04	0.04	0.04
17.050	0.04	0.04	0.04	0.04	0.04
17.175	0.04	0.04	0.04	0.04	0.04
17.300	0.04	0.04	0.04	0.04	0.04
17.425	0.04	0.04	0.04	0.04	0.04
17.550	0.04	0.04	0.04	0.04	0.04
17.675	0.04	0.04	0.04	0.04	0.04
17.800	0.04	0.04	0.04	0.04	0.04
17.925	0.04	0.04	0.04	0.04	0.04
18.050	0.04	0.04	0.04	0.04	0.04
18.175	0.04	0.04	0.04	0.04	0.04
18.300	0.04	0.04	0.04	0.04	0.04
18.425	0.04	0.04	0.04	0.04	0.04
18.550	0.04	0.04	0.04	0.04	0.04
18.675	0.04	0.04	0.04	0.04	0.04
18.800	0.03	0.03	0.03	0.03	0.03
18.925	0.03	0.03	0.03	0.03	0.03
19.050	0.03	0.03	0.03	0.03	0.03
19.175	0.03	0.03	0.03	0.03	0.03
19.300	0.03	0.03	0.03	0.03	0.03

-					
Time (hours)	Flow (ft ³ /s)				
19.425	0.03	0.03	0.03	0.03	0.03
19.550	0.03	0.03	0.03	0.03	0.03
19.675	0.03	0.03	0.03	0.03	0.03
19.800	0.03	0.03	0.03	0.03	0.03
19.925	0.03	0.03	0.03	0.03	0.03
20.050	0.03	0.03	0.03	0.03	0.03
20.175	0.03	0.03	0.03	0.03	0.03
20.300	0.03	0.03	0.03	0.03	0.03
20.425	0.03	0.03	0.03	0.03	0.03
20.550	0.03	0.03	0.03	0.03	0.03
20.675	0.03	0.03	0.03	0.03	0.03
20.800	0.03	0.03	0.03	0.03	0.03
20.925	0.03	0.03	0.03	0.03	0.03
21.050	0.03	0.03	0.03	0.03	0.03
21.175	0.03	0.03	0.03	0.03	0.03
21.300	0.03	0.03	0.03	0.03	0.03
21.425	0.03	0.03	0.03	0.03	0.03
21.550	0.03	0.03	0.03	0.03	0.03
21.675	0.03	0.03	0.03	0.03	0.03
21.800	0.03	0.03	0.03	0.03	0.03
21.925	0.03	0.03	0.03	0.03	0.03
22.050	0.03	0.03	0.03	0.03	0.03
22.175	0.03	0.03	0.03	0.03	0.03
22.300	0.03	0.03	0.03	0.03	0.03
22.425	0.03	0.03	0.03	0.03	0.03
22.550	0.03	0.03	0.03	0.03	0.03
22.675	0.03	0.03	0.03	0.03	0.03
22.800	0.03	0.03	0.03	0.03	0.03
22.925	0.03	0.03	0.03	0.02	0.02
23.050	0.02	0.02	0.02	0.02	0.02
23.175	0.02	0.02	0.02	0.02	0.02
23.300	0.02	0.02	0.02	0.02	0.02
23.425	0.02	0.02	0.02	0.02	0.02
23.550	0.02	0.02	0.02	0.02	0.02
23.675	0.02	0.02	0.02	0.02	0.02
23.800	0.02	0.02	0.02	0.02	0.02
23.925	0.02	0.02	0.02	0.02	(N/A)



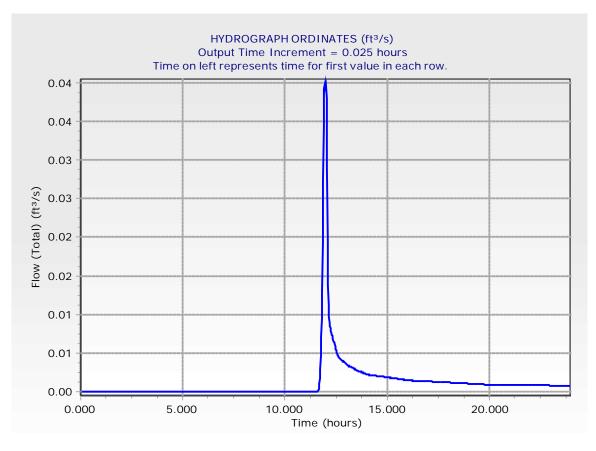

Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres
Computational Time Increment	0.026 hours
Time to Peak (Computed)	12.002 hours
Flow (Peak, Computed)	2.30 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	
Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	2.29 ft ³ /s
Drainage Area	
SCS CN (Composite)	82.000
Area (User Defined)	0.573 acres
Maximum Retention (Pervious)	2.2 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.1 in
Runoff Volume (Pervious)	0.147 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	0.146 ac-ft
SCS Unit Hydrograph Param	eters
Time of Concentration (Composite)	0.197 hours
Computational Time Increment	0.026 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	3.30 ft ³ /s
Unit peak time, Tp	0.131 hours
Unit receding limb, Tr	0.525 hours
Total unit time, Tb	0.657 hours

Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.197 hours
Area (User Defined)	0.573 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
6.800	0.00	0.00	0.00	0.00	0.00
6.925	0.00	0.00	0.00	0.00	0.00
7.050	0.00	0.00	0.00	0.00	0.00
7.175	0.00	0.00	0.00	0.00	0.00
7.300	0.00	0.00	0.00	0.00	0.00
7.425	0.00	0.00	0.00	0.00	0.00
7.550	0.00	0.01	0.01	0.01	0.01
7.675	0.01	0.01	0.01	0.01	0.01
7.800	0.01	0.01	0.01	0.01	0.01
7.925	0.01	0.01	0.01	0.01	0.01
8.050	0.01	0.01	0.01	0.01	0.01
8.175	0.01	0.01	0.01	0.01	0.01
8.300	0.01	0.01	0.01	0.01	0.01
8.425	0.01	0.01	0.01	0.01	0.01
8.550	0.01	0.01	0.01	0.01	0.01
8.675	0.01	0.01	0.01	0.01	0.02
8.800	0.02	0.02	0.02	0.02	0.02
8.925	0.02	0.02	0.02	0.02	0.02
9.050	0.02	0.02	0.02	0.02	0.02
9.175	0.02	0.02	0.02	0.02	0.02
9.300	0.02	0.02	0.02	0.02	0.02
9.425	0.02	0.02	0.02	0.02	0.02
9.550	0.02	0.02	0.02	0.02	0.03
9.675	0.03	0.03	0.03	0.03	0.03
9.800	0.03	0.03	0.03	0.03	0.03
9.925	0.03	0.03	0.03	0.03	0.03
10.050	0.03	0.03	0.04	0.04	0.04
10.175	0.04	0.04	0.04	0.04	0.04
10.300	0.04	0.04	0.04	0.04	0.05
10.425	0.05	0.05	0.05	0.05	0.05
10.550 10.675	0.05	0.05 0.06	0.05 0.06	0.06 0.06	0.06 0.06
10.875	0.06 0.07	0.06	0.06	0.06	0.06
10.800	0.07	0.07	0.07	0.07	0.07
11.050	0.07	0.08	0.08	0.08	0.08
11.175	0.08	0.09	0.09	0.09	0.09
11.175	0.10	0.10	0.10	0.11	0.13
11.425	0.14	0.12	0.12	0.15	0.13
11.425	0.17	0.19	0.22	0.26	0.30
11.675	0.36	0.44	0.52	0.62	0.73
11.800	0.85	1.00	1.17	1.38	1.63
11.925	1.88	2.09	2.23	2.29	2.28
12.050		2.01	1.77	1.51	1.26
12.030	2.10	2.01	1.77	1.31	1.20

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
12.175	1.05	0.87	0.75	0.65	0.58
12.300	0.52	0.47	0.44	0.41	0.38
12.425	0.36	0.34	0.32	0.30	0.29
12.550	0.27	0.26	0.25	0.24	0.23
12.675	0.22	0.21	0.21	0.20	0.20
12.800	0.19	0.19	0.19	0.18	0.18
12.925	0.18	0.17	0.17	0.17	0.17
13.050	0.16	0.16	0.16	0.15	0.15
13.175	0.15	0.15	0.15	0.14	0.14
13.300	0.14	0.14	0.14	0.13	0.13
13.425	0.13	0.13	0.13	0.13	0.12
13.550	0.12	0.12	0.12	0.12	0.12
13.675	0.12	0.11	0.11	0.11	0.11
13.800	0.11	0.11	0.11	0.11	0.10
13.925	0.10	0.10	0.10	0.10	0.10
14.050	0.10	0.10	0.09	0.09	0.09
14.175	0.09	0.09	0.09	0.09	0.09
14.300	0.09	0.09	0.09	0.09	0.09
14.425	0.09	0.09	0.09	0.09	0.09
14.550	0.09	0.08	0.08	0.08	0.08
14.675	0.08	0.08	0.08	0.08	0.08
14.800	0.08	0.08	0.08	0.08	0.08
14.925	0.08	0.08	0.08	0.08	0.08
15.050	0.08	0.08	0.08	0.08	0.08
15.175	0.07	0.07	0.07	0.07	0.07
15.300	0.07	0.07	0.07	0.07	0.07
15.425	0.07	0.07	0.07	0.07	0.07
15.550	0.07	0.07	0.07	0.07	0.07
15.675	0.07	0.07	0.07	0.06	0.06
15.800	0.06	0.06	0.06	0.06	0.06
15.925	0.06	0.06	0.06	0.06	0.06
16.050	0.06	0.06	0.06	0.06	0.06
16.175	0.06	0.06	0.06	0.06	0.06
16.300	0.06	0.06	0.06	0.06	0.06
16.425	0.06	0.06	0.06	0.06	0.06
16.550	0.06	0.06	0.06	0.06	0.05
16.675	0.05	0.05	0.05	0.05	0.05
16.800	0.05	0.05	0.05	0.05	0.05
16.925	0.05	0.05	0.05	0.05	0.05
17.050	0.05	0.05	0.05	0.05	0.05
17.175	0.05	0.05	0.05	0.05	0.05
17.300	0.05	0.05	0.05	0.05	0.05
17.425	0.05	0.05	0.05	0.05	0.05
17.550	0.05	0.05	0.05	0.05	0.05
17.675	0.05	0.05	0.05	0.05	0.05
17.800	0.05	0.05	0.05	0.05	0.05
17.925	0.05	0.05	0.05	0.05	0.05
18.050	0.05	0.05	0.05	0.05	0.05
18.175	0.05	0.05	0.05	0.05	0.04
18.300	0.04	0.04	0.04	0.04	0.04
18.425	0.04	0.04	0.04	0.04	0.04
18.550	0.04	0.04	0.04	0.04	0.04

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
18.675	0.04	0.04	0.04	0.04	0.04
18.800	0.04	0.04	0.04	0.04	0.04
18.925	0.04	0.04	0.04	0.04	0.04
19.050	0.04	0.04	0.04	0.04	0.04
19.175	0.04	0.04	0.04	0.04	0.04
19.300	0.04	0.04	0.04	0.04	0.04
19.425	0.04	0.04	0.04	0.04	0.04
19.550	0.04	0.04	0.04	0.04	0.04
19.675	0.04	0.04	0.04	0.04	0.04
19.800	0.04	0.04	0.04	0.03	0.03
19.925	0.03	0.03	0.03	0.03	0.03
20.050	0.03	0.03	0.03	0.03	0.03
20.175	0.03	0.03	0.03	0.03	0.03
20.300	0.03	0.03	0.03	0.03	0.03
20.425	0.03	0.03	0.03	0.03	0.03
20.550	0.03	0.03	0.03	0.03	0.03
20.675	0.03	0.03	0.03	0.03	0.03
20.800	0.03	0.03	0.03	0.03	0.03
20.925	0.03	0.03	0.03	0.03	0.03
21.050	0.03	0.03	0.03	0.03	0.03
21.175	0.03	0.03	0.03	0.03	0.03
21.300	0.03	0.03	0.03	0.03	0.03
21.425	0.03	0.03	0.03	0.03	0.03
21.550	0.03	0.03	0.03	0.03	0.03
21.675	0.03	0.03	0.03	0.03	0.03
21.800	0.03	0.03	0.03	0.03	0.03
21.925	0.03	0.03	0.03	0.03	0.03
22.050	0.03	0.03	0.03	0.03	0.03
22.175	0.03	0.03	0.03	0.03	0.03
22.300	0.03	0.03	0.03	0.03	0.03
22.425	0.03	0.03	0.03	0.03	0.03
22.550 22.675	0.03	0.03	0.03	0.03 0.03	0.03
22.675	0.03 0.03	0.03 0.03	0.03 0.03		0.03
22.800	0.03	0.03	0.03	0.03 0.03	0.03 0.03
23.050	0.03	0.03	0.03	0.03	0.03
23.050	0.03	0.03	0.03	0.03	0.03
23.175	0.03	0.03	0.03	0.03	0.03
23.300	0.03	0.03	0.03	0.03	0.03
23.425	0.03	0.03	0.03	0.03	0.03
23.550	0.03	0.03	0.03	0.03	0.03
23.800	0.03	0.03	0.03	0.03	0.03
23.800	0.03	0.03	0.03	0.03	(N/A)
23.723	0.03	0.03	0.03	0.03	(11/7)




Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.944 hours
Flow (Peak, Computed)	0.04 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	11.950 hours
Interpolated Output)	11.750 110013
Flow (Peak Interpolated Output)	0.04 ft ³ /s
Drainage Area	
SCS CN (Composite)	75.000
Area (User Defined)	0.060 acres
Maximum Retention	0.000 acres
(Pervious)	3.3 in
Maximum Retention (Pervious, 20 percent)	0.7 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.5 in
Runoff Volume (Pervious)	0.002 ac-ft
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	0.002 ac-ft
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	0.82 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.675	0.00	0.00	0.00	0.00	0.01
11.800	0.01	0.01	0.02	0.03	0.03
11.925	0.04	0.04	0.04	0.04	0.04
12.050	0.03	0.02	0.01	0.01	0.01
12.175	0.01	0.01	0.01	0.01	0.01
12.300	0.01	0.01	0.01	0.01	0.01
12.425	0.01	0.01	0.01	0.01	0.01
12.550	0.00	0.00	0.00	0.00	0.00
12.675	0.00	0.00	0.00	0.00	0.00
12.800	0.00	0.00	0.00	0.00	0.00
12.925	0.00	0.00	0.00	0.00	0.00
13.050	0.00	0.00	0.00	0.00	0.00
13.175	0.00	0.00	0.00	0.00	0.00
13.300	0.00	0.00	0.00	0.00	0.00
13.425	0.00	0.00	0.00	0.00	0.00
13.550	0.00	0.00	0.00	0.00	0.00
13.675	0.00	0.00	0.00	0.00	0.00
13.800	0.00	0.00	0.00	0.00	0.00
13.925	0.00	0.00	0.00	0.00	0.00
14.050	0.00	0.00	0.00	0.00	0.00
14.175	0.00	0.00	0.00	0.00	0.00
14.300	0.00	0.00	0.00	0.00	0.00
14.425	0.00	0.00	0.00	0.00	0.00
14.550	0.00	0.00	0.00	0.00	0.00
14.675	0.00	0.00	0.00	0.00	0.00
14.800	0.00	0.00	0.00	0.00	0.00
14.925	0.00	0.00	0.00	0.00	0.00
15.050	0.00	0.00	0.00	0.00	0.00
15.175	0.00	0.00	0.00	0.00	0.00
15.300	0.00	0.00	0.00	0.00	0.00
15.425	0.00	0.00	0.00	0.00	0.00
15.550 15.675	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	0.00	0.00			
15.800 15.925	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00
16.050	0.00	0.00	0.00	0.00	0.00
16.175	0.00	0.00	0.00	0.00	0.00
16.300	0.00	0.00	0.00	0.00	0.00
16.425	0.00	0.00	0.00	0.00	0.00
16.550	0.00	0.00	0.00	0.00	0.00
16.675	0.00	0.00	0.00	0.00	0.00
16.800	0.00	0.00	0.00	0.00	0.00
16.925		0.00	0.00	0.00	0.00
10.720	0.00	0.00	0.00	0.00	0.00

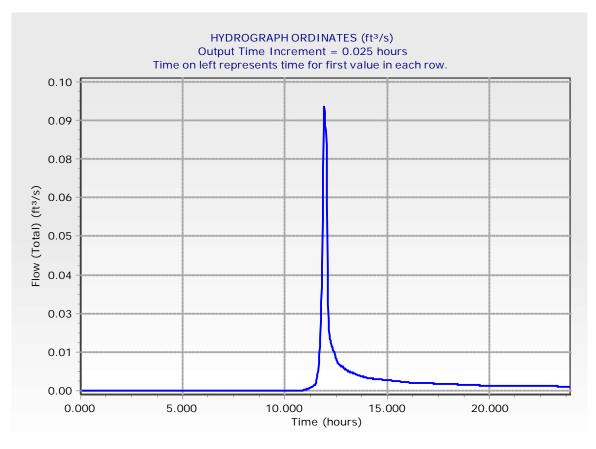
Time (hours)	Flow (ft ³ /s)				
, <i>,</i> ,	, , ,	. ,		<b>、</b> ,	· · /
17.050	0.00	0.00	0.00	0.00	0.00
17.175	0.00	0.00	0.00	0.00	0.00
17.300	0.00	0.00	0.00	0.00	0.00
17.425	0.00	0.00	0.00	0.00	0.00
17.550	0.00	0.00	0.00	0.00	0.00
17.675	0.00	0.00	0.00	0.00	0.00
17.800	0.00	0.00	0.00	0.00	0.00
17.925	0.00	0.00	0.00	0.00	0.00
18.050	0.00	0.00	0.00	0.00	0.00
18.175	0.00	0.00	0.00	0.00	0.00
18.300	0.00	0.00	0.00	0.00	0.00
18.425	0.00	0.00	0.00	0.00	0.00
18.550	0.00	0.00	0.00	0.00	0.00
18.675	0.00	0.00	0.00	0.00	0.00
18.800	0.00	0.00	0.00	0.00	0.00
18.925	0.00	0.00	0.00	0.00	(N/A)



Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.933 hours
Flow (Peak, Computed)	0.09 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	11 025 hours
Interpolated Output)	11.925 hours
Flow (Peak Interpolated Output)	0.09 ft ³ /s
Drainage Area	
SCS CN (Composite)	75.000
Area (User Defined)	0.060 acres
Maximum Retention (Pervious)	3.3 in
Maximum Retention (Pervious, 20 percent)	0.7 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.0 in
Runoff Volume (Pervious)	0.005 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	0.005 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	0.82 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres

## HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.


Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.250	0.00	0.00	0.00	0.00	0.00
11.375	0.00	0.00	0.00	0.00	0.00
11.500	0.00	0.00	0.00	0.00	0.01
11.625	0.01	0.01	0.01	0.01	0.02
11.750	0.02	0.03	0.03	0.04	0.06
11.875	0.07	0.09	0.09	0.09	0.09
12.000	0.08	0.08	0.06	0.04	0.03
12.125	0.02	0.02	0.02	0.02	0.02
12.250	0.02	0.01	0.01	0.01	0.01
12.375	0.01	0.01	0.01	0.01	0.01
12.500	0.01	0.01	0.01	0.01	0.01
12.625	0.01	0.01	0.01	0.01	0.01
12.750	0.01	0.01	0.01	0.01	0.01
12.875	0.01	0.01	0.01	0.01	0.01
13.000	0.01	0.01	0.01	0.01	0.01
13.125	0.01	0.01	0.01	0.01	0.01
13.250	0.01	0.01	0.01	0.01	0.01
13.375	0.01	0.01	0.01	0.01	0.01
13.500	0.01	0.01	0.01	0.01	0.00
13.625	0.00	0.00	0.00	0.00	0.00
13.750	0.00	0.00	0.00	0.00	0.00
13.875	0.00	0.00	0.00	0.00	0.00
14.000	0.00	0.00	0.00	0.00	0.00
14.125	0.00	0.00	0.00	0.00	0.00
14.250	0.00	0.00	0.00	0.00	0.00
14.375	0.00	0.00	0.00	0.00	0.00
14.500	0.00	0.00	0.00	0.00	0.00
14.625	0.00	0.00	0.00	0.00	0.00
14.750	0.00	0.00	0.00	0.00	0.00
14.875	0.00	0.00	0.00	0.00	0.00
15.000	0.00	0.00	0.00	0.00	0.00
15.125 15.250	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
15.250	0.00	0.00	0.00	0.00	0.00
15.500	0.00	0.00	0.00	0.00	0.00
15.625	0.00	0.00	0.00	0.00	0.00
15.750	0.00	0.00	0.00	0.00	0.00
15.875	0.00	0.00	0.00	0.00	0.00
16.000	0.00	0.00	0.00	0.00	0.00
16.125	0.00	0.00	0.00	0.00	0.00
16.250	0.00	0.00	0.00	0.00	0.00
16.375	0.00	0.00	0.00	0.00	0.00
16.500		0.00	0.00	0.00	0.00
10.300	0.00	0.00	0.00	0.00	0.00

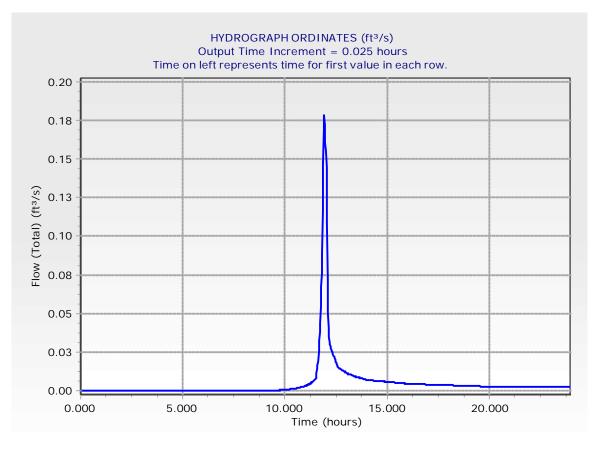
NPTT2-Watershed.ppc 11/22/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
16.625	0.00	0.00	0.00	0.00	0.00
16.750	0.00	0.00	0.00	0.00	0.00
16.875	0.00	0.00	0.00	0.00	0.00
17.000	0.00	0.00	0.00	0.00	0.00
17.125	0.00	0.00	0.00	0.00	0.00
17.250	0.00	0.00	0.00	0.00	0.00
17.375	0.00	0.00	0.00	0.00	0.00
17.500	0.00	0.00	0.00	0.00	0.00
17.625	0.00	0.00	0.00	0.00	0.00
17.750	0.00	0.00	0.00	0.00	0.00
17.875	0.00	0.00	0.00	0.00	0.00
18.000	0.00	0.00	0.00	0.00	0.00
18.125	0.00	0.00	0.00	0.00	0.00
18.250	0.00	0.00	0.00	0.00	0.00
18.375	0.00	0.00	0.00	0.00	0.00
18.500	0.00	0.00	0.00	0.00	0.00
18.625	0.00	0.00	0.00	0.00	0.00
18.750	0.00	0.00	0.00	0.00	0.00
18.875	0.00	0.00	0.00	0.00	0.00
19.000	0.00	0.00	0.00	0.00	0.00
19.125	0.00	0.00	0.00	0.00	0.00
19.250	0.00	0.00	0.00	0.00	0.00
19.375	0.00	0.00	0.00	0.00	0.00
19.500	0.00	0.00	0.00	0.00	0.00
19.625	0.00	0.00	0.00	0.00	0.00
19.750	0.00	0.00	0.00	0.00	0.00
19.875	0.00	0.00	0.00	0.00	0.00
20.000	0.00	0.00	0.00	0.00	0.00
20.125	0.00	0.00	0.00	0.00	0.00
20.250 20.375	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00
	0.00	0.00	0.00 0.00	0.00 0.00	
20.500 20.625	0.00	0.00	0.00	0.00	0.00
20.825	0.00	0.00	0.00	0.00	0.00
20.750	0.00	0.00	0.00	0.00	0.00 0.00
20.875	0.00	0.00	0.00	0.00	0.00
21.125	0.00	0.00	0.00	0.00	0.00
21.125	0.00	0.00	0.00	0.00	0.00
21.230	0.00	0.00	0.00	0.00	0.00
21.500	0.00	0.00	0.00	0.00	0.00
21.625	0.00	0.00	0.00	0.00	0.00
21.750	0.00	0.00	0.00	0.00	0.00
21.875	0.00	0.00	0.00	0.00	0.00
22.000	0.00	0.00	0.00	0.00	0.00
22.125	0.00	0.00	0.00	0.00	0.00
22.250	0.00	0.00	0.00	0.00	0.00
22.375	0.00	0.00	0.00	0.00	0.00
22.500	0.00	0.00	0.00	0.00	0.00
22.625	0.00	0.00	0.00	0.00	0.00
22.750	0.00	0.00	0.00	0.00	0.00
22.875	0.00	0.00	0.00	0.00	0.00
23.000	0.00	0.00	0.00	0.00	0.00

Time (hours)	Flow (ft ³ /s)				
23.125	0.00	0.00	0.00	0.00	0.00
23.250	0.00	0.00	0.00	0.00	0.00
23.375	0.00	0.00	0.00	0.00	0.00
23.500	0.00	0.00	0.00	0.00	0.00
23.625	0.00	0.00	0.00	0.00	0.00
23.750	0.00	0.00	0.00	0.00	0.00
23.875	0.00	0.00	0.00	0.00	0.00
24.000	0.00	(N/A)	(N/A)	(N/A)	(N/A)




Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres
i	
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	0.18 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	11.00F hours
Interpolated Output)	11.925 hours
Flow (Peak Interpolated Output)	0.18 ft ³ /s
Drainage Area	
SCS CN (Composite)	75.000
Area (User Defined)	0.060 acres
Maximum Retention (Pervious)	3.3 in
Maximum Retention (Pervious, 20 percent)	0.7 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.9 in
Runoff Volume (Pervious)	0.010 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	0.010 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	0.82 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours
· .	

Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres

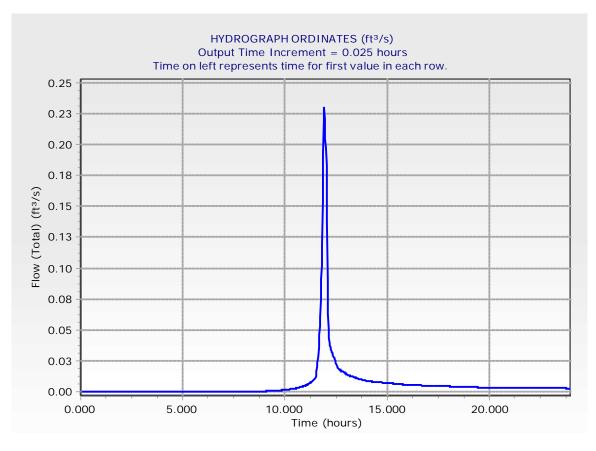
(hours)(ft3/s)(ft3/s)(ft3/s)(ft3/s)10.3000.000.000.000.000.0010.4250.000.000.000.000.0010.5500.000.000.000.000.0010.6750.000.000.000.000.0010.8000.000.000.000.000.0011.9250.000.000.000.000.0011.1750.000.000.000.000.0111.1750.010.010.010.010.0111.18000.080.090.120.150.1711.5500.010.010.020.020.0311.6750.030.040.040.050.0711.8000.080.090.120.150.1711.9250.180.170.160.160.1412.0500.110.070.050.040.0312.1750.030.030.030.030.0312.3000.020.020.020.020.0212.4250.020.020.020.020.0212.4250.010.010.010.010.0113.3050.010.010.010.010.0113.4250.010.010.010.010.0113.4250.010.010.010.010.0113.4250.010.010.010.010.0	Time	Flow	Flow	Flow	Flow	Flow
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
10.425         0.00         0.00         0.00         0.00         0.00           10.550         0.00         0.00         0.00         0.00         0.00           10.675         0.00         0.00         0.00         0.00         0.00           10.800         0.00         0.00         0.00         0.00         0.00           11.950         0.00         0.00         0.00         0.00         0.00           11.175         0.00         0.00         0.00         0.00         0.01           11.300         0.01         0.01         0.01         0.01         0.01           11.55         0.01         0.01         0.01         0.01         0.01           11.55         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.14         12.050         0.02         0.02         0.02           12.425         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02 <th>-</th> <th></th> <th></th> <th>1</th> <th></th> <th></th>	-			1		
10.550         0.00         0.00         0.00         0.00         0.00           10.675         0.00         0.00         0.00         0.00         0.00           10.800         0.00         0.00         0.00         0.00         0.00           10.925         0.00         0.00         0.00         0.00         0.00           11.300         0.01         0.01         0.01         0.01         0.01           11.425         0.01         0.01         0.01         0.01         0.01           11.550         0.01         0.01         0.02         0.02         0.03           11.675         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.14         0.14           12.050         0.11         0.07         0.05         0.04         0.03           12.300         0.03         0.02         0.02         0.02         0.02           12.425         0.02         0.02         0.02         0.02         0.02           12.425         0.01						
10.675         0.00         0.00         0.00         0.00         0.00           10.800         0.00         0.00         0.00         0.00         0.00           10.925         0.00         0.00         0.00         0.00         0.00           11.050         0.00         0.00         0.00         0.00         0.00           11.175         0.00         0.01         0.01         0.01         0.01           11.1300         0.01         0.01         0.01         0.01         0.01           11.425         0.01         0.01         0.02         0.02         0.03           11.550         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.14         1.2050           12.175         0.03         0.03         0.03         0.03         0.03           12.300         0.02         0.02         0.02         0.02         0.02           12.425         0.01         0.01         0.01         0.01         0.01           12.550         0.02 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
10.800         0.00         0.00         0.00         0.00         0.00           10.925         0.00         0.00         0.00         0.00         0.00           11.050         0.00         0.00         0.00         0.00         0.00           11.175         0.00         0.01         0.01         0.01         0.01           11.300         0.01         0.01         0.01         0.01         0.01           11.425         0.01         0.01         0.02         0.02         0.03           11.675         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.16         0.14           12.050         0.11         0.07         0.05         0.04         0.03           12.175         0.03         0.03         0.03         0.03         0.03         0.03           12.425         0.02         0.02         0.02         0.02         0.02         0.02           12.425         0.01         0.01         0.01         0.01         0.01         0.01						
10.925         0.00         0.00         0.00         0.00         0.00           11.050         0.00         0.00         0.00         0.00         0.00           11.175         0.00         0.01         0.01         0.01         0.01           11.300         0.01         0.01         0.01         0.01         0.01           11.425         0.01         0.01         0.01         0.01         0.01           11.550         0.01         0.01         0.02         0.02         0.03           11.675         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.14         0.03           12.050         0.11         0.07         0.05         0.04         0.03           12.175         0.03         0.02         0.02         0.02         0.02           12.425         0.02         0.02         0.02         0.02         0.02           12.425         0.01         0.01         0.01         0.01         0.01           12.455         0.01						
11.050         0.00         0.00         0.00         0.00         0.00           11.175         0.00         0.01         0.01         0.01         0.01           11.300         0.01         0.01         0.01         0.01         0.01           11.425         0.01         0.01         0.01         0.01         0.01           11.675         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.16         0.14           12.050         0.11         0.07         0.05         0.04         0.03           12.175         0.03         0.03         0.03         0.03         0.03           12.300         0.03         0.02         0.02         0.02         0.02           12.425         0.02         0.02         0.02         0.02         0.02         0.02           12.675         0.01         0.01         0.01         0.01         0.01         0.01           12.675         0.01         0.01         0.01         0.01         0.01         0.01						
11.175         0.00         0.00         0.00         0.01           11.300         0.01         0.01         0.01         0.01         0.01           11.425         0.01         0.01         0.01         0.01         0.01           11.550         0.01         0.01         0.02         0.02         0.03           11.675         0.03         0.04         0.04         0.05         0.07           11.800         0.08         0.09         0.12         0.15         0.17           11.925         0.18         0.17         0.16         0.16         0.14           12.050         0.11         0.07         0.05         0.04         0.03           12.175         0.03         0.03         0.03         0.03         0.03           12.300         0.03         0.02         0.02         0.02         0.02           12.425         0.02         0.02         0.02         0.02         0.02           12.550         0.02         0.02         0.01         0.01         0.01           12.800         0.01         0.01         0.01         0.01         0.01           13.050         0.01         0.01						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.300	0.01	0.01	0.01	0.01	0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.425	0.01	0.01	0.01	0.01	0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.550	0.01	0.01	0.02	0.02	0.03
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.675	0.03	0.04	0.04	0.05	0.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.800	0.08	0.09	0.12	0.15	0.17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.925	0.18	0.17	0.16	0.16	0.14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.050	0.11	0.07	0.05	0.04	0.03
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.175	0.03	0.03	0.03	0.03	0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.02
12.800         0.01         0.01         0.01         0.01         0.01           12.925         0.01         0.01         0.01         0.01         0.01           13.050         0.01         0.01         0.01         0.01         0.01           13.050         0.01         0.01         0.01         0.01         0.01           13.175         0.01         0.01         0.01         0.01         0.01           13.300         0.01         0.01         0.01         0.01         0.01           13.425         0.01         0.01         0.01         0.01         0.01           13.550         0.01         0.01         0.01         0.01         0.01           13.675         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           14.050         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.425         0.01						
12.925         0.01         0.01         0.01         0.01         0.01           13.050         0.01         0.01         0.01         0.01         0.01           13.175         0.01         0.01         0.01         0.01         0.01           13.300         0.01         0.01         0.01         0.01         0.01           13.425         0.01         0.01         0.01         0.01         0.01           13.550         0.01         0.01         0.01         0.01         0.01           13.675         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           14.050         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.675         0.01						
13.0500.010.010.010.010.0113.1750.010.010.010.010.0113.3000.010.010.010.010.0113.4250.010.010.010.010.0113.5500.010.010.010.010.0113.6750.010.010.010.010.0113.8000.010.010.010.010.0113.9250.010.010.010.010.0114.0500.010.010.010.010.0114.1750.010.010.010.010.0114.4250.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.8000.010.010.010.010.0114.8000.010.010.010.010.0115.0500.010.010.010.010.0115.0500.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
13.175         0.01         0.01         0.01         0.01         0.01           13.300         0.01         0.01         0.01         0.01         0.01           13.425         0.01         0.01         0.01         0.01         0.01           13.550         0.01         0.01         0.01         0.01         0.01           13.675         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           13.925         0.01         0.01         0.01         0.01         0.01           14.050         0.01         0.01         0.01         0.01         0.01           14.300         0.01         0.01         0.01         0.01         0.01           14.300         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.800         0.01						
13.300         0.01         0.01         0.01         0.01         0.01           13.425         0.01         0.01         0.01         0.01         0.01           13.550         0.01         0.01         0.01         0.01         0.01           13.675         0.01         0.01         0.01         0.01         0.01           13.675         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           13.800         0.01         0.01         0.01         0.01         0.01           13.925         0.01         0.01         0.01         0.01         0.01           14.050         0.01         0.01         0.01         0.01         0.01           14.050         0.01         0.01         0.01         0.01         0.01           14.300         0.01         0.01         0.01         0.01         0.01           14.425         0.01         0.01         0.01         0.01         0.01           14.675         0.01         0.01         0.01         0.01         0.01           14.800         0.01						
13.4250.010.010.010.010.0113.5500.010.010.010.010.0113.6750.010.010.010.010.0113.8000.010.010.010.010.0113.9250.010.010.010.010.0114.0500.010.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.5500.010.010.010.010.0114.5500.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
13.5500.010.010.010.010.0113.6750.010.010.010.010.0113.8000.010.010.010.010.0113.9250.010.010.010.010.0114.0500.010.010.010.010.0114.1750.010.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.5500.010.010.010.010.0114.5500.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
13.6750.010.010.010.010.0113.8000.010.010.010.010.0113.9250.010.010.010.010.0114.0500.010.010.010.010.0114.1750.010.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
13.8000.010.010.010.010.0113.9250.010.010.010.010.0114.0500.010.010.010.010.0114.1750.010.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
13.9250.010.010.010.010.0114.0500.010.010.010.010.0114.1750.010.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.0500.010.010.010.0114.1750.010.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.1750.010.010.010.0114.3000.010.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.3000.010.010.010.0114.4250.010.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.4250.010.010.010.0114.5500.010.010.010.010.0114.6750.010.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.5500.010.010.010.0114.6750.010.010.010.0114.6750.010.010.010.0114.8000.010.010.010.0114.9250.010.010.010.0115.0500.010.010.010.0115.1750.010.010.010.0115.3000.010.010.010.0115.4250.010.010.010.01						
14.6750.010.010.010.0114.8000.010.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.8000.010.010.010.0114.9250.010.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
14.9250.010.010.010.0115.0500.010.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
15.0500.010.010.010.0115.1750.010.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
15.1750.010.010.010.0115.3000.010.010.010.010.0115.4250.010.010.010.010.01						
15.300         0.01         0.01         0.01         0.01         0.01           15.425         0.01         0.01         0.01         0.01         0.01						
15.425         0.01         0.01         0.01         0.01						
15.550 U.UI U.UI U.UI 0.00 0.00 0.00	15.550	0.01	0.01	0.00		0.00

Time (hours)	Flow (ft ³ /s)				
15.675	0.00	0.00	0.00	0.00	0.00
15.800	0.00	0.00	0.00	0.00	0.00
15.925	0.00	0.00	0.00	0.00	0.00
16.050	0.00	0.00	0.00	0.00	0.00
16.175	0.00	0.00	0.00	0.00	0.00
16.300	0.00	0.00	0.00	0.00	0.00
16.425	0.00	0.00	0.00	0.00	0.00
16.550	0.00	0.00	0.00	0.00	0.00
16.675	0.00	0.00	0.00	0.00	0.00
16.800	0.00	0.00	0.00	0.00	0.00
16.925	0.00	0.00	0.00	0.00	0.00
17.050	0.00	0.00	0.00	0.00	0.00
17.175	0.00	0.00	0.00	0.00	0.00
17.300	0.00	0.00	0.00	0.00	0.00
17.425	0.00	0.00	0.00	0.00	0.00
17.550	0.00	0.00	0.00	0.00	0.00
17.675	0.00	0.00	0.00	0.00	0.00
17.800	0.00	0.00	0.00	0.00	0.00
17.925	0.00	0.00	0.00	0.00	0.00
18.050	0.00	0.00	0.00	0.00	0.00
18.175	0.00	0.00	0.00	0.00	0.00
18.300	0.00	0.00	0.00	0.00	0.00
18.425	0.00	0.00	0.00	0.00	0.00
18.550	0.00	0.00	0.00	0.00	0.00
18.675	0.00	0.00	0.00	0.00	0.00
18.800	0.00	0.00	0.00	0.00	0.00
18.925	0.00	0.00	0.00	0.00	0.00
19.050	0.00	0.00	0.00	0.00	0.00
19.175	0.00	0.00	0.00	0.00	0.00
19.300	0.00	0.00	0.00	0.00	0.00
19.425	0.00	0.00	0.00	0.00	0.00
19.550	0.00	0.00	0.00	0.00	0.00
19.675	0.00	0.00	0.00	0.00	0.00
19.800	0.00	0.00	0.00	0.00	0.00
19.925	0.00	0.00	0.00	0.00	0.00
20.050 20.175	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
20.175		0.00		0.00	0.00
20.300	0.00 0.00	0.00	0.00 0.00	0.00	0.00
20.425	0.00	0.00	0.00	0.00	0.00
20.550 20.675	0.00	0.00	0.00	0.00	0.00
20.875	0.00	0.00	0.00	0.00	0.00
20.800	0.00	0.00	0.00	0.00	0.00
21.050	0.00	0.00	0.00	0.00	0.00
21.030	0.00	0.00	0.00	0.00	0.00
21.300	0.00	0.00	0.00	0.00	0.00
21.425	0.00	0.00	0.00	0.00	0.00
21.550	0.00	0.00	0.00	0.00	0.00
21.675	0.00	0.00	0.00	0.00	0.00
21.800	0.00	0.00	0.00	0.00	0.00
21.925	0.00	0.00	0.00	0.00	0.00
22.050	0.00	0.00	0.00	0.00	0.00
I.	•	,			

	•				
Time (hours)	Flow (ft ³ /s)				
(10013)	(11/3)	(11/3)	(11/3)	(11/3)	(11/3)
22.175	0.00	0.00	0.00	0.00	0.00
22.300	0.00	0.00	0.00	0.00	0.00
22.425	0.00	0.00	0.00	0.00	0.00
22.550	0.00	0.00	0.00	0.00	0.00
22.675	0.00	0.00	0.00	0.00	0.00
22.800	0.00	0.00	0.00	0.00	0.00
22.925	0.00	0.00	0.00	0.00	0.00
23.050	0.00	0.00	0.00	0.00	0.00
23.175	0.00	0.00	0.00	0.00	0.00
23.300	0.00	0.00	0.00	0.00	0.00
23.425	0.00	0.00	0.00	0.00	0.00
23.550	0.00	0.00	0.00	0.00	0.00
23.675	0.00	0.00	0.00	0.00	0.00
23.800	0.00	0.00	0.00	0.00	0.00
23.925	0.00	0.00	0.00	0.00	(N/A)



Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	0.23 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	11.925 hours
Interpolated Output)	11.925 110015
Flow (Peak Interpolated Output)	0.23 ft ³ /s
Drainage Area	
SCS CN (Composite)	75.000
Area (User Defined)	0.060 acres
Maximum Retention	
(Pervious)	3.3 in
Maximum Retention (Pervious, 20 percent)	0.7 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.4 in
Runoff Volume (Pervious)	0.012 ac-ft
Hydrograph Volume (Area un	dor Hydrograph curvo)
Volume	0.012 ac-ft
SCS Unit Hydrograph Param	eters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	0.82 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours


Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.060 acres

9.875         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< th=""><th></th></t<>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
9.875         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< th=""><th>0.00</th></t<>	0.00
10.000         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         <	0.00
10.125         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         <	0.00
10.250         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         <	0.00
10.375         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         <	0.00
10.625         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         <	0.00
10.750         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         <	0.00
10.875         0.00         0.00         0.00         0.00         0.00           11.000         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <t< td=""><td>0.00</td></t<>	0.00
11.000         0.00         0.01         0.01         0.01           11.125         0.01         0.01         0.01         0.01         0.01           11.250         0.01         0.01         0.01         0.01         0.01         0.01           11.375         0.01         0.01         0.01         0.01         0.01         0.01	0.00
11.125         0.01         0.01         0.01         0.01           11.250         0.01         0.01         0.01         0.01         0.01           11.375         0.01         0.01         0.01         0.01         0.01         0.01	0.00
11.250         0.01         0.01         0.01         0.01         0.01           11.375         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <t< th=""><th>0.01</th></t<>	0.01
11.375 0.01 0.01 0.01 0.01	0.01
	0.01
	0.01
	0.02
	0.06
	).15
	).21
	0.06
	0.04
	0.03
	0.02
	0.02
	0.02
	0.02
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	).01 ).01
	).01 ).01
	0.01
	0.01
	0.01
	0.01
	0.01
	).01
	0.01
	0.01
	0.01

NPTT2-Watershed.ppc 11/22/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

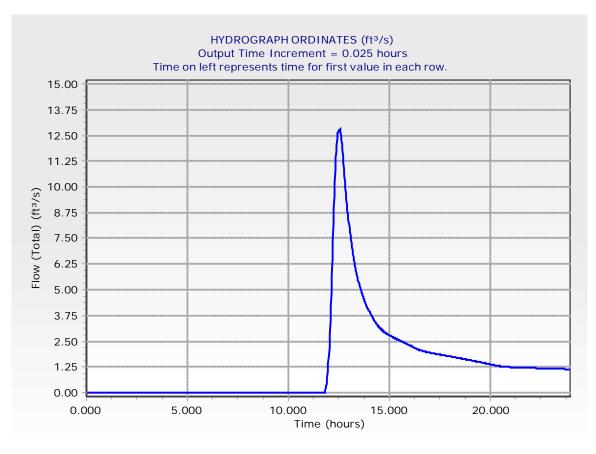
Time (hours)	Flow (ft ³ /s)				
15.125	0.01	0.01	0.01	0.01	0.01
15.250	0.01	0.01	0.01	0.01	0.01
15.375	0.01	0.01	0.01	0.01	0.01
15.500	0.01	0.01	0.01	0.01	0.01
15.625	0.01	0.01	0.01	0.01	0.01
15.750	0.01	0.01	0.01	0.01	0.01
15.875	0.01	0.01	0.01	0.01	0.01
16.000	0.01	0.01	0.01	0.01	0.01
16.125	0.01	0.01	0.01	0.01	0.01
16.250	0.01	0.01	0.01	0.01	0.01
16.375	0.01	0.01	0.01	0.01	0.01
16.500	0.01	0.01	0.01	0.01	0.01
16.625	0.01	0.01	0.01	0.01	0.01
16.750	0.01	0.01	0.00	0.00	0.00
16.875	0.00	0.00	0.00	0.00	0.00
17.000	0.00	0.00	0.00	0.00	0.00
17.125	0.00	0.00	0.00	0.00	0.00
17.250	0.00	0.00	0.00	0.00	0.00
17.375	0.00	0.00	0.00	0.00	0.00
17.500	0.00	0.00	0.00	0.00	0.00
17.625	0.00	0.00	0.00	0.00	0.00
17.750	0.00	0.00	0.00	0.00	0.00
17.875	0.00	0.00	0.00	0.00	0.00
18.000	0.00	0.00	0.00	0.00	0.00
18.125	0.00	0.00	0.00	0.00	0.00
18.250	0.00	0.00	0.00	0.00	0.00
18.375	0.00	0.00	0.00	0.00	0.00
18.500	0.00	0.00	0.00	0.00	0.00
18.625	0.00	0.00	0.00	0.00	0.00
18.750	0.00	0.00	0.00	0.00	0.00
18.875	0.00	0.00	0.00	0.00	0.00
19.000	0.00	0.00	0.00	0.00	0.00
19.125	0.00	0.00	0.00	0.00	0.00
19.250	0.00	0.00	0.00	0.00	0.00
19.375	0.00	0.00	0.00	0.00	0.00
19.500	0.00	0.00	0.00	0.00	0.00
19.625	0.00	0.00	0.00	0.00	0.00
19.750	0.00	0.00	0.00	0.00	0.00
19.875	0.00	0.00	0.00	0.00	0.00
20.000	0.00	0.00	0.00	0.00	0.00
20.125	0.00	0.00	0.00	0.00	0.00
20.250	0.00	0.00	0.00	0.00	0.00
20.375	0.00	0.00	0.00	0.00	0.00
20.500	0.00	0.00	0.00	0.00	0.00
20.625	0.00	0.00	0.00	0.00	0.00
20.750	0.00	0.00	0.00	0.00	0.00
20.875	0.00	0.00	0.00	0.00	0.00
21.000	0.00	0.00	0.00	0.00	0.00
21.125	0.00	0.00	0.00	0.00	0.00
21.250	0.00	0.00	0.00	0.00	0.00
21.375	0.00	0.00	0.00	0.00	0.00
21.500	0.00	0.00	0.00	0.00	0.00

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
21.625	0.00	0.00	0.00	0.00	0.00
21.750	0.00	0.00	0.00	0.00	0.00
21.875	0.00	0.00	0.00	0.00	0.00
22.000	0.00	0.00	0.00	0.00	0.00
22.125	0.00	0.00	0.00	0.00	0.00
22.250	0.00	0.00	0.00	0.00	0.00
22.375	0.00	0.00	0.00	0.00	0.00
22.500	0.00	0.00	0.00	0.00	0.00
22.625	0.00	0.00	0.00	0.00	0.00
22.750	0.00	0.00	0.00	0.00	0.00
22.875	0.00	0.00	0.00	0.00	0.00
23.000	0.00	0.00	0.00	0.00	0.00
23.125	0.00	0.00	0.00	0.00	0.00
23.250	0.00	0.00	0.00	0.00	0.00
23.375	0.00	0.00	0.00	0.00	0.00
23.500	0.00	0.00	0.00	0.00	0.00
23.625	0.00	0.00	0.00	0.00	0.00
23.750	0.00	0.00	0.00	0.00	0.00
23.875	0.00	0.00	0.00	0.00	0.00
24.000	0.00	(N/A)	(N/A)	(N/A)	(N/A)



Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres
Computational Time	0.108 hours
Time to Peak (Computed)	12.561 hours
Flow (Peak, Computed)	12.80 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	
Interpolated Output)	12.550 hours
Flow (Peak Interpolated Output)	12.78 ft ³ /s
Drainage Area	
SCS CN (Composite)	69.000
Area (User Defined)	114.161 acres
Maximum Retention (Pervious)	4.5 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.3 in
Runoff Volume (Pervious)	2.781 ac-ft
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	2.721 ac-ft
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	0.812 hours
Computational Time Increment	0.108 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	159.28 ft ³ /s
Unit peak time, Tp	0.541 hours
Unit receding limb, Tr	2.166 hours
Total unit time, Tb	2.707 hours

Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres


### HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.

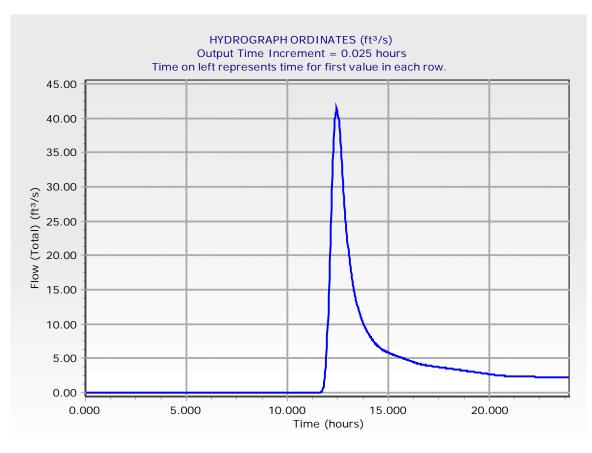
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.700	0.00	0.00	0.01	0.01	0.01
11.825	0.11	0.22	0.33	0.43	0.68
11.950	1.04	1.39	1.74	2.17	2.85
12.075	3.52	4.19	4.87	5.69	6.53
12.200	7.37	8.20	8.93	9.57	10.20
12.325	10.84	11.40	11.71	12.01	12.32
12.450	12.63	12.69	12.72	12.75	12.78
12.575	12.68	12.47	12.27	12.07	11.83
12.700	11.51	11.19	10.86	10.54	10.25
12.825	9.96	9.67	9.38	9.12	8.89
12.950	8.66	8.43	8.20	8.01	7.81
13.075	7.61	7.42	7.25	7.08	6.91
13.200	6.74	6.59	6.45	6.32	6.18
13.325	6.05	5.93	5.82	5.70	5.59
13.450	5.49	5.39	5.30	5.20	5.11
13.575	5.03	4.95	4.87	4.79	4.72
13.700	4.65	4.58	4.51	4.45	4.39
13.825	4.33	4.27	4.21	4.16	4.10
13.950	4.05	4.00	3.95	3.90	3.86
14.075	3.81	3.77	3.72	3.68	3.64
14.200	3.60	3.56	3.52	3.48	3.44
14.325	3.41	3.37	3.34	3.30	3.27
14.450	3.24	3.21	3.18	3.15	3.12
14.575	3.10	3.07	3.05	3.03	3.01
14.700	2.99	2.97	2.95	2.93	2.91
14.825	2.90	2.88	2.86	2.85	2.83
14.950	2.82	2.80	2.79	2.78	2.76
15.075	2.75	2.74	2.72	2.71	2.70
15.200	2.69	2.67	2.66	2.65	2.64
15.325	2.63	2.61	2.60	2.59	2.58
15.450 15.575	2.57 2.51	2.55 2.50	2.54	2.53	2.52
15.575	2.51	2.50 2.44	2.48 2.43	2.47 2.41	2.46 2.40
15.825	2.45	2.44	2.43	2.41	2.40
15.825	2.39	2.30	2.37	2.35	2.34
16.075	2.33	2.32	2.30	2.29	2.28
16.200	2.27	2.20	2.24	2.23	2.22
16.325	2.15	2.20	2.13	2.17	2.10
16.450	2.10	2.09	2.08	2.07	2.06
16.575	2.05	2.04	2.04	2.07	2.00
16.700	2.03	2.04	2.00	1.99	1.99
16.825	1.98	1.98	1.97	1.96	1.96
16.950		1.95	1.94	1.94	1.93
10.700	1.75		1.74	1.74	1.75

NPTT2-Watershed.ppc 11/22/2016

	-				
Time (hours)	Flow (ft ³ /s)				
17.075	1.93	1.92	1.92	1.91	1.91
17.200	1.90	1.90	1.89	1.89	1.89
17.325	1.88	1.88	1.87	1.87	1.86
17.450	1.86	1.85	1.85	1.85	1.84
17.575	1.84	1.83	1.83	1.82	1.82
17.700	1.81	1.81	1.81	1.80	1.80
17.825	1.79	1.79	1.78	1.78	1.77
17.950	1.77	1.77	1.76	1.76	1.75
18.075	1.75	1.74	1.74	1.74	1.73
18.200	1.73	1.72	1.72	1.71	1.71
18.325	1.70	1.70	1.69	1.69	1.69
18.450	1.68	1.68	1.67	1.67	1.66
18.575	1.66	1.65	1.65	1.64	1.64
18.700	1.63	1.63	1.62	1.62	1.62
18.825	1.61	1.61	1.60	1.60	1.59
18.950	1.59	1.58	1.58	1.57	1.57
19.075	1.56	1.56	1.55	1.55	1.54
19.200	1.54	1.53	1.53	1.52	1.52
19.325	1.51	1.51	1.50	1.50	1.49
19.450	1.49	1.48	1.48	1.47	1.47
19.575	1.46	1.46	1.45	1.45	1.44
19.700	1.44	1.43	1.43	1.42	1.42
19.825	1.41	1.41	1.40	1.40	1.39
19.950	1.39	1.38	1.38	1.37	1.37
20.075	1.36	1.35	1.35	1.34	1.34
20.200	1.33	1.33	1.32	1.32	1.31
20.325	1.31	1.31	1.30	1.30	1.29
20.450	1.29	1.29	1.28	1.28	1.28
20.575	1.27	1.27	1.27	1.26	1.26
20.700	1.26	1.26	1.25	1.25	1.25
20.825	1.25	1.25	1.24	1.24	1.24
20.950	1.24	1.24	1.24	1.24	1.23
21.075	1.23	1.23	1.23	1.23	1.23
21.200	1.23	1.23	1.23	1.22	1.22
21.325	1.22	1.22	1.22	1.22	1.22
21.450	1.22	1.22	1.22	1.22	1.21
21.575	1.21	1.21	1.21	1.21	1.21
21.700	1.21	1.21	1.21	1.21	1.21
21.825	1.21	1.20	1.20	1.20	1.20
21.950	1.20	1.20	1.20	1.20	1.20
22.075	1.20	1.20	1.20	1.20	1.19
22.200	1.19	1.19	1.19	1.19	1.19
22.325	1.19	1.19	1.19	1.19	1.19
22.450	1.19	1.18	1.18	1.18	1.18
22.575	1.18	1.18	1.18	1.18	1.18
22.700	1.18	1.18	1.18	1.18	1.17
22.825	1.17	1.17	1.17	1.17	1.17
22.950	1.17	1.17	1.17	1.17	1.17
23.075	1.17	1.16	1.16	1.16	1.16
23.200	1.16	1.16	1.16	1.16	1.16
23.325	1.16	1.16	1.16	1.15	1.15
23.450	1.15	1.15	1.15	1.15	1.15

Time (hours)	Flow (ft ³ /s)				
23.575	1.15	1.15	1.15	1.15	1.15
23.700	1.14	1.14	1.14	1.14	1.14
23.825	1.14	1.14	1.14	1.14	1.14
23.950	1.13	1.13	1.13	(N/A)	(N/A)




Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres
Computational Time Increment	0.108 hours
Time to Peak (Computed)	12.452 hours
Flow (Peak, Computed)	41.49 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	12 450 hours
Interpolated Output)	12.450 hours
Flow (Peak Interpolated Output)	41.46 ft ³ /s
Drainage Area	
SCS CN (Composite)	69.000
Area (User Defined)	114.161 acres
Maximum Retention (Pervious)	4.5 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.7 in
Runoff Volume (Pervious)	6.783 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	6.668 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.812 hours
Computational Time Increment	0.108 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	159.28 ft ³ /s
Unit peak time, Tp	0.541 hours
Unit receding limb, Tr	2.166 hours
Total unit time, Tb	2.707 hours

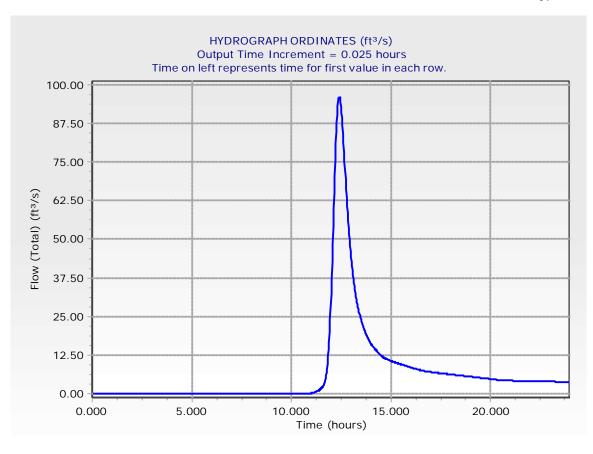
Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.500	0.00	0.00	0.00	0.00	0.02
11.625	0.05	0.08	0.10	0.17	0.34
11.750	0.52	0.69	0.87	1.54	2.26
11.875	2.99	3.72	4.96	6.59	8.23
12.000	9.86	11.69	14.18	16.66	19.15
12.125	21.63	24.17	26.71	29.25	31.79
12.250	33.78	35.36	36.93	38.51	39.80
12.375	40.22	40.63	41.04	41.46	41.07
12.500	40.60	40.13	39.67	38.84	37.75
12.625	36.67	35.58	34.45	33.20	31.96
12.750	30.71	29.46	28.42	27.40	26.39
12.875	25.37	24.48	23.69	22.91	22.12
13.000	21.37	20.72	20.07	19.43	18.78
13.125	18.24	17.71	17.18	16.65	16.19
13.250	15.77	15.35	14.93	14.53	14.19
13.375	13.85	13.50	13.16	12.88	12.60
13.500	12.32	12.05	11.80	11.57	11.34
13.625	11.12	10.90	10.71	10.52	10.32
13.750	10.13	9.97	9.81	9.64	9.48
13.875	9.33	9.19	9.05	8.92	8.78
14.000	8.66	8.54	8.42	8.30	8.19
14.125	8.08	7.98	7.87	7.77	7.67
14.250	7.58	7.48	7.38	7.30	7.21
14.375	7.12	7.03	6.96	6.88	6.80
14.500	6.73	6.66	6.60	6.54	6.48
14.625	6.42	6.37	6.33	6.28	6.23
14.750	6.19	6.15	6.11	6.07	6.03
14.875	5.99	5.96	5.92	5.89	5.86
15.000	5.82	5.79	5.76	5.73	5.70
15.125	5.67	5.64	5.61	5.58	5.55
15.250	5.52	5.50	5.47	5.44	5.41
15.375	5.38	5.36	5.33	5.30	5.28
15.500	5.25	5.22	5.20	5.17	5.14
15.625	5.12	5.09	5.06	5.04	5.01
15.750	4.98 4.95	4.96	4.93	4.90	4.88
15.875 16.000	4.85 4.72	4.82 4.69	4.80 4.66	4.77 4.64	4.74 4.61
16.125 16.250	4.58 4.45	4.56 4.43	4.53 4.40	4.50 4.38	4.48 4.35
16.250	4.45	4.43 4.31	4.40	4.38 4.26	4.35
16.500	4.33	4.31	4.29	4.20	4.24
16.625	4.22	4.20	4.10	4.10	4.13
16.750		4.11	4.10		4.07
10.750	4.05	4.04	4.02	4.01	4.00

Inte         Flow         Flow         Flow         Flow         Flow         Flow           (hours)         (ft*s)         (ft*s)         (ft*s)         3.96         3.95         3.93           17.000         3.92         3.91         3.90         3.89         3.88           17.125         3.87         3.86         3.85         3.83         3.22           17.250         3.81         3.80         3.77         3.73         3.77           17.375         3.76         3.75         3.74         3.73         3.77           17.50         3.64         3.63         3.63         3.63         3.63           17.750         3.64         3.64         3.63         3.63         3.63           17.875         3.57         3.56         3.55         3.54         3.53           18.000         3.52         3.51         3.50         3.44         3.44           18.250         3.42         3.41         3.40         3.33         3.33           18.050         3.22         3.21         3.20         3.14         3.13           18.625         3.27         3.26         3.25         3.24         3.23 <tr< th=""><th></th><th>e on iert repi</th><th></th><th></th><th></th><th></th></tr<>		e on iert repi				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time (hours)	Flow (ft ³ /s)				
17.125       3.87       3.86       3.85       3.83       3.82         17.250       3.81       3.80       3.79       3.78       3.77         17.500       3.71       3.70       3.69       3.68       3.63         17.625       3.66       3.65       3.64       3.63       3.63         17.750       3.62       3.61       3.60       3.59       3.58         17.875       3.57       3.56       3.55       3.54       3.53         18.000       3.52       3.51       3.50       3.49       3.48         18.250       3.42       3.41       3.40       3.39       3.38         18.375       3.37       3.36       3.35       3.34       3.33         18.050       3.32       3.31       3.30       3.29       3.28         18.625       3.27       3.26       3.24       3.23       3.18       3.13       3.0       3.29       3.28         18.625       3.27       3.26       3.24       3.23       3.13       3.00       3.29       3.28         18.625       3.67       3.66       3.65       3.44       3.13       3.19         19.000       3	16.875	3.98	3.97	3.96	3.95	3.93
17.125       3.87       3.86       3.85       3.83       3.82         17.250       3.81       3.80       3.79       3.78       3.77         17.375       3.76       3.76       3.77       3.73       3.72         17.500       3.71       3.70       3.69       3.68       3.63         17.750       3.62       3.61       3.60       3.59       3.58         17.750       3.62       3.51       3.50       3.49       3.88         18.000       3.52       3.51       3.50       3.49       3.88         18.125       3.47       3.46       3.44       3.43         18.250       3.42       3.41       3.40       3.39       3.38         18.375       3.37       3.36       3.35       3.34       3.33         18.600       3.32       3.31       3.30       3.29       3.28         18.75       3.27       3.26       3.24       3.23       3.13       3.00       3.29       3.28         18.625       3.77       3.66       3.65       3.44       3.13       3.19       3.00       3.29       3.28         18.625       3.77       3.66       3	17.000	3.92	3.91	3.90	3.89	3.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.125	3.87	3.86	3.85		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3.73	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
17.750         3.62         3.61         3.60         3.59         3.58           17.875         3.57         3.56         3.55         3.54         3.53           18.000         3.52         3.51         3.50         3.49         3.48           18.125         3.47         3.46         3.45         3.44         3.33           18.500         3.32         3.31         3.30         3.29         3.28           18.625         3.27         3.26         3.25         3.24         3.23           18.625         3.27         3.26         3.25         3.24         3.23           18.625         3.27         3.26         3.25         3.24         3.33           19.000         3.12         3.11         3.10         3.09         3.08           19.125         3.07         3.06         3.05         3.04         3.03           19.250         3.02         3.01         3.00         2.99         2.98           19.375         2.97         2.96         2.94         2.93           19.500         2.92         2.90         2.89         2.86         2.87           19.625         2.66         2.64						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
18.000         3.52         3.51         3.50         3.49         3.48           18.125         3.47         3.46         3.45         3.44         3.43           18.250         3.42         3.41         3.40         3.39         3.38           18.375         3.37         3.36         3.35         3.34         3.33           18.500         3.32         3.21         3.20         3.29         3.28           18.625         3.27         3.26         3.25         3.24         3.23           18.750         3.22         3.21         3.00         3.09         3.08           19.125         3.07         3.06         3.05         3.04         3.03           19.250         3.02         3.01         3.00         2.99         2.98           19.375         2.97         2.96         2.95         2.94         2.93           19.500         2.92         2.90         2.89         2.88         2.87           19.625         2.86         2.85         2.84         2.83         2.82           19.500         2.91         2.65         2.74         2.76         2.77           19.875         2.46						
18.125 $3.47$ $3.46$ $3.45$ $3.44$ $3.43$ $18.250$ $3.42$ $3.41$ $3.40$ $3.39$ $3.38$ $18.57$ $3.37$ $3.36$ $3.35$ $3.34$ $3.38$ $18.500$ $3.32$ $3.31$ $3.30$ $3.29$ $3.28$ $18.625$ $3.27$ $3.26$ $3.25$ $3.24$ $3.23$ $18.655$ $3.17$ $3.16$ $5.15$ $3.14$ $3.13$ $19.000$ $3.12$ $3.11$ $3.10$ $3.09$ $3.08$ $19.125$ $3.07$ $3.06$ $3.05$ $3.04$ $3.03$ $19.250$ $3.02$ $2.90$ $2.89$ $2.88$ $2.87$ $19.500$ $2.92$ $2.90$ $2.89$ $2.88$ $2.87$ $19.655$ $2.86$ $2.85$ $2.84$ $2.83$ $2.82$ $19.750$ $2.81$ $2.86$ $2.65$ $2.64$ $2.65$ $2.000$ $2.70$ $2.69$ $2.68$ $2.67$ $2.66$ $2.0125$ $2.66$ $2.64$ $2.63$ $2.62$ $2.61$ $2.0250$ $2.60$ $2.59$ $2.58$ $2.57$ $2.56$ $20.375$ $2.45$ $2.44$ $2.44$ $2.44$ $20.652$ $2.48$ $2.47$ $2.47$ $2.46$ $2.0500$ $2.51$ $2.51$ $2.50$ $2.49$ $2.49$ $20.652$ $2.48$ $2.43$ $2.43$ $2.42$ $2.44$ $20.652$ $2.48$ $2.45$ $2.44$ $2.44$ $2.44$ $20.575$ $2.43$ $2.4$						
18.250 $3.42$ $3.41$ $3.40$ $3.39$ $3.38$ $18.375$ $3.37$ $3.36$ $3.35$ $3.34$ $3.33$ $18.500$ $3.32$ $3.31$ $3.30$ $3.29$ $3.28$ $18.625$ $3.27$ $3.26$ $3.25$ $3.24$ $3.23$ $18.750$ $3.22$ $3.21$ $3.00$ $3.19$ $3.18$ $18.875$ $3.17$ $3.16$ $3.15$ $3.14$ $3.13$ $19.000$ $3.12$ $3.11$ $3.10$ $3.09$ $2.98$ $19.125$ $3.07$ $3.06$ $3.05$ $3.04$ $3.03$ $19.250$ $3.02$ $3.01$ $3.00$ $2.99$ $2.98$ $19.500$ $2.92$ $2.90$ $2.89$ $2.88$ $2.87$ $19.625$ $2.86$ $2.85$ $2.84$ $2.83$ $2.82$ $19.750$ $2.81$ $2.80$ $2.79$ $2.78$ $2.77$ $19.875$ $2.76$ $2.75$ $2.74$ $2.73$ $2.71$ $20.000$ $2.70$ $2.69$ $2.68$ $2.67$ $2.66$ $20.125$ $2.65$ $2.64$ $2.63$ $2.62$ $2.61$ $20.500$ $2.51$ $2.51$ $2.55$ $2.54$ $2.44$ $2.44$ $20.875$ $2.48$ $2.47$ $2.44$ $2.44$ $20.875$ $2.48$ $2.43$ $2.43$ $2.43$ $21.50$ $2.37$ $2.37$ $2.37$ $2.36$ $2.35$ $21.50$ $2.37$ $2.37$ $2.37$ $2.36$ $2.35$ $21.50$ $2.34$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
18.375 $3.37$ $3.36$ $3.35$ $3.34$ $3.33$ $18.500$ $3.32$ $3.31$ $3.30$ $3.29$ $3.28$ $18.625$ $3.27$ $3.26$ $3.25$ $3.24$ $3.23$ $18.750$ $3.22$ $3.21$ $3.20$ $3.19$ $3.18$ $18.875$ $3.17$ $3.16$ $3.15$ $3.14$ $3.13$ $19.000$ $3.12$ $3.11$ $3.10$ $3.09$ $3.08$ $19.250$ $3.07$ $3.06$ $3.05$ $3.04$ $3.03$ $19.250$ $3.02$ $3.01$ $3.00$ $2.99$ $2.98$ $19.375$ $2.97$ $2.96$ $2.95$ $2.94$ $2.93$ $19.500$ $2.92$ $2.90$ $2.89$ $2.88$ $2.87$ $19.625$ $2.86$ $2.85$ $2.84$ $2.83$ $2.82$ $19.750$ $2.81$ $2.80$ $2.79$ $2.78$ $2.77$ $19.875$ $2.76$ $2.75$ $2.74$ $2.73$ $2.71$ $20.00$ $2.70$ $2.69$ $2.68$ $2.67$ $2.66$ $20.125$ $2.65$ $2.64$ $2.63$ $2.62$ $2.61$ $20.250$ $2.60$ $2.59$ $2.58$ $2.57$ $2.56$ $20.375$ $2.55$ $2.54$ $2.54$ $2.53$ $2.52$ $20.500$ $2.51$ $2.51$ $2.50$ $2.44$ $2.44$ $20.875$ $2.43$ $2.43$ $2.43$ $2.44$ $2.44$ $20.875$ $2.43$ $2.43$ $2.43$ $2.44$ $2.44$ $20.875$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
18.500 $3.32$ $3.31$ $3.30$ $3.29$ $3.28$ $18.625$ $3.27$ $3.26$ $3.25$ $3.24$ $3.23$ $18.75$ $3.22$ $3.21$ $3.20$ $3.19$ $3.18$ $18.875$ $3.17$ $3.16$ $3.15$ $3.14$ $3.13$ $19.000$ $3.12$ $3.11$ $3.00$ $2.99$ $2.98$ $19.125$ $3.07$ $3.06$ $3.05$ $3.04$ $3.03$ $19.250$ $3.02$ $3.01$ $3.00$ $2.99$ $2.98$ $19.375$ $2.97$ $2.96$ $2.95$ $2.94$ $2.93$ $19.605$ $2.86$ $2.85$ $2.84$ $2.83$ $2.82$ $19.750$ $2.81$ $2.80$ $2.79$ $2.78$ $2.77$ $19.875$ $2.76$ $2.75$ $2.74$ $2.73$ $2.71$ $20.000$ $2.70$ $2.69$ $2.68$ $2.67$ $2.66$ $20.175$ $2.65$ $2.64$ $2.63$ $2.62$ $2.66$ $20.375$ $2.55$ $2.54$ $2.55$ $2.54$ $2.55$ $20.500$ $2.51$ $2.51$ $2.50$ $2.49$ $2.49$ $20.625$ $2.48$ $2.47$ $2.44$ $2.44$ $20.875$ $2.43$ $2.43$ $2.43$ $2.42$ $2.42$ $21.000$ $2.45$ $2.44$ $2.44$ $2.44$ $20.875$ $2.38$ $2.38$ $2.38$ $2.33$ $2.33$ $21.50$ $2.39$ $2.39$ $2.39$ $2.38$ $2.38$ $21.575$ $2.34$ $2.34$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
18.625         3.27         3.26         3.25         3.24         3.23           18.750         3.22         3.21         3.20         3.19         3.18           18.875         3.17         3.16         3.15         3.14         3.13           19.000         3.12         3.11         3.10         3.09         3.08           19.125         3.07         3.06         3.05         3.04         3.03           19.250         3.02         3.01         3.00         2.99         2.98           19.375         2.97         2.96         2.88         2.83         2.82           19.500         2.92         2.90         2.89         2.88         2.87           19.625         2.86         2.85         2.84         2.83         2.82           19.750         2.81         2.80         2.77         2.78         2.77           19.875         2.76         2.75         2.74         2.73         2.71           20.000         2.70         2.69         2.68         2.67         2.66           20.125         2.65         2.54         2.55         2.54         2.52           20.500         2.51						
18.750         3.22         3.21         3.20         3.19         3.18           18.875         3.17         3.16         3.15         3.14         3.13           19.000         3.12         3.11         3.10         3.09         3.08           19.125         3.07         3.06         3.05         3.04         3.03           19.250         3.02         3.01         3.00         2.99         2.98           19.375         2.97         2.96         2.95         2.94         2.93           19.500         2.92         2.90         2.89         2.88         2.87           19.625         2.86         2.81         2.80         2.77         2.78         2.77           19.875         2.76         2.75         2.74         2.73         2.71           20.000         2.70         2.69         2.68         2.67         2.66           20.125         2.65         2.54         2.55         2.54         2.55         2.56           20.375         2.55         2.54         2.54         2.45         2.46         2.46           20.500         2.51         2.51         2.55         2.54         2.42						
18.875         3.17         3.16         3.15         3.14         3.13           19.000         3.12         3.11         3.10         3.09         3.08           19.125         3.07         3.06         3.05         3.04         3.03           19.250         3.02         3.01         3.00         2.99         2.98           19.375         2.97         2.96         2.89         2.88         2.87           19.625         2.86         2.80         2.79         2.78         2.71           19.675         2.76         2.75         2.74         2.73         2.71           19.675         2.66         2.64         2.63         2.62         2.61           20.000         2.70         2.69         2.68         2.67         2.66           20.125         2.65         2.64         2.63         2.62         2.61           20.500         2.51         2.51         2.55         2.54         2.45         2.45           20.500         2.51         2.51         2.50         2.49         2.49           20.625         2.48         2.47         2.44         2.44         2.44           20.625						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
19.1253.073.063.053.043.0319.2503.023.013.002.992.9819.3752.972.962.952.942.9319.5002.922.902.892.882.8719.6252.862.852.842.832.8219.7502.812.802.792.782.7719.8752.762.752.742.732.7120.0002.702.692.682.672.6620.1252.652.642.632.622.6120.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.392.3921.2502.392.392.382.382.3821.3752.342.342.342.342.3421.4502.352.352.352.352.3521.502.332.332.332.332.3322.502.342.342.342.342.3421.3752.302.302.302.302.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
19.3752.972.962.952.942.9319.5002.922.902.892.882.8719.6252.862.852.842.832.8219.7502.812.802.792.782.7719.8752.762.752.742.732.7120.0002.702.692.682.672.6620.1252.652.642.632.622.6120.502.502.552.542.542.5320.5002.512.512.502.492.4920.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4121.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3721.5002.372.372.362.362.3521.4552.362.352.352.342.3421.4252.362.352.352.342.3321.5002.332.332.332.332.3222.502.312.312.312.312.3121.6252.362.352.352.342.3421.6252.302.302.302.302.302.3022.502.312.312.312.31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
19.5002.922.902.892.882.8719.6252.862.852.842.832.8219.7502.812.802.792.782.7719.8752.762.752.742.732.7120.0002.702.692.682.672.6620.1252.652.642.632.622.6120.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.442.4420.8752.432.432.432.422.4121.0002.422.412.412.412.4121.1252.402.402.402.402.3921.502.372.372.372.362.3621.502.372.372.372.362.3621.6252.362.362.362.352.3521.502.332.332.332.332.3322.0002.332.322.322.322.3222.252.312.312.312.312.3122.3752.302.302.302.302.302.3022.502.312.312.312.312.3122.3752.282.282.282.282.2822.452.492.282.262.25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
19.6252.862.852.842.832.8219.7502.812.802.792.782.7719.8752.762.752.742.732.7120.0002.702.692.682.672.6620.1252.652.642.632.622.6120.2502.602.592.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4121.0002.452.452.452.442.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3821.3752.382.382.382.372.3721.5002.372.372.372.362.3621.4252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.322.322.322.322.3222.5002.312.312.312.312.3122.3752.302.302.302.302.302.3022.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.252.25<						
19.7502.812.802.792.782.7719.8752.762.752.742.732.7120.0002.702.692.682.672.6620.1252.652.642.632.622.6120.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.512.512.4420.6252.482.472.472.442.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.382.382.3821.3752.382.382.382.372.3721.5002.372.372.352.342.3421.6252.342.342.342.342.3321.502.332.352.352.342.3421.7502.352.352.352.342.3222.1252.322.322.322.322.3222.1252.302.302.302.302.3022.1252.312.312.312.312.3122.3752.282.282.282.282.2822.4552.292.282.252.252.2522.502.312.372.362.262.26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
19.8752.762.752.742.732.7120.0002.702.692.682.672.6620.1252.652.642.632.622.6120.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.512.492.4920.6252.482.472.472.462.4620.7502.452.452.432.422.4220.6052.432.432.432.422.4220.7502.452.442.442.412.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3821.3752.382.382.372.372.3721.5002.372.372.362.362.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3421.8752.322.322.322.322.3222.0002.332.332.332.332.332.3322.1252.322.322.322.322.322.3222.1252.312.312.312.312.312.3122.1252.322.322.322.322.322.3222.1252.312.312.312.312.312.3122.125<						
20.0002.702.692.682.672.6620.1252.652.642.632.622.6120.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4121.0002.422.412.412.412.4121.1252.402.402.392.392.382.3821.3752.382.382.332.332.352.3521.6252.362.362.362.362.362.3621.6252.362.352.352.342.342.3421.6252.362.352.352.352.352.3522.1252.322.322.322.322.3222.1252.312.312.312.312.312.3122.3752.302.292.292.292.292.2922.6252.292.282.272.272.272.2722.7502.282.282.272.272.272.2722.8752.272.272.262.262.262.2623.0002.262.252.252.252.252.2523.1252.2						
20.1252.652.642.632.622.6120.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.462.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.392.3821.3752.382.382.382.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.5002.372.372.372.362.3621.6252.362.362.362.352.3522.0002.332.322.322.322.3222.1252.322.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.302.3022.6252.292.282.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.002.262.262.262.262.2623.002.262.262.262.252.2523.1252.252.252.25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
20.2502.602.592.582.572.5620.3752.552.542.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.462.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3821.3752.382.382.382.352.3521.6252.362.362.362.352.3521.5002.372.372.372.362.3621.6252.362.362.362.352.3521.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.352.3521.6252.302.302.302.302.3022.5002.312.312.312.312.3122.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.302.202.292.292.2922.6252.292.282.282.282.2822.7502.282.282.282.282.2822.7502.282.292.262.262.26<						
20.3752.552.542.542.532.5220.5002.512.512.502.492.4920.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3821.3752.382.382.382.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3421.8752.332.332.332.332.3322.1252.322.322.322.322.3222.5002.302.302.302.302.3022.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.282.282.2822.7502.282.282.262.262.2623.0002.262.262.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.252.25<						
20.5002.512.512.502.492.4920.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.382.382.3821.3752.382.382.382.372.3721.5002.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.332.3222.0002.332.322.322.322.3222.1252.312.312.312.312.3122.3752.302.302.302.302.3022.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.282.282.2623.0002.262.272.272.272.2722.8752.272.272.252.252.2523.1252.252.252.252.252.2523.1252.252.252.252.262.2623.0002.262.252.252.252.24						
20.6252.482.472.472.462.4620.7502.452.452.452.442.4420.8752.432.432.432.422.4221.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.382.382.3821.3752.382.382.382.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3322.0002.332.322.322.322.3222.1252.322.322.322.322.3222.5002.312.312.312.312.3122.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.302.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.262.252.2523.1252.252.252.252.252.2523.1252.252.252.252.252.2422.8752.252.252.252.242.24<						
20.7502.452.452.442.4420.8752.432.432.432.432.4221.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.382.382.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3421.8752.342.342.332.332.3222.0002.332.322.322.322.3222.1252.322.322.322.322.3222.5002.312.312.312.312.3122.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.252.2523.1252.252.252.252.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
20.8752.432.432.432.442.412.4221.0002.422.412.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3721.5002.372.372.372.372.3621.6252.362.362.362.352.3521.6252.362.352.352.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3322.0002.332.322.322.322.3222.1252.322.322.322.322.3222.5002.312.312.312.312.3122.3752.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.262.262.2623.0002.262.262.262.252.2523.1252.252.252.252.252.2523.1252.252.252.252.252.24						
21.0002.422.412.412.412.4121.1252.402.402.402.402.3921.2502.392.392.392.382.3821.3752.382.382.382.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3322.0002.332.322.322.322.3222.1252.322.322.322.322.3222.5002.312.312.312.312.3122.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.262.262.2623.0002.262.262.262.252.2523.1252.252.252.252.252.252.2423.1252.252.252.252.252.242.24	20.875					
21.1252.402.402.402.402.3921.2502.392.392.392.382.3821.3752.382.382.372.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.3022.6252.292.282.282.282.2822.7502.282.282.272.272.2722.6252.272.272.262.262.263.0002.262.262.262.252.2523.1252.252.252.252.252.242.24						
21.2502.392.392.382.3821.3752.382.382.382.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.332.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.502.312.312.312.312.3122.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.272.272.262.2623.1252.252.252.252.252.2523.1252.252.252.252.242.24						
21.3752.382.382.382.372.3721.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.502.312.312.312.312.3122.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.6252.272.272.262.262.262.3002.262.262.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24						
21.5002.372.372.372.362.3621.6252.362.362.362.352.3521.7502.352.352.352.342.3421.8752.342.342.342.342.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.502.312.312.312.312.3122.3752.302.302.302.302.3022.6252.292.282.282.282.2822.7502.282.282.272.272.2722.6252.272.272.262.262.2623.002.262.262.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24				2.38		
21.7502.352.352.342.3421.8752.342.342.342.342.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.3022.6252.292.282.282.282.2822.7502.282.282.272.272.2722.6252.272.272.262.262.2623.0002.262.272.272.262.2623.0002.262.262.262.252.2523.1252.252.252.252.242.24						
21.7502.352.352.342.3421.8752.342.342.342.342.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.3022.6252.292.282.282.282.2822.7502.282.282.272.272.2722.6252.272.272.262.262.2623.0002.262.272.272.262.2623.0002.262.262.262.252.2523.1252.252.252.252.242.24						
21.8752.342.342.342.3322.0002.332.332.332.332.3222.1252.322.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.3022.6252.292.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24						
22.0002.332.332.332.332.3222.1252.322.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.3022.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24	21.875					
22.1252.322.322.322.3222.2502.312.312.312.312.3122.3752.302.302.302.302.3022.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24						
22.2502.312.312.312.312.3122.3752.302.302.302.302.3022.5002.302.292.292.292.2922.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24	22.125	2.32	2.32	2.32	2.32	2.32
22.3752.302.302.302.3022.5002.302.292.292.2922.6252.292.282.282.2822.7502.282.282.272.2722.8752.272.272.262.2623.0002.262.262.252.2523.1252.252.252.252.24						
22.5002.302.292.292.2922.6252.292.282.282.2822.7502.282.282.272.2722.8752.272.272.262.2623.0002.262.262.252.2523.1252.252.252.252.24						
22.6252.292.282.282.282.2822.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24						
22.7502.282.282.272.272.2722.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24						
22.8752.272.272.262.262.2623.0002.262.262.252.252.2523.1252.252.252.252.242.24						
23.0002.262.262.252.252.2523.1252.252.252.252.242.24						
23.125 2.25 2.25 2.25 2.24 2.24		2.26				
	23.250	2.24	2.24	2.24	2.23	

Time (hours)	Flow (ft ³ /s)				
23.375	2.23	2.23	2.23	2.22	2.22
23.500	2.22	2.22	2.22	2.22	2.21
23.625	2.21	2.21	2.21	2.21	2.20
23.750	2.20	2.20	2.20	2.20	2.19
23.875	2.19	2.19	2.19	2.18	2.18
24.000	2.18	(N/A)	(N/A)	(N/A)	(N/A)




Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres
Computational Time Increment	0.108 hours
Time to Peak (Computed)	12.452 hours
Flow (Peak, Computed)	96.09 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	12.450 hours
Interpolated Output)	12.450 110015
Flow (Peak Interpolated Output)	96.07 ft ³ /s
Drainage Area	
SCS CN (Composite)	69.000
Area (User Defined)	114.161 acres
Maximum Retention (Pervious)	4.5 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.5 in
Runoff Volume (Pervious)	14.008 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	13.807 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.812 hours
Computational Time	0.108 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	159.28 ft ³ /s
Unit peak time, Tp	0.541 hours
Unit receding limb, Tr	2.166 hours
Total unit time, Tb	2.707 hours

Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
10.625	0.00	0.00	0.00	0.00	0.01
10.750	0.00	0.00	0.02	0.02	0.03
10.875	0.05	0.06	0.07	0.09	0.11
11.000	0.14	0.16	0.19	0.24	0.28
11.125	0.32	0.36	0.42	0.49	0.55
11.250	0.61	0.69	0.78	0.87	0.96
11.375	1.06	1.18	1.30	1.42	1.54
11.500	1.72	1.90	2.08	2.26	2.54
11.625	2.90	3.26	3.63	4.11	4.99
11.750	5.88	6.76	7.65	9.77	12.04
11.875	14.31	16.59	19.94	24.12	28.30
12.000	32.49	37.02	42.70	48.39	54.07
12.125	59.75	65.07	70.34	75.62	80.90
12.250	84.77	87.59	90.41	93.23	95.41
12.375	95.57	95.74	95.91	96.07	94.53
12.500	92.82	91.11	89.40	87.00	84.11
12.625	81.22	78.33	75.40	72.38	69.35
12.750	66.33	63.30	60.84	58.44	56.04
12.875	53.63	51.56	49.72	47.89	46.05
13.000	44.30	42.82	41.33	39.85	38.37
13.125	37.15	35.96	34.76	33.57	32.53
13.250	31.59	30.65	29.72	28.83	28.08
13.375	27.32	26.57	25.82	25.21	24.60
13.500	24.00	23.40	22.87	22.38	21.89
13.625	21.40	20.94	20.53	20.13	19.72
13.750	19.32	18.97	18.64	18.30	17.96
13.875	17.65	17.36	17.07	16.79	16.51
14.000	16.26	16.02	15.77	15.52	15.30
14.125	15.09	14.87	14.65	14.45	14.26
14.250	14.06	13.87	13.68	13.50	13.33
14.375	13.15	12.98	12.82	12.67	12.52
14.500 14.625	12.37 11.77	12.24 11.68	12.12 11.59	12.00 11.50	11.88 11.40
14.625	11.77	11.08	11.59	11.50	11.40
14.750	10.95	10.88	10.81	10.74	10.68
14.875	10.95	10.88	10.81	10.74	10.08
15.125	10.01	10.55	10.49	10.43	10.37
15.250	10.03	9.98	9.93	9.87	9.82
15.230	9.77	9.72	9.66	9.61	9.56
15.500	9.51	9.46	9.41	9.36	9.31
15.625	9.26	9.21	9.15	9.10	9.05
15.750	9.00	8.95	8.90	8.85	8.80
15.875	8.75	8.70			8.55
	5.70	0.70	0.00	0.00	0.00

	-				
Time (hours)	Flow (ft ³ /s)				
16.000	8.50	8.45	8.40	8.35	8.30
16.125	8.25	8.20	8.15	8.10	8.05
16.250	8.00	7.96	7.91	7.87	7.82
16.375	7.78	7.74	7.69	7.65	7.61
16.500	7.58	7.54	7.50	7.47	7.43
16.625	7.40	7.37	7.34	7.31	7.28
16.750	7.25	7.23	7.20	7.18	7.15
16.875	7.13	7.10	7.08	7.06	7.03
17.000	7.01	6.99	6.97	6.95	6.93
17.125	6.91	6.88	6.86	6.84	6.82
17.250	6.80	6.79	6.77	6.75	6.73
17.375	6.71	6.69	6.67	6.65	6.63
17.500	6.61	6.60	6.58	6.56	6.54
17.625	6.52	6.50	6.48	6.47	6.45
17.750	6.43	6.41	6.39	6.38	6.36
17.875	6.34	6.32	6.30	6.28	6.27
18.000	6.25	6.23	6.21	6.19	6.18
18.125	6.16	6.14	6.12	6.10	6.09
18.250	6.07	6.05	6.03	6.01	5.99
18.375	5.98	5.96	5.94	5.92	5.90
18.500	5.88	5.87	5.85	5.83	5.81
18.625	5.79	5.77	5.76	5.74	5.72
18.750	5.70	5.68	5.66	5.64	5.63
18.875	5.61	5.59	5.57	5.55	5.53
19.000	5.51	5.49	5.48	5.46	5.44
19.125	5.42	5.40	5.38	5.36	5.34
19.250	5.33	5.31	5.29	5.27	5.25
19.375	5.23	5.21	5.19	5.17	5.16
19.500	5.14	5.12	5.10	5.08	5.06
19.625	5.04	5.02	5.00	4.98	4.97
19.750	4.95	4.93	4.91	4.89	4.87
19.875	4.85	4.83	4.81	4.79	4.77
20.000	4.75	4.73	4.72	4.70	4.68
20.125	4.66	4.64	4.62	4.60	4.58
20.250	4.56	4.55	4.53	4.51	4.50
20.375	4.48	4.47	4.45	4.44	4.42
20.500	4.41	4.40	4.38	4.37	4.36
20.625	4.35	4.34	4.33	4.32	4.31
20.750	4.30	4.29	4.29	4.28	4.27
20.875	4.27	4.26	4.25	4.25	4.24
21.000	4.23	4.23	4.22	4.22	4.21
21.125	4.21	4.20	4.20	4.19	4.19
21.250	4.19	4.18	4.18	4.17	4.17
21.375	4.16	4.16	4.16	4.15	4.15
21.500	4.14	4.14	4.14	4.13	4.13
21.625	4.12	4.12	4.12	4.11	4.11
21.750	4.11	4.10	4.10	4.10	4.09
21.875	4.09	4.08	4.08	4.08	4.07
22.000	4.07	4.07	4.06	4.06	4.06
22.125	4.05	4.05	4.05	4.04	4.04
22.250	4.04	4.03	4.03	4.03	4.02
22.375	4.02	4.01	4.01	4.01	4.00

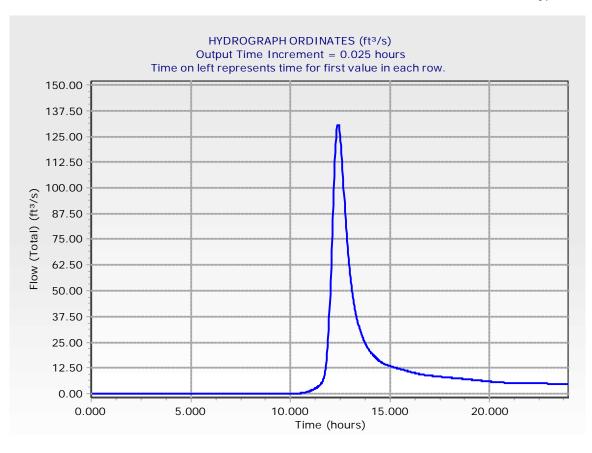
	•				
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
22.500	4.00	4.00	3.99	3.99	3.99
22.625	3.98	3.98	3.98	3.97	3.97
22.750	3.97	3.96	3.96	3.96	3.95
22.875	3.95	3.94	3.94	3.94	3.93
23.000	3.93	3.93	3.92	3.92	3.92
23.125	3.91	3.91	3.91	3.90	3.90
23.250	3.90	3.89	3.89	3.88	3.88
23.375	3.88	3.87	3.87	3.87	3.86
23.500	3.86	3.86	3.85	3.85	3.85
23.625	3.84	3.84	3.83	3.83	3.83
23.750	3.82	3.82	3.82	3.81	3.81
23.875	3.81	3.80	3.80	3.79	3.78
24.000	3.78	(N/A)	(N/A)	(N/A)	(N/A)



Storm Event100-Year Type II 24-HourReturn Event100 yearsDuration24.000 hoursDepth5.0 inTime of Concentration (Composite)0.812 hoursArea (User Defined)114.161 acresComputational Time Increment0.108 hours	
Duration24.000 hoursDepth5.0 inTime of Concentration (Composite)0.812 hoursArea (User Defined)114.161 acresComputational Time Increment0.108 hours	
Depth5.0 inTime of Concentration (Composite)0.812 hoursArea (User Defined)114.161 acresComputational Time Increment0.108 hours	_
Time of Concentration (Composite)0.812 hoursArea (User Defined)114.161 acresComputational Time Increment0.108 hours	_
(Composite)     0.812 hours       Area (User Defined)     114.161 acres       Computational Time Increment     0.108 hours	
Computational Time 0.108 hours	_
Increment	
Increment	
Time to Peak (Computed) 12.344 hours	
Flow (Peak, Computed) 130.55 ft ³ /s	
Output Increment 0.025 hours	
Time to Flow (Peak 12.350 hours	
Interpolated Output)	
Flow (Peak Interpolated 130.53 ft ³ /s	
Drainage Area	
SCS CN (Composite) 69.000	
Area (User Defined) 114.161 acres	
Maximum Retention 4.5 in	
Maximum Retention 0.9 in 0.9 in	
Cumulative Runoff	
Cumulative Runoff Depth 2.0 in	
Runoff Volume (Pervious)18.552 ac-ft	
Hydrograph Volume (Area under Hydrograph curve)	
Volume 18.303 ac-ft	
SCS Unit Hydrograph Parameters	
Time of Concentration 0.812 hours (Composite)	
() 812 hours	
(Composite) 0.812 hours Computational Time 0.108 hours	
(Composite)0.812 hoursComputational Time Increment0.108 hoursUnit Hydrograph Shape483 432	
(Composite)0.812 hoursComputational Time0.108 hoursIncrement0.108 hoursUnit Hydrograph Shape483.432Factor483.432	
(Composite)0.812 hoursComputational Time0.108 hoursIncrement0.108 hoursUnit Hydrograph Shape483.432Factor0.749	
(Composite)0.812 hoursComputational Time Increment0.108 hoursUnit Hydrograph Shape Factor483.432K Factor0.749Receding/Rising, Tr/Tp1.670	
(Composite)0.812 hoursComputational Time Increment0.108 hoursUnit Hydrograph Shape Factor483.432K Factor0.749Receding/Rising, Tr/Tp1.670Unit peak, qp159.28 ft³/s	

_

Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.812 hours
Area (User Defined)	114.161 acres


### HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
10.050	0.00	0.00	0.00	0.01	0.01
10.175	0.01	0.01	0.02	0.03	0.03
10.300	0.04	0.05	0.07	0.08	0.09
10.425	0.12	0.14	0.16	0.18	0.21
10.550	0.25	0.28	0.32	0.36	0.40
10.675	0.45	0.50	0.55	0.61	0.67
10.800	0.73	0.79	0.86	0.94	1.01
10.925	1.08	1.17	1.26	1.35	1.44
11.050	1.53	1.64	1.75	1.86	1.97
11.175	2.10	2.23	2.37	2.50	2.65
11.300	2.82	2.98	3.14	3.32	3.52
11.425	3.73	3.93	4.13	4.42	4.71
11.550	5.00	5.29	5.73	6.30	6.86
11.675	7.42	8.15	9.47	10.79	12.11
11.800	13.44	16.46	19.69	22.91	26.13
11.925	30.78	36.54	42.29	48.04	54.23
12.050	61.85	69.47	77.10	84.72	91.69
12.175	98.59	105.49	112.40	117.36	120.87
12.300	124.37	127.88	130.53	130.47	130.41
12.425	130.35	130.29	127.97	125.42	122.88
12.550	120.34	116.92	112.87	108.82	104.77
12.675	100.69	96.54	92.40	88.25	84.10
12.800	80.75	77.48	74.20	70.93	68.11
12.925	65.62	63.12	60.63	58.26	56.25
13.050	54.25	52.24	50.23	48.59	46.99
13.175	45.38	43.77	42.38	41.12	39.86
13.300	38.61	37.41	36.41	35.40	34.40
13.425	33.39	32.57	31.77	30.97	30.17
13.550	29.46	28.81	28.16	27.51	26.90
13.675	26.36	25.83	25.29	24.76	24.30
13.800	23.86	23.41	22.96	22.56	22.18
13.925	21.80	21.43	21.06	20.74	20.42
14.050	20.10	19.77	19.49	19.20	18.92
14.175	18.64	18.37	18.12	17.86	17.61
14.300	17.36	17.13	16.91 15.86	16.68	16.45
14.425 14.550	16.25 15.34	16.06 15.19	15.86 15.04	15.66 14.90	15.50 14.78
14.675 14.800	14.66 14.12	14.54 14.02	14.42 13.92	14.32 13.83	14.22 13.74
14.800 14.925	14.12	14.02 13.57	13.92	13.83	13.74
14.925	13.05	13.57	13.49	13.41	13.32
15.050	13.24	13.17	13.09	13.02	12.94
15.175	12.67	12.80	12.73	12.00	12.39
15.300	12.52	12.45	12.38	12.32	12.25

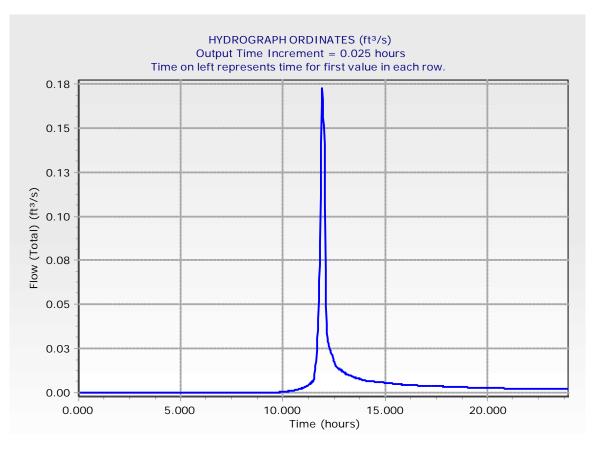
NPTT2-Watershed.ppc 11/22/2016

Time (hours)	Flow (ft ³ /s)				
15.425	12.18	12.12	12.05	11.99	11.92
15.550	11.85	11.79	11.72	11.66	11.60
15.675	11.53	11.47	11.40	11.34	11.27
15.800	11.21	11.15	11.08	11.02	10.95
15.925	10.89	10.83	10.76	10.70	10.63
16.050	10.57	10.50	10.44	10.38	10.31
16.175	10.25	10.19	10.13	10.06	10.01
16.300	9.95	9.89	9.83	9.78	9.72
16.425	9.67	9.61	9.57	9.52	9.47
16.550	9.42	9.38	9.34	9.30	9.26
16.675	9.22	9.18	9.14	9.11	9.07
16.800	9.04	9.01	8.98	8.94	8.91
16.925	8.88	8.86	8.83	8.80	8.77
17.050	8.74	8.72	8.69	8.66	8.64
17.175	8.61	8.58	8.56	8.53	8.51
17.300	8.48	8.46	8.44	8.41	8.39
17.425	8.36	8.34	8.31	8.29	8.27
17.550	8.24	8.22	8.20	8.17	8.15
17.675	8.13	8.10	8.08	8.06	8.03
17.800	8.01	7.99	7.96	7.94	7.92
17.925	7.89	7.87	7.85	7.82	7.80
18.050	7.78	7.75	7.73	7.71	7.69
18.175	7.66	7.64	7.62	7.59	7.57
18.300	7.55	7.52	7.50	7.48	7.45
18.425	7.43	7.41	7.39	7.36	7.34
18.550	7.32	7.29	7.27	7.25	7.22
18.675	7.20	7.17	7.15	7.13	7.10
18.800	7.08	7.06	7.03	7.01	6.99
18.925	6.96	6.94	6.91	6.89	6.87
19.050	6.84	6.82	6.80	6.77	6.75
19.175	6.72	6.70	6.68	6.65	6.63
19.300	6.61	6.58	6.56	6.53	6.51
19.425	6.49	6.46	6.44	6.42	6.39
19.550	6.37	6.34	6.32	6.30	6.27
19.675	6.25	6.22	6.20	6.18	6.15
19.800	6.13	6.10	6.08	6.05	6.03
19.925	6.01	5.98	5.96	5.93	5.91
20.050	5.88	5.86	5.84	5.81	5.79
20.175	5.77	5.74	5.72	5.70	5.67
20.300	5.65	5.63	5.61	5.59	5.57
20.425	5.55	5.53	5.51	5.50	5.48
20.550	5.47	5.45	5.44	5.42	5.41
20.675	5.40	5.39	5.38	5.37	5.35
20.800	5.34	5.34	5.33	5.32	5.31
20.925	5.30	5.29	5.29	5.28	5.27
21.050	5.27	5.26	5.25	5.25	5.24
21.175	5.23	5.23	5.22	5.22	5.21
21.300	5.20	5.20	5.19	5.19	5.18
21.425	5.18	5.17	5.17	5.16	5.16
21.550	5.15	5.15	5.14	5.14	5.13
21.675	5.13	5.12	5.12	5.11	5.11
21.800	5.10	5.10	5.10	5.09	5.09

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
21.925	5.08	5.08	5.07	5.07	5.06
22.050	5.06	5.05	5.05	5.05	5.04
22.175	5.04	5.03	5.03	5.02	5.02
22.300	5.01	5.01	5.01	5.00	5.00
22.425	4.99	4.99	4.98	4.98	4.97
22.550	4.97	4.97	4.96	4.96	4.95
22.675	4.95	4.94	4.94	4.93	4.93
22.800	4.93	4.92	4.92	4.91	4.91
22.925	4.90	4.90	4.89	4.89	4.88
23.050	4.88	4.88	4.87	4.87	4.86
23.175	4.86	4.85	4.85	4.84	4.84
23.300	4.83	4.83	4.83	4.82	4.82
23.425	4.81	4.81	4.80	4.80	4.79
23.550	4.79	4.78	4.78	4.78	4.77
23.675	4.77	4.76	4.76	4.75	4.75
23.800	4.74	4.74	4.73	4.73	4.73
23.925	4.72	4.71	4.70	4.69	(N/A)



Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.117 acres
Computational Time	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	0.17 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	
Interpolated Output)	11.925 hours
Flow (Peak Interpolated Output)	0.17 ft ³ /s
Drainage Area	
SCS CN (Composite)	85.000
Area (User Defined)	0.117 acres
Maximum Retention (Pervious)	1.8 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.9 in
Runoff Volume (Pervious)	0.009 ac-ft
Hydrograph Volume (Area u	inder Hydrograph curve)
Volume	0.009 ac-ft
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	1.59 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours
·	


_

Storm Event	2-Year Type II 24- Hour
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.117 acres

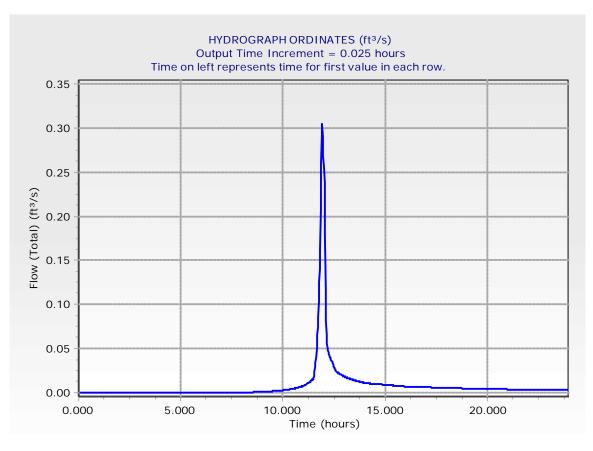
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
10.400	0.00	0.00	0.00	0.00	0.00
10.525	0.00	0.00	0.00	0.00	0.00
10.650	0.00	0.00	0.00	0.00	0.00
10.000	0.00	0.00	0.00	0.00	0.00
10.900	0.00	0.00	0.00	0.00	0.00
11.025	0.00	0.00	0.00	0.00	0.00
11.150	0.00	0.00	0.00	0.00	0.00
11.275	0.00	0.00	0.01	0.01	0.01
11.400	0.01	0.01	0.01	0.01	0.01
11.525	0.01	0.01	0.01	0.01	0.02
11.650	0.02	0.03	0.04	0.04	0.05
11.775	0.06	0.07	0.08	0.11	0.14
11.900	0.16	0.17	0.17	0.16	0.15
12.025	0.14	0.11	0.07	0.05	0.04
12.150	0.03	0.03	0.03	0.03	0.03
12.275	0.03	0.02	0.02	0.02	0.02
12.400	0.02	0.02	0.02	0.02	0.02
12.525	0.02	0.02	0.02	0.01	0.01
12.650	0.01	0.01	0.01	0.01	0.01
12.775	0.01	0.01	0.01	0.01	0.01
12.900	0.01	0.01	0.01	0.01	0.01
13.025	0.01	0.01	0.01	0.01	0.01
13.150	0.01	0.01	0.01	0.01	0.01
13.275	0.01	0.01	0.01	0.01	0.01
13.400	0.01	0.01	0.01	0.01	0.01
13.525	0.01	0.01	0.01	0.01	0.01
13.650	0.01	0.01	0.01	0.01	0.01
13.775	0.01	0.01	0.01	0.01	0.01
13.900	0.01	0.01	0.01	0.01	0.01
14.025	0.01	0.01	0.01	0.01	0.01
14.150	0.01	0.01	0.01	0.01	0.01
14.275	0.01	0.01	0.01	0.01	0.01
14.400	0.01	0.01	0.01	0.01	0.01
14.525	0.01	0.01	0.01	0.01	0.01
14.650	0.01	0.01	0.01	0.01	0.01
14.775	0.01	0.01	0.01	0.01	0.01
14.900	0.01	0.01	0.01	0.01	0.01
15.025	0.01	0.01	0.01	0.01	0.01
15.150	0.01	0.01	0.01	0.01	0.01
15.275	0.01	0.01	0.01	0.01	0.01
15.400	0.01	0.01	0.01	0.01	0.01
15.525	0.01	0.00	0.00	0.00	0.00
15.650	0.00	0.00	0.00	0.00	0.00

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
15.775	0.00	0.00	0.00	0.00	0.00
15.900	0.00	0.00	0.00	0.00	0.00
16.025	0.00	0.00	0.00	0.00	0.00
16.150	0.00	0.00	0.00	0.00	0.00
16.275	0.00	0.00	0.00	0.00	0.00
16.400	0.00	0.00	0.00	0.00	0.00
16.525	0.00	0.00	0.00	0.00	0.00
16.650	0.00	0.00	0.00	0.00	0.00
16.775	0.00	0.00	0.00	0.00	0.00
16.900	0.00	0.00	0.00	0.00	0.00
17.025	0.00	0.00	0.00	0.00	0.00
17.150	0.00	0.00	0.00	0.00	0.00
17.275	0.00	0.00	0.00	0.00	0.00
17.400	0.00	0.00	0.00	0.00	0.00
17.525	0.00	0.00	0.00	0.00	0.00
17.650	0.00	0.00	0.00	0.00	0.00
17.775	0.00	0.00	0.00	0.00	0.00
17.900	0.00	0.00	0.00	0.00	0.00
18.025	0.00	0.00	0.00	0.00	0.00
18.150	0.00	0.00	0.00	0.00	0.00
18.275	0.00	0.00	0.00	0.00	0.00
18.400	0.00	0.00	0.00	0.00	0.00
18.525	0.00	0.00	0.00	0.00	0.00
18.650	0.00	0.00	0.00	0.00	0.00
18.775	0.00	0.00	0.00	0.00	0.00
18.900	0.00	0.00	0.00	0.00	0.00
19.025	0.00	0.00	0.00	0.00	0.00
19.150	0.00	0.00	0.00	0.00	0.00
19.275	0.00	0.00	0.00	0.00	0.00
19.400	0.00	0.00	0.00	0.00	0.00
19.525	0.00	0.00	0.00	0.00	0.00
19.650	0.00	0.00	0.00	0.00	0.00
19.775	0.00	0.00	0.00	0.00	0.00
19.900	0.00	0.00	0.00	0.00	0.00
20.025	0.00	0.00	0.00	0.00	0.00
20.150	0.00	0.00	0.00	0.00	0.00
20.275	0.00	0.00	0.00	0.00	0.00
20.400	0.00	0.00	0.00	0.00	0.00
20.525	0.00	0.00	0.00	0.00	0.00
20.650	0.00	0.00	0.00	0.00	0.00
20.775	0.00	0.00	0.00	0.00	0.00
20.900	0.00	0.00	0.00	0.00	0.00
21.025	0.00	0.00	0.00	0.00	0.00
21.150	0.00	0.00	0.00	0.00	0.00
21.275	0.00	0.00	0.00	0.00	0.00
21.400	0.00	0.00	0.00	0.00	0.00
21.525	0.00	0.00	0.00	0.00	0.00
21.650	0.00	0.00	0.00	0.00 0.00	0.00
21.775	0.00	0.00	0.00		0.00
21.900	0.00	0.00	0.00	0.00	0.00
22.025	0.00	0.00	0.00	0.00	0.00
22.150	0.00	0.00	0.00	0.00	0.00

	•				
Time (hours)	Flow (ft ³ /s)				
22.275	0.00	0.00	0.00	0.00	0.00
22.400	0.00	0.00	0.00	0.00	0.00
22.525	0.00	0.00	0.00	0.00	0.00
22.650	0.00	0.00	0.00	0.00	0.00
22.775	0.00	0.00	0.00	0.00	0.00
22.900	0.00	0.00	0.00	0.00	0.00
23.025	0.00	0.00	0.00	0.00	0.00
23.150	0.00	0.00	0.00	0.00	0.00
23.275	0.00	0.00	0.00	0.00	0.00
23.400	0.00	0.00	0.00	0.00	0.00
23.525	0.00	0.00	0.00	0.00	0.00
23.650	0.00	0.00	0.00	0.00	0.00
23.775	0.00	0.00	0.00	0.00	0.00
23.900	0.00	0.00	0.00	0.00	0.00



Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.117 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	0.31 ft ³ /s
Output Increment	0.025 hours
Time to Flow (Peak	11 025 hours
Interpolated Output)	11.925 hours
Flow (Peak Interpolated Output)	0.31 ft ³ /s
Drainage Area	
SCS CN (Composite)	85.000
Area (User Defined)	0.117 acres
Maximum Retention (Pervious)	1.8 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.7 in
Runoff Volume (Pervious)	0.016 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	0.016 ac-ft
SCS Unit Hydrograph Paramet	ers
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	1.59 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours


Storm Event	10-Year Type II 24-Hour
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.117 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
8.950	0.00	0.00	0.00	0.00	0.00
9.075	0.00	0.00	0.00	0.00	0.00
9.200	0.00	0.00	0.00	0.00	0.00
9.325	0.00	0.00	0.00	0.00	0.00
9.450	0.00	0.00	0.00	0.00	0.00
9.575	0.00	0.00	0.00	0.00	0.00
9.700	0.00	0.00	0.00	0.00	0.00
9.825	0.00	0.00	0.00	0.00	0.00
9.950	0.00	0.00	0.00	0.00	0.00
10.075	0.00	0.00	0.00	0.00	0.00
10.200	0.00	0.00	0.00	0.00	0.00
10.325	0.00	0.00	0.00	0.00	0.00
10.450	0.00	0.00	0.00	0.00	0.00
10.575	0.00	0.00	0.01	0.01	0.01
10.700	0.01	0.01	0.01	0.01	0.01
10.825	0.01	0.01	0.01	0.01	0.01
10.950	0.01	0.01	0.01	0.01	0.01
11.075	0.01	0.01	0.01	0.01	0.01
11.200	0.01	0.01	0.01	0.01	0.01
11.325	0.01	0.01	0.01	0.01	0.01
11.450	0.02	0.02	0.02	0.02	0.02
11.575	0.03	0.03	0.04	0.05	0.07
11.700	0.07	0.08	0.10	0.13	0.14
11.825	0.16	0.21	0.26	0.29	0.31
11.950	0.29	0.27	0.26	0.24	0.18
12.075	0.12	0.08	0.07	0.06	0.05
12.200	0.05	0.05	0.04	0.04	0.04
12.325	0.04	0.04	0.04	0.03	0.03
12.450	0.03 0.02	0.03 0.02	0.03 0.02	0.03 0.02	0.03 0.02
12.575 12.700	0.02	0.02	0.02	0.02	0.02
12.700	0.02	0.02	0.02	0.02	0.02
12.825	0.02	0.02	0.02	0.02	0.02
13.075	0.02	0.02	0.02	0.02	0.02
13.200	0.02	0.02	0.02	0.02	0.02
13.325	0.02	0.02	0.01	0.01	0.02
13.450	0.02	0.01	0.01	0.01	0.01
13.575	0.01	0.01	0.01	0.01	0.01
13.700	0.01	0.01	0.01	0.01	0.01
13.825	0.01	0.01	0.01	0.01	0.01
13.950	0.01	0.01	0.01	0.01	0.01
14.075	0.01	0.01	0.01	0.01	0.01
14.200	0.01	0.01	0.01	0.01	0.01

NPTT2-Watershed.ppc 11/22/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	-				
Time (hours)	Flow (ft ³ /s)				
14.325	0.01	0.01	0.01	0.01	0.01
14.450	0.01	0.01	0.01	0.01	0.01
14.575	0.01	0.01	0.01	0.01	0.01
14.700	0.01	0.01	0.01	0.01	0.01
14.825	0.01	0.01	0.01	0.01	0.01
14.950	0.01	0.01	0.01	0.01	0.01
15.075	0.01	0.01	0.01	0.01	0.01
15.200	0.01	0.01	0.01	0.01	0.01
15.325	0.01	0.01	0.01	0.01	0.01
15.450	0.01	0.01	0.01	0.01	0.01
15.575	0.01	0.01	0.01	0.01	0.01
15.700	0.01	0.01	0.01	0.01	0.01
15.825	0.01	0.01	0.01	0.01	0.01
15.950	0.01	0.01	0.01	0.01	0.01
16.075	0.01	0.01	0.01	0.01	0.01
16.200	0.01	0.01	0.01	0.01	0.01
16.325	0.01	0.01	0.01	0.01	0.01
16.450	0.01	0.01	0.01	0.01	0.01
16.575	0.01	0.01	0.01	0.01	0.01
16.700	0.01	0.01	0.01	0.01	0.01
16.825	0.01	0.01	0.01	0.01	0.01
16.950	0.01	0.01	0.01	0.01	0.01
17.075	0.01	0.01	0.01	0.01	0.01
17.200	0.01	0.01	0.01	0.01	0.01
17.325	0.01	0.01	0.01	0.01	0.01
17.450	0.01	0.01	0.01	0.01	0.01
17.575	0.01	0.01	0.01	0.01	0.01
17.700	0.01	0.01	0.01	0.01	0.01
17.825	0.01	0.01	0.01	0.01	0.01
17.950	0.01	0.01	0.01	0.01	0.01
18.075	0.01	0.01	0.01	0.01	0.01
18.200	0.01	0.01	0.01	0.01	0.01
18.325	0.01	0.01	0.01	0.01	0.01
18.450	0.01	0.01	0.01	0.01	0.01
18.575	0.01	0.01	0.01	0.00	0.00
18.700	0.00	0.00	0.00	0.00	0.00
18.825	0.00	0.00	0.00	0.00	0.00
18.950	0.00	0.00	0.00	0.00	0.00
19.075	0.00	0.00	0.00	0.00	0.00
19.200	0.00	0.00	0.00	0.00	0.00
19.325	0.00	0.00	0.00	0.00	0.00
19.450	0.00	0.00	0.00	0.00	0.00
19.575	0.00	0.00	0.00	0.00	0.00
19.700	0.00	0.00	0.00	0.00	0.00
19.825	0.00	0.00	0.00	0.00	0.00
19.950	0.00	0.00	0.00	0.00	0.00
20.075	0.00	0.00	0.00	0.00	0.00
20.200	0.00	0.00	0.00	0.00	0.00
20.325	0.00	0.00	0.00	0.00	0.00
20.450	0.00	0.00	0.00	0.00	0.00
20.575	0.00	0.00	0.00	0.00	0.00
20.700	0.00	0.00	0.00	0.00	0.00

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
20.825	0.00	0.00	0.00	0.00	0.00
20.950	0.00	0.00	0.00	0.00	0.00
21.075	0.00	0.00	0.00	0.00	0.00
21.200	0.00	0.00	0.00	0.00	0.00
21.325	0.00	0.00	0.00	0.00	0.00
21.450	0.00	0.00	0.00	0.00	0.00
21.575	0.00	0.00	0.00	0.00	0.00
21.700	0.00	0.00	0.00	0.00	0.00
21.825	0.00	0.00	0.00	0.00	0.00
21.950	0.00	0.00	0.00	0.00	0.00
22.075	0.00	0.00	0.00	0.00	0.00
22.200	0.00	0.00	0.00	0.00	0.00
22.325	0.00	0.00	0.00	0.00	0.00
22.450	0.00	0.00	0.00	0.00	0.00
22.575	0.00	0.00	0.00	0.00	0.00
22.700	0.00	0.00	0.00	0.00	0.00
22.825	0.00	0.00	0.00	0.00	0.00
22.950	0.00	0.00	0.00	0.00	0.00
23.075	0.00	0.00	0.00	0.00	0.00
23.200	0.00	0.00	0.00	0.00	0.00
23.325	0.00	0.00	0.00	0.00	0.00
23.450	0.00	0.00	0.00	0.00	0.00
23.575	0.00	0.00	0.00	0.00	0.00
23.700	0.00	0.00	0.00	0.00	0.00
23.825	0.00	0.00	0.00	0.00	0.00
23.950	0.00	0.00	0.00	(N/A)	(N/A)

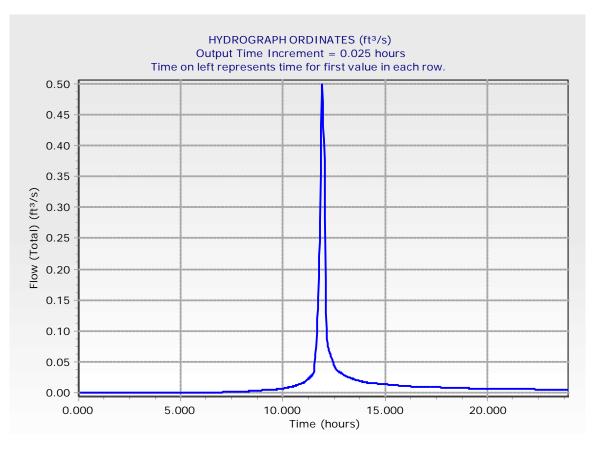


		_
Storm Event	50-Year Type II 24-Hour	
Return Event	50 years	
Duration	24.000 hours	
Depth	4.3 in	
Time of Concentration (Composite)	0.083 hours	
Area (User Defined)	0.117 acres	
Computational Time Increment	0.011 hours	
Time to Peak (Computed)	11.922 hours	
Flow (Peak, Computed)	0.50 ft ³ /s	
Output Increment	0.025 hours	
Time to Flow (Peak	11.02E bours	
Interpolated Output)	11.925 hours	
Flow (Peak Interpolated Output)	0.50 ft ³ /s	
Drainage Area		
SCS CN (Composite)	85.000	
Area (User Defined)	0.117 acres	
Maximum Retention (Pervious)	1.8 in	
Maximum Retention (Pervious, 20 percent)	0.4 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	2.7 in	
Runoff Volume (Pervious)	0.027 ac-ft	
Hydrograph Volume (Area und	er Hydrograph curve)	
Volume	0.027 ac-ft	
SCS Unit Hydrograph Paramet	ers	
Time of Concentration (Composite)	0.083 hours	
Computational Time Increment	0.011 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	1.59 ft ³ /s	
Unit peak time, Tp	0.056 hours	
Unit receding limb, Tr	0.222 hours	
Total unit time, Tb	0.278 hours	

Ξ

Storm Event	50-Year Type II 24-Hour
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.117 acres

#### HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.025 hours Time on left represents time for first value in each row.


Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
7.300	0.00	0.00	0.00	0.00	0.00
7.425	0.00	0.00	0.00	0.00	0.00
7.550	0.00	0.00	0.00	0.00	0.00
7.675	0.00	0.00	0.00	0.00	0.00
7.800	0.00	0.00	0.00	0.00	0.00
7.925	0.00	0.00	0.00	0.00	0.00
8.050	0.00	0.00	0.00	0.00	0.00
8.175	0.00	0.00	0.00	0.00	0.00
8.300	0.00	0.00	0.00	0.00	0.00
8.425	0.00	0.00	0.00	0.00	0.00
8.550	0.00	0.00	0.00	0.00	0.00
8.675	0.00	0.00	0.00	0.00	0.00
8.800	0.00	0.00	0.00	0.00	0.00
8.925	0.00	0.00	0.00	0.00	0.00
9.050	0.00	0.00	0.00	0.00	0.00
9.175	0.00	0.00	0.00	0.00	0.00
9.300	0.00	0.00	0.00	0.00	0.00
9.425	0.00	0.00	0.00	0.00	0.00
9.550	0.00	0.01	0.01	0.01	0.01
9.675	0.01	0.01	0.01	0.01	0.01
9.800	0.01	0.01	0.01	0.01	0.01
9.925	0.01	0.01	0.01	0.01	0.01
10.050	0.01	0.01	0.01	0.01	0.01
10.175	0.01	0.01	0.01	0.01	0.01
10.300	0.01	0.01	0.01	0.01	0.01
10.425	0.01	0.01	0.01	0.01	0.01
10.550	0.01	0.01	0.01	0.01	0.01
10.675	0.01	0.01	0.01	0.01	0.01
10.800	0.01 0.02	0.01	0.01	0.01	0.01
10.925 11.050	0.02	0.02 0.02	0.02 0.02	0.02 0.02	0.02 0.02
11.175	0.02	0.02	0.02	0.02	0.02
11.175	0.02	0.02	0.02	0.02	0.02
11.425	0.02	0.02	0.03	0.03	0.03
11.550	0.05	0.06	0.06	0.03	0.03
11.675	0.03	0.14	0.15	0.19	0.22
11.800	0.24	0.28	0.35	0.43	0.48
11.925	0.50	0.47	0.43	0.41	0.38
12.050	0.28	0.18	0.13	0.10	0.09
12.175	0.08	0.07	0.07	0.07	0.06
12.300	0.06	0.06	0.06	0.06	0.05
12.425	0.05	0.05	0.05	0.04	0.04
12.550	0.04	0.04	0.04	0.04	0.04

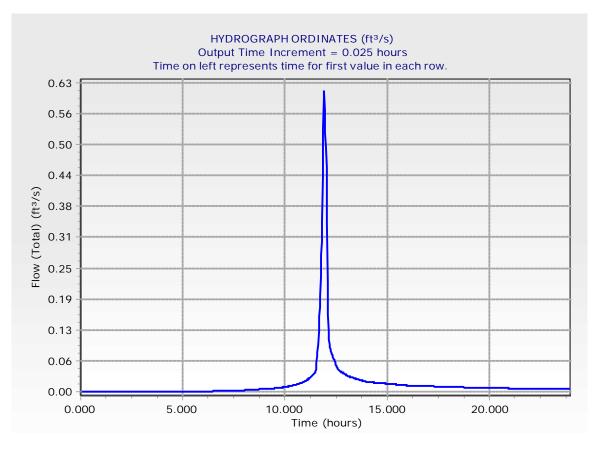
NPTT2-Watershed.ppc 11/22/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Time (hours)	Flow (ft ³ /s)				
12.675	0.04	0.03	0.03	0.03	0.03
12.800	0.03	0.03	0.03	0.03	0.03
12.925	0.03	0.03	0.03	0.03	0.03
13.050	0.03	0.03	0.03	0.03	0.03
13.175	0.03	0.03	0.02	0.02	0.02
13.300	0.02	0.02	0.02	0.02	0.02
13.425	0.02	0.02	0.02	0.02	0.02
13.550	0.02	0.02	0.02	0.02	0.02
13.675	0.02	0.02	0.02	0.02	0.02
13.800	0.02	0.02	0.02	0.02	0.02
13.925	0.02	0.02	0.02	0.02	0.02
14.050	0.02	0.02	0.02	0.02	0.02
14.175	0.02	0.02	0.02	0.02	0.02
14.300	0.02	0.02	0.02	0.02	0.02
14.425	0.02	0.02	0.02	0.02	0.02
14.550	0.01	0.01	0.01	0.01	0.01
14.675	0.01	0.01	0.01	0.01	0.01
14.800	0.01	0.01	0.01	0.01	0.01
14.925	0.01	0.01	0.01	0.01	0.01
15.050	0.01	0.01	0.01	0.01	0.01
15.175	0.01	0.01	0.01	0.01	0.01
15.300	0.01	0.01	0.01	0.01	0.01
15.425 15.550	0.01 0.01	0.01	0.01 0.01	0.01	0.01
15.550	0.01	0.01 0.01	0.01	0.01 0.01	0.01 0.01
15.800	0.01	0.01	0.01	0.01	0.01
15.925	0.01	0.01	0.01	0.01	0.01
16.050	0.01	0.01	0.01	0.01	0.01
16.175	0.01	0.01	0.01	0.01	0.01
16.300	0.01	0.01	0.01	0.01	0.01
16.425	0.01	0.01	0.01	0.01	0.01
16.550	0.01	0.01	0.01	0.01	0.01
16.675	0.01	0.01	0.01	0.01	0.01
16.800	0.01	0.01	0.01	0.01	0.01
16.925	0.01	0.01	0.01	0.01	0.01
17.050	0.01	0.01	0.01	0.01	0.01
17.175	0.01	0.01	0.01	0.01	0.01
17.300	0.01	0.01	0.01	0.01	0.01
17.425	0.01	0.01	0.01	0.01	0.01
17.550	0.01	0.01	0.01	0.01	0.01
17.675	0.01	0.01	0.01	0.01	0.01
17.800	0.01	0.01	0.01	0.01	0.01
17.925	0.01	0.01	0.01	0.01	0.01
18.050	0.01	0.01	0.01	0.01	0.01
18.175	0.01	0.01	0.01	0.01	0.01
18.300	0.01	0.01	0.01	0.01	0.01
18.425	0.01	0.01	0.01	0.01	0.01
18.550	0.01	0.01	0.01	0.01	0.01
18.675	0.01	0.01	0.01	0.01	0.01
18.800	0.01	0.01	0.01	0.01	0.01
18.925	0.01	0.01	0.01	0.01	0.01
19.050	0.01	0.01	0.01	0.01	0.01

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
19.175	0.01	0.01	0.01	0.01	0.01
19.300	0.01	0.01	0.01	0.01	0.01
19.425	0.01	0.01	0.01	0.01	0.01
19.550	0.01	0.01	0.01	0.01	0.01
19.675	0.01	0.01	0.01	0.01	0.01
19.800	0.01	0.01	0.01	0.01	0.01
19.925	0.01	0.01	0.01	0.01	0.01
20.050	0.01	0.01	0.01	0.01	0.01
20.175	0.01	0.01	0.01	0.01	0.01
20.300	0.01	0.01	0.01	0.01	0.01
20.425	0.01	0.01	0.01	0.01	0.01
20.550	0.01	0.01	0.01	0.01	0.01
20.675	0.01	0.01	0.01	0.01	0.01
20.800	0.01	0.01	0.01	0.01	0.01
20.925	0.01	0.01	0.01	0.01	0.01
21.050	0.01	0.01	0.01	0.01	0.01
21.175	0.01	0.01	0.01	0.01	0.01
21.300	0.01	0.01	0.01	0.01	0.01
21.425	0.01	0.01	0.01	0.01	0.01
21.550	0.01	0.01	0.01	0.01	0.01
21.675	0.01	0.01	0.01	0.01	0.01
21.800	0.01	0.01	0.01	0.01	0.01
21.925	0.01	0.01	0.01	0.01	0.01
22.050	0.01	0.01	0.01	0.01	0.01
22.175	0.01	0.01	0.01	0.01	0.01
22.300	0.01	0.01	0.01	0.01	0.01
22.425	0.01	0.01	0.01	0.01	0.01
22.550	0.01	0.01	0.01	0.01	0.01
22.675	0.01	0.01	0.01	0.01	0.01
22.800	0.01	0.01	0.01	0.01	0.01
22.925	0.01	0.01	0.01	0.01	0.01
23.050	0.01	0.01	0.01	0.01	0.01
23.175	0.01	0.01	0.01	0.01	0.01
23.300	0.01	0.01	0.01	0.01	0.01
23.425	0.01	0.01	0.01	0.01	0.01
23.550	0.01	0.01	0.01	0.01	0.01
23.675	0.01	0.01	0.01	0.01	0.01
23.800	0.01	0.01	0.01	0.01	0.01
23.925	0.01	0.01	0.01	0.01	(N/A)




Storm Event	100-Year Type II 24-Hour	
Return Event	100 years	
Duration	24.000 hours	
Depth	5.0 in	
Time of Concentration (Composite)	0.083 hours	
Area (User Defined)	0.117 acres	
Computational Time Increment	0.011 hours	
Time to Peak (Computed)	11.922 hours	
Flow (Peak, Computed)	0.61 ft ³ /s	
Output Increment	0.025 hours	
Time to Flow (Peak	11.925 hours	
Interpolated Output)	11.925 10015	
Flow (Peak Interpolated Output)	0.61 ft ³ /s	
Desinens A		
Drainage Area		
SCS CN (Composite)	85.000	
Area (User Defined)	0.117 acres	
Maximum Retention (Pervious)	1.8 in	
Maximum Retention (Pervious, 20 percent)	0.4 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	3.4 in	
Runoff Volume (Pervious)	0.033 ac-ft	
Hydrograph Volume (Area un	der Hydrograph curve)	
Volume	0.033 ac-ft	
SCS Unit Hydrograph Parame	eters	
Time of Concentration (Composite)	0.083 hours	
Computational Time Increment	0.011 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	1.59 ft ³ /s	
Unit peak time, Tp	0.056 hours	
Unit receding limb, Tr	0.222 hours	
Total unit time, Tb	0.278 hours	

Storm Event	100-Year Type II 24-Hour
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.117 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
6.525	0.00	0.00	0.00	0.00	0.00
6.650	0.00	0.00	0.00	0.00	0.00
6.775	0.00	0.00	0.00	0.00	0.00
6.900	0.00	0.00	0.00	0.00	0.00
7.025	0.00	0.00	0.00	0.00	0.00
7.150	0.00	0.00	0.00	0.00	0.00
7.275	0.00	0.00	0.00	0.00	0.00
7.400	0.00	0.00	0.00	0.00	0.00
7.525	0.00	0.00	0.00	0.00	0.00
7.650	0.00	0.00	0.00	0.00	0.00
7.775	0.00	0.00	0.00	0.00	0.00
7.900	0.00	0.00	0.00	0.00	0.00
8.025	0.00	0.00	0.00	0.00	0.00
8.150	0.00	0.00	0.00	0.00	0.00
8.275	0.00	0.00	0.00	0.00	0.00
8.400	0.00	0.00	0.00	0.00	0.00
8.525	0.00	0.00	0.00	0.00	0.00
8.650	0.00	0.00	0.00	0.00	0.00
8.775	0.01	0.01	0.01	0.01	0.01
8.900	0.01	0.01	0.01	0.01	0.01
9.025	0.01	0.01	0.01	0.01	0.01
9.150	0.01	0.01	0.01	0.01	0.01
9.275	0.01	0.01	0.01	0.01	0.01
9.400	0.01	0.01	0.01	0.01	0.01
9.525	0.01	0.01	0.01	0.01	0.01
9.650	0.01	0.01	0.01	0.01	0.01
9.775	0.01	0.01	0.01	0.01	0.01
9.900	0.01	0.01	0.01	0.01	0.01
10.025	0.01	0.01	0.01	0.01	0.01
10.150	0.01	0.01	0.01	0.01	0.01
10.275	0.01	0.01	0.01	0.01	0.01
10.400 10.525	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.02	0.01 0.02
10.525	0.01	0.01	0.01	0.02	0.02
10.850	0.02	0.02	0.02	0.02	0.02
10.775	0.02	0.02	0.02	0.02	0.02
11.025	0.02	0.02	0.02	0.02	0.02
11.150	0.02	0.02	0.02	0.02	0.02
11.275	0.03	0.03	0.03	0.03	0.03
11.400	0.04	0.04	0.04	0.04	0.04
11.525	0.04	0.06	0.07	0.08	0.09
11.650	0.12	0.15	0.17	0.19	0.23
11.775	0.28	0.30	0.34		0.53
•		2.50			

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
11.900	0.59	0.61	0.57	0.52	0.50
12.025	0.45	0.34	0.22	0.16	0.12
12.150	0.11	0.09	0.09	0.09	0.08
12.275	0.08	0.08	0.07	0.07	0.07
12.400	0.06	0.06	0.06	0.05	0.05
12.525	0.05	0.05	0.05	0.04	0.04
12.650	0.04	0.04	0.04	0.04	0.04
12.775	0.04	0.04	0.04	0.04	0.04
12.900	0.04	0.04	0.03	0.03	0.03
13.025	0.03	0.03	0.03	0.03	0.03
13.150	0.03	0.03	0.03	0.03	0.03
13.275	0.03	0.03	0.03	0.03	0.03
13.400	0.03	0.03	0.03	0.03	0.03
13.525	0.03	0.03	0.02	0.02	0.02
13.650	0.02	0.02	0.02	0.02	0.02
13.775	0.02	0.02	0.02	0.02	0.02
13.900	0.02	0.02	0.02	0.02	0.02
14.025	0.02	0.02	0.02	0.02	0.02
14.150	0.02	0.02	0.02	0.02	0.02
14.275	0.02	0.02	0.02	0.02	0.02
14.400	0.02	0.02	0.02	0.02	0.02
14.525	0.02	0.02	0.02	0.02	0.02
14.650	0.02	0.02	0.02	0.02	0.02
14.775	0.02	0.02	0.02	0.02	0.02
14.900	0.02	0.02	0.02	0.02	0.02
15.025	0.02	0.02	0.02	0.02	0.02
15.150	0.02	0.02	0.02	0.02	0.02
15.275	0.02	0.02	0.02	0.01	0.01
15.400	0.01	0.01	0.01	0.01	0.01
15.525	0.01	0.01	0.01	0.01	0.01
15.650	0.01	0.01	0.01	0.01	0.01
15.775	0.01	0.01	0.01	0.01	0.01
15.900	0.01	0.01	0.01	0.01	0.01
16.025	0.01	0.01	0.01	0.01	0.01
16.150	0.01	0.01	0.01	0.01	0.01
16.275	0.01	0.01	0.01	0.01	0.01
16.400	0.01	0.01	0.01	0.01	0.01
16.525	0.01	0.01	0.01	0.01	0.01
16.650	0.01	0.01	0.01	0.01	0.01
16.775	0.01	0.01	0.01	0.01	0.01
16.900	0.01	0.01	0.01	0.01	0.01
17.025	0.01	0.01	0.01	0.01	0.01
17.150	0.01	0.01	0.01	0.01	0.01
17.275	0.01	0.01	0.01	0.01	0.01
17.400	0.01	0.01	0.01	0.01	0.01
17.525	0.01	0.01	0.01	0.01	0.01
17.650	0.01	0.01	0.01	0.01	0.01
17.775	0.01	0.01	0.01	0.01	0.01
17.900	0.01	0.01	0.01	0.01	0.01
18.025	0.01	0.01	0.01	0.01	0.01
18.150	0.01	0.01	0.01	0.01	0.01
18.275	0.01	0.01	0.01	0.01	0.01

	e on leit repi				
Time (hours)	Flow (ft ³ /s)				
18.400	0.01	0.01	0.01	0.01	0.01
18.525	0.01	0.01	0.01	0.01	0.01
18.650	0.01	0.01	0.01	0.01	0.01
18.775	0.01	0.01	0.01	0.01	0.01
18.900	0.01	0.01	0.01	0.01	0.01
19.025	0.01	0.01	0.01	0.01	0.01
19.150	0.01	0.01	0.01	0.01	0.01
19.275	0.01	0.01	0.01	0.01	0.01
19.400	0.01	0.01	0.01	0.01	0.01
19.525	0.01	0.01	0.01	0.01	0.01
19.650	0.01	0.01	0.01	0.01	0.01
19.775	0.01	0.01	0.01	0.01	0.01
19.900	0.01	0.01	0.01	0.01	0.01
20.025	0.01	0.01	0.01	0.01	0.01
20.023	0.01	0.01	0.01	0.01	0.01
20.130	0.01	0.01	0.01	0.01	0.01
20.275	0.01	0.01	0.01	0.01	0.01
20.400	0.01	0.01	0.01	0.01	0.01
20.650	0.01	0.01	0.01	0.01	0.01
20.850	0.01	0.01	0.01	0.01	0.01
20.775	0.01	0.01	0.01	0.01	0.01
21.025	0.01	0.01	0.01	0.01	0.01
21.025	0.01	0.01	0.01	0.01	0.01
21.150	0.01	0.01	0.01	0.01	0.01
21.275	0.01	0.01	0.01	0.01	0.01
21.400	0.01	0.01	0.01	0.01	0.01
		0.01			
21.650 21.775	0.01 0.01	0.01	0.01 0.01	0.01	0.01 0.01
21.775	0.01	0.01	0.01	0.01	0.01
21.900	0.01	0.01	0.01	0.01	0.01
22.025	0.01	0.01	0.01	0.01	0.01
22.150	0.01	0.01	0.01	0.01 0.01	
22.275	0.01	0.01	0.01	0.01	0.01
					0.01
22.525	0.01	0.01	0.01	0.01	0.01
22.650	0.01	0.01	0.01	0.01	0.01
22.775	0.01	0.01	0.01	0.01	0.01
22.900	0.01	0.01	0.01	0.01	0.01
23.025	0.01	0.01	0.01	0.01	0.01
23.150	0.01	0.01	0.01	0.01	0.01
23.275	0.01	0.01	0.01	0.01	0.01
23.400	0.01	0.01	0.01	0.01	0.01
23.525	0.01	0.01	0.01	0.01	0.01
23.650	0.01	0.01	0.01	0.01	0.01
23.775	0.01	0.01	0.01	0.01	0.01
23.900	0.01	0.01	0.01	0.01	0.01



Upstream Link	Upstream Node
Outlet	BASIN
<catchment node="" outflow="" to=""></catchment>	POST - AREA 1A

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Outlet	0.001	12.475	0.03
Flow (From)	POST - AREA 1A	2.458	12.550	10.74
Flow (In)	Outlet-1-POST	2.459	12.550	10.77

Upstream Link	Upstream Node
Outlet	BASIN
<catchment node="" outflow="" to=""></catchment>	POST - AREA 1A

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Outlet	0.021	12.075	0.94
Flow (From)	POST - AREA 1A	6.216	12.450	36.76
Flow (In)	Outlet-1-POST	6.236	12.450	36.88

Upstream Link	Upstream Node
Outlet	BASIN
<catchment node="" outflow="" to=""></catchment>	POST - AREA 1A

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Outlet	0.056	12.025	1.76
Flow (From)	POST - AREA 1A	13.111	12.425	88.70
Flow (In)	Outlet-1-POST	13.167	12.425	88.96

Upstream Link	Upstream Node
Outlet	BASIN
<catchment node="" outflow="" to=""></catchment>	POST - AREA 1A

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Outlet	0.078	12.025	2.22
Flow (From)	POST - AREA 1A	17.485	12.425	121.86
Flow (In)	Outlet-1-POST	17.562	12.425	122.18

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 1	2.721	12.550	12.78
Flow (In)	Outlet-1-PRE	2.721	12.550	12.78

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 1	6.668	12.450	41.46
Flow (In)	Outlet-1-PRE	6.668	12.450	41.46

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 1	13.807	12.450	96.07
Flow (In)	Outlet-1-PRE	13.807	12.450	96.07

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 1	18.303	12.350	130.53
Flow (In)	Outlet-1-PRE	18.303	12.350	130.53

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	POST - AREA 2

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	POST - AREA 2	0.002	11.950	0.04
Flow (In)	Outlet-2-POST	0.002	11.950	0.04

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	POST - AREA 2

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	POST - AREA 2	0.005	11.925	0.09
Flow (In)	Outlet-2-POST	0.005	11.925	0.09

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	POST - AREA 2

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	POST - AREA 2	0.010	11.925	0.18
Flow (In)	Outlet-2-POST	0.010	11.925	0.18

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	POST - AREA 2

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	POST - AREA 2	0.012	11.925	0.23
Flow (In)	Outlet-2-POST	0.012	11.925	0.23

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 2

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 2	0.009	11.925	0.17
Flow (In)	Outlet-2-PRE	0.009	11.925	0.17

## Summary for Hydrograph Addition at 'Outlet-2-PRE'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 2

## Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 2	0.016	11.925	0.31
Flow (In)	Outlet-2-PRE	0.016	11.925	0.31

## Summary for Hydrograph Addition at 'Outlet-2-PRE'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 2

## Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 2	0.027	11.925	0.50
Flow (In)	Outlet-2-PRE	0.027	11.925	0.50

## Summary for Hydrograph Addition at 'Outlet-2-PRE'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	PRE - AREA 2

## Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	PRE - AREA 2	0.033	11.925	0.61
Flow (In)	Outlet-2-PRE	0.033	11.925	0.61

# Subsection: Elevation-Area Volume Curve Label: BASIN

## Return Event: 2 years Storm Event: 2-Year Type II 24-Hour

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
1,303.00	0.0	0.015	0.000	0.000	0.000
1,304.00	0.0	0.023	0.057	0.019	0.019
1,305.00	0.0	0.032	0.081	0.027	0.046

Requested Pond Water Surface Elevations		
Minimum (Headwater)	1,303.00 ft	
Increment (Headwater)	0.25 ft	
Maximum (Headwater)	1,305.00 ft	

# **Outlet Connectivity**

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Rectangular Weir	Weir - 1	Forward	TW	1,303.83	1,305.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Structure ID: Weir - 1 Structure Type: Rectangular Weir				
Number of Openings	1			
Elevation	1,303.83 ft			
Weir Length	9.00 ft			
Weir Coefficient	3.00 (ft^0.5)/s			
Structure ID: TW Structure Type: TW Setup, DS Channel				
Tailwater Type	Free Outfall			
Convergence Tolerances				
Maximum Iterations	30			
Tailwater Tolerance (Minimum)	0.01 ft			
Tailwater Tolerance (Maximum)	0.50 ft			
Headwater Tolerance (Minimum)	0.01 ft			
Headwater Tolerance (Maximum)	0.50 ft			
Flow Tolerance (Minimum)	0.001 ft ³ /s			
Flow Tolerance (Maximum)	10.000 ft ³ /s			

12.025 hours 12.475 hours 12.475 hours

Infiltration		
Infiltration		
Infiltration Method (Computed)	Average Infiltration Rate	
Infiltration Rate (Average)	2.7000 in/h	
Initial Conditions		_
Elevation (Water Surface, Initial)	1,303.00 ft	
Volume (Initial)	0.000 ac-ft	
Flow (Initial Outlet)	0.00 ft ³ /s	
Flow (Initial Infiltration)	0.00 ft ³ /s	
Flow (Initial, Total)	0.00 ft ³ /s	
Time Increment	0.025 hours	
Inflow/Outflow Hydrograph S	Summary	
Flow (Peak In)	0.58 ft ³ /s	Time to Peak (Flow, In)
Infiltration (Peak)	0.06 ft ³ /s	Time to Peak (Infiltration)
Flow (Peak Outlet)	0.03 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	1,303.83 ft	
Volume (Peak)	0.015 ac-ft	
Mass Balance (ac-ft)		_
Volume (Initial)	0.000 ac-ft	
Volume (Total Inflow)	0.037 ac-ft	
Volume (Total Infiltration)	0.036 ac-ft	
Volume (Total Outlet Outflow)	0.001 ac-ft	
Volume (Retained)	0.001 ac-ft	
Volume (Unrouted)	0.000 ac-ft	
Error (Mass Balance)	0.1 %	

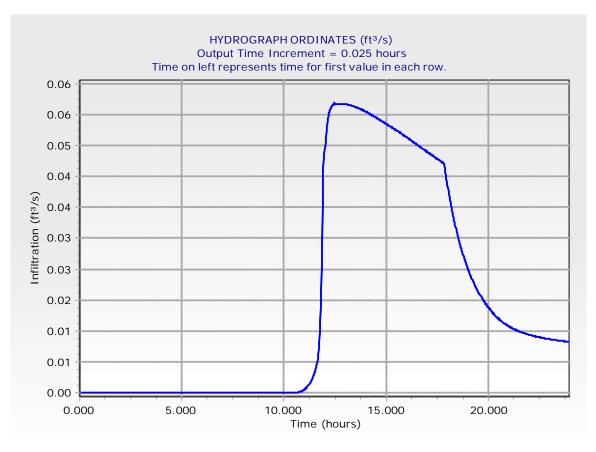
Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate		
Infiltration Rate (Average)	2.7000 in/h		
Initial Conditions			
Elevation (Water Surface, Initial)	1,303.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.025 hours		
Inflow/Outflow Hydrograph S	Summary		
Flow (Peak In)	1.08 ft ³ /s	Time to Peak (Flow, In)	12.025 hours
Infiltration (Peak)	0.06 ft ³ /s	Time to Peak (Infiltration)	12.075 hours
Flow (Peak Outlet)	0.94 ft ³ /s	Time to Peak (Flow, Outlet)	12.075 hours
Elevation (Water Surface, Peak)	1,303.91 ft		
Volume (Peak)	0.017 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.069 ac-ft		
Volume (Total Infiltration)	0.047 ac-ft		
Volume (Total Outlet Outflow)	0.021 ac-ft		
Volume (Retained)	0.001 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.1 %		

12.000 hours 12.025 hours 12.025 hours

Infiltration		
Infiltration Method (Computed)	Average Infiltration Rate	
Infiltration Rate (Average)	2.7000 in/h	_
Initial Conditions		
Elevation (Water Surface, Initial)	1,303.00 ft	
Volume (Initial)	0.000 ac-ft	
Flow (Initial Outlet)	0.00 ft ³ /s	
Flow (Initial Infiltration)	0.00 ft ³ /s	
Flow (Initial, Total)	0.00 ft ³ /s	
Time Increment	0.025 hours	
Inflow/Outflow Hydrograph S	Summary	
Flow (Peak In)	1.85 ft ³ /s	Time to Peak (Flow, In)
Infiltration (Peak)	0.06 ft ³ /s	Time to Peak (Infiltration)
Flow (Peak Outlet)	1.76 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	1,303.99 ft	
Volume (Peak)	0.019 ac-ft	
Mass Balance (ac-ft)		
Volume (Initial)	0.000 ac-ft	
Volume (Total Inflow)	0.118 ac-ft	
Volume (Total Infiltration)	0.059 ac-ft	
Volume (Total Outlet Outflow)	0.056 ac-ft	
Volume (Retained)	0.003 ac-ft	
Volume (Unrouted)	0.000 ac-ft	
Error (Mass Balance)	0.0 %	

	Return Event: 100 years
Storm Event:	100-Year Type II 24-Hour

12.000 hours 12.025 hours 12.025 hours


Infiltration		
Infiltration Method Average (Computed) Infiltration Rate		
Infiltration Rate (Average)	2.7000 in/h	
Initial Conditions		
Elevation (Water Surface, Initial)	1,303.00 ft	
Volume (Initial)	0.000 ac-ft	
Flow (Initial Outlet)	0.00 ft ³ /s	
Flow (Initial Infiltration)	0.00 ft ³ /s	
Flow (Initial, Total)	0.00 ft ³ /s	
Time Increment	0.025 hours	
Inflow/Outflow Hydrograph S	Summary	
Flow (Peak In)	2.29 ft ³ /s	Time to Peak (Flow, In)
Infiltration (Peak)	0.06 ft ³ /s	Time to Peak (Infiltration)
Flow (Peak Outlet)	2.22 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	1,304.02 ft	
Volume (Peak)	0.019 ac-ft	
Mass Balance (ac-ft)		
Volume (Initial)	0.000 ac-ft	
Volume (Total Inflow)	0.146 ac-ft	
Volume (Total Infiltration)	0.064 ac-ft	
Volume (Total Outlet Outflow)	0.078 ac-ft	
Volume (Retained)	0.005 ac-ft	
Volume (Unrouted)	0.000 ac-ft	
Error (Mass Balance)	0.0 %	

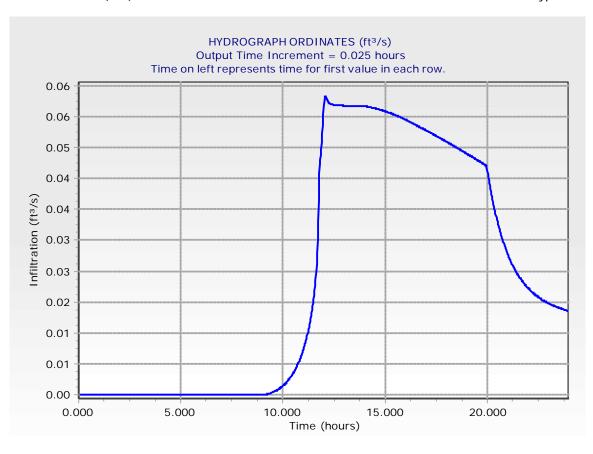
Peak Discharge	0.06 ft ³ /s
Time to Peak	12.475 hours
Hydrograph Volume	0.036 ac-ft

Time (hours)	Flow (ft ³ /s)				
11.100	0.00	0.00	0.00	0.00	0.00
11.225	0.00	0.00	0.00	0.00	0.00
11.350	0.00	0.00	0.00	0.00	0.00
11.475	0.00	0.00	0.00	0.00	0.01
11.600	0.01	0.01	0.01	0.01	0.01
11.725	0.01	0.01	0.01	0.02	0.02
11.850	0.03	0.03	0.04	0.05	0.05
11.975	0.05	0.05	0.05	0.05	0.05
12.100	0.05	0.05	0.06	0.06	0.06
12.225	0.06	0.06	0.06	0.06	0.06
12.350	0.06	0.06	0.06	0.06	0.06
12.475	0.06	0.06	0.06	0.06	0.06
12.600	0.06	0.06	0.06	0.06	0.06
12.725	0.06	0.06	0.06	0.06	0.06
12.850	0.06	0.06	0.06	0.06	0.06
12.975	0.06	0.06	0.06	0.06	0.06
13.100	0.06	0.06	0.06	0.06	0.06
13.225	0.06	0.06	0.06	0.06	0.06
13.350	0.06	0.06	0.06	0.06	0.06
13.475	0.06	0.06	0.06	0.06	0.06
13.600	0.06	0.06	0.06	0.06	0.06
13.725	0.06	0.06	0.06	0.06	0.06
13.850	0.06	0.06	0.06	0.06	0.06
13.975	0.06	0.06	0.06	0.06	0.06
14.100	0.06	0.06	0.06	0.06	0.06
14.225	0.06	0.06	0.06	0.06	0.06
14.350	0.06	0.06	0.06	0.06	0.06
14.475	0.06	0.06	0.06	0.06	0.06
14.600	0.06	0.06	0.06	0.06	0.06
14.725	0.06	0.06	0.05	0.05	0.05
14.850	0.05	0.05	0.05	0.05	0.05
14.975	0.05	0.05	0.05	0.05	0.05
15.100	0.05	0.05	0.05	0.05	0.05
15.225	0.05	0.05	0.05	0.05	0.05
15.350	0.05	0.05	0.05	0.05	0.05
15.475	0.05	0.05	0.05	0.05	0.05
15.600	0.05	0.05	0.05	0.05	0.05
15.725	0.05	0.05	0.05	0.05	0.05
15.850	0.05	0.05	0.05	0.05	0.05
15.975	0.05	0.05	0.05	0.05	0.05
16.100	0.05	0.05	0.05	0.05	0.05
16.225	0.05	0.05	0.05	0.05	0.05
16.350	0.05	0.05	0.05	0.05	0.05
16.475	0.05	0.05	0.05	0.05	0.05
16.600 16.725	0.05	0.05	0.05	0.05	0.05
16.725	0.05	0.05	0.05	0.05	0.05
16.850 16.075	0.05	0.05	0.05	0.05	0.05
16.975	0.05	0.05	0.05	0.05	0.05

Time (hours)	Flow (ft ³ /s)				
17.100	0.05	0.05	0.05	0.05	0.05
17.225	0.05	0.05	0.05	0.05	0.05
17.350	0.05	0.05	0.05	0.05	0.05
17.475	0.05	0.05	0.05	0.05	0.05
17.600	0.05	0.05	0.05	0.05	0.05
17.725	0.05	0.05	0.05	0.05	0.05
17.850	0.05	0.05	0.04	0.04	0.04
17.975	0.04	0.04	0.04	0.04	0.04
18.100	0.04	0.04	0.04	0.04	0.04
18.225	0.04	0.04	0.04	0.04	0.03
18.350	0.03	0.03	0.03	0.03	0.03
18.475	0.03	0.03	0.03	0.03	0.03
18.600	0.03	0.03	0.03	0.03	0.03
18.725	0.03	0.03	0.03	0.03	0.03
18.850	0.03	0.03	0.03	0.03	0.03
18.975	0.03	0.03	0.02	0.02	0.02
19.100	0.02	0.02	0.02	0.02	0.02
19.225	0.02	0.02	0.02	0.02	0.02
19.350	0.02	0.02	0.02	0.02	0.02
19.475	0.02	0.02	0.02	0.02	0.02
19.600	0.02	0.02	0.02	0.02	0.02
19.725	0.02	0.02	0.02	0.02	0.02
19.850	0.02	0.02	0.02	0.02	0.02
19.975	0.02	0.02	0.02	0.02	0.02
20.100	0.02	0.02	0.02	0.02	0.02
20.225	0.02	0.02	0.02	0.02	0.02
20.350	0.02	0.02	0.02	0.02	0.02
20.475	0.02	0.01	0.01	0.01	0.01
20.600	0.01	0.01	0.01	0.01	0.01
20.725	0.01	0.01	0.01	0.01	0.01
20.850	0.01	0.01	0.01	0.01	0.01
20.975	0.01	0.01	0.01	0.01	0.01
21.100	0.01	0.01	0.01	0.01	0.01
21.225	0.01	0.01	0.01	0.01	0.01
21.350	0.01	0.01	0.01	0.01	0.01
21.475	0.01	0.01	0.01	0.01	0.01
21.600	0.01	0.01	0.01	0.01	0.01
21.725	0.01	0.01	0.01	0.01	0.01
21.850	0.01	0.01	0.01	0.01	0.01
21.975	0.01	0.01	0.01	0.01	0.01
22.100	0.01	0.01	0.01	0.01	0.01
22.225	0.01	0.01	0.01	0.01	0.01
22.350	0.01	0.01	0.01	0.01	0.01
22.475	0.01	0.01	0.01	0.01	0.01
22.600	0.01	0.01	0.01	0.01	0.01
22.725	0.01	0.01	0.01	0.01	0.01
22.850	0.01	0.01	0.01	0.01	0.01
22.975	0.01	0.01	0.01	0.01	0.01
23.100	0.01	0.01	0.01	0.01	0.01
23.225	0.01	0.01	0.01	0.01	0.01
23.350	0.01	0.01	0.01	0.01	0.01
23.475	0.01	0.01	0.01	0.01	0.01

Time (hours)	Flow (ft ³ /s)				
23.600	0.01	0.01	0.01	0.01	0.01
23.725	0.01	0.01	0.01	0.01	0.01
23.850	0.01	0.01	0.01	0.01	0.01
23.975	0.01	0.01	(N/A)	(N/A)	(N/A)




Peak Discharge	0.06 ft ³ /s
Time to Peak	12.075 hours
Hydrograph Volume	0.047 ac-ft

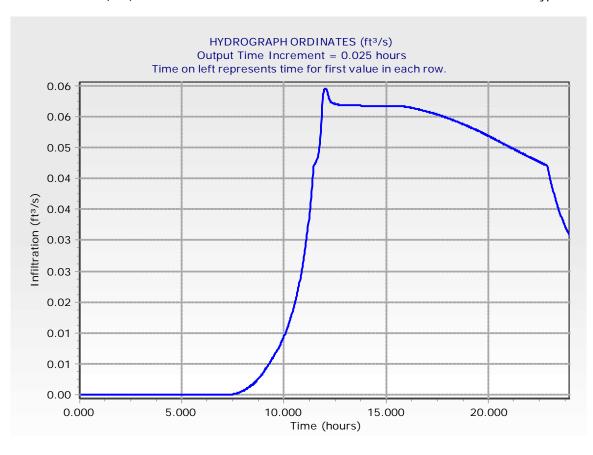
Time (hours)	Flow (ft ³ /s)				
9.750	0.00	0.00	0.00	0.00	0.00
9.875	0.00	0.00	0.00	0.00	0.00
10.000	0.00	0.00	0.00	0.00	0.00
10.125	0.00	0.00	0.00	0.00	0.00
10.250	0.00	0.00	0.00	0.00	0.00
10.375	0.00	0.00	0.00	0.00	0.00
10.500	0.00	0.00	0.00	0.00	0.01
10.625	0.01	0.01	0.01	0.01	0.01
10.750	0.01	0.01	0.01	0.01	0.01
10.875	0.01	0.01	0.01	0.01	0.01
11.000	0.01	0.01	0.01	0.01	0.01
11.125	0.01	0.01	0.01	0.01	0.01
11.250	0.01	0.01	0.01	0.01	0.02
11.375	0.02	0.02	0.02	0.02	0.02
11.500	0.02	0.02	0.02	0.02	0.02
11.625	0.02	0.03	0.03	0.03	0.04
11.750	0.04	0.04	0.05	0.05	0.05
11.875	0.05	0.05	0.05	0.05	0.06
12.000	0.06	0.06	0.06	0.06	0.06
12.125	0.06	0.06	0.06	0.06	0.06
12.250	0.06	0.06	0.06	0.06	0.06
12.375	0.06	0.06	0.06	0.06	0.06
12.500	0.06	0.06	0.06	0.06	0.06
12.625	0.06	0.06	0.06	0.06	0.06
12.750	0.06	0.06	0.06	0.06	0.06
12.875	0.06	0.06	0.06	0.06	0.06
13.000	0.06	0.06	0.06	0.06	0.06
13.125	0.06	0.06	0.06	0.06	0.06
13.250	0.06	0.06	0.06	0.06	0.06
13.375	0.06	0.06	0.06	0.06	0.06
13.500	0.06	0.06	0.06	0.06	0.06
13.625	0.06	0.06	0.06	0.06	0.06
13.750	0.06	0.06	0.06	0.06	0.06
13.875	0.06	0.06	0.06	0.06	0.06
14.000	0.06	0.06	0.06	0.06	0.06
14.125	0.06	0.06	0.06	0.06	0.06
14.250	0.06	0.06	0.06	0.06	0.06
14.375	0.06	0.06	0.06	0.06	0.06
14.500	0.06	0.06	0.06	0.06	0.06
14.625	0.06	0.06	0.06	0.06	0.06
14.750	0.06	0.06	0.06	0.06	0.06
14.875	0.06	0.06	0.06	0.06	0.06
15.000	0.06	0.06	0.06	0.06	0.06
15.125	0.06	0.06	0.06	0.06	0.06
15.250	0.06	0.06	0.06	0.06	0.06
15.375	0.06	0.06	0.06	0.06	0.06
15.500	0.06	0.06	0.06	0.06	0.06
15.625	0.06	0.06	0.06	0.06	0.06

NPTT2-Watershed.ppc 11/22/2016

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
15.750	0.06	0.06	0.06	0.06	0.06
15.875	0.06	0.06	0.06	0.06	0.06
16.000	0.06	0.06	0.06	0.06	0.06
16.125	0.06	0.06	0.06	0.06	0.06
16.250	0.06	0.06	0.06	0.05	0.05
16.375	0.05	0.05	0.05	0.05	0.05
16.500	0.05	0.05	0.05	0.05	0.05
16.625	0.05	0.05	0.05	0.05	0.05
16.750	0.05	0.05	0.05	0.05	0.05
16.875	0.05	0.05	0.05	0.05	0.05
17.000	0.05	0.05	0.05	0.05	0.05
17.125	0.05	0.05	0.05	0.05	0.05
17.250	0.05	0.05	0.05	0.05	0.05
17.375	0.05	0.05	0.05	0.05	0.05
17.500	0.05	0.05	0.05	0.05	0.05
17.625	0.05	0.05	0.05	0.05	0.05
17.750	0.05	0.05	0.05	0.05	0.05
17.875	0.05	0.05	0.05	0.05	0.05
18.000	0.05	0.05	0.05	0.05	0.05
18.125	0.05	0.05	0.05	0.05	0.05
18.250	0.05	0.05	0.05	0.05	0.05
18.375	0.05	0.05	0.05	0.05	0.05
18.500	0.05	0.05	0.05	0.05	0.05
18.625	0.05	0.05	0.05	0.05	0.05
18.750	0.05	0.05	0.05	0.05	0.05
18.875	0.05	0.05	0.05	0.05	0.05
19.000	0.05	0.05	0.05	0.05	0.05
19.125	0.05	0.05	0.05	0.05	0.05
19.250	0.05	0.05	0.05	0.05	0.05
19.375	0.05	0.05	0.05	0.05	0.05
19.500	0.05	0.05	0.05	0.05	0.05
19.625	0.05	0.05	0.05	0.05	0.05
19.750	0.05	0.05	0.05	0.05	0.05
19.875	0.05	0.05	0.05	0.05	0.05
20.000	0.05	0.04	0.04	0.04	0.04
20.125	0.04	0.04	0.04	0.04	0.04
20.250	0.04	0.04	0.04	0.04	0.04
20.375	0.04	0.04	0.04	0.04	0.04
20.500	0.03	0.03	0.03	0.03	0.03
20.625	0.03	0.03	0.03	0.03	0.03
20.750	0.03	0.03	0.03	0.03	0.03
20.875	0.03	0.03	0.03	0.03	0.03
21.000	0.03	0.03	0.03	0.03	0.03
21.125	0.03	0.03	0.03	0.03	0.03
21.250	0.03	0.03	0.03	0.03	0.03
21.375	0.03	0.02	0.02	0.02	0.02
21.500	0.02	0.02	0.02	0.02	0.02
21.625	0.02	0.02	0.02	0.02	0.02
21.750	0.02	0.02	0.02	0.02	0.02
21.875	0.02	0.02	0.02	0.02	0.02
22.000	0.02	0.02	0.02	0.02	0.02
22.125	0.02	0.02	0.02	0.02	0.02

Time (hours)	Flow (ft ³ /s)				
22.250	0.02	0.02	0.02	0.02	0.02
22.375	0.02	0.02	0.02	0.02	0.02
22.500	0.02	0.02	0.02	0.02	0.02
22.625	0.02	0.02	0.02	0.02	0.02
22.750	0.02	0.02	0.02	0.02	0.02
22.875	0.02	0.02	0.02	0.02	0.02
23.000	0.02	0.02	0.02	0.02	0.02
23.125	0.02	0.02	0.02	0.02	0.02
23.250	0.02	0.02	0.02	0.02	0.02
23.375	0.02	0.02	0.02	0.02	0.02
23.500	0.02	0.02	0.02	0.02	0.02
23.625	0.02	0.02	0.02	0.02	0.02
23.750	0.02	0.02	0.02	0.02	0.02
23.875	0.02	0.02	0.02	0.02	0.02
24.000	0.02	(N/A)	(N/A)	(N/A)	(N/A)




Peak Discharge	0.06 ft ³ /s
Time to Peak	12.025 hours
Hydrograph Volume	0.059 ac-ft

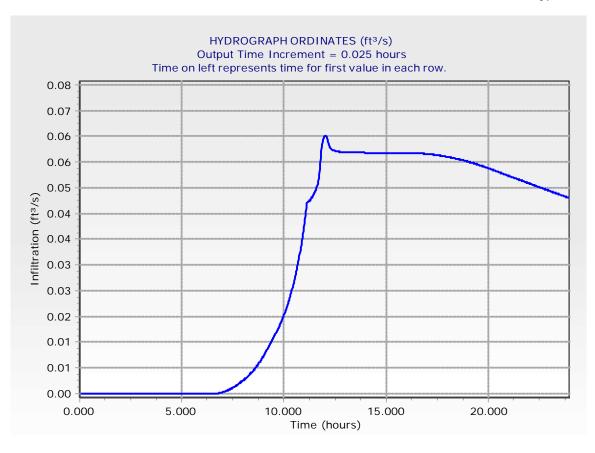
Time (hours)	Flow (ft ³ /s)				
8.100	0.00	0.00	0.00	0.00	0.00
8.225	0.00	0.00	0.00	0.00	0.00
8.350	0.00	0.00	0.00	0.00	0.00
8.475	0.00	0.00	0.00	0.00	0.00
8.600	0.00	0.00	0.00	0.00	0.00
8.725	0.00	0.00	0.00	0.00	0.00
8.850	0.00	0.00	0.00	0.00	0.00
8.975	0.00	0.00	0.00	0.00	0.01
9.100	0.01	0.01	0.01	0.01	0.01
9.225	0.01	0.01	0.01	0.01	0.01
9.350	0.01	0.01	0.01	0.01	0.01
9.475	0.01	0.01	0.01	0.01	0.01
9.600	0.01	0.01	0.01	0.01	0.01
9.725	0.01	0.01	0.01	0.01	0.01
9.850	0.01	0.01	0.01	0.01	0.01
9.975	0.01	0.01	0.01	0.01	0.01
10.100	0.01	0.01	0.01	0.01	0.01
10.225	0.01	0.01	0.01	0.02	0.02
10.350	0.02	0.02	0.02	0.02	0.02
10.475	0.02	0.02	0.02	0.02	0.02
10.600	0.02	0.02	0.02	0.02	0.02
10.725	0.02	0.02	0.02	0.02	0.02
10.850	0.02	0.03	0.03	0.03	0.03
10.975	0.03	0.03	0.03	0.03	0.03
11.100	0.03	0.03	0.03	0.03	0.03
11.225	0.04	0.04	0.04	0.04	0.04
11.350	0.04	0.04	0.04	0.04	0.05
11.475	0.05	0.05	0.05	0.05	0.05
11.600	0.05	0.05	0.05	0.05	0.05
11.725	0.05	0.05	0.05	0.05	0.05
11.850	0.06	0.06	0.06	0.06	0.06
11.975	0.06	0.06	0.06	0.06	0.06
12.100	0.06	0.06 0.06	0.06	0.06	0.06
12.225 12.350	0.06 0.06	0.06	0.06 0.06	0.06 0.06	0.06 0.06
12.350	0.08	0.06	0.06	0.06	0.06
12.475	0.08	0.08	0.06	0.06	0.06
12.725	0.08	0.06	0.06	0.06	0.06
12.850	0.06	0.06	0.06	0.06	0.06
12.000	0.06	0.06	0.06	0.06	0.06
13.100	0.06	0.06	0.06	0.06	0.06
13.225	0.06	0.06	0.06	0.06	0.06
13.350	0.06	0.06	0.06	0.06	0.06
13.475	0.06	0.06	0.06	0.06	0.06
13.600	0.06	0.06	0.06	0.06	0.06
13.725	0.06	0.06	0.06	0.06	0.06
13.850	0.06	0.06	0.06	0.06	0.06
13.975	0.06	0.06	0.06	0.06	0.06

NPTT2-Watershed.ppc 11/22/2016

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
14.100	0.06	0.06	0.06	0.06	0.06
14.225	0.06	0.06	0.06	0.06	0.06
14.350	0.06	0.06	0.06	0.06	0.06
14.475	0.06	0.06	0.06	0.06	0.06
14.600	0.06	0.06	0.06	0.06	0.06
14.725	0.06	0.06	0.06	0.06	0.06
14.850	0.06	0.06	0.06	0.06	0.06
14.975	0.06	0.06	0.06	0.06	0.06
15.100	0.06	0.06	0.06	0.06	0.06
15.225	0.06	0.06	0.06	0.06	0.06
15.350	0.06	0.06	0.06	0.06	0.06
15.475	0.06	0.06	0.06	0.06	0.06
15.600	0.06	0.06	0.06	0.06	0.06
15.725	0.06	0.06	0.06	0.06	0.06
15.850	0.06	0.06	0.06	0.06	0.06
15.975	0.06	0.06	0.06	0.06	0.06
16.100	0.06	0.06	0.06	0.06	0.06
16.225	0.06	0.06	0.06	0.06	0.06
16.350	0.06	0.06	0.06	0.06	0.06
16.475	0.06	0.06	0.06	0.06	0.06
16.600	0.06	0.06	0.06	0.06	0.06
16.725	0.06	0.06	0.06	0.06	0.06
16.850	0.06	0.06	0.06	0.06	0.06
16.975	0.06	0.06	0.06	0.06	0.06
17.100	0.06	0.06	0.06	0.06	0.06
17.225	0.06	0.06	0.06	0.06	0.06
17.350	0.06	0.06	0.06	0.06	0.06
17.475	0.06	0.06	0.06	0.06	0.06
17.600	0.06	0.06	0.06	0.06	0.06
17.725	0.06	0.06	0.06	0.06	0.06
17.850	0.06	0.06	0.06	0.06	0.06
17.975	0.06	0.06	0.06	0.06	0.06
18.100	0.06	0.06	0.06	0.06	0.06
18.225	0.06	0.06	0.06	0.06	0.06
18.350	0.06	0.06	0.06	0.06	0.06
18.475	0.06	0.06	0.06	0.06	0.06
18.600	0.06	0.05	0.05	0.05	0.05
18.725	0.05	0.05	0.05	0.05	0.05
18.850	0.05	0.05	0.05	0.05	0.05
18.975	0.05	0.05	0.05	0.05	0.05
19.100	0.05	0.05	0.05	0.05	0.05
19.225	0.05	0.05	0.05	0.05	0.05
19.350	0.05	0.05	0.05	0.05	0.05
19.475	0.05	0.05	0.05	0.05	0.05
19.600	0.05	0.05	0.05	0.05	0.05
19.725	0.05	0.05	0.05	0.05	0.05
19.850	0.05	0.05	0.05	0.05	0.05
19.975	0.05	0.05	0.05	0.05	0.05
20.100	0.05	0.05	0.05	0.05	0.05
20.225	0.05	0.05	0.05	0.05	0.05
20.350	0.05	0.05	0.05	0.05	0.05
20.475	0.05	0.05	0.05	0.05	0.05

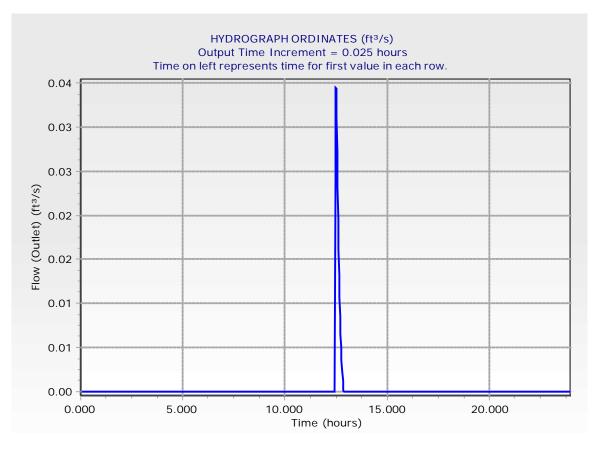
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
20.600	0.05	0.05	0.05	0.05	0.05
20.725	0.05	0.05	0.05	0.05	0.05
20.850	0.05	0.05	0.05	0.05	0.05
20.975	0.05	0.05	0.05	0.05	0.05
21.100	0.05	0.05	0.05	0.05	0.05
21.225	0.05	0.05	0.05	0.05	0.05
21.350	0.05	0.05	0.05	0.05	0.05
21.475	0.05	0.05	0.05	0.05	0.05
21.600	0.05	0.05	0.05	0.05	0.05
21.725	0.05	0.05	0.05	0.05	0.05
21.850	0.05	0.05	0.05	0.05	0.05
21.975	0.05	0.05	0.05	0.05	0.05
22.100	0.05	0.05	0.05	0.05	0.05
22.225	0.05	0.05	0.05	0.05	0.05
22.350	0.05	0.05	0.05	0.05	0.05
22.475	0.05	0.05	0.05	0.05	0.05
22.600	0.05	0.05	0.05	0.05	0.05
22.725	0.05	0.05	0.05	0.05	0.05
22.850	0.05	0.05	0.05	0.05	0.05
22.975	0.04	0.04	0.04	0.04	0.04
23.100	0.04	0.04	0.04	0.04	0.04
23.225	0.04	0.04	0.04	0.04	0.04
23.350	0.04	0.04	0.04	0.04	0.04
23.475	0.04	0.04	0.04	0.04	0.04
23.600	0.04	0.04	0.04	0.03	0.03
23.725	0.03	0.03	0.03	0.03	0.03
23.850	0.03	0.03	0.03	0.03	0.03
23.975	0.03	0.03	(N/A)	(N/A)	(N/A)




Peak Discharge	0.06 ft ³ /s
Time to Peak	12.025 hours
Hydrograph Volume	0.064 ac-ft

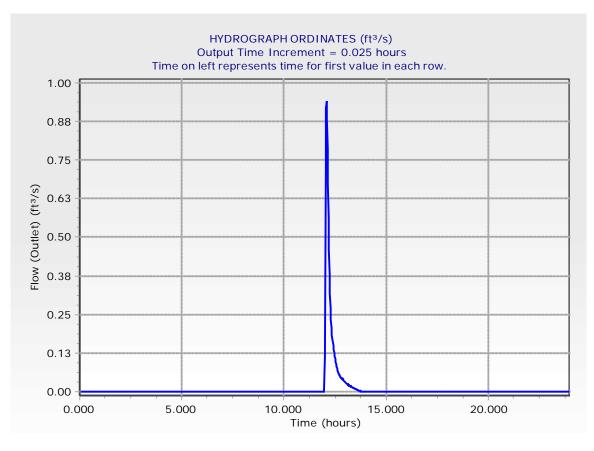
Time (hours)	Flow (ft ³ /s)				
7.325	0.00	0.00	0.00	0.00	0.00
7.450	0.00	0.00	0.00	0.00	0.00
7.575	0.00	0.00	0.00	0.00	0.00
7.700	0.00	0.00	0.00	0.00	0.00
7.825	0.00	0.00	0.00	0.00	0.00
7.950	0.00	0.00	0.00	0.00	0.00
8.075	0.00	0.00	0.00	0.00	0.00
8.200	0.00	0.00	0.00	0.00	0.00
8.325	0.00	0.00	0.00	0.01	0.01
8.450	0.01	0.01	0.01	0.01	0.01
8.575	0.01	0.01	0.01	0.01	0.01
8.700	0.01	0.01	0.01	0.01	0.01
8.825	0.01	0.01	0.01	0.01	0.01
8.950	0.01	0.01	0.01	0.01	0.01
9.075	0.01	0.01	0.01	0.01	0.01
9.200	0.01	0.01	0.01	0.01	0.01
9.325	0.01	0.01	0.01	0.01	0.01
9.450	0.01	0.01	0.01	0.01	0.01
9.575	0.01	0.01	0.01	0.02	0.02
9.700	0.02	0.02	0.02	0.02	0.02
9.825	0.02	0.02	0.02	0.02	0.02
9.950	0.02	0.02	0.02	0.02	0.02
10.075	0.02	0.02	0.02	0.02	0.02
10.200	0.02	0.02	0.02	0.02	0.02
10.325	0.02	0.02	0.02	0.03	0.03
10.450	0.03	0.03	0.03	0.03	0.03
10.575	0.03	0.03	0.03	0.03	0.03
10.700	0.03	0.03	0.03	0.03	0.03
10.825	0.04	0.04	0.04	0.04	0.04
10.950	0.04	0.04	0.04	0.04	0.04
11.075	0.04	0.05	0.05	0.05	0.05
11.200	0.05	0.05	0.05	0.05	0.05
11.325	0.05	0.05	0.05	0.05	0.05
11.450	0.05	0.05	0.05	0.05	0.05
11.575	0.05	0.05	0.05	0.05	0.05
11.700	0.05	0.05	0.05	0.06	0.06
11.825	0.06	0.06	0.06	0.06	0.06
11.950	0.06	0.06	0.06	0.06	0.06
12.075	0.06	0.06	0.06	0.06	0.06
12.200	0.06	0.06	0.06	0.06	0.06
12.325	0.06	0.06	0.06	0.06	0.06
12.450	0.06	0.06	0.06	0.06	0.06
12.575	0.06	0.06	0.06	0.06	0.06
12.700	0.06	0.06	0.06	0.06	0.06
12.825	0.06	0.06	0.06	0.06	0.06
12.950	0.06	0.06	0.06	0.06	0.06
13.075	0.06	0.06	0.06	0.06	0.06
13.200	0.06	0.06	0.06	0.06	0.06

NPTT2-Watershed.ppc 11/22/2016


Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)				
13.325	0.06	0.06	0.06	0.06	0.06
13.450	0.06	0.06	0.06	0.06	0.06
13.575	0.06	0.06	0.06	0.06	0.06
13.700	0.06	0.06	0.06	0.06	0.06
13.825	0.06	0.06	0.06	0.06	0.06
13.950	0.06	0.06	0.06	0.06	0.06
14.075	0.06	0.06	0.06	0.06	0.06
14.200	0.06	0.06	0.06	0.06	0.06
14.325	0.06	0.06	0.06	0.06	0.06
14.450	0.06	0.06	0.06	0.06	0.06
14.575	0.06	0.06	0.06	0.06	0.06
14.700	0.06	0.06	0.06	0.06	0.06
14.825	0.06	0.06	0.06	0.06	0.06
14.950	0.06	0.06	0.06	0.06	0.06
15.075	0.06	0.06	0.06	0.06	0.06
15.200	0.06	0.06	0.06	0.06	0.06
15.325	0.06	0.06	0.06	0.06	0.06
15.450	0.06	0.06	0.06	0.06	0.06
15.575	0.06	0.06	0.06	0.06	0.06
15.700	0.06	0.06	0.06	0.06	0.06
15.825	0.06	0.06	0.06	0.06	0.06
15.950	0.06	0.06	0.06	0.06	0.06
16.075	0.06	0.06	0.06	0.06	0.06
16.200	0.06	0.06	0.06	0.06	0.06
16.325	0.06	0.06	0.06	0.06	0.06
16.450	0.06	0.06	0.06	0.06	0.06
16.575 16.700	0.06 0.06	0.06 0.06	0.06 0.06	0.06 0.06	0.06 0.06
16.825	0.06	0.06	0.06	0.06	0.06
16.950	0.06	0.06	0.06	0.06	0.06
17.075	0.06	0.06	0.06	0.06	0.06
17.200	0.06	0.06	0.06	0.06	0.06
17.325	0.06	0.06	0.06	0.06	0.06
17.450	0.06	0.06	0.06	0.06	0.06
17.575	0.06	0.06	0.06	0.06	0.06
17.700	0.06	0.06	0.06	0.06	0.06
17.825	0.06	0.06	0.06	0.06	0.06
17.950	0.06	0.06	0.06	0.06	0.06
18.075	0.06	0.06	0.06	0.06	0.06
18.200	0.06	0.06	0.06	0.06	0.06
18.325	0.06	0.06	0.06	0.06	0.06
18.450	0.06	0.06	0.06	0.06	0.06
18.575	0.06	0.06	0.06	0.06	0.06
18.700	0.06	0.06	0.06	0.06	0.06
18.825	0.06	0.06	0.06	0.06	0.06
18.950	0.06	0.06	0.06	0.06	0.06
19.075	0.06	0.06	0.06	0.06	0.06
19.200	0.06	0.06	0.06	0.06	0.06
19.325	0.06	0.06	0.06	0.06	0.06
19.450	0.06	0.06	0.06	0.06	0.06
19.575	0.06	0.06	0.06	0.06	0.06
19.700	0.06	0.06	0.06	0.06	0.06

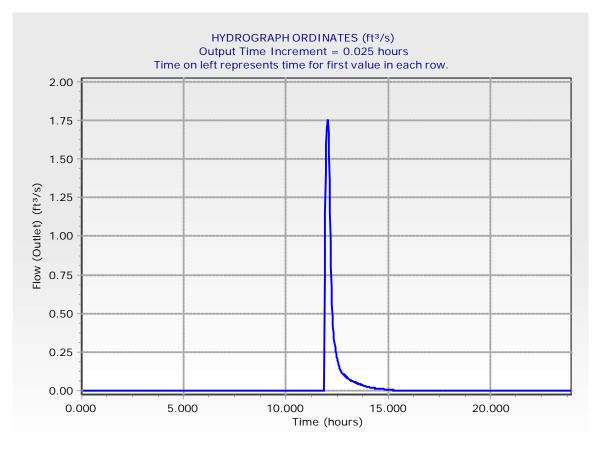
Time (hours)	Flow (ft ³ /s)				
19.825	0.06	0.06	0.05	0.05	0.05
19.825	0.05	0.05	0.05	0.05	0.05
20.075	0.05	0.05	0.05	0.05	0.05
20.200	0.05	0.05	0.05	0.05	0.05
20.200	0.05	0.05	0.05	0.05	0.05
20.325	0.05	0.05	0.05	0.05	0.05
20.575	0.05	0.05	0.05	0.05	0.05
20.700	0.05	0.05	0.05	0.05	0.05
20.825	0.05	0.05	0.05	0.05	0.05
20.950	0.05	0.05	0.05	0.05	0.05
21.075	0.05	0.05	0.05	0.05	0.05
21.200	0.05	0.05	0.05	0.05	0.05
21.325	0.05	0.05	0.05	0.05	0.05
21.450	0.05	0.05	0.05	0.05	0.05
21.575	0.05	0.05	0.05	0.05	0.05
21.700	0.05	0.05	0.05	0.05	0.05
21.825	0.05	0.05	0.05	0.05	0.05
21.950	0.05	0.05	0.05	0.05	0.05
22.075	0.05	0.05	0.05	0.05	0.05
22.200	0.05	0.05	0.05	0.05	0.05
22.325	0.05	0.05	0.05	0.05	0.05
22.450	0.05	0.05	0.05	0.05	0.05
22.575	0.05	0.05	0.05	0.05	0.05
22.700	0.05	0.05	0.05	0.05	0.05
22.825	0.05	0.05	0.05	0.05	0.05
22.950	0.05	0.05	0.05	0.05	0.05
23.075	0.05	0.05	0.05	0.05	0.05
23.200	0.05	0.05	0.05	0.05	0.05
23.325	0.05	0.05	0.05	0.05	0.05
23.450	0.05	0.05	0.05	0.05	0.05
23.575	0.05	0.05	0.05	0.05	0.05
23.700	0.05	0.05	0.05	0.05	0.05
23.825	0.05	0.05	0.05	0.05	0.05
23.950	0.05	0.05	0.05	(N/A)	(N/A)




Peak Discharge	0.03 ft ³ /s
Time to Peak	12.475 hours
Hydrograph Volume	0.001 ac-ft

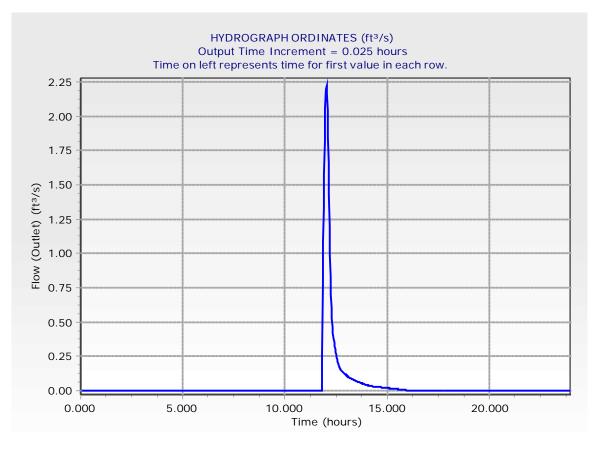
	Time (hours)	Flow (ft ³ /s)				
Γ	12.425	0.00	0.02	0.03	0.03	0.03
	12.550	0.03	0.02	0.02	0.02	0.01
	12.675	0.01	0.01	0.01	0.00	0.00
	12.800	0.00	0.00	0.00	(N/A)	(N/A)




Peak Discharge	0.94 ft ³ /s
Time to Peak	12.075 hours
Hydrograph Volume	0.021 ac-ft

Time (hours)	Flow (ft ³ /s)				
11.975	0.00	0.11	0.73	0.92	0.94
12.100	0.88	0.79	0.67	0.56	0.46
12.225	0.38	0.32	0.27	0.23	0.21
12.350	0.18	0.16	0.15	0.14	0.12
12.475	0.11	0.11	0.10	0.09	0.08
12.600	0.07	0.07	0.06	0.06	0.06
12.725	0.05	0.05	0.05	0.04	0.04
12.850	0.04	0.04	0.04	0.04	0.03
12.975	0.03	0.03	0.03	0.03	0.03
13.100	0.02	0.02	0.02	0.02	0.02
13.225	0.02	0.02	0.02	0.02	0.01
13.350	0.01	0.01	0.01	0.01	0.01
13.475	0.01	0.01	0.01	0.01	0.01
13.600	0.01	0.00	0.00	0.00	0.00
13.725	0.00	0.00	(N/A)	(N/A)	(N/A)




Deal Discharge	17/ #3/2
Peak Discharge Time to Peak	1.76 ft ³ /s 12.025 hours
Hydrograph Volume	0.056 ac-ft

Time (hours)	Flow (ft ³ /s)				
11.875	0.00	0.76	1.15	1.41	1.59
12.000	1.71	1.76	1.75	1.68	1.54
12.125	1.36	1.16	0.97	0.80	0.67
12.250	0.56	0.48	0.42	0.37	0.33
12.375	0.30	0.28	0.26	0.24	0.22
12.500	0.20	0.19	0.18	0.17	0.16
12.625	0.15	0.14	0.13	0.12	0.12
12.750	0.11	0.11	0.11	0.10	0.10
12.875	0.10	0.09	0.09	0.09	0.09
13.000	0.08	0.08	0.08	0.08	0.07
13.125	0.07	0.07	0.07	0.07	0.06
13.250	0.06	0.06	0.06	0.06	0.06
13.375	0.05	0.05	0.05	0.05	0.05
13.500	0.05	0.05	0.04	0.04	0.04
13.625	0.04	0.04	0.04	0.04	0.04
13.750	0.04	0.03	0.03	0.03	0.03
13.875	0.03	0.03	0.03	0.03	0.03
14.000	0.03	0.02	0.02	0.02	0.02
14.125	0.02	0.02	0.02	0.02	0.02
14.250	0.02	0.02	0.02	0.02	0.02
14.375	0.02	0.01	0.01	0.01	0.01
14.500	0.01	0.01	0.01	0.01	0.01
14.625	0.01	0.01	0.01	0.01	0.01
14.750	0.01	0.01	0.01	0.01	0.01
14.875	0.01	0.01	0.01	0.01	0.01
15.000	0.01	0.01	0.01	0.01	0.01
15.125	0.00	0.00	0.00	0.00	0.00
15.250	0.00	0.00	0.00	0.00	0.00
15.375	0.00	0.00	(N/A)	(N/A)	(N/A)



Peak Discharge	2.22 ft ³ /s
Time to Peak	12.025 hours
Hydrograph Volume	0.078 ac-ft

Time (hours)	Flow (ft ³ /s)				
11.800	0.00	0.25	0.78	1.08	1.33
11.925	1.58	1.81	2.05	2.19	2.22
12.050	2.17	2.04	1.85	1.66	1.43
12.175	1.20	0.99	0.83	0.70	0.60
12.300	0.52	0.47	0.42	0.38	0.35
12.425	0.32	0.30	0.28	0.26	0.24
12.550	0.23	0.21	0.20	0.19	0.18
12.675	0.17	0.16	0.15	0.15	0.14
12.800	0.14	0.14	0.13	0.13	0.13
12.925	0.12	0.12	0.12	0.11	0.11
13.050	0.11	0.10	0.10	0.10	0.10
13.175	0.09	0.09	0.09	0.09	0.08
13.300	0.08	0.08	0.08	0.08	0.08
13.425	0.07	0.07	0.07	0.07	0.07
13.550	0.07	0.06	0.06	0.06	0.06
13.675	0.06	0.06	0.06	0.05	0.05
13.800	0.05	0.05	0.05	0.05	0.05
13.925	0.05	0.04	0.04	0.04	0.04
14.050	0.04	0.04	0.04	0.04	0.04
14.175	0.03	0.03	0.03	0.03	0.03
14.300	0.03	0.03	0.03	0.03	0.03
14.425	0.03	0.03	0.03	0.03	0.03
14.550	0.03	0.03	0.03	0.03	0.03
14.675	0.02	0.02	0.02	0.02	0.02
14.800	0.02	0.02	0.02	0.02	0.02
14.925	0.02	0.02	0.02	0.02	0.02
15.050	0.02	0.02	0.02	0.02	0.02
15.175	0.02	0.02	0.02	0.02	0.01
15.300	0.01	0.01	0.01	0.01	0.01
15.425	0.01	0.01	0.01	0.01	0.01
15.550	0.01	0.01	0.01	0.01	0.01
15.675	0.01	0.01	0.01	0.01	0.01
15.800	0.01	0.01	0.01	0.00	0.00
15.925	0.00	0.00	0.00	0.00	0.00
16.050	0.00	0.00	0.00	(N/A)	(N/A)



#### Index

#### В

BASIN (Elevation-Area Volume Curve, 2 years)...142
BASIN (IN) (Level Pool Pond Routing Summary, 10 years)...146
BASIN (IN) (Level Pool Pond Routing Summary, 100 years)...148
BASIN (IN) (Level Pool Pond Routing Summary, 2 years)...145
BASIN (IN) (Level Pool Pond Routing Summary, 50 years)...147
BASIN (IN) (Level Pool Pond Routing Summary, 50 years)...147
BASIN (INF) (Pond Infiltration Hydrograph, 10 years)...153, 154, 155, 156
BASIN (INF) (Pond Infiltration Hydrograph, 100 years)...161, 162, 163, 164
BASIN (INF) (Pond Infiltration Hydrograph, 2 years)...149, 150, 151, 152
BASIN (INF) (Pond Infiltration Hydrograph, 50 years)...157, 158, 159, 160
BASIN (OUT) (Pond Routed Hydrograph (total out), 10 years)...167, 168
BASIN (OUT) (Pond Routed Hydrograph (total out), 2 years)...165, 166
BASIN (OUT) (Pond Routed Hydrograph (total out), 50 years)...169, 170
C

Clarksville, NH (Time-Depth Curve, 10 years)...7, 8 Clarksville, NH (Time-Depth Curve, 100 years)...5, 6 Clarksville, NH (Time-Depth Curve, 2 years)...9, 10 Clarksville, NH (Time-Depth Curve, 50 years)...11, 12 Composite Outlet Structure - 1 (Outlet Input Data, 2 years)...143, 144 M

Master Network Summary...2, 3, 4

#### 0

Outlet-1-POST (Addition Summary, 10 years)...127

Outlet-1-POST (Addition Summary, 100 years)...129

Outlet-1-POST (Addition Summary, 2 years)...126

Outlet-1-POST (Addition Summary, 50 years)...128

Outlet-1-PRE (Addition Summary, 10 years)...131

Outlet-1-PRE (Addition Summary, 100 years)...133

Outlet-1-PRE (Addition Summary, 2 years)...130

Outlet-1-PRE (Addition Summary, 50 years)...132

Outlet-2-POST (Addition Summary, 10 years)...135

Outlet-2-POST (Addition Summary, 100 years)...137

Outlet-2-POST (Addition Summary, 2 years)...134

Outlet-2-POST (Addition Summary, 50 years)...136

Outlet-2-PRE (Addition Summary, 10 years)...139

Outlet-2-PRE (Addition Summary, 100 years)...141

Outlet-2-PRE (Addition Summary, 2 years)...138

- Р
- POST AREA 1A (Runoff CN-Area, 2 years)...22
- POST AREA 1A (Time of Concentration Calculations, 2 years)...13, 14, 15
- POST AREA 1A (Unit Hydrograph (Hydrograph Table), 10 years)...33, 34, 35, 36
- POST AREA 1A (Unit Hydrograph (Hydrograph Table), 100 years)...43, 44, 45, 46
- POST AREA 1A (Unit Hydrograph (Hydrograph Table), 2 years)...28, 29, 30, 31
- POST AREA 1A (Unit Hydrograph (Hydrograph Table), 50 years)...38, 39, 40, 41
- POST AREA 1A (Unit Hydrograph Summary, 10 years)...32
- POST AREA 1A (Unit Hydrograph Summary, 100 years)...42
- POST AREA 1A (Unit Hydrograph Summary, 2 years)...27
- POST AREA 1A (Unit Hydrograph Summary, 50 years)...37
- POST AREA 1B (Runoff CN-Area, 2 years)...23
- POST AREA 1B (Time of Concentration Calculations, 2 years)...16, 17
- POST AREA 1B (Unit Hydrograph (Hydrograph Table), 10 years)...53, 54, 55, 56
- POST AREA 1B (Unit Hydrograph (Hydrograph Table), 100 years)...63, 64, 65, 66
- POST AREA 1B (Unit Hydrograph (Hydrograph Table), 2 years)...48, 49, 50, 51
- POST AREA 1B (Unit Hydrograph (Hydrograph Table), 50 years)...58, 59, 60, 61
- POST AREA 1B (Unit Hydrograph Summary, 10 years)...52
- POST AREA 1B (Unit Hydrograph Summary, 100 years)...62
- POST AREA 1B (Unit Hydrograph Summary, 2 years)...47
- POST AREA 1B (Unit Hydrograph Summary, 50 years)...57
- POST AREA 2 (Runoff CN-Area, 2 years)...24
- POST AREA 2 (Unit Hydrograph (Hydrograph Table), 10 years)...72, 73, 74, 75
- POST AREA 2 (Unit Hydrograph (Hydrograph Table), 100 years)...82, 83, 84, 85
- POST AREA 2 (Unit Hydrograph (Hydrograph Table), 2 years)...68, 69, 70
- POST AREA 2 (Unit Hydrograph (Hydrograph Table), 50 years)...77, 78, 79, 80
- POST AREA 2 (Unit Hydrograph Summary, 10 years)...71
- POST AREA 2 (Unit Hydrograph Summary, 100 years)...81
- POST AREA 2 (Unit Hydrograph Summary, 2 years)...67
- POST AREA 2 (Unit Hydrograph Summary, 50 years)...76
- PRE AREA 1 (Runoff CN-Area, 2 years)...25
- PRE AREA 1 (Time of Concentration Calculations, 2 years)...18, 19
- PRE AREA 1 (Unit Hydrograph (Hydrograph Table), 10 years)...92, 93, 94, 95
- PRE AREA 1 (Unit Hydrograph (Hydrograph Table), 100 years)...102, 103, 104, 105
- PRE AREA 1 (Unit Hydrograph (Hydrograph Table), 2 years)...87, 88, 89, 90
- PRE AREA 1 (Unit Hydrograph (Hydrograph Table), 50 years)...97, 98, 99, 100
- PRE AREA 1 (Unit Hydrograph Summary, 10 years)...91
- PRE AREA 1 (Unit Hydrograph Summary, 100 years)...101

- PRE AREA 1 (Unit Hydrograph Summary, 2 years)...86
- PRE AREA 1 (Unit Hydrograph Summary, 50 years)...96

PRE - AREA 2 (Runoff CN-Area, 2 years)...26

PRE - AREA 2 (Time of Concentration Calculations, 2 years)...20, 21

PRE - AREA 2 (Unit Hydrograph (Hydrograph Table), 10 years)...112, 113, 114, 115

PRE - AREA 2 (Unit Hydrograph (Hydrograph Table), 100 years)...122, 123, 124,

125

PRE - AREA 2 (Unit Hydrograph (Hydrograph Table), 2 years)...107, 108, 109, 110

PRE - AREA 2 (Unit Hydrograph (Hydrograph Table), 50 years)...117, 118, 119,

120

PRE - AREA 2 (Unit Hydrograph Summary, 10 years)...111

PRE - AREA 2 (Unit Hydrograph Summary, 100 years)...121

PRE - AREA 2 (Unit Hydrograph Summary, 2 years)...106

PRE - AREA 2 (Unit Hydrograph Summary, 50 years)...116

APPENDIX C – HYDRAULIC AND STABILITY CALCULATIONS

## Worksheet for SW-1 10 YR

	WOIKSHEEL		
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.045	
Channel Slope		0.01100	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	ft/ft (H:V)
Bottom Width		4.00	ft
Discharge		1.08	ft³/s
Results			
Normal Depth		0.21	ft
Flow Area		0.97	
Wetted Perimeter		5.33	
Hydraulic Radius		0.18	ft
Top Width		5.26	
Critical Depth		0.13	
Critical Slope		0.06107	
Velocity		1.11	ft/s
Velocity Head		0.02	ft
Specific Energy		0.23	ft
Froude Number		0.46	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	
Upstream Velocity		Infinity	ft/s
Normal Depth		0.21	ft
Critical Depth		0.13	ft
Channel Slope		0.01100	ft/ft
Critical Slope		0.06107	ft/ft

## Worksheet for SW-1 100 YR

	WorkSheet i		
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.045	
Channel Slope		0.01100	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	ft/ft (H:V)
Bottom Width		4.00	ft
Discharge		2.29	ft³/s
Results			
Normal Depth		0.32	ft
Flow Area		1.60	ft ²
Wetted Perimeter		6.04	ft
Hydraulic Radius		0.27	ft
Top Width		5.93	ft
Critical Depth		0.21	ft
Critical Slope		0.05303	ft/ft
Velocity		1.43	ft/s
Velocity Head		0.03	ft
Specific Energy		0.35	ft
Froude Number		0.49	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.32	ft
Critical Depth		0.21	ft
Channel Slope		0.01100	ft/ft
Critical Slope		0.05303	ft/ft

## Worksheet for SW-2 10 YR

			•••
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.045	
Channel Slope		0.00500	ft/ft
Left Side Slope			ft/ft (H:V)
Right Side Slope			ft/ft (H:V)
Bottom Width		6.00	
Discharge		36.76	ft³/s
Results			
Normal Depth		1.49	ft
Flow Area		15.62	ft²
Wetted Perimeter		15.43	ft
Hydraulic Radius		1.01	ft
Top Width		14.95	ft
Critical Depth		0.90	ft
Critical Slope		0.03460	ft/ft
Velocity		2.35	ft/s
Velocity Head		0.09	ft
Specific Energy		1.58	ft
Froude Number		0.41	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.49	ft
Critical Depth		0.90	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.03460	ft/ft

## Worksheet for SW-2 100 YR

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Innut Data			
Input Data			
Roughness Coefficient		0.045	
Channel Slope		0.00500	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	
Bottom Width		6.00	
Discharge		121.86	ft³/s
Results			
Normal Depth		2.68	ft
Flow Area		37.56	ft ²
Wetted Perimeter		22.93	ft
Hydraulic Radius		1.64	ft
Top Width		22.06	ft
Critical Depth		1.75	ft
Critical Slope		0.02911	ft/ft
Velocity		3.24	ft/s
Velocity Head		0.16	ft
Specific Energy		2.84	ft
Froude Number		0.44	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		2.68	ft
Critical Depth		1.75	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.02911	ft/ft





Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com

#### **Erosion Control Materials Design Software** Version 5.0

# **Project Name: NPT-TS2** Project Number: 104911 Project Location: Clarksville, New Hampshire Channel Name: SW-1 (10-yr)

Discharge	1.08
Peak Flow Period	0
Channel Slope	0.011
Channel Bottom Width	4
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	С
Vegtation Type	Mix (Sod & Bunch)
Vegetation Density	Good 75-95%
Soil Type	Silt Loam

Unreinforced Vegetation - Class C - Mix (Sod & Bunch) - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	1.08 cfs	0.36 ft/s	0.54 ft	0.238	4.2 lbs/ft2	0.37 lbs/ft2	11.43	STABLE	
Underlying Substrate	Straight	1.08 cfs	0.36 ft/s	0.54 ft		0.04 lbs/ft2	0 lbs/ft2	88.41	STABLE	





Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com

#### **Erosion Control Materials Design Software** Version 5.0

# **Project Name: NPT-TS2** Project Number: 104915 Project Location: Clarksville, New Hampshire Channel Name: SW-2 (10-yr)

Discharge	36.76
Peak Flow Period	0
Channel Slope	0.005
Channel Bottom Width	6
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	В
Vegtation Type	Mix (Sod & Bunch)
Vegetation Density	Good 75-95%
Soil Type	Silt Loam

Unreinforced Vegetation - Class B - Mix (Sod & Bunch) - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	36.76 cfs	1.24 ft/s	2.29 ft	0.108	5.73 lbs/ft2	0.72 lbs/ft2	8.01	STABLE	
Underlying Substrate	Straight	36.76 cfs	1.24 ft/s	2.29 ft		0.04 lbs/ft2	0.004 lbs/ft2	9.33	STABLE	



Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com

#### **Erosion Control Materials Design Software** Version 5.0

### **Project Name: NPT-TS2** Project Number: 104906 Project Location: Clarksville, New Hampshire Spillway Name: Basin Spillway (100-yr)

Discharge	2.29
Peak Flow Period	0
Channel Slope	0.05
Channel Bottom Width	9
Left Side Slope	
Right Side Slope	
Low Flow Liner	
Retardance Class	С
Vegtation Type	Mix (Sod & Bunch)
Vegetation Density	Good 75-95%
Soil Type	Silt Loam

Unreinforced Vegetation - Class C - Mix (Sod & Bunch) - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	2.29 cfs	0.83 ft/s	0.31 ft	0.174	4.2 lbs/ft2	0.96 lbs/ft2	4.39	STABLE	
Underlying Substrate	Straight	2.29 cfs	0.83 ft/s	0.31 ft		0.04 lbs/ft2	0.002 lbs/ft2	18.25	STABLE	

APPENDIX D – NH DES WORKSHEETS

## **INFILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.05)**

#### Type/Node Name: Infiltration Basin

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	wed?
0.57 ac	A = Area draining to the practice	
0.01 ac	$A_{I}$ = Impervious area draining to the practice	
0.02 decimal	I = percent impervious area draining to the practice, in decimal form	
0.07 unitless	Rv = Runoff  coefficient = 0.05 + (0.9  x I)	
0.04 ac-in	WQV= 1" x Rv x A	
140 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
35 cf	25% x WQV (check calc for sediment forebay volume)	
pretreatment swale	Method of pretreatment? (not required for clean or roof runoff)	
cf	$V_{SED}$ = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
659 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
664 sf	$A_{SA}$ = surface area of the bottom of the pond	
2.70 iph	$I_{DESIGN} = design infiltration rate^2$	
4.4 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	<b>←</b> <u>&lt;</u> 72-hrs
1,303.00 feet	$E_{BTM}$ = elevation of the bottom of the practice	
1,298.00 feet	$E_{SHWT}$ = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
1,292.10 feet	$E_{ROCK}$ = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
5.00 feet	$D_{SHWT}$ = separation from SHWT ³	$\leftarrow \geq *^3$
10.9 feet	$D_{ROCK}$ = separation from bedrock ³	← ≥ * ³
ft	$D_{T}$ = depth of trench, if trench proposed	← 4 - 10 ft
N/A Yes/No	If a trench or underground system is proposed, observation well provi	ided
	If a trench is proposed, material in trench	
Sand or Pea Gravel	If a basin is proposed, basin floor material	
yes Yes/No	If a basin is proposed, the perimeter should be curvilinear.	
3.0 :1	If a basin is proposed, pond side slopes	<b>←</b> <u>≥</u> 3:1
1,303.91 ft	Peak elevation of the 10-year storm event (infiltration can be used in a	analysis)
1,303.99 ft	Peak elevation of the 50-year storm event (infiltration can be used in a	analysis)
1,305.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of	the berm)
YES	10 peak elevation $\leq$ Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation $\leq$ Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Designer's Notes:

## Groundwater Recharge Volume (GRV) Calculation

	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
0.01	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.25	inches	Rd = weighted groundwater recharge depth	
0.0025	ac-in	GRV = AI * Rd	
9	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

# Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Refer to Infiltration Basin Calculation Sheet for storage (recharge) volume.

NHDES Alteration of Terrain Last Revised: August 2013



С	lient Ev	rersource		Page	1	_of	1
<b>L</b> . P	roject	Northern Pass	Date	Made By			
		Transition Station #2	_	Checked B	y		
		Impervious Area Summary		Preliminary		Final	

_		_																											
		<b>C</b> 11				_																	_	_					
		nfiltra							~ + ~	-			+:											_					
		Impe											τιςε	; = (	<u>J.U</u>	<u>1 ac</u>	2						_	_			 		
_	((	Cont	וטנ	Jting	g Wa	ate	rsn	ea:	: Ar	ea	TR)		_										_	_			 		
_	_	_	-		_	_							_										_	_			 		
_	_	-	04			<u> </u>				<b>.</b>													_	_	_				
_	_	0	.01	ac		Sta	tio	n (r	001	r to	ps a	and	l co	ncr	ete	fοι	und	lati	on)	_			_	_	_				
_	_	_	_		_	_	_																_	_	_				
_	_	-		$\square$														_						_					
_		<u>0</u>	.01	<u>ac</u>	_	10	IA	L In	npe	rvi	ous	: Ar	ea	Cor	itril	but	ing	to	BIV	<b>IP:</b>	Infi	Itra	itio	n B	ası	n			
_		_			_	_	_																_	_	_				
$\rightarrow$		_	-			_																		_					
$\rightarrow$	_	_	_			_																		_					
$\rightarrow$		_	_		_	_																	_						
		_	_			_																	_		_				
_	_		_			_																		_					
$\rightarrow$	_		_		_	_																		_	_				
			_			_																		_					
		_																						_					
$\neg$																													
$\uparrow$				$\square$																									
$\uparrow$		<u> </u>		$ \uparrow $	$\neg$																								
$\neg$	$\neg$	-		$\vdash$																									
+	+	-		$\vdash$	-	-																							
+	-		-		-	$\neg$									-										_				
+	-	+		$\vdash$	+	$\dashv$	_	$\square$					-		$\left  - \right $										_			$\vdash$	
+	-	-	-	$\vdash$	-	$\dashv$	_	$\square$					-		$\left  - \right $	$\left  - \right $	$\vdash$						_	_	_			$\vdash$	
$\rightarrow$	_	_	-	$\vdash$	_	$\rightarrow$	_						-		$\left  - \right $	$\vdash$							_	_	_			$\vdash$	

## **APPENDIX E – OPERATIONS AND MAINTENANCE PLAN**

#### Northern Pass Transmission Project Transition Station #2

#### **Stormwater System Operations and Maintenance Plan**

#### **General Overview**

Eversource has established an operations and maintenance (O&M) plan for the station postconstruction stormwater management system in accordance with the New Hampshire Department of Environmental Services Stormwater Manual (2008) and will be implemented upon completion of construction as outlined below. Any required post construction stormwater management permits will be obtained and implemented by Eversource.

The station is located on Eversource owned property on US-3 (45.018593 latitude and -71.462250 longitude) in Clarksville, Coos County, NH (Site). The Site is part of an active gravel pit operation on the western slope of a hill overlooking the Connecticut River. Access to the Site is from US Route 3 along a gravel road.

#### Purpose & Goals

The purpose of this O&M Plan is to provide guidance for the implementation and documentation process of the station site stormwater management system to help conform with the corresponding regulatory agency approvals and permits. The guidance provided herein is the minimum required. The primary goal is to inform all the property managers about how the system operates and what maintenance items are necessary to protect the downstream storm drain system and waters. The secondary goal is to provide a practical, efficient means of maintenance planning and record keeping to verify permit compliance.

#### Responsible Parties

Eversource will be responsible for implementing the O&M Plan.

Eversource 13 Legends Drive Hooksett, NH 03106

#### Maintenance Logs and Checklists

Eversource will keep a record of all maintenance procedures performed, date of inspection/ cleanings, etc. Copies of inspection reports and maintenance records shall be kept on site.

#### **Forms**

The following forms will be developed for annual maintenance. Copies of the forms will be kept onsite as part of the Post-Construction Stormwater Management Plan.

- Annual Checklist
- Quarterly Checklist
- Monthly Checklist

#### Training

Responsible operations and maintenance workers and contractors will be trained with a basic description of the purpose and function of the onsite stormwater management system as well as safety protocol and procedures, with annual up-dates, to provide that the workers tasked with maintaining the station site do so in accordance with the approved permit conditions. All workers that have maintenance duties will be adequately informed of their responsibilities. All sub-contractors (Vactor, landscaping, snowplowing, etc.) will be informed of special requirements and responsibilities.

#### Stormwater Management System

The onsite stormwater management system has several components that are shown on the Site Development Plans and they perform various functions in conveying and treating stormwater runoff. Refer to the Site Development Plans for locations and details for each of the stormwater system components. Regular operations and maintenance is critical to the long term success of the stormwater management system components. The stormwater system components are:

#### Stormwater Swales:

Onsite stormwater swales collect and convey stormwater runoff and are lined with vegetation. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species.
- Perform periodic mowing; frequency depends on location and type of grass. Do not cut shorter than Water Quality Flow depth (maximum 4-inches).
- Remove debris and accumulated sediment, based on inspection.
- Removal of woody vegetation from embankments.
- Repair eroded areas, remove invasive species and dead vegetation, and reseed with applicable grass mix as warranted by inspection.
- Periodic mowing of vegetated swales.

#### Infiltration Basin:

The infiltration basin attenuates stormwater, provides water quality and groundwater recharge and consists of numerous components including embankments and a vegetated spillway. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any trash and debris.
- Periodic mowing of embankments.
- Removal of woody vegetation from embankments.
- Removal of debris from spillway. Removal of accumulated sediment.
- Inspection and repair of embankments and spillway.
- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.

- Inspection of pretreatment measures (vegetated swale) at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore the condition of the facility to determine measures requires to restore infiltration function, including but not limited to removal of accumulates sediments or reconstruction.

#### Station Yard Stone:

The station yard stone within the station yard, on access roads, and in parking areas can become compacted and eroded over time. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Inspect for and repair any erosion in the yard, on access roads, and at the perimeter of the gravel areas.
- As the gravel areas become compacted, scrape off top layer to subgrade elevation and install new gravel surfacing layer at design elevation and pitch.

#### Spill Control

Eversource will have a spill control program. That program will be updated annually and incorporated into the employee-training program.

#### Disposal:

For all removed sediment, debris, trash, etc. from the stormwater management system during operations and maintenance shall be disposed of properly and legally by a New Hampshire Licensed hauler. Road sand may be reused for winter sanding, but may not be stored on-site.

#### Pesticides:

Northern Pass anticipates that vegetation management activities will be performed by Eversource. Work will be performed in accordance with Eversource's vegetation management program, which currently employs only mechanical means for controlling vegetation within the Eversource rights of way. Eversource does not currently plan to use herbicides as part of its vegetation management program, and as indicated in the Northern Pass application for a Presidential Permit (at page 52), all vegetation management and maintenance will be carried out in accordance with the New Hampshire Division of Forest and Lands Best Management Practice for utility maintenance. Herbicides will not be used before or during construction of the Northern Pass.

* * * * *

APPENDIX F – FEMA FLOOD INSURANCE RATE MAP

#### NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or flood/ways have been determined, users are encouraged to consult the Flood Profiles and Flood/way Data and/or Summary of Silliwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-doot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolate between cross sections. The floodways were based on hydrautic considerations with regard to requirements of the National Flood Insurance Program. Floodway width and other pertinent floodway data are provided in the Flood Insurance Study Report to the investment floodway data. or this jurisdiction

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

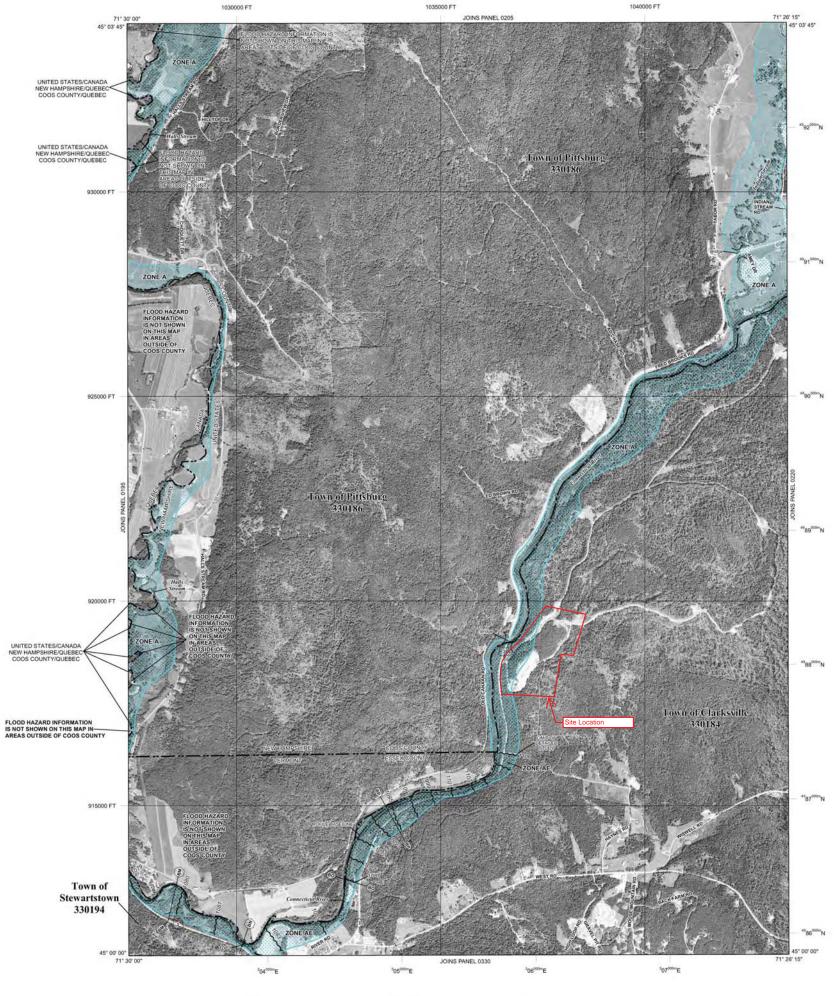
The projection used in the preparation of this map was New Hampshire State Plane Zone (FIPS zone 2800). The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at <u>http://www.nss.noaa.oov</u> or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, NNGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

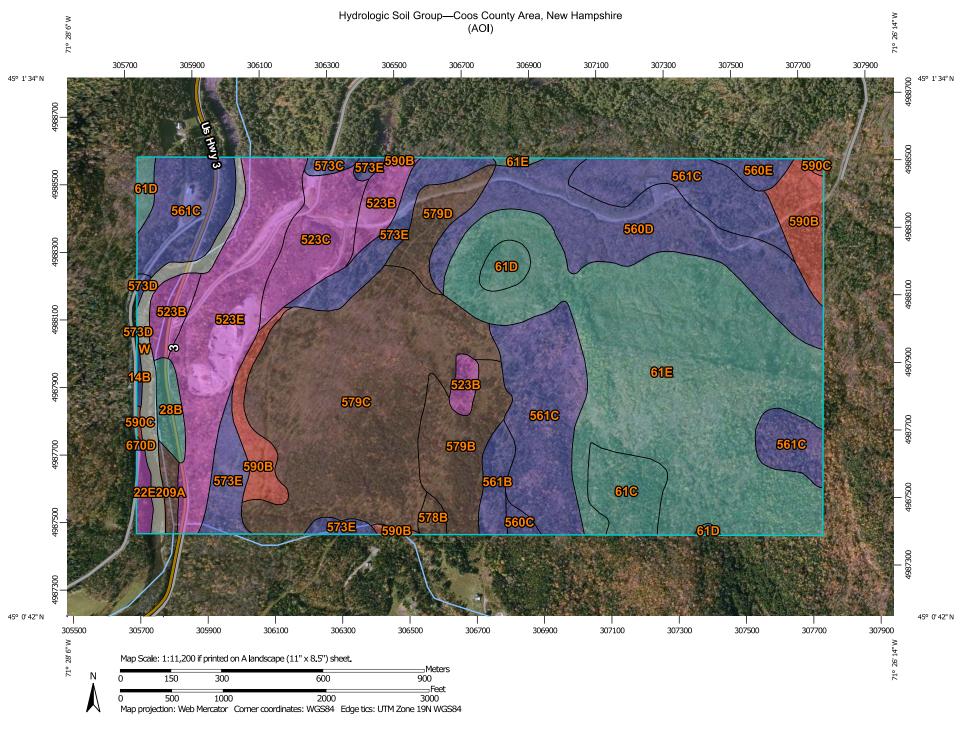
To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at <a href="http://www.ngs.noaa.gov">http://www.ngs.noaa.gov</a>.

Base map information shown on this FIRM was provided in digital format by the National Agriculture Imagery Program. This information was photogrammetrically compiled at a scale of 1:12,000 from aerial photography dated 2009.

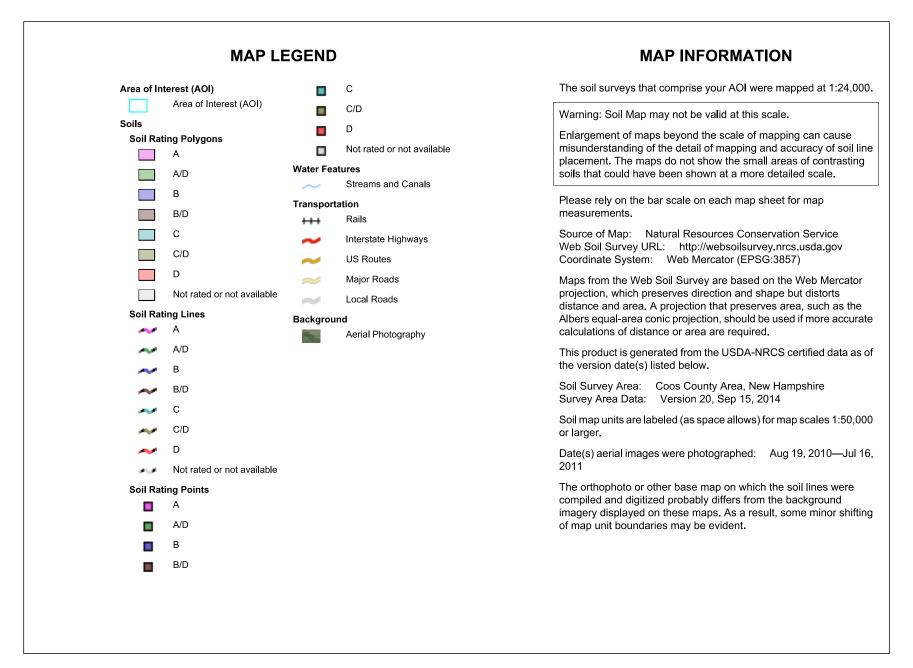

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved toographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, may users should contact appropriate community officials to venify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels, community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community dates on the community as well as a listing of the panels on which each community dates on the community as well as a listing of the panels on which each community dates on the community as well as a listing of the panels on which each community dates on the community dates of the panels on which each community dates on the community dates of the panels on the community dates of the community dates of the panels on the community dates of the community dates of the panels of the panels on the community dates of the community dates of the panels of the panels on the community dates of the community dates of the panels of


For information on available products associated with this FIRM visit the Map Service Center (MSC) website at <u>intro/imscfema.oov</u>. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information exchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov/business/niip</u>




a 1% chance of the area suble		LEGEND
a 1% chance of the area suble		
a 1% chance of the area suble	SPECIAL FLO	OD HAZARD AREAS (SFHAs) SUBJECT TO I BY THE 1% ANNUAL CHANCE FLOOD
the area subje	chance fixed (10)	Overar flood), also known as the base flood, is the flood that bas
	t to flooding by th	exceeded in any given year. The Special Flood Hazard Area is the 1% annual chance flood. Areas of Special Flood Hazard 400 V and VE. The Special Flood Hazard
elevation of th	A, AE, AH, AD, AR, e 1% annual chan	, A99, V, and VE. The Base Flood Elevation is the water-surface ce flood.
ZONE A		d Elevations determined.
ZONE AE		Sevations determined.
ZONE AH	Flood depths determined.	of 1 to 3 feet (usually areas of ponding); Base Flood Elevations
ZONE AO	Flood depths	of 1 to 3 feet (usually sheet flow on sloping terrain); average mined. For areas of alluvial fan flooding, velocities also determined.
ZONE AR		
ZONE AR	flood by a flo	I Hazard Areas formerly protected from the 1% annual chance ood control system that was subsequently decertified. Zone that the former flood control system is being restored to provide
	protection fro	om the 1% annual chance or greater flood.
ZONE A99	Area to be protection sy	rotected from 1% annual chance flood by a Federal flood stem under construction; no Base Flood Elevations determined.
ZONE V	Coastal flood	zone with velocity hazard (wave action); no Base Flood Elevations
ZONE VE	determined.	zone with velocity hazard (wave action); Base Flood Elevations
ZUNE VE	determined.	I zone with velocity hazard (wave action), base Flood clevillions
1111	FLOODWAY A	AREAS IN ZONE AE
The Readers	The descent of a	stream plus any adjacent floodplain areas that must be kept free of
encroachment flood heights.	so that the 1% an	nual chance flood can be carried without substantial increases in
	07.50 0.00	
	OTHER FLOO	U AREAS
ZONE X	Areas of 0.2% a average depths	nnual chance flood; areas of 1% annual chance flood with of less than 1 foot or with drainage areas less than 1 square
	mile; and areas (	protected by levees from 1% annual chance flood.
	OTHER AREA	S
ZONE X		d to be outside the 0.2% annual chance floodplain.
ZONED		lood hazards are undetermined, but possible.
0111	COASTAL BAR	RRIER RESOURCES SYSTEM (CBRS) AREAS
1000	OTHERWISE	PROTECTED AREAS (OPAs)
		Ity located within or adjacent to Special Flood Hazard Areas.
sans aréas an		Ily located within or adjacent to Special Flood Hazard Areas. % Annual Chance Floodplain Boundary
-		2% Annual Chance Floodplain Boundary
	- 8	oodway boundary
	- 20	ane D boundary
	1216 67	BRS and OPA boundary
-	- d	oundary dividing Special Flood Hazard Area Zones and boundary viding Special Flood Hazard Areas of different Base Flood Elevations,
0.000	n n	ood depths, or flood velocities.
~~ 513* (EL 987		ase Flood Elevation line and value; elevation in feet* ase Flood Elevation value where uniform within zone; elevation in
(EL 987	fe	ase Hood Elevation value where uniform within zone; elevation in et*
*Referenced to	the North America	an Vertical Datum of 1988
	-(A) •	ross section line
(23)	(23) TI	ansect line
45" 02' 08", 1	01.02.12. G	eographic coordinates referenced to the North American Datum of
	19	983 (NAD 83) Western Hemisphere
3100000	(F	000-foot ticks: New Hampshire State Plane Zone (IPS Zone 2800), Transverse Mercator projection
**89 ⁰⁰⁰⁰ N		000-meter Universal Transverse Mercator grid values, zone 19
DX5510	× p	ench mark (see explanation in Notes to Users section of this FIRM anel)
	R	iver Mile
*M1.5		MAP REPOSITORIES
-M1.5	Ref	MAP REPOSITORIES er to Map Repositories, list on Map Index
-M1.5		er to Map Repositories list on Map Index IFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP
-M1.5	E	er to Map Repositories list on Map Index FFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP February 20, 2013
-M1.5	E	er to Map Repositories list on Map Index IFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP
-M1.5	E	er to Map Repositories list on Map Index FFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP February 20, 2013
^{-M15}	E	er to Map Repositories list on Map Index FFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP February 20, 2013
-112	E	er to Map Repositories list on Map Index FFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP February 20, 2013
	EFFECTIV	nt DMap Repositories Isi of DMap Hotex PECTIVE DATO COUNTY-WORD FLOOD DISIGNATE RATE BARP Pebruary 20, 2013 E DATE(5) OF REVISION(5) TO THIS PANEL
	EFFECTIV	er to Map Repositories list on Map Index FFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP February 20, 2013
For commu Map History	E EFFECTIV nity map revision to table located in th	Into Map Repositories Isti or Map Hotex FECTIVE Date Co-COUNTY-WORE FADOD ROBURANCE RATE BARP Fabruary 20, 2013 E DATE(S) OF REVISION(S) TO THIS PANEL Intony prior to county-wolde mapping, refer to the Community Infood Imusance Study report for this junidiction.
For commu Map History	E EFFECTIV nity map revision to table located in th	Into Map Reparations Is in or Map Hotex FECTIVE Data Co-COUNTY-WORE FLOOD INSIGNATE RATE BAR Pathemary 20, 2013 E DATE(S) OF REVISION(S) TO THIS PANEL Into County-Work mapping, refer to the Community food Insurance Study report for this jumidicion. In available In this community, contact your insurance agent race Program al 1-00-0556-620.
For commu Map History	E EFFECTIV nity map revision to table located in th	Into Map Reparations Is in or Map Hotex FECTIVE Data Co-COUNTY-WORE FLOOD INSIGNATE RATE BAR Pathemary 20, 2013 E DATE(S) OF REVISION(S) TO THIS PANEL Into County-Work mapping, refer to the Community food Insurance Study report for this jumidicion. In available In this community, contact your insurance agent race Program al 1-00-0556-620.
For commu Map History	E EFFECTIV nity map revision to table located in th	Into Map Repositories Ist on Map Hodes FECTIVE EATC COUNTY-WORD ROOD INSIGNACE FATE BAAP Roburg 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instory prior to county-wolde mapping, refer to the Community the food Insurance Study report for this jurisdiction. In available In this community contact your insurance agent and Provem II 1400:556-5620.
For commu Map History	E EFFECTIV hity map revision h table located in th e if flood insurance lational Flood Insur 500	In the Map Repositories list or Map Hodes FEETINE EATC COUNTYWEE ROOD INSIGNACE FATE LAAG Reburgs 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instary prior to countywelde mapping, refer to the Community to food insurance Study report for this jurisdiction. In available In this community contact year insurance agent and Program at 1405:56-5623 MAP SCALE (1 = 1000" 2000
For commu Map History	EFFECTIV Prity map revision ruble located in th e if flood insurance automal Flood Insurance 500	In the Map Reparation is to in Map Index. FEETINE EATC COUNTYWEE ROOD INSIGNACE PATE LAB Reburgs 20, 2013 TE DATE(S) OF REVISION(S) TO THIS PANEL Interview of the Community the food insurance Study report for this purdection. In available In this community contact your insurance agent and Program II 1405:56-5620 MAP SCALE (1 = 1000" 2000
For commu Map History	EFFECTIV Prity map revision ruble located in th e if flood insurance automal Flood Insurance 500	In the Map Reparation is to in Map Hote. February EDTC FOUNTYWEE ROOD NUISEANCE PATE BAGE Robot 20, 2013 EDATE(S) OF REVISION(S) TO THIS PANEL Intellity prior to oountywelde mapping, refer to the Community ar flood insurance Study report for this junidiction. In a walkelite in this community, contact your insurance agent areas Program at 100-00-053-6202 MAP SCALE 1" = 1000" 2000 1000 FEET
For commu Map History	EFFECTIV hity map revision h table located in th e if flood insurance allocated Flood insurance 500	In the Map Repositories list or Map Hotes FECTIVE EATC COUNTYWEE ROOD INSIGNACE FATE BARA Reburgs 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instary prior to countywelde mapping, refer to the Community to food insurance Study report for this jurisdiction. I is available in this community, contact year insurance agent and Study report for this jurisdiction. I is available in this community, contact year insurance agent and Study report for this jurisdiction. I is available in this community, contact year insurance agent MAP SCALE 1" = 1000" 000 FEET
For commu Map History	EFFECTIV hity map revision h table located in th e if flood insurance allocated Flood insurance 500	In the Map Repositories list or Map Hotes FECTIVE EATC COUNTYWEE FLOD INSIGNACE PATE BARA Sebarary 20.013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instory prior to countywelde mapping, refer to the Community the Tobod Insurance Study report for this junidiction. In available in this community, contact your insurance agent MAP SCALE 1" = 1000" 0 300 600 HETERS 0 300 600 HETERS
For commu Map History	EFFECTIV https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://www.initeriorgical.org/ https://wwww.initeriorgical.org/ https://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	Into Map Repositories Ist on Map Hotes FECTIVE EATC COUNTY-WORD FLOOD INSURANCE FAITE BARA Fabruary 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instance Study report for this pursidiction. In Flood Insurance Study report for the pursidiction. In Flood
For commu Map History	EFFECTIV	In the Map Repositories list on Map Hotes FLOOD INSURANCE FAITE BADE Sectoring 20, 2013 TE DATE(S) OF REVISION(S) TO THIS PANEL Instance Study report for this jurisdiction. In available in this community, context, point insurance agent areas Program at 1-800-855-620. MAP SCALE (1" = 1000" 0 000 FREETERS 0 00
For commu Map History	EFFECTIV	In the Map Repositories list or Map Hotes FECTIVE EATC or COUNTYWEE FLOD INSIGNACE PATE BAD Fabruary 20.013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instory prior to countywelde mapping, refer to the Community the flood insurance Study report for this junidiction. In available in this community, contact your insurance agent MAP SCALE 1" = 1000" 0 300 600 HETERS 0 300 600 HETERS
For commu Map History	EFFECTIV	In the Map Repositories list on Map Hotes FLOOD INSURANCE FAITE BADE Sectoring 20, 2013 TE DATE(S) OF REVISION(S) TO THIS PANEL Instance Study report for this jurisdiction. In available in this community, context, pour insurance agent areas Program at 1-800-855-620. MAP SCALE (1" = 1000" 0 000 FREETERS 0 0000 FREETERS 0 000 FREETERS 0 00
For commu Map History	EFFECTIV	The MAR Propulsitions bit of MAR Index PECTIME EACT CONTENTIONE RECORD BUILT CONTENTION PECTIME EACT CONTENTION TEDATE(S) OF REVISION(S) TO THIS PANEL Interpret to Sourchywele mapping, refer to the Community the fold immunos Study report for this purdiction. The available in this community contact your immunos agent MAR SCALE (100 100 000 PECTING STARTS) MAR SCALE (100 100 000 PECTING PANEL 0215D FIREM
For commu Map History	EFFECTIV	The MAR Propulsitions bit of MAR Index PECTRE Data Core Constructions Recomparison of Activity of Constructions Texas Participation of Activity of Constructions Texas Program of Lab particular of Community the Activity of Constructions Participation of Constructions Participation of Constructions Participation of Constructions Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participations Participatio
For commu Map History	EFFECTIV	er b Map Repositories Ist on Map Hotes FLOOD INSURANCE PATE LANA Submary 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL Instance Product Study report for this pandecison. In the submark of the submark of the Community to Pool Insurance Study report for this pandecison. Map Scale 1" = 1000" 0 000 FEET 0 300 6600 PANEL 0215D FIRMM FLOOD INSURANCE RATE MAP COODS COUNTY,
For commu Map History	EFFECTIV	In the Map Reposition is that on Map Hotes. Figure Earlier Could Tryong Room Sustainable Earlier Map Robust 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL Interpretent Study report for this pursuitation. In Flood Insurance Study report for this pursuitation. In the Study report for this pursuitation. Map Scale 1" = 1000 Map Scale 1" = 1000" 000 FEET 0 300 660 PANEL 0215D FIRMM FLOOD INSURANCE RATE MAP COOS COUNTY, NEW HAMPSHIRE
For commu Map History	EFFECTIV	er b Map Repositories list or Map Hotes FLOOD INSURANCE FATE BADE Submary 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL http://prior to country-wide mapping, refer to the Community to bood maunance study report for this jurisdiction. e a available in this community, contact year insurance agent maps Scale 1" = 1000" 000 FEET 0 300 FEET 0 500 feet for this purchased PANEL 0215D FIRMM FLOOD INSURANCE RATE MAPP COOS COUNTY, NEW HAMPSHIRE (ALL JURISDICTIONS) PANEL 0215 OF 1300
For commu Map History	EFFECTIV	er bruch Reposition is to contract the format of the forma
For commu Map History	EFFECTIV	rer MAR Propulsion III of Mar Hotes FLOD DISIGNATE COUNTYWEE FLOD DISIGNATE COUNTYWEE Particle 20 OF REVISION(3) TO THIS PANEL Interpretation of the community for flood insurance Study report for this jundiction. III available in this community, contact your insurance agent areas Program all 1000-555-620 MAR SCALE (+ = 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For commu Map History	EFFECTIV	er b Map Requestiones list or Map Hodes FLOOD INSURANCE FATE BAAR Submary 20, 2013 TE DATE(5) OF REVISION(5) TO THIS PANEL http://prior to country-wide mageing, refer to the Community to Flood Insurance Study report for this jurisdiction. e is available in this community, contact year insurance agent maps Flood Insurance Study report for this jurisdiction. e is available in this community, contact year insurance agent maps Flood Insurance Study report for this jurisdiction. Map Scale 1" = 1000" 0 000 FEET 0 000 FEET 0 000 INSURANCE RATE MAP FLOOD INSURANCE RATE MAP COODS COUNTY, NEW HAMPSHIRE (ALL JURISDICTIONS) PANEL 215 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) (CENTAMES COMMENTY NUMBER ENEL SUFER
For commu Map History	EFFECTIV	rto MAR Proposition III of Mark Hotes FLOOD BURKINGE MATE BARG Reburgs 20.013 EDATE(S) OF REVISION(S) TO THIS PANEL Hotory prior to countrywelde magging, refer to the Community ar hotor immunities and report for this junidiction. III of the Community contact your immunities agent ar hotor immunities of the Community ar hotor immunities of the Community are available in this community contact your immunities agent are available in this community contact your immunities agent and the Communities of the Community and the Communities of the Community are available in this community contact your immunities agent are available in this community
For commu Map History	EFFECTIV hyperaprecision for insurance ascenar Floor Insurance ascen	erb MAR Proposition is un of Ange Hotes FLOC DISIGNATE COUNTYWEE FLOC DISIGNATE COUNTYWEE Particle 20 OF REVISION(3) TO THIS PANEL Interpretation of the angeling, refer to the Community the available in this community, contact your insurance agent and a state of the angeling of the the providence of the angeling MAR SCALE (****) 2000 PANEL 0215D PANEL 0215D
For commu Map History	EFFECTIV hyperaprecision if Pool Insurance account P	er to Map Requestions that on Map Hodes FLOC DISIGNATE CONTINUES RECORD DISIGNATE CONTINUES Particles 20.013 EDATE(S) OF REVISION(S) TO THIS PANEL Intody prior to countrywide mapping, refer to the Community the door insurances Study report for this purdiction. In a walked in this community contact your insurance agent MAP SCALE (" = 1000" 000 PET TO 0000 START 0000 START 0000 PANEL 0215D PANEL 0215D PANEL 0215D PANEL 0215D PANEL 0215D PANEL 0215D PANEL 0215D PANEL 215 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTACL CONTA
For commu Map History	EFFECTIV	er to Map Requestions that on Map Hodes FLOC DISIGNATE CONTINUES RECORD DISIGNATE CONTINUES Particles 20.013 EDATE(3) OF REVISION(3) TO THIS PANEL Intody prior to countrywide mapping, refer to the Community the door insurance Study report for this purdiction. In a walked in this community contact your insurance agent MAP SCALE (" = 1000" 0 000 FEET 0 000
For commu Map History	EFFECTIV hyperaprecision if Pool Insurance account P	er to Map Requestions that on Map Hodes FLOC DISIGNATE CONTINUES RECORD DISIGNATE CONTINUES Particles 20.013 EDATE(3) OF REVISION(3) TO THIS PANEL Intody prior to countrywide mapping, refer to the Community the door insurance Study report for this purdiction. In a walked in this community contact your insurance agent MAP SCALE (" = 1000" 0 000 FEET 0 000
For commu Map History		er to Map Requestions that on Map Hodes FLOC DISIGNATE CONTINUES RECORD DISIGNATE CONTINUES Particles 20.013 EDATE(3) OF REVISION(3) TO THIS PANEL Intody prior to countrywide mapping, refer to the Community the door insurance Study report for this purdiction. In a walked in this community contact your insurance agent MAP SCALE (" = 1000" 0 000 FEET 0 000
For commu Map History	EFFECTIV hyperaprecision of Pool solution Front Insurance account of Pool Insurance account of Poo	et o Map Requestions to it of Map Hotes FLOOD INSURANCE PATE BAAP Reburgs 20.013 EDATE(5) OF REVISION(5) TO THIS PANEL Instance of
For commu Map History	EFFECTIV hyperapreside h for about Pool Insurance about Pool In	erb MAR Preparations in tion May Hotex Fictory Early CoUNTYWER Parameter ATE MAR Parameter ATE MAR Hote Market Market Market Market Hote Market Market Market Market MAR MAR MAR MAR MAR MAR MAR MAR
For commu Map History	EFFECTIV	rte Map Repositories list or Map Hotes FLOD DISIGNATE COUNTYWEE RECTOR DATA COUNTYWEE Recompany 20, 2013 TE DATE(S) OF REVISION(S) TO THIS PANEL Infood Imuranoe Study report for this jundiction. Infood Imuranoe Study report for Firm Panel LAYOUT) Infood Imuranoe Study Recompany Study
For commu Map History	EFFECTIV	rto Map Repeaturies list or Map Hotes FLOOD BURGHARE HATE BADE Record SUBJERNALE FARTE BADE Record SUBJERNALE FARTE BADE Record SUBJERNALE FOR FILS HE Community into protein discontinuity, contact your insurance agent areas Program discontection of this jundiction. I available in this community, contact your insurance agent areas Program discontection of this jundiction. MAP SCALE 1" = 1000' 2000 PANEL 0215D PANEL 0215D FIRMM FLOOD INSURANCE RATE MAP COOS COUNTY, NEW HAAMPSHIRE (ALL JURISDICTIONS) PANEL 215 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMENT: CAMOUNTLE TON OF 2016 2016 CAMOUNTLE TON OF
For commu Map History	EFFECTIV	rte Map Repositories list or Map Hotes FLOD DISIGNATE COUNTYWEE RECTOR DATA COUNTYWEE Recompany 20, 2013 TE DATE(S) OF REVISION(S) TO THIS PANEL Infood Imuranoe Study report for this jundiction. Infood Imuranoe Study report for Firm Panel LAYOUT) Infood Imuranoe Study Recompany Study
For commu Map History		rto Map Repeaturise that on Map Hotes FLOD DISIGNATE CONTENDED FLOD DISIGNATE CONTENDED TELEVISION OF REVISION(3) TO THIS PANEL Interpretation of the Community interpretation of the Subject of the
For commu Map History	EFFECTIV Introduced in the operation of	<pre>https://www.contentional.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.con</pre>
For commu Map History		rer MAR Plequeducies list or May Hotes FLOOD BURGHARCE HATE BARG Schemary 20, 2013 TE DATE(S) OF REVISION(S) TO THIS PANEL Interpretent Bards (applicable) of the summaries hotes in unamous Bardy report for this jundicion. Interpretent Bards (applicable) of the summaries agent and the summaries Bardy report for this jundicion. Interpretent Bards (applicable) of the summaries agent agent Bards (applicable) of the subject community. Mar NUMBER Shown above should be used on insurance agent agent Bards (applicable) of the subject community. Mar NUMBER Shown above should be used on insurance agent agent Bards (applicable) of the subject community. Mar NUMBER Should be used when placing mag orders, the community. Mar NUMBER Should be used when placing mag orders. Mar NUMBER Should be used when placing mag orders. Ma
For commu Map History	EFFECTIV Introduced in the operation of	<pre>https://www.contentional.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.contention.con</pre>

APPENDIX G – SOIL SURVEY REPORTS (BY OTHERS)



USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey



## Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
14B	Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes	В	0.7	0.1%
22E	Colton gravelly fine sandy loam, 15 to 60 percent slopes	A	2.6	0.5%
28B	Madawaska very fine sandy loam, 3 to 8 percent slopes	С	5.0	0.9%
61C	Tunbridge-Lyman-Rock outcrop complex, 8 to 15 percent slopes	С	12.1	2.1%
61D	Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent slopes	С	7.1	1.2%
61E	Tunbridge-Lyman-Rock outcrop complex, 25 to 60 percent slopes	С	136.7	24.2%
209A	Charles silt loam, 0 to 2 percent slopes, frequently flooded	B/D	2.8	0.5%
523B	Stetson fine sandy loam, 3 to 8 percent slopes	A	15.2	2.7%
523C	Stetson fine sandy loam, 8 to 15 percent slopes	A	18.1	3.2%
523E	Stetson fine sandy loam, 15 to 60 percent slopes	A	43.2	7.7%
560C	Tunbridge-Plaisted- Lyman complex, 8 to 15 percent slopes	В	1.6	0.3%
560D	Tunbridge-Plaisted- Lyman complex, 15 to 25 percent slopes	В	47.0	8.3%
560E	Tunbridge-Plaisted- Lyman complex, 25 to 35 percent slopes	В	3.4	0.6%
561B	Tunbridge-Plaisted- Lyman complex, 3 to 8 percent slopes, very stony	В	6.1	1.1%
561C	Tunbridge-Plaisted- Lyman complex, 8 to 15 percent slopes, very stony	В	80.7	14.3%

USDA

Hydrolog	gic Soll Group— Summary	by Map Unit — Coos C	County Area, New Hampshire	(NH607)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
573C	Bangor silt loam, 8 to 15 percent slopes, very stony	В	1.7	0.3%
573D	Bangor silt loam, 15 to 25 percent slopes, very stony	В	0.5	0.1%
573E	Bangor silt loam, 25 to 35 percent slopes, very stony	В	24.4	4.3%
578B	Dixmont very fine sandy loam, 3 to 8 percent slopes	B/D	1.9	0.3%
579B	Dixmont very fine sandy loam, 3 to 8 percent slopes, very stony	B/D	20.5	3.6%
579C	Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony	B/D	91.6	16.2%
579D	Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony	B/D	10.3	1.8%
590B	Cabot silt loam, 0 to 8 percent slopes, very stony	D	19.6	3.5%
590C	Cabot silt loam, 8 to 15 percent slopes, very stony	D	0.9	0.2%
670D	Tunbridge-Berkshire- Lyman complex, 15 to 25 percent slopes	В	0.2	0.0%
W	Water		11.3	2.0%
Totals for Area of Inter	rest	1	564.8	100.0%

## Description

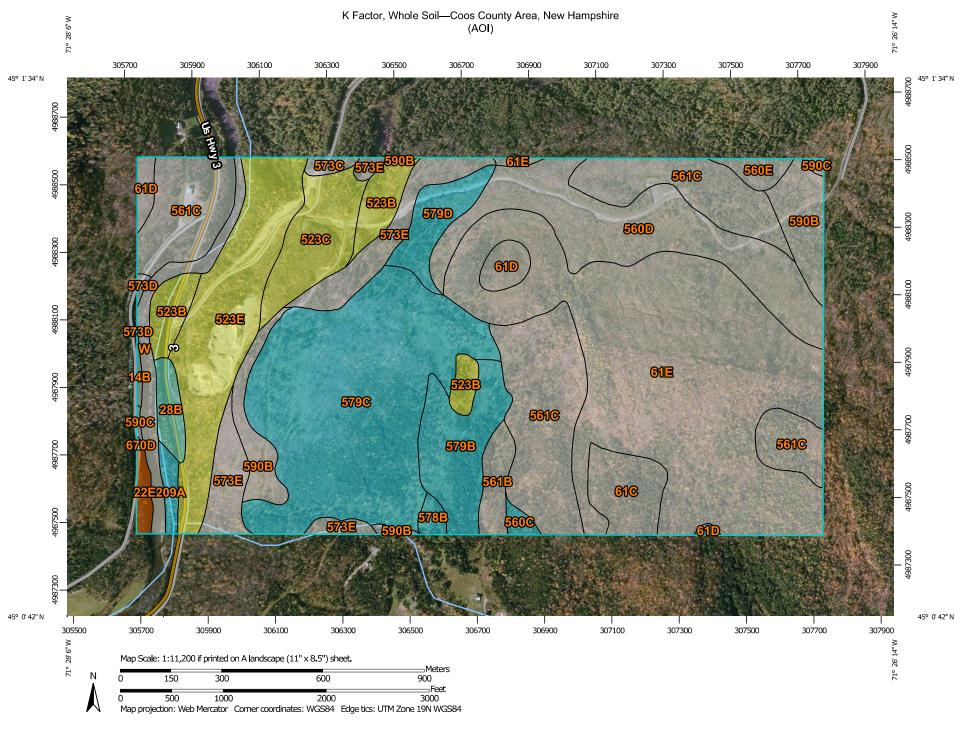
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

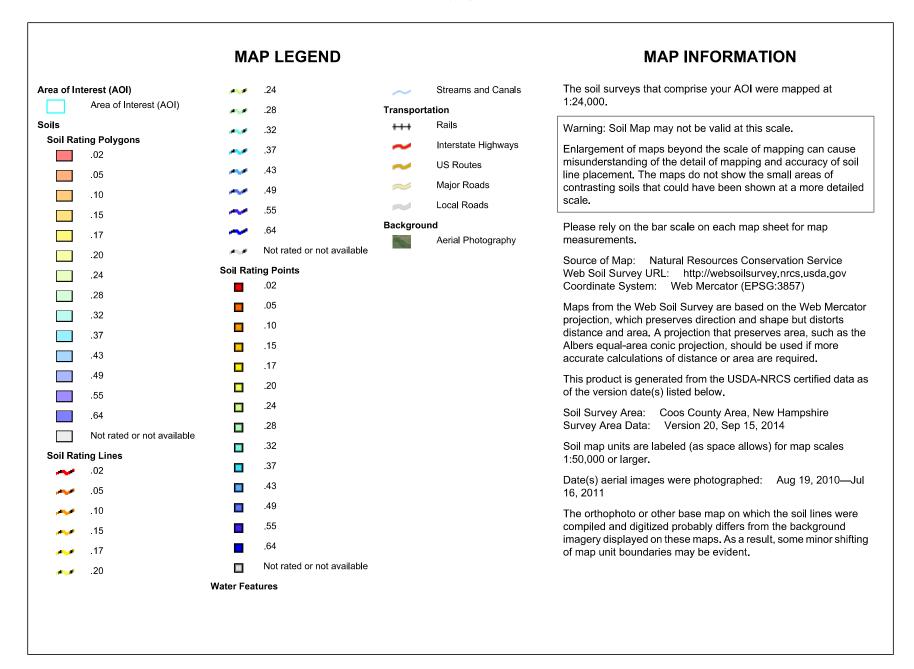
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


## **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher





USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey





# K Factor, Whole Soil

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
14B	Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes		0.7	0.1%
22E	Colton gravelly fine sandy loam, 15 to 60 percent slopes	.05	2.6	0.5%
28B	Madawaska very fine sandy loam, 3 to 8 percent slopes	.32	5.0	0.9%
61C	Tunbridge-Lyman-Rock outcrop complex, 8 to 15 percent slopes		12.1	2.1%
61D	Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent slopes		7.1	1.2%
61E	Tunbridge-Lyman-Rock outcrop complex, 25 to 60 percent slopes		136.7	24.2%
209A	Charles silt loam, 0 to 2 percent slopes, frequently flooded	.37	2.8	0.5%
523B	Stetson fine sandy loam, 3 to 8 percent slopes	.20	15.2	2.7%
523C	Stetson fine sandy loam, 8 to 15 percent slopes	.20	18.1	3.2%
523E	Stetson fine sandy loam, 15 to 60 percent slopes	.20	43.2	7.7%
560C	Tunbridge-Plaisted- Lyman complex, 8 to 15 percent slopes	.37	1.6	0.3%
560D	Tunbridge-Plaisted- Lyman complex, 15 to 25 percent slopes		47.0	8.3%
560E	Tunbridge-Plaisted- Lyman complex, 25 to 35 percent slopes		3.4	0.6%
561B	Tunbridge-Plaisted- Lyman complex, 3 to 8 percent slopes, very stony		6.1	1.1%
561C	Tunbridge-Plaisted- Lyman complex, 8 to 15 percent slopes, very stony		80.7	14.3%

USDA

Map unit symbol	Map unit name	Acres in AOI Percent of		
573C	Bangor silt loam, 8 to 15 percent slopes, very stony	Rating	1.7	0.3%
573D	Bangor silt loam, 15 to 25 percent slopes, very stony		0.5	0.1%
573E	Bangor silt loam, 25 to 35 percent slopes, very stony		24.4	4.3%
578B	Dixmont very fine sandy loam, 3 to 8 percent slopes	.37	1.9	0.3%
579B	Dixmont very fine sandy loam, 3 to 8 percent slopes, very stony	.37	20.5	3.6%
579C	Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony	.37	91.6	16.2%
579D	Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony	.37	10.3	1.8%
590B	Cabot silt loam, 0 to 8 percent slopes, very stony		19.6	3.5%
590C	Cabot silt loam, 8 to 15 percent slopes, very stony		0.9	0.2%
670D	Tunbridge-Berkshire- Lyman complex, 15 to 25 percent slopes		0.2	0.0%
W	Water		11.3	2.0%
Totals for Area of Inter	rest	1	564.8	100.0%

# Description

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

2/2/2015

Page 4 of 5

# **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)



Northern Pass Transmission Project Soil Survey Report for Transition Stations, Substation Expansions, and Converter Terminal

> Prepared For: Northern Pass Transmission, LLC

> > Submitted On: February 6, 2015

Prepared By: Normandeau Associates, Inc. 25 Nashua Road Bedford, NH 03110

www.normandeau.com

with bedrock within 20 inches of the soil surface. Bedrock outcrops were mapped within the vicinity of this map unit.

Plaisted silt loam is well drained with a seasonal water table greater than 40 inches from the soil surface. Chesuncook silt loam is moderately well drained with a seasonal water table within 15 to 40 inches of the soil surface. Telos silt loam is somewhat poorly drained with a seasonal water table within 15 inches of the soil surface due to the presence of dense lodgement till.

Cabot, very stony, silt loam is poorly drained with dense lodgement till in the substratum. Free water is commonly at or near the surface to result in hydric conditions.

### Summary

Limitations to development within the site include wetlands, steep slopes, shallow to bedrock conditions and shallow to moderately shallow dense lodgement till. The eastern side of the site is more gently sloping with deeper soils compared to the bedrock controlled western portion of the site. Proposed access routes should be designed to ensure sheet flow drainage across the route to minimize concentration of spring runoff.

## 4.2 Station 2, Clarksville North

### Overview

The site is located within the Connecticut River Valley and is within ¼ mile of the Connecticut River, which is a Designated River, managed and protected in accordance with RSA 483, The Rivers Management and Protection Act. The proposed site is part of an active gravel pit operation on the western slope of a hill overlooking the Connecticut River. At the time of a site visit in July 2014 material was being excavated and sorted. Access to the site is from US Route 3 along a gravel road. The site is on a steep hillside; Route 3 is at an elevation of approximately 1260 feet and the eastern edge of the site is at an elevation of approximately 1300 feet. The proposed site is bordered by undisturbed forest.

### Soil Mapping Results

Normandeau conducted an examination of soils within the western half of the site on July 9, 2014. A second site visit was conducted to review the eastern half of the site on December 23, 2014. The final survey area is approximately 9 acres in size. Sixteen test pits were dug throughout the site. Eight map units have been identified within the site. Madawaska and Stetson are formed within glacial fluvial parent material. Dixmont and Cabot are formed within glacial till. Table 4-2a summarizes the map units and their physical characteristics identified within the project site. Slope phases are not provided but are included in the detailed summary on each map unit provided in Appendix A.

Map Unit	Hydrologic Group	Seasonal Water Table Depth ¹ (Inches)	Depth to Bedrock (Inches)	Drainage Class ²	Ksat (in/hr)	Limitations
28- Madawaska	В	>15 to <40	>60	MW	0.6-20	
300/cbaab ³	В	>40	>60	W	0.6-20	
400/cbaab ³	В	>40	>60	W	0.6-6.0	
500/cbaab ³	В	>40	>60	W	0.6-6.0	
523-Stetson	В	>40	>60	W	0.6-6.0	
579-Dixmont	С	>15 to <40	>60	MW	0.06-2.0	
590/P-Cabot	D	Surface to 12	>60	Р	0.06-0.2	$P^2$
727/Rubble land	unknown	unknown	unknown	unknown	unknown	

#### Table 4-2a. Station 2, Clarksville, Summary of Soil Physical Characteristics

1. Seasonal water table ranges are provided from the NRCS. On-site conditions are expected to fall within these ranges based on test pit observations.

 Drainage Classes: P- poorly drained; SP- somewhat poorly drained; MW- moderately well drained W- well drained; SE- somewhat excessively drained; E- excessively drained.

3. Physical characteristics of disturbed land estimated.

Stetson fine sandy loam is well drained. Madawaska fine sandy loam and Dixmont, very stony, silt loam are moderately well drained. Cabot, very stony, gravelly silt loam is poorly drained with dense lodgement till in the substratum. Free water is commonly at or near the surface to result in hydric conditions.

Four of the map units are disturbed soils from excavation for sand and gravel, Udipsamments, (300); Udorthents, sandy or gravelly (400); Udorthents, loamy (500) and Rubble land (727). Rubble land indicates areas where material has been sorted and stored. As the site is actively worked, these areas may change in size and location. The soils are deep (>60 inches) within the site with the exception of Test Pit 7, where weathered bedrock was encountered at 36". Table 4-2b provides a summary of the estimated physical characteristics of these map units based on adjacent soil series.

Characteristic	300/cbaab- Udipsamments	400/cbaab- Udorthents, sandy or gravelly	500/cbaab- Udorthents, loamy
	c- estimated to be	c- estimated to be	c- estimated to be
Drainage Class	well drained.	well drained.	well drained.
	b-glacial fluvial	b-glacial fluvial	b-glacial fluvial
Parent Material	deposits	deposits	deposits
Restrictive/Impervious			
layer	a- none	a- none, except TP 7	a- none
Estimated ksat	a- high	a- high	a-high
Hydrologic Group	b-Group B	b-Group B	b-Group B

# Table 4-2b.Station 2. Clarksville, Summary of Made Land Estimated Physical<br/>Characteristics¹.

1 Society of Soil Scientists of Northern New England. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNNE Special Publication No. 3. Durham, NH.

### Summary

Limitations to development within the Station 2 site include steep slopes and wetlands. Generally the soils are deep within the site with the exception of Test Pit 7 where weathered bedrock was encountered at 36 inches. Proposed access routes should be designed to ensure sheet flow drainage across the route to minimize concentration of spring runoff.

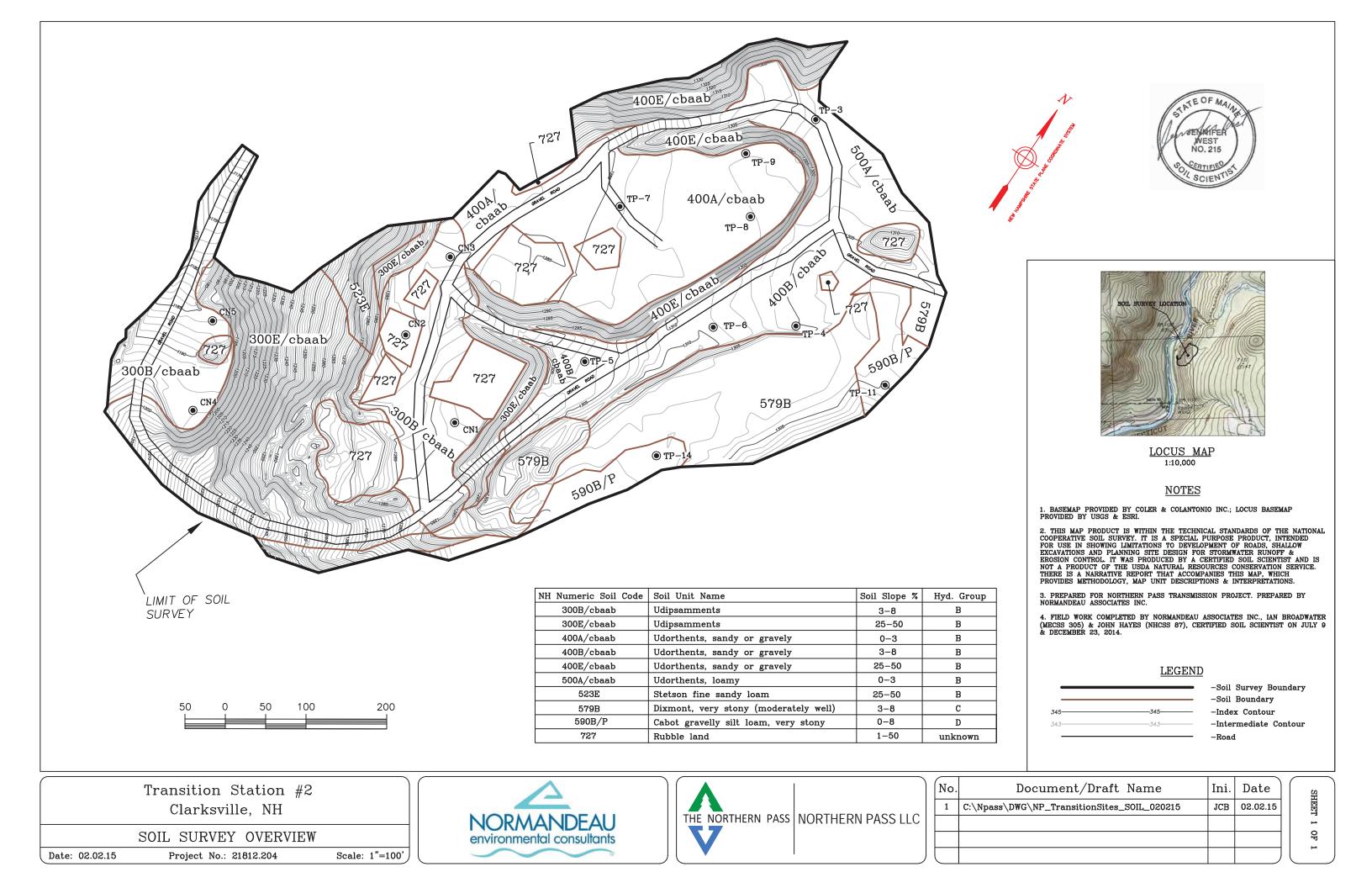
## 4.3 Station 3, Clarksville South

### **Overview**

The review included Transition Station 3, a wooded parcel located off Wiswell Road, and a proposed 2,300 foot underground route from the Transition Station southeast to Route 145, where the corridor would then be located within the road right-of-way.

The Transition Station site is wooded with evidence that selective cutting has occurred within the last 5-10 years. The underground corridor is dominated by early successional forest, except in the vicinity of Route 145, which is an old hayfield.

The field review of the Transition Station site was conducted on July 22, 2014. Field observations were made using borings dug by hand with an auger and tile spade and test pits dug by an excavator. Detailed observations were made to either bedrock or to 60 inches, where feasible. A total of 27 test pits dug by an excavator were evenly distributed across the site and located with a Trimble® GPS.


The review of the underground corridor focused on confirming the NRCS medium intensity soil survey (Soil Survey Staff 2014) and locating shallow to bedrock soils (Appendix C). Three wetland crossings, previously delineated by Normandeau, were reviewed to provide more detail on the soils in these areas. Shallow test pits with a spade and probes for bedrock were completed along the proposed corridor on September 10, 2014. The results of the survey are provided on a base map in Appendix D. Observations were recorded and located with a Trimble® GPS.

### Soil Mapping Results

### **Transition Station**

The proposed site is located on the south side slope of a hill (See Appendix D). The final survey area was about 5 acres in size. Approaching from Wiswell Road, the site is initially moderately steep, slopes of 15 to 25%, with small sections of steeper slopes ranging from of 25 to 35% that extend to the east and west. The site becomes gently sloping (slopes 3 to 8%) as one progresses south. The site has been cutover in the past with small clearings dominated by a mix of shrubs and grasses. Tree cover is moderately dense in areas of bedrock and steep slopes.

Seven map units were identified within the site with a range of slope phases. All are formed within glacial till parent material. Table 4-3 summarizes the map units and their physical characteristics identified within the project site. Detailed information on each map unit, including slope phase, is provided in Appendix A.



**APPENDIX H – GEOTECHNICAL REPORT (BY OTHERS)** 

# **Geotechnical Engineering Report**

Transition Station #2 Project Northern Pass Transmission Line Clarksville, New Hampshire

> December 9, 2016 QS Project No. 16004

Prepared for: PAR Electrical Contractors, Inc. 60 Fuller Road Chicopee, Massachusetts 01020

> Prepared by: Quanta Subsurface 307 W. Main Street Radford, Virginia 24141



December 9, 2016



PAR Electrical Contractors, Inc. 60 Fuller Road Chicopee, Massachusetts 01020

- Attention: Ms. Stephanie Labbe Project Manager
- Re: Geotechnical Engineering Report Transition Station #2 Project – Northern Pass Transmission Line Clarksville, New Hampshire QS Project No. 16004

Dear Ms. Labbe,

The purpose of this report is to present the results of the subsurface exploration program and geotechnical engineering analyses undertaken by Quanta Subsurface (QS) associated with the above referenced project. Our services were provided in general accordance with QS's proposal dated August 22, 2016 as approved by PAR Electrical Contractors' (PAR) Limited Notice to Proceed (LNTP) #4 dated August 26, 2016. The attached report presents our understanding of the project, the findings of the subsurface exploration program, and our geotechnical conclusions and recommendations.

Sincerely,

**Quanta Subsurface** 

Scan T. Verry

Sean Kearney, P.G. Project Engineering Geologist



J.T. McGinnis, P.E. Geotechnical Department Manager



### TABLE OF CONTENTS

1.0	PROJE	ECT INFORMATION	.1
2.0	PROV	IDED DOCUMENTS AND PREVIOUS EXPLORATION DATA	.1
3.0	PURP	OSE AND SCOPE OF SERVICE	.2
4.0	EXPLO	DRATION AND TESTING PROCEDURES	.3
4.1	SUE	SURFACE EXPLORATION	.3
4.2	LAB	ORATORY TESTING	.4
4.3	FIEL	D INFILTRATION TESTING	.4
5.0	GEOL	OGY AND SUBSURFACE CONDITIONS	.5
5.1	GEN	IERAL	.5
5.2	REG	GIONAL GEOLOGY	.5
5.3	SITE	E SUBSURFACE CONDITIONS	.5
6.0	DESIG	IN AND CONSTRUCTION RECOMMENDATIONS	.8
6.1	GEN	IERAL	.8
6.2	SITE	E PREPARATION	.8
6.3	CON	ITROLLED STRUCTURAL FILL	.8
6.4	SLO	PE STABILITY	.9
6.	.4.1	General	.9
6.	.4.2	New Slope Stability	.9
6.	.4.3	Existing Cut Slope Stability	.9
6.5	GRO	DUNDWATER CONDITIONS	11
6.	.5.1	General	11
6.	.5.2	Infiltration Basin Estimated Seasonal High Water Table (ESHWT)	11
6.6	GEC	DTECHNICAL DESIGN STRENGTH PARAMETERS	12
6.7	BUS	SUPPORT STRUCTURE/POLE FOUNDATION DESIGN AND CONSTRUCTION	12
6.	.7.1	General	12
6.	7.2	Drilled Shaft Foundations	12
6.	.7.3	Drilled Shaft Construction	13
6.8	SHA	LLOW FOUNDATION DESIGN AND CONSTRUCTION	14
6.	.8.1	Transformer Pad	14
6.	.8.2	Single-Story Equipment Structures	14
6.	.8.3	Shrink-Swell and Frost Depth Considerations	14
6.	.8.4	Shallow Foundation Construction	15
6.9	EAR	THQUAKE CONSIDERATIONS	15
6.	.9.1	Seismic Site Class Definition	15
6.	.9.2	Liquefaction	15
6.10	KAR	ST GEOLOGY	16
6.11	COF	ROSION CONSIDERATIONS	16
7.0	LIMITA	TIONS	16
8.0	REFE	RENCES	17



### FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Site Location Map
- Figure 3 Boring Location Plan
- Figure 4 Bedrock Geologic Map

### APPENDICES

- Appendix A QS Boring Logs
- Appendix B Laboratory Test Results
- Appendix C Infiltration Test Results
- Appendix D Summary Geotechnical Design Parameters
- Appendix E SLIDE 7.0 Stability Outputs



# EXECUTIVE SUMMARY

This Executive Summary is provided as a brief overview of our geotechnical engineering conclusions and recommendations for the project and is not intended to replace more detailed information contained elsewhere in this report. As an overview, this summary inherently omits details that could be very important to the proper application of the provided geotechnical design recommendations. This report should be read in its entirety.

- QS's geotechnical field exploration program consisted of eight (8) Standard Penetration Test (SPT) borings, drilled to a maximum depth of approximately 50 feet.
- Two infiltration (INF) test borings were conducted to characterize the subsurface conditions to a depth of approximately 5 feet below the planned basin bottom. Following completion of each INF test boring, field infiltration tests were performed at each location.
- The subsurface conditions encountered at the site generally included a layer of topsoil in the portion of the site covered by tress and vegetation, isolated amounts of existing fill material, glaciofluvial deposits and glacial till (ablation till). Test borings performed by others in the vicinity of the project site reported similar conditions to those encountered during the exploration program presented herein.
- Bedrock was not encountered in the test borings performed by Quanta Subsurface.
- Groundwater was encountered in three (3) of the test borings. We anticipate that the groundwater encountered is representative of perched conditions above the glacial till.
- In general, the subsurface conditions encountered at the site are suitable for the proposed construction with considerations presented herein.
- Due to the very dense/hard till soils encountered at shallow depths in the area of the planned structures and the presence of cobbles/boulders at shallow depths in other areas of the project site, drilled shafts are recommended for support of the bus support/pole structures.
- Controlled structural fill and/or the onsite soils will provide suitable support for the transformer pad designed to transmit an approximate uniform bearing pressure of up to 500 psf and structures supported by shallow foundation designed with a maximum allowable bearing pressure of 3,000 psf.
- Frost depth should be anticipated to be 4 feet below the lowest adjacent grade.
- A Seismic Site Class Definition of "C" is recommended for design.
- We anticipate that the planned fill slopes will exhibit a factor of safety (FoS) of 1.5 or greater for global stability.
- The cut slope constructed as part of the adjacent "active excavation work area" is anticipate to have a FoS for global stability between 1.0 and 1.1 and does not exhibit the recommend minimum FoS of 1.3 for slopes adjacent to or on the project site.



# 1.0 PROJECT INFORMATION

The Northern Pass project consists of a 192-mile long transmission line that will convey 1,090 megawatts of energy from hydroelectric facilities in Canada to New England via a corridor than traverses north-to-south through New Hampshire (see Site Vicinity Map – Figure 1). In addition to construction of new transmission line, the project also includes the construction of three (3) new substations and six (6) new transition stations along the corridor. In general, the new transition stations (designated Transition Stations #1 through #6) are located along the northern and central portions of the corridor while the three new substations (designated Franklin Substation, Deerfield Substation and Scobie Pond Substation) are located along the southern portion of the corridor. The information presented herein is for the Transition Station #2 located approximately 1 mile north-northwest of Clarksville, New Hampshire (see Site Location Map - Figure 2).

The Transition Station #2 site is located along the eastern extent of an "active excavation work area" that is separated from the transition station area by an existing cut slope with a maximum height of about 20 feet. The western portion of the transition station area is developed as a result of activities associated with the nearby excavation area; however, the eastern portion of the site is undeveloped and wooded. Within the transition station footprint, the ground surface elevations generally range from 1302 feet to 1309 feet. Maximum cuts and fills of approximately 1 foot and 6 feet, respectively, will be required to develop the planned finished grade elevations of approximately 1308 feet. Development will include construction of fill slopes with a planned configuration of 3 (Horizontal) to 1 (Vertical) along the south and east sides of the site and an infiltration basin in the northeast corner of the project site. No retaining walls are planned.

New structures within the transition station footprint are anticipated to consist of a transformer pad, a bus support structure, and possibly single-story structures designed to house electrical equipment. Quanta Subsurface (QS) has assumed the following regarding loading and foundation support of the new structures: 1) the bus structure will require deep foundation support to resist shear and overturning loads, 2) the transformer pad will consist of slab-on-grade support designed for a maximum bearing pressure of 500 psf, and 3) single-story structures designed to house equipment will be lightly loaded with shallow foundation support.

# 2.0 PROVIDED DOCUMENTS AND PREVIOUS EXPLORATION DATA

Multiple documents were provided to QS by PAR Electrical Contractors (PAR) for consideration during our geotechnical exploration and engineering evaluation. The provided geotechnical report documents were developed by others and presented information at various locations along the transmission line corridor. Upon review of the provided data, no test borings originating from these reports were performed within the Transition Station #2 footprint; however, two documents provided either GIS information or test boring data in the area of the Transition Station #2 site. The specific documents included as reference by QS herein are listed below.



- Haley & Aldrich, Inc.; Geotechnical Data Report Route 3/Connector River Crossing: Northern Pass Transmission Project; February 21, 2014.
- Terracon Consultants, Inc.; *Report of Expected Geotechnical Conditions*: Northern Pass Project; July 10, 2015.

Although data from these two reports was not specifically used in development of the recommendations presented in Section 6.0 of this report, selected information was used as reference in support of the site specific data obtained by QS. Specific citations are noted below.

# 3.0 PURPOSE AND SCOPE OF SERVICE

QS's scope of work was developed based on information provided by PAR that included requested field investigations for civil works from Burns & McDonnell (*Subsurface Exploration and Geotechnical Engineering Report: Technical Guidelines*; Northern Pass Transmission Stations, New Hampshire, provided to QS on July 11, 2016) as well as requested investigations for planned structures from others. The purposes of our involvement on Transition Station #2 phase of the project were as follows: 1) provide general descriptions of the subsurface conditions encountered at the transition station site; 2) provide geotechnical design parameters for use by others in analysis and design of site grading and permanent slopes; 3) provide geotechnical foundation design recommendations for support of the transition station structures; and 4) comment on geotechnical aspects of the proposed construction. In order to accomplish the above objectives, QS undertook the following scope of services:

- 1) reviewed available subsurface and geologic information relative to the project site;
- 2) supervised a subsurface exploration program consisting of eight (8) geotechnical borings within the area of the proposed transition station;
- 3) procured field infiltration testing services at two (2) locations within the proposed infiltration basin;
- supervised a laboratory testing program on selected soil samples obtained during the drilling program;
- 5) evaluated the findings of the test borings and laboratory tests relative to foundation support of planned structures and other geotechnical aspects of the project;
- 6) and prepared this written report summarizing our services for the project, providing descriptions of the subsurface conditions encountered, laboratory test results, and design recommendations, as well as geotechnical considerations for construction. Copies of the QS boring logs, laboratory test results, infiltration test results, summary of geotechnical design parameters, and slope stability analysis outputs are provided in Appendices A through E.

QS's scope of services did not include a survey of boring locations and elevations, quantity estimates, preparation of plans or specifications, pavement design, infiltration/retention basin design, blasting recommendations, identification of environmental impacts or aspects related to the project and/or site, or other services not specified above.



# 4.0 EXPLORATION AND TESTING PROCEDURES

### 4.1 SUBSURFACE EXPLORATION

QS's geotechnical field exploration program consisted of eight (8) Standard Penetration Test (SPT) borings performed at the approximate locations shown on the attached Boring Location Plan (see Figure 3) and summarized in Table 1 below. The test boring locations were staked in the field by others using surveying methods; ground surface elevations at the boring locations were derived from topographic data included within an ACAD site plan document (labeled *NPTT204-C101-Geotech.dwg*) using latitude and longitude data provided by PAR.

Boring Designation	Total Depth (ft)	Ground Surface Elevation (ft)	Latitude	Longitude
BH 201	50.3	1309.4	45.01893889	-71.46191111
BH 202	20.8	1303.0	45.01891944	-71.46135278
BH 203	9.8	1303.0	45.01904444	-71.46154722
BH 204	22.0	1305.1	45.01926944	-71.46147500
BH 205	50.4	1307.7	45.01926667	-71.46174722
BH 206	50.8	1287.1	45.01919167	-71.46203333
INF 201	12.0	1304.1	45.01934167	-71.46138611
INF 202	12.0	1303.9	45.01938889	-71.46140556

Table 1 - As-Drilled SPT Borehole Depths and Coordinates

Note: Elevations information is NAVD88

Test borings were performed by S.W. Cole Engineering, Inc. (S.W. Cole) utilizing a CME 850 drill rig equipped with a 140-lb automatic drop hammer falling 30 inches. The drilling methods utilized for this investigation consisted of solid stem augers, hollow stem augers, and rotary drive and wash. Standard penetration testing was performed in general accordance with ASTM D1586 and pocket penetrometer testing (where applicable) was conducted at approximate 2-foot intervals to a depth of 10 feet and at 5-foot intervals thereafter. The number of hammer blows required to advance the sample for successive 6-inch intervals is recorded, and the total number of blows required to drive the sampler from 6 to 18 inches is referred to as the SPT "N-value". The N-value provides a general indication of in-situ soil density/consistency and has been correlated with certain engineering properties of soils. Soil samples were collected with a standard split-spoon sampler (2-in OD) and in bulk samples from auger cuttings for laboratory testing.

In some soils it is not always practical to drive a split-spoon sampler the full four consecutive 6-inch increments. Whenever more than 50 blows are required to drive the sampler over a 6-inch increment, or the sampler is observed not to penetrate after 50 blows, the condition is referred to as split-spoon refusal. The SPT N-value for split-spoon refusal conditions is typically estimated as greater than 100 blows per foot (bpf). Where the sampler is observed not to penetrate after 50 blows, the N-value is reported as 50/0. Otherwise, the depth of penetration after 50 blows is reported in inches (i.e. 50/5, 50/2, etc.).



The test borings were extended to the planned termination depth or auger refusal, whichever was encountered first; no rock coring was performed as part of the Transition Station #2 drilling program. The subsurface materials encountered at each boring location were visually classified by QS personnel in the field in accordance with ASTM D2488. In addition to visual classification of the materials in the field, the boring logs incorporate both driller and field inspector observations and comments as well as modifications based on laboratory test results. QS's boring logs are presented in Appendix A. SPT samples were collected in Ziploc bags and bulk samples were collected in 5-gallon buckets.

### 4.2 LABORATORY TESTING

QS selected various bulk and SPT samples for laboratory testing. Laboratory testing on soil samples was performed by S.W. Cole in their Londonderry and Manchester laboratories or via subcontract with Absolute Resource Associates (sulfate and chloride testing). Table 2 provides a summary of the laboratory testing performed for the Transition Station #2 site. A summary of the laboratory testing results and accompanying laboratory test data reports are provided in Appendix B.

Test	ASTM/AASHTO	No. of Test Performed
Moisture Content	D2216	19
Sieve Analysis	D422	3
Percent Passing No. 200 Sieve	D1140	8
Atterberg Limits	D4318	3
pH of Soil	G51	2
Soluble Chloride		2
Soluble Sulfate		2
Resistivity	T188	2

Table 2 – Laboratory Test Summary

### 4.3 FIELD INFILTRATION TESTING

Two infiltration (INF) test borings were conducted (designated INF 201 and INF 202) to characterize the subsurface conditions to a depth of approximately 5 feet below the planned basin bottom. Each boring was sampled continuously (every 2 feet) from ground surface to termination depth. Following completion of each INF test boring, an offset borehole was drilled and PVC casing was installed to the approximate planned bottom of the basin for field infiltration testing. At some time following completion of drilling, field infiltration tests were performed by S.W. Cole. The results of S.W. Cole's field infiltration tests are provided in Appendix C. The installation, preparation, and testing procedures followed were in general accordance with Table 2-3 of the *New Hampshire Department of Environmental Services Stormwater Manual*, Volume 2 (2008).



# 5.0 GEOLOGY AND SUBSURFACE CONDITIONS

### 5.1 GENERAL

The overburden soils at the project site are derived from several episodes of advancing and retreating glacial ice. Subsurface materials encountered within the borings are consistent with the geologic setting of the area. The following sections describe the regional geology and site specific subsurface conditions.

### 5.2 REGIONAL GEOLOGY

The surficial geology of the White Mountains in New Hampshire is derived from the erosional and depositional processes of the continental and mountain glaciers of the Wisconsin Glacial Episode during the late Pleistocene Epoch. The dominant glacial soils that are found in this region are glacial till, glaciofluvial/outwash deposits, and glacio-lacustrine deposits. Younger post glacial deposits formed from the numerous rivers, streams and lakes that dominate the landscape; these include alluvium and stream terrace deposits. The surficial soil in the area of the Transition Station #2 site is mapped as ablation till (Figure 3; Terracon, 2015).

Bedrock in the White Mountains are comprised of folded and faulted Paleozoic sedimentary and volcanic rocks that have been regionally metamorphosed and intruded by large and small bodies of plutonic rocks. The grade of metamorphism ranges from the chlorite zone at one extreme to the sillimanite zone at the other (Billings, 1980). The majority of the rocks mapped in this region consist of schist, phyllites, limestone, and quartzite. As shown in Figure 4 (Regional Geology Map), extrapolation of information provided in the *Geologic Map and Structure Sections of the Dixville Quadrangle* (1963) indicates that bedrock underlying the Transition Station #2 site consist of the Gile Mountain Formation described as phyllite and micaceous quartzite.

### 5.3 SITE SUBSURFACE CONDITIONS

The subsurface conditions encountered in the test borings generally included a layer of topsoil in vegetated portions, isolated amounts of existing fill material, glaciofluvial deposits, and glacial till (ablation till). Test borings performed by Haley & Aldrich in the vicinity of the Transition Station #2 site reported similar conditions of glaciofluvial deposits consisting of medium dense to dense sands and gravels underlain by bedrock described as metasandstone and phyllite (Haley & Aldrich, 2014). A summary of the subsurface materials encountered in the exploration described herein is provided below and in Table 3, and specific data are shown on the boring logs provided in Appendix A.

#### Topsoil

Material described as topsoil was encountered at the ground surface in two test borings (BH 202 and BH 203) and below existing fill where encountered (i.e. BH 204, INF 201, and INF 202). The thickness of the topsoil ranged from 1 to 2 feet in borings BH 202 and BH 203 (at the ground surface) and 0.5 to 1.5 feet where encountered below existing fill. The sampled topsoil was described as lean CLAY (CL) with trace organics and varying amounts of sand. Laboratory testing was not performed to determine the organic content or horticultural properties of the topsoil. Therefore, the term "topsoil" is not intended to indicate suitability for landscaping and/or other purposes.



### Existing Fill

Existing fill material was encountered in boring BH 204 and both infiltration test borings (INF 201 and INF 202) to a depth of about 2 feet below the existing ground surface. The sampled fill material was described as sandy SILT (ML) and silty SAND (SM) with varying amounts of gravel and was underlain by the original topsoil layer at all three locations. Field N-values obtained within the existing fill material ranged from 10 to 15 blows per foot (bpf) indicting that the material exhibited a density that ranged from loose to medium dense (or stiff).

### **Glaciofluvial Deposits**

The glaciofluvial deposits are described as sands and gravels with minor amounts of silt and clay that were deposited within high energy meltwater channels draining into the valleys. Glaciofluvial materials were encountered in each test boring and were generally described as SAND with silt (SP-SM), silty SAND (SM), and sandy SILT (ML) with varying amounts gravel. Field N-values obtained within the glaciofluvial material ranged from 7 bpf to 50 blows per 2 inches of penetration (i.e. 50/2") with a typical N-value of greater than 15 bpf.

#### Glacial Till

Glacial till deposits consist of material that has been transported and deposited by glacial ice. The glacial till encountered was characterized as ablation till (melt-out till) indicating the material was carried on or near the surface of the glacier. Till was encountered in each test boring below the glaciofluvial deposits. Boulders of varying size are common within till deposits. Sampled till was generally described as sandy SILT (ML) and silty SAND (SM) with varying amounts of gravel. Field N-values obtained within the glaciofluvial material ranged from 43 bpf to 50 blows per 3 inches of penetration (i.e. 50/3").

#### Refusal Conditions/Bedrock

Auger refusal was encountered in boring BH 203 at a depth of 9.8 feet. Auger refusal occurs when materials are encountered that cannot be penetrated by a soil auger or roller bit and is normally indicative of hard or very dense material, such as debris within fill, boulders, rock lenses, pinnacles, or the bedrock surface. Based on the soil conditions encountered in boring BH 203 and the depths achieved in adjacent borings, QS anticipates that the refusal conditions encountered in boring BH 203 are the result of very dense till or a boulder within the till and not the bedrock surface. Therefore, bedrock was not encountered in the test borings.

#### **Groundwater**

Groundwater levels were measured using a water level meter at the completion of each boring. Groundwater was encountered in borings BH 202, BH 204, and BH 205 at depths of 7.5, 14, and 18.5 feet, respectively. Although the groundwater depth measured in BH 202 was well above the interface between glaciofluvial deposits and till, in general groundwater in the area of the site is anticipated to represent perched conditions directly above till or on less pervious layers above the till. Fluctuations in subsurface water levels and soil moisture should be anticipated with changes in precipitation, run-off, and moisture.



Boring No.	Ground Elevation (ft)	Depth to Groundwater ¹ (ft)	Boring Termination Condition	Depth (ft)	Material Origin	Encountered Material	Field N-Value ²
				0 - 18	Glaciofluvial	SM/SP-SM	11 - 39
BH 201	1309.4	N.E.	BT	18 - 23	Deposits	GP-GM	74
			23 - 50.3 Till	Till	ML	84 - 50/3"	
				0 - 2	Topsoil	CL	3
BH 202	1303.0	7.5	ВТ	2 - 7	Glaciofluvial	ML	50/6" - 50/4"
				7 - 17	Deposits	SM	20 - 50/2"
				17 - 20.8	Till	ML	50/3"
				0 - 1	Topsoil	CL	-
BH 203	1303.0	N.E.	AR	1 - 2.5	Glaciofluvial Deposits	SP-SM	18
				2.5 - 9.8	Till	ML	50 - 50/3"
				0 - 2	Fill	ML	15
				2 - 4	Topsoil	CL	5
BH 204	1305.1 14.0	BT	BT	4 - 16	Glaciofluvial Deposits	ML/SM/SP-SM	47 - 50/6"
				16 - 22	Till	ML	53 - 71
				0 - 2.5		GM	20
DULOOF	40077	40.5	DT	2.5 - 4	Glaciofluvial Deposits	SM	7
BH 205	1307.7	18.5	BT	4 - 22	Deposito	SM/ML	27 - 50/5"
				22 - 50.4	Till	ML	43 - 50/4"
				0 - 4	Glaciofluvial Deposits	SP-SM/GP-GM	24 - 39
BH 206	1287.1	N.E.	BT	4 - 14	Till	ML/SM	34 - 51
				14 - 50.8		SM	58 - 50/4"
				0 - 2	Fill	SM	10
INF 201	1304.1	N.E.	ВТ	2 – 3.5	Topsoil/ Glaciofluvial Deposits	CL/GM	7
				3.5 - 9	Glaciofluvial Deposits	SM/ML/GM	22 - 50/2"
				9 - 12	Till	ML	49
				0 - 2	Fill	SM	10
				2 – 3	Topsoil	CL	-
INF 202	1303.9	N.E.	ВТ	3 - 9	Glaciofluvial Deposits	SM	15+ - 50/5"
				9 - 12	Till	ML	70

¹ Reported groundwater levels were measured at the completion of drilling.
 ² Field N-Value is an uncorrected blow count value measured in the field.
 BT = Boring Termination (at or near the planned depth)
 AR = Auger or Roller Bit Refusal



# 6.0 DESIGN AND CONSTRUCTION RECOMMENDATIONS

### 6.1 GENERAL

The following sections present our geotechnical recommendations for design and construction of the transition station. In general, the subsurface conditions encountered at the site are suitable for the proposed construction with considerations presented in the following subsections.

### 6.2 SITE PREPARATION

Before proceeding with construction, any topsoil, roots, foundation remnants, pavements, and any other deleterious non-soil materials should be stripped or removed from the proposed construction area. During the clearing and stripping operations, positive surface drainage should be maintained to prevent the accumulation of water.

After stripping, areas intended to support new fill, gravel roadways, slabs, and foundations should be carefully evaluated by an experienced geotechnical engineer or engineering geologist. Where noted on the borings logs and where located within 3 to 4 feet of new fill, roadways, slabs, and foundations, soils that exhibit SPT N-values of 6 bpf or less should be removed and replaced with controlled structural fill placed in accordance with recommendations presented in Section 6.3. The geotechnical engineer/geologist may also require scarification and compaction (per Section 6.3) of the upper 6 inches of the exposed surface and/or proofrolling of the subgrade with a 20-to 30-ton loaded dump truck or other pneumatic tired vehicle of similar size and weight. Proofrolling should be performed during a time of good weather and not while the site is wet, frozen, or severely desiccated. The purpose of the proofrolling is to locate soft, weak, or excessively wet soils present at the time of construction and provide an opportunity for the geotechnical engineer/geologist to locate inconsistencies intermediate of the boring locations.

Depending on how the near surface materials respond during proofrolling operations, some inplace densification, undercutting, or in-place stabilization may be required. The extent of densification, undercutting and/or in-place stabilization required across the site can best be determined by a geotechnical engineer/geologist at the time of construction. Once the site has been properly prepared, at-grade construction may proceed.

### 6.3 CONTROLLED STRUCTURAL FILL

Controlled structural fill required to develop the station pad and access road areas may consist of the non-organic, on-site soils (including glaciofluvial and till soils). Based on laboratory testing on bulk samples obtained from other transition stations and substations sites along the transmission line corridor, we anticipate that off-site borrow material will consist of sandy silt, silty sand, or sand with a USCS classification of ML, SM, or SP. Other materials may be suitable for use as controlled structural fill and should be individually evaluated by the geotechnical engineer; in general, the structural fill should have a USCS classification of CL, ML, SM, or SC. Controlled structural fill should be free of boulders, organic matter, debris, or other deleterious materials and should have a maximum particle size no greater than 3 inches.



Fill materials should be placed in horizontal lifts with a maximum height of 8 inches loose measure. New fill should be adequately keyed into stripped and scarified subgrade soils and should, where applicable, be benched into the existing slopes. During fill operations, positive surface drainage should be maintained to prevent the accumulation of water. We recommend that structural fill (soil and crushed stone) be compacted to a minimum of 95 percent of the maximum dry density and within two (2) percentage points of the optimum moisture content determined by the modified Proctor density test (ASTM D1557). In confined areas such as utility trenches, portable compaction equipment and thin lifts of 3 to 4 inches may be required to achieve specified degrees of compaction. Each lift of fill should be tested in order to confirm that the recommended degree of compaction is attained.

### 6.4 SLOPE STABILITY

### 6.4.1 General

We recommend that cut and fill slopes have a minimum factor of safety of 1.3 for global stability. Proposed structures on the Transition Station #2 site should be located a minimum distance of 10 feet and 15 feet from the crest and toe of slopes, respectively. In addition, we recommend that roadways be designed with a minimum setback of 5 feet from both the crest and toe of slopes.

Drainage from nearby structures and/or surface runoff should be directed away from the crest and toe of both planned cut and fill slopes. We note that diversion of surface water away from the slope crest and face is critical to reducing the potential of surface erosion and shallow failures. For erosion protection, a protective cover of grass or other vegetation should be established on permanent soil slopes as soon as possible.

### 6.4.2 New Slope Stability

New slopes constructed to develop the planned finished grade of the transition station pad will generally consist of fill slopes with a configuration of 3 (Horizontal) to 1 (Vertical) and a maximum height of less than 10 feet. We anticipate that the planned fill slopes will exhibit a factor of safety (FoS) of 1.5 or greater for global stability if constructed in accordance with the recommendations presented herein.

### 6.4.3 Existing Cut Slope Stability

As previously noted, the Transition Station #2 site is located along the eastern extent of an "active excavation work area"; an existing cut slope separates the station pad from the work area. The existing cut slope has a configuration of approximately 1 (H) to 1 (V) and a maximum height of about 23 feet along most of its length. The cut slope's configuration flattens to approximately 1.5 (H) to 1 (V) in the vicinity of boring BH 201. The slope was excavated within glaciofluvial silty sands that generally exhibited densities ranging from medium dense to very dense in borings BH 201 and BH 205.



Using the computer program SLIDE 7.0 (RocScience), stability analyses were performed on the cut slope considering its current configuration as well as configurations corresponding to 1.5 (H) to 1 (V) and 2 (H) to 1 (V) to evaluate the associated FoS for global stability. A summary of anticipated FoS values for different cut slope configurations is presented in Table 4 below; the SLIDE output figures referenced in the table are provided in Appendix E. Associated recommendations pertaining to the cut slope are provided after the table.

Configuration	Boring Location at Crest	FoS	Figure Designation
1.5H to 1V (current)	BH 201	1.3	App E – Output 1
2H to 1V		>1.5	App E – Output 2
1H to 1V (current)		1.0 to 1.1	See Note 1
1.5H to 1V	BH 205	1.3	App E – Output 3
2H to 1V		>1.5	App E – Output 4

Table 4 – Encountered	d Subsurface	Conditions	Summary
-----------------------	--------------	------------	---------

Note 1: Stability analyses using parameters for boring BH 205 in Appendix D indicates that the existing slope's FoS is just below 1.0; however, given observations of its current condition, the slope appears stable. Therefore, bases on stability evaluations at flatter configurations and its current condition, the assumed FoS is estimated to be between 1.0 and 1.1.

- Based on the results of the stability evaluations presented above and given that the slope appears stable in its current state, we anticipate that its current FoS for global stability is between 1.0 and 1.1 and thus it does not exhibit the recommend minimum FoS of 1.3.
- If the activities within the excavation work area require equipment or personnel working within 15 feet of the cut slope's toe, we recommend that the cut slope be regraded to a maximum configuration of 1.5(H) to 1(V).
- If personnel are not required to work within 15 feet of the cut slope's toe and it is desired to leave the cut slope in its current configuration, we recommend that procedures and/or barriers be established to prevent equipment and personnel from working within 15 feet of the slope's toe and that facilities and/or structures for the new transition station be located a minimum lateral distance equal to the cut slope's height times 1.5 plus 10 feet (i.e. (1.5*H_{cut})+10 feet) from the cut slope's toe.
- If future operation of the borrow area is anticipate and the cut slope height is expected to increase beyond its cutting height, we recommend that additional evaluation of the slope considering its future configuration and stability be performed to evaluate the impact to the Transition Station #2 site and possible remediation measures.



### 6.5 GROUNDWATER CONDITIONS

#### 6.5.1 General

Based on the data obtained during our exploration program, we generally anticipate that groundwater will not be encountered during expected earthwork or shallow foundation excavations at the site. However, we do anticipate perched groundwater existing in limited areas across the site will be encountered at elevations below approximately 1295 feet; isolated seepage should be expected when excavations exceed a depth of about 10 to 15 feet.

### 6.5.2 Infiltration Basin Estimated Seasonal High Water Table (ESHWT)

Borings INF 201 and INF 202 were performed to characterize the subsurface conditions to a depth of approximately 5 feet below the planned infiltration basin bottom and provide information necessary to estimate the seasonal high water table within the basin footprint. Subsurface data recorded in the infiltration test borings are shown on the respective logs included in Appendix A, and the results of infiltration tests performed immediately adjacent to each boring are provided in Appendix C. Table 5 below presents a summary of the interpreted ESHWT at each boring location as well as pertinent information required for design of the infiltration basins.

Table 5 – Ininitation Basin outinnaly information						
Description	Boring INF 201	Boring INF 202				
Infiltration Planned Bottom Elev. (ft)	1303	1303				
Encountered Very Dense/Very Hard Soil Elev. (ft)	1299	1298				
Encountered Bedrock Elev. (ft)	N.E.	N.E.				
Encountered Groundwater Elev. (ft)	N.E.	N.E.				
Highest Elevation of Observed Redox Features	N.E.	N.E.				
USDA Textural Class (within 5 ft of Basin Bottom)	Sandy Loam	Loamy Sand				
Estimated Seasonal High Water Table (ESHWT) Elev. (ft)	Below 1298	Below 1298				
Infiltration Test Elevation (ft)	1301	1300				
Average Infiltration Rate at Test Elevation (in/hr)	5.4	13.2				

### Table 5 – Infiltration Basin Summary Information

Notes:

1) Borings generally extended about 5 feet below the planned depth of each respective basin unless where refusal and/or bedrock was encountered.

2) N.E. = Not Encountered

3) Very Dense/Very Hard Soil is defined as material exhibiting an SPT N-Value of greater than 50 blows per foot (bpf).

4) Noted elevations are estimates and should be considered approximate.

5) The average infiltration rate presented is based on field measurements; a factor of safety has not been applied.



### 6.6 GEOTECHNICAL DESIGN STRENGTH PARAMETERS

Recommended geotechnical strength parameters are provided for the subsurface conditions encountered in each test boring (not including infiltration test borings) in Appendix D. The recommended soil strength parameters were developed based on consideration of lab test results and established correlations with SPT data.

### 6.7 BUS SUPPORT STRUCTURE/POLE FOUNDATION DESIGN AND CONSTRUCTION

### 6.7.1 General

Foundation support for the bus support structure (including ancillary pole structures) is anticipated to require deep foundations to resist shear and overturning loads. Driven pile, helical pile, and drilled shaft foundation options were considered for support of the bus structure. We anticipate that very dense/hard soil and cobbles/boulders encountered at shallow depths at the site will result in inadequate pile embedment and possible damage during installation of both driven and helical piles; pre-drilling would be required to facilitate installation of driven and helical piles. Therefore, considering the very dense/hard till soils at shallow depths in the area of boring BH 203 as well as the presence of cobbles/boulders at shallow depths in other areas of the project site, we recommend that support for the bus support/pole structures consist of drilled shafts at the Transition Station #2 site.

### 6.7.2 Drilled Shaft Foundations

Based on the subsurface conditions encountered in the area of BH 203, a top of finished grade elevation of about 1308 feet, and the general site preparation recommendations presented in previous sections of this report, we recommend the allowable axial values and the associated LPILE (lateral) parameters shown in Tables 6 and 7, respectively, be used for design of drilled shaft foundations. Total settlement of drilled shaft foundations designed per the recommendations provided below is estimated to be less than 1 inch.

Sublayer Description	Sublayer Depth (ft) Top Bottom		Material USCS Description	Allowable Skin Friction (Comp.) (psf)	Allowable Skin Friction (Uplift) (psf)	Allowable End Bearing (psf)	
New Controlled Fill	0	4	SM/ML	IGNORE			
	4	6	SM/ML	175	150	-	
Glaciofluvial/ Till	6	7.5	SP-SM	375	315	-	
	7.5	13	ML	1,050	900	-	
	13	15	ML	600	500	-	
	15+	-	ML	1,650	1,400	20,000	

Notes:

1) Approximately 6 feet of controlled structural fill is anticipated in the area of BH 203 (1 foot of undercut and replacement of topsoil and 5 additional feet to bring the area to the planned finished grade of 1308 feet).

2) Ultimate skin friction and end bearing capacities determined per methods prescribed in FHWA GEC 10: *Drilled Shaft: Construction Procedures and LRFD Design Methods* (2010).

3) Allowable capacities for skin (comp), skin (uplift), and end-bearing determined by applying a factor of safety of 2.5, 3.0 and 3.0, respectively.



Sublayer Description		ayer pth t) Bot.	Material USCS Description	Effective Unit Weight (pcf)	Effective Friction Angle (deg)	Soil Modulus Constant (k) (pci)	Unconfined Comp. Strength (psi)	mi	Poisson's Ratio	Geologic Strength Index (GSI)	Rock Mass Modulus (psi)
New Controlled Fill	0	4	SM/ML	120	30	48	-	-	-	-	-
	4	6	SM/ML	120	30	48	-	-	-	-	-
Glaciofluvial/ Till	6	7.5	SP-SM	120	32	83	-	-	-	-	-
	7.5	13	ML	130	39	233	-	-	-	-	-
	13	15	ML	115	31	65	-	-	-	-	-
	15+	-	ML	135	40	258	-	-	-	-	-

### Table 7 – Recommended Drilled Shaft Lateral (LPILE) Design Parameters

Note:

1) Use of the Reese (Sand) constitutive model is recommended for each sublayer.

#### Additional Drilled Shaft Design Recommendations

- Due to strain incompatibilities, drilled shaft design based entirely on skin friction or end bearing is recommended.
- A minimum shaft length (below the ground surface) of 12 feet is recommended to adequately resist uplift created due to adfreeze forces within the frost zone.
- A minimum shaft diameter of 30 inches is recommended.
- Should multiple shaft foundations be required, the minimum center-to-center spacing should be three (3) times the shaft diameter.

### 6.7.3 Drilled Shaft Construction

Temporary wall support through the use of temporary casing may be required to prevent loss of sidewall support. The use of slurry for side wall support is not recommended. We recommend that the proposed drilled shaft construction equipment, methods, procedures, and planned quality control testing and inspection during construction be reviewed by a qualified geotechnical engineer prior to the start of shaft construction.

The ability of a drilled shaft to provide the end bearing resistances and associated settlements described herein is directly related to the construction methods and procedures used to provide a clean shaft bottom condition. Drilled shaft excavation and clean out methods shall result in bases/bottoms that are free of loose, soft, or disturbed material. Cleaning of the shaft excavations shall result in a maximum of 1 inch of loose, soft, or disturbed material on the shaft bottom at the time of concrete placement. Should concrete placement within the shaft not occur immediately following excavation and clean out, the condition of the excavation bottom shall be verified to confirm that no more than 1 inch of loose, soft, or disturbed material is present in the bottom of the excavation prior to concrete placement. Inspection of the installation methods and materials by an individual qualified and experienced in drilled shaft construction is recommended.



Placement of concrete via free-fall methods is acceptable assuming placement is directed vertically downward avoiding impact with reinforcement and that the height of groundwater on the bottom of the shaft does not exceed 3 inches at the time of placement. Should the level of water at the bottom of the excavation not be maintained at less than 3 inches, concrete placement via tremmie methods will be required.

### 6.8 SHALLOW FOUNDATION DESIGN AND CONSTRUCTION

### 6.8.1 Transformer Pad

Where planned (vicinity of BH 203), we anticipate that approximately 5 feet of controlled structural fill will be required to develop the planned finished grades in the area of the transformer pad. Therefore, we expect the transformer pad to be supported on newly placed controlled structural fill. The source of the new fill was unknown at the time this report was prepared. However, testing of materials from other transition/substation locations indicates that the fill material will likely be susceptible to frost action. If the transformer equipment and ancillary connections are susceptible to vertical movement resulting from frost action, then the new fill material below the transformer pad (and to a distance of 2 feet laterally beyond the pad edges) should consist of clean sand or gravel meeting the requirements of NHDOT Standard Specification Section 209.

Controlled structural fill material placed in accordance with recommendations provided in herein will provide suitable support for transformer pads design to impart an approximate uniform bearing pressure of up to 500 pounds per square foot (psf). The soils encountered at the site should react elastically to structure loads; settlements induced by foundation loads should occur soon after the load is applied. Maximum total settlement induced by the transformer slab loads are anticipated to be about ½ inch.

### 6.8.2 Single-Story Equipment Structures

Should single-story buildings be required to house equipment operated at the transition station, they may be supported on shallow foundations bearing on approved glaciofluvial sands and gravels or newly placed controlled structural fill material placed in accordance with recommendations provided herein. We recommend that building foundations be designed for a maximum allowable bearing pressure of 3,000 psf for foundations bearing on approved subgrades. To reduce the possibility of localized shear failures, spread and strip footings should be a minimum of 3 feet and 1.5 feet wide, respectively.

For single-story structures designed for a maximum allowable bearing pressure of 3,000 psf on approved glaciofluvial soils or newly controlled structural fill, total settlements of about ½ inch with differential settlements of 1/2 to 2/3 the total estimated settlement are anticipated. As stated previously, settlements induced by foundation loads should occur soon after the load is applied.

### 6.8.3 Shrink-Swell and Frost Depth Considerations

Based on the soil materials observed in the test boring samples and the laboratory test results, the on-site soils will generally have a low shrink-swell potential. Accordingly, we do not recommend any foundation design modifications relative to the potential for shrink-swell soils.



Frost depth should be anticipated to be 4 feet below the lowest adjacent grade. Therefore, utilities that are susceptible to frost action and building foundations should bear a minimum of 4 feet below adjacent grades.

### 6.8.4 Shallow Foundation Construction

All foundation subgrades should be observed, evaluated, and verified for the design bearing pressure by a representative of the geotechnical engineer after excavation and prior to reinforcement steel placement. Should building or equipment pads be planned in the areas of borings BH 202, BH 203 and BH 204, limited undercutting and replacement with controlled structural fill is recommended to remove existing topsoil or topsoil underlying existing fill encountered to depths of 1 to 4 feet. If low density/consistency soils are encountered at the foundation subgrade during construction, localized undercutting and/or in-place stabilization of foundation subgrades may be required. The actual need for, and extent of, undercutting or in-place stabilization should be based on field observations made by a representative of the geotechnical engineer at the time of construction.

Excavations for footings should be made in such a way as to provide bearing surfaces that are firm and free of loose, soft, wet, or otherwise disturbed soils. Foundation concrete should not be placed on frozen or saturated subgrades. If such materials are allowed to remain below foundations, settlements will increase. Foundation excavations should be concreted as soon as practical after they are excavated. If an excavation is left open for an extended period, a thin mat of lean concrete should be placed over the bottom of the excavation to minimize damage to the bearing surface from weather or construction activities. Water should not be allowed to pond in any excavation.

### 6.9 EARTHQUAKE CONSIDERATIONS

#### 6.9.1 Seismic Site Class Definition

The following recommendations are based Chapter 20 of the ASCE 7-10. ASCE 7-10 provides a methodology for interpretation of SPT resistance values (N-values) to determine a Site Class Definition; however, this method requires averaging N-values over the top 100 feet of the subsurface profile. We note that the test borings for this project were extended to a maximum depth of about 50 feet below existing site grades.

The available subsurface data from our exploration indicates an N-value range of about 3 to greater than 100 bpf within the upper 50 feet below existing site grades. In general accordance with ASCE 7-10 and considering the boring data and planned grading, we recommend that a Site Class Definition "C" be used for design.

#### 6.9.2 Liquefaction

Liquefaction of saturated, fine grained sands and silty sands is not anticipated to be a design concern for the Transition Station #2 site.



### 6.10 KARST GEOLOGY

Karst topography occurs from the dissolution of soluble bedrock (such as limestone, dolomite, or gypsum) which creates karst features (sinkholes and caves) within the subsurface. Karst conditions were not encountered during the exploration reported herein. Karst features/conditions are not anticipated to be a design or construction concern for the Transition Station #2 site.

### 6.11 CORROSION CONSIDERATIONS

Two bulk samples obtained in borings BH 204 and INF 201 were tested in the laboratory to determine pH, water soluble sulfate and chloride, and resistivity. The results of the lab tests are summarized in Table 7 below.

Boring No.	Sample Type & Depth (ft)	pH Chloride (ug/g)		Sulfate (ug/g)	Electrical Resistivity (ohm-cm)	
BH 204	BULK (5 - 10)	6.3	< 5.5	8.7	24,000	
INF 201	BULK (5 - 10)	7.0	< 5.5	21	13,000	

 Table 7 – Laboratory Corrosivity Test Results

In general, soils that exhibit a resistivity of greater than 5,000 ohm-cm are considered nonaggressive (FHWA, 2010). Therefore, based on the results of the laboratory test performed on samples collected from the Transition Station #2, the onsite soil should be considered as nonaggressive. Laboratory tests performed on samples collected at other transition and substation sites to date have yielded similar non-aggressive results. However, should the borrow source used to develop the Transition Station #2 site originate from a location other than one of the transition or substation sites, corrosivity testing on representative soil samples from the source is recommended prior to onsite delivery to confirm that the soil is non-aggressive.

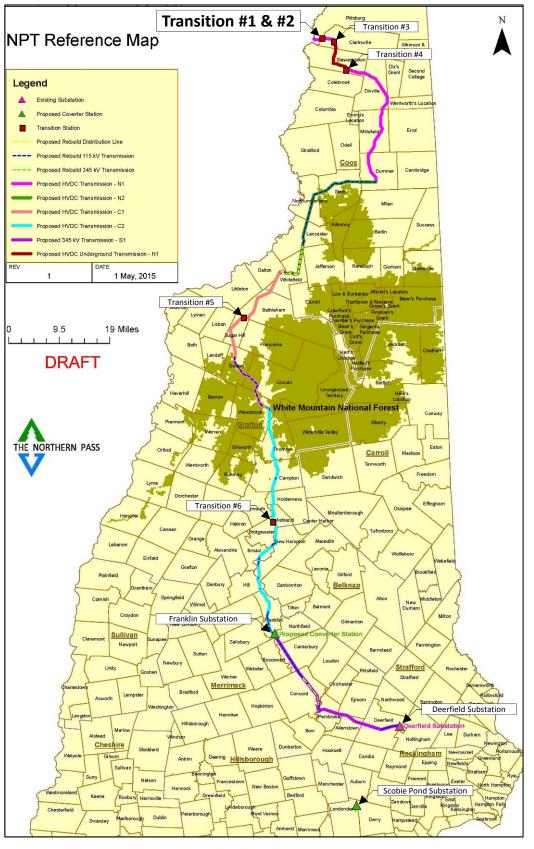
# 7.0 LIMITATIONS

This report has been prepared for the exclusive use of PAR Electrical Contractors, Inc. or their agent, for specific application to the Transition Station #2 project near Clarksville, New Hampshire. The conclusions and recommendations presented herein are based on design information furnished to us, the data obtained from the previously described subsurface exploration programs, and generally accepted geotechnical engineering practice. The conclusions and recommendations or in unexplored areas of the site. Should such variations become apparent during construction, it will be necessary to re-evaluate our conclusions and recommendations based upon on-site observations of the conditions.

The soil and rock descriptions/classifications and the strata breaks shown on the boring logs attached to this report are based primarily on visual observation and should be considered approximate. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil



conditions. Therefore, experienced geotechnical engineers or engineering geologists should evaluate earthwork and foundation construction to verify that the conditions anticipated in design actually exist.


In the event that changes are made in the design or location of the project, the recommendations presented in the report shall not be considered valid unless the changes are reviewed by Quanta Subsurface and conclusions of this report modified and/or verified in writing. If this report is copied or transmitted to a third party, it must be copied or transmitted in its entirety, including text, attachments, and enclosures. Interpretations based on only a part of this report may not be valid.

# 8.0 **REFERENCES**

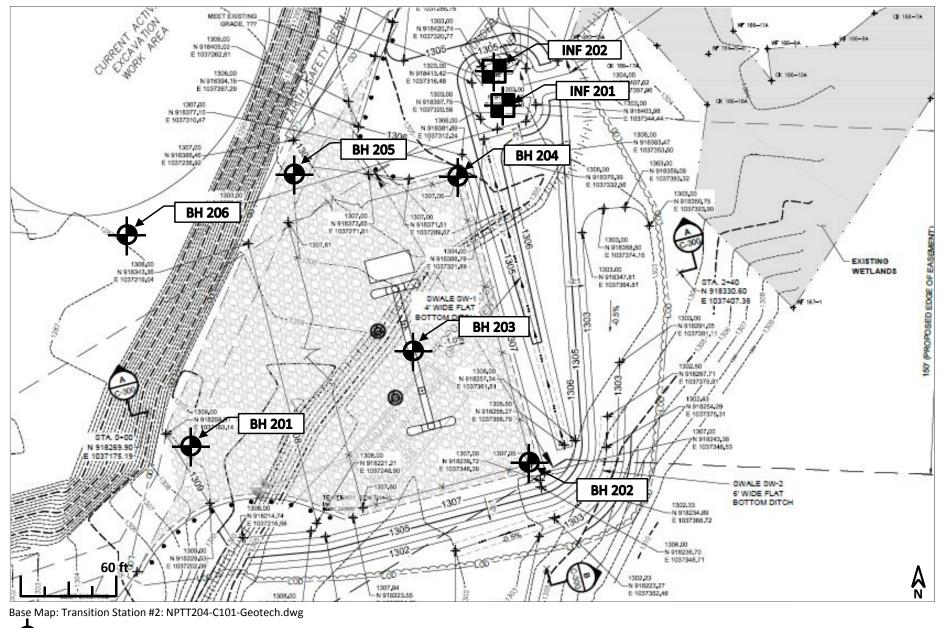
- Haley & Aldrich, Inc.; Geotechnical Data Report Route 3/Connector River Crossing: Northern Pass Transmission Project, February 21, 2014.
- New Hampshire Department of Environmental Services: New Hampshire Stormwater Manual; *Post-Construction Best Management Practices Selection & Design*; Volume 2; December 2008.
- New Hampshire Department of Resources and Economic Development; *Geologic Map and Structure Sections of the Dixville Quadrangle New Hampshire*, Plate 1; Scale 1:62,500; 1963.
- New Hampshire Department of Transportation; *Standard Specifications for Road and Bridge Construction*; Section 209 Granular Backfill; 2016
- Terracon Consultants' Inc.; *Report of Expected Geotechnical Conditions*: Northern Pass Project; July 10, 2015.
- U.S Department of Transportation Federal Highway Administration (FHWA); *Drilled Shafts: Construction Procedures and LRFD Design Methods*; FHWA-NHI-10-016; May 2010.
- McGregor, J and J.M. Duncan; Virginia Polytechnic Institute and State University Center for Geotechnical Practice and Research; *Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice*; October 1998



# Figures



# Figure 1 Site Vicinity Location Plan



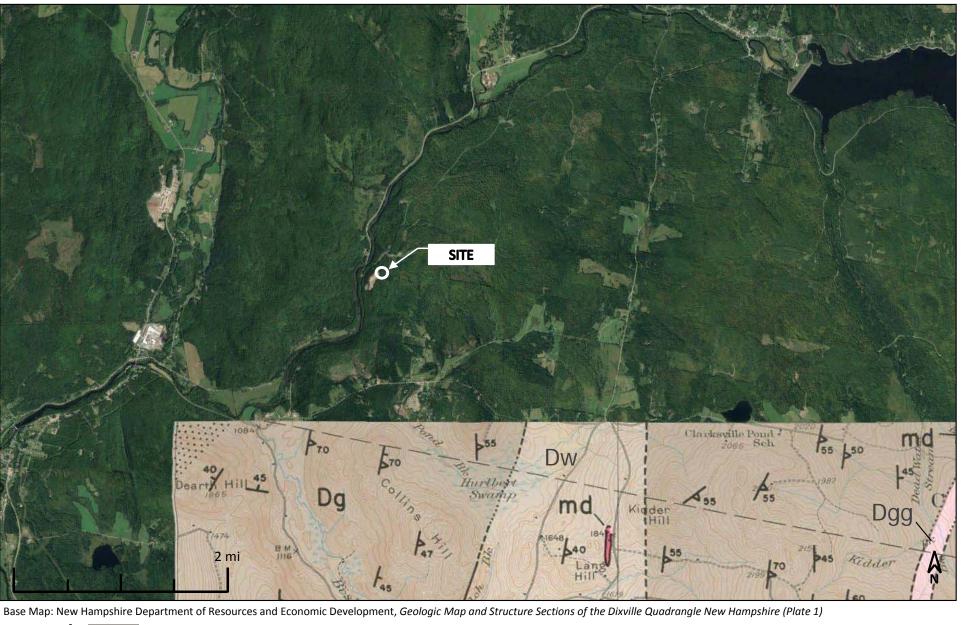



Project No.: <u>16004</u>

Figure 2 Site Vicinity Map

Northern Pass TL – Transition Station #2 Geotechnical Investigation




Quanta Subsurface Boring Location, August/September 2016

- Quanta Subsurface Infiltration Location, August/September 2016

## Figure 3 Boring Location Map



Northern Pass TL – Transition Station #2 Geotechnical Investigation



Dgg

Gile Mountain Formation – Greenstone and Amphibolite Lenses

md Epidote Amphibolite/Amphibolite



Northern Pass TL – Transition Station #2 Geotechnical Investigation



Appendix A QS Boring Logs

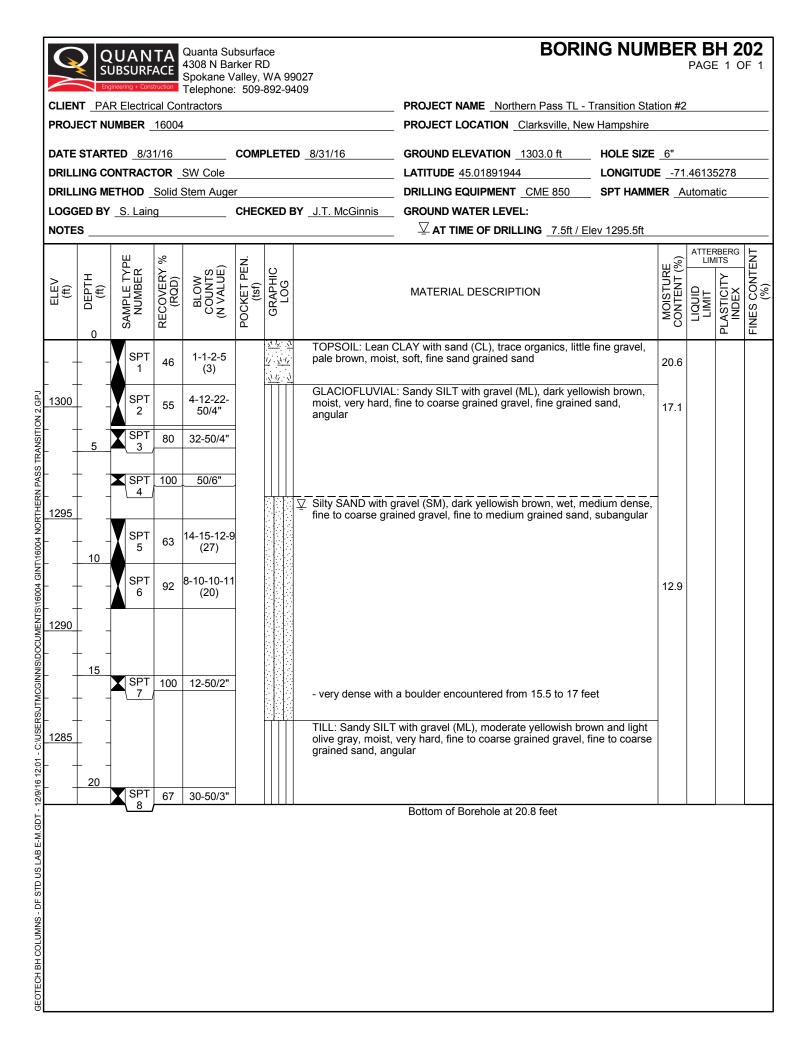
		UAN UBSURF gineering + Cons	ACE	Quanta Su 4308 N Ba Spokane \ Telephone	irker R /alley,	D WA 99	9027 409	BC	DRII	NG	NU	MBI	ER BH 201 PAGE 1 OF 2
CLIEN	<b>IT</b> <u>PA</u>	R Electri	cal Co	ntractors									#2
PROJ	ECT N	UMBER	16004	1				PROJECT LOCATION Clarksvill	e, Nev	w Harr	pshire	9	
DATE	STAR	<b>TED</b> 8/3	1/16		COMF	PLETE	<b>D</b> _9/1/16	GROUND ELEVATION 1309.4 f	t	но	LE SIZ	<b>E</b> 6"	
				SW Cole									71.46191111
DRILL	ING M	ETHOD _	Solid	Stem Auge				DRILLING EQUIPMENT CME 8	50	SPI	T HAM	MER	Automatic
LOGO	ED BY	S. Lain	g		CHEC	KED E	<b>3Y</b> J.T. McGinnis	GROUND WATER LEVEL:					
NOTE	s							AT END OF DRILLING No	t Enco	ounter	ed		
		111	%		<u> </u>					ATTE	RBERG	F	
	- -	TYPE R	ام م	_ s≘	POCKET PEN. (tsf)	<u>ບ</u>			MOISTURE CONTENT (%)			CONTENT (%)	
(ft) (ft)	DEPTH (ft)	SAMPLE TYP NUMBER	RECOVERY ( (RQD)	BLOW COUNTS (N VALUE)	(tsf)	GRAPHIC LOG	MATE	RIAL DESCRIPTION	STU EN	≘⊨	Ч С С	08	REMARKS
ш	B	MN	Ю. ПО К		NO NO	GR			NO T	LIQUID	NDE		
	0	SA	R		۲ ۲				20		PLASTICITY INDEX	FINE	
		SPT 1	79	5-6-6-8 (12)			yellowish brown, i coarse grained gr	.: Silty SAND with gravel (SM), moist, medium dense, fine to ravel, fine to coarse grained sand,	9.4			14.3	
				0005	1				-				
1305		SPT 2	54	8-8-9-5 (17)			yellowish brown, i fine to coarse gra	AND with silt and gravel (SP-SM), moist, medium dense to dense, ined gravel, fine to coarse grained	4.1			11.4	
1000	5	SPT	63	6-5-6-9			sand, subrounded	3	4.7				
		3		(11)									
		SPT 4	67	9-16-10-5 (26)					4.2				
1300		SPT	75	5-6-11-46					5.6				
1300	10	5		(17)									
		SPT		13-7-14-18	3								
		6	63	(21)					5.7				
		-											
1295	15												
		SPT		17-19-20-									
	 		100	18 (39)									
				(00)	1								
		-					Poorly Graded G	RAVEL with silt and sand	-				
1290		-				591	(GP-GM), yellowis	sh brown, moist, very dense, fine gravel, fine to coarse grained					
	20		<u> </u>		-	pď[	sand, subrounded	d, with cobbles and boulders					
	 	SPT	75	13-21-53- 36		591							
		8		(74)		pďľ							
	-												
 1285							vellowish brown a	with gravel (ML), trace clay, ind olive gray, moist, very hard, ined gravel, fine grained sand,					
		SPT	100	17-42-42-									
		9	100	48 (84)									Set 4-in casing
			-	, , , , , , , , , , , , , , , , , , ,	1								and began mud rotary at 27 feet.
		-											
1280		-											
	30							ed Nevt Pace)					

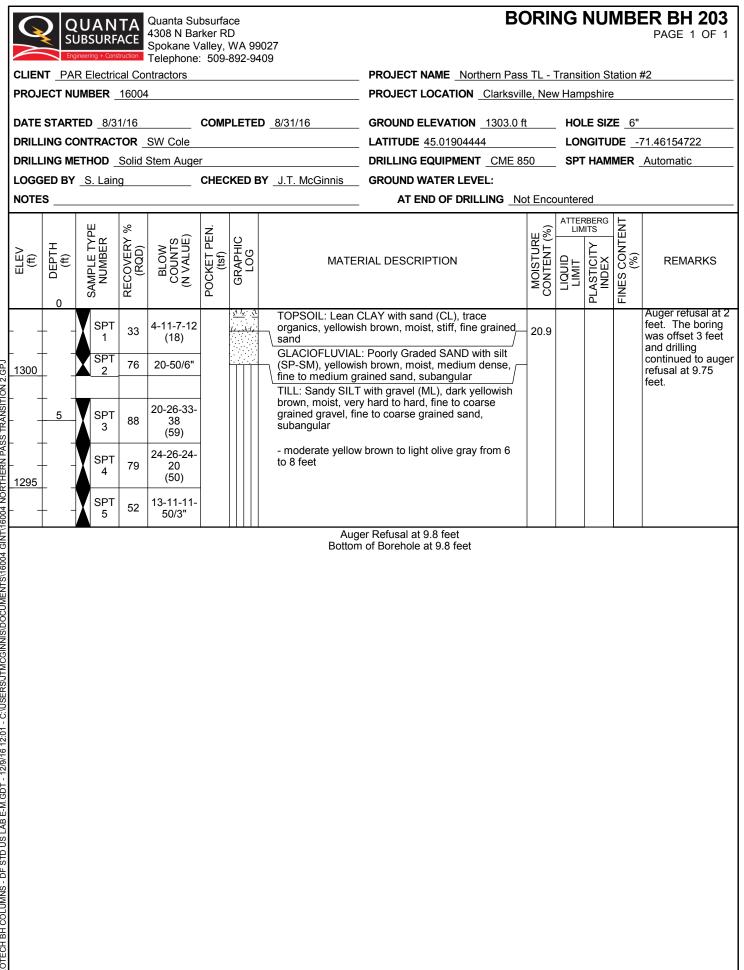


QUANTA SUBSURFACE A308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

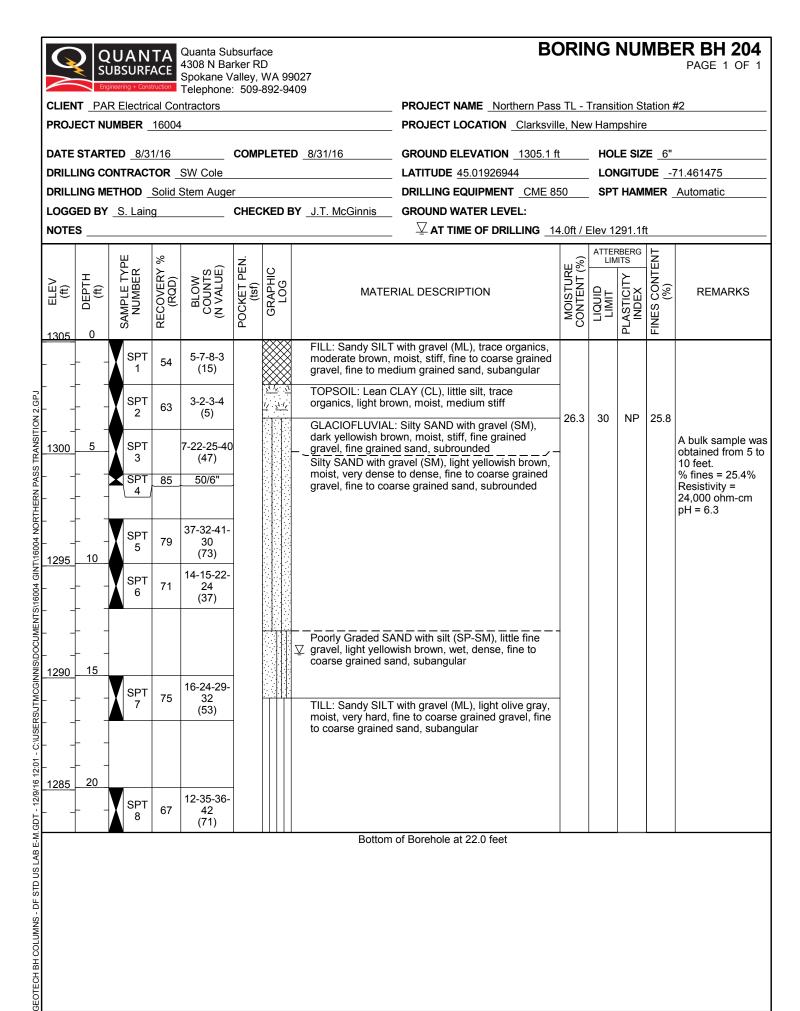
#### **BORING NUMBER BH 201**

PAGE 2 OF 2


PROJECT NAME Northern Pass TL - Transition Station #2


PROJECT NUMBER 16004

CLIENT PAR Electrical Contractors


PROJECT LOCATION Clarksville, New Hampshire

(tt) (ft)	05 DEPTH (ff)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)		FINES CONTENT (%)	REMARKS
		SPT 10	89	29-35- 50/6"	-		TILL: Sandy SILT with gravel (ML), trace clay, yellowish brown and olive gray, moist, very hard, fine to coarse grained gravel, fine grained sand, subangular ( <i>continued</i> )				
	  <u>35</u> 	SPT	_100	50/6"	-		subangular ( <i>continued)</i>				
1270											
	40	SPT 12	100	36-50/6"	-						
1265	45	▼ SPT	64	33-50/5"	-						
		SPT 13	04	33-30/5	-						
1260	50	SPT	33	50/3"							
		14			I		Bottom of Borehole at 50.3 feet				
0.0 - 10.3 - 0.16.3 100.10											





GEOTECH BH COLUMNS - DF STD US LAB E-M. GDT - 12/9/16 12:01 - C:/USERSUTMCGINNIS/DOCUMENTS/16004 GINT/16004 NORTHERN PASS TRANSITION 2:GP,



		UAN UBSURF, gineering + Cons		Quanta Su 4308 N Ba Spokane V Telephone	rker R ′allev.	D WA 9	9027 9409	BC	DRII	NG	NUI	MB	ER BH 205 PAGE 1 OF 2
CLIE	NT <u>PA</u>	R Electric	cal Co	ntractors				PROJECT NAME Northern Pass	s TL - '	Transi	tion St	tation :	#2
PRO.	JECT N	UMBER _	16004	ļ.				PROJECT LOCATION Clarksvill	le, Nev	<i>w</i> Harr	pshire	;	
DATE		<b>TED</b> 9/1	/16		COMF	PLETE	ED _9/1/16	GROUND ELEVATION 1307.7 f	t	но	LE SIZ	Έ 6"	
				SW Cole					•				71.46174722
							ary			-			Automatic
							BY _J.T. McGinnis			-		-	
	ES		<b>.</b>					$\overline{\mathbb{V}}$ at time of drilling 18	3.5ft / I	Elev 1	289.2f	ť	
										ATTER	RBERG		
(tt) (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATEF	RIAL DESCRIPTION	MOISTURE CONTENT (%)			FINES CONTENT (%)	REMARKS
		SPT 1	46	7-5-15-6 (20)			(GP-GM), dark ve	: Silty GRAVEL with sand llowish brown, moist, medium rse grained gravel, fine to coarse rounded	11.8			12.3	
1305		SPT 2	46	3-3-4-12 (7)	-		moist, loose to me grained gravel, fin	ravel (SM), dark yellowish brown, edium dense, fine to coarse e to coarse grained sand,	10.8			15.3	
	- 5	SPT 3	100	9-14-13-15 (27)	;		subrounded						
1300	-  -	SPT 4	100	15-20- 50/5"	-		- boulders encoun	tered from 7.5 to 10 feet					
1305 1305 1305 1300 1300 1295 1295	  - 10												
		SPT 5	75	15-13-17- 18 (30)				ravel (ML), dark yellowish brown, ff, fine to coarse grained gravel,					
	  - 15						yellowish brown, v	little fine to coarse gravel, dark vet, medium dense to very dense, ned gravel, fine grained sand,					
		SPT 6	75	13-30-30- 22 (60)									
	  - <u>20</u>	-					⊻ - medium dense fi	rom 19 to 22 feet					
<u>-</u>	╡ _	SPT	88	18-15-15- 17									
1285		7		(30)			brown, moist, hard	with gravel (ML), dark yellowish d to very hard, fine to coarse e grained sand, subrounded	-				
		SPT	92	10-23-20- 21			- dark yellowish br to 34 feet.	rown and light olive gray from 24					
1280		8		(43)									Set 4-in casing and began mud rotary at 27 feet.
	 - 30							ed Next Page)					



QUANTA SUBSURFACE A308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

#### **BORING NUMBER BH 205**

PAGE 2 OF 2

PROJECT NAME Northern Pass TL - Transition Station #2

PROJECT NUMBER 16004

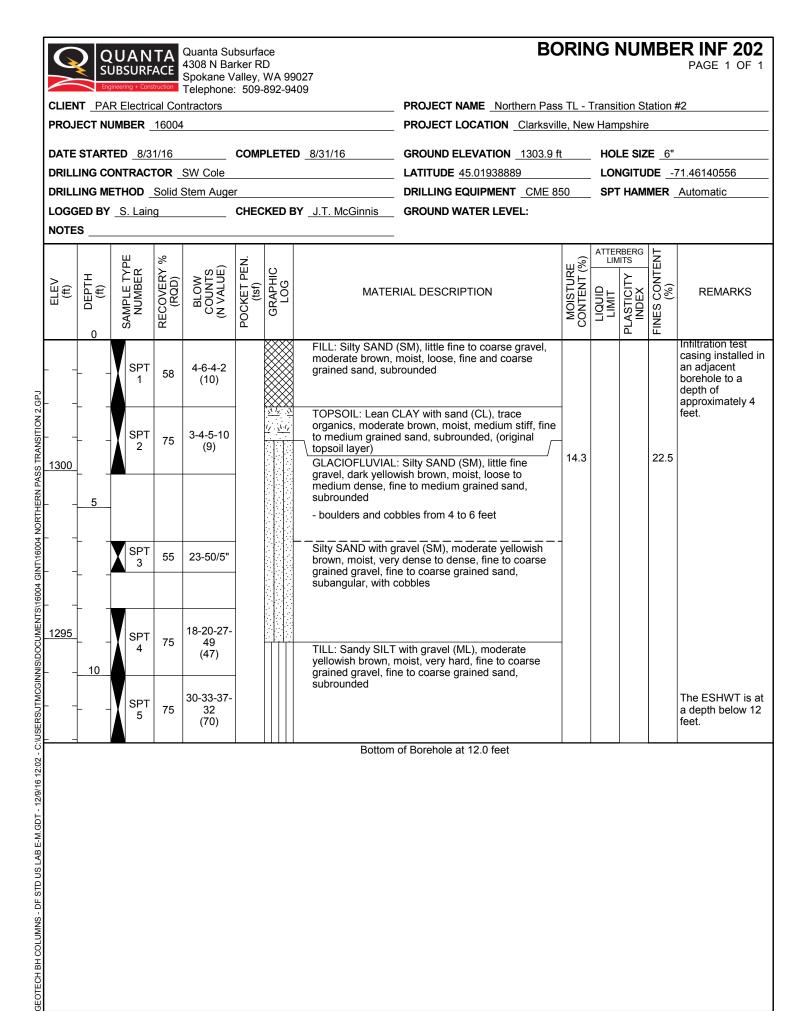
CLIENT PAR Electrical Contractors

#### PROJECT LOCATION Clarksville, New Hampshire

ELEV (ff)	05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)		FINES CONTENT (%)	REMARKS
- - <u>1275</u>		SPT 9	100	33-50/5"			TILL: Sandy SILT with gravel (ML), dark yellowish brown, moist, hard to very hard, fine to coarse grained gravel, fine grained sand, subrounded (continued)				
-	 - <u>35</u> 	SPT 10	100	27-50/6"	-						
1270		-					- cobbles encountered from 37 to 39 feet				
	- <u>40</u> 	SPT 11	100	50/6"							
1265	  - <u>45</u>	SPT	100	50/4"	_						
1260	  	12									
	- 50	SPT	100	50/5"			Detter of Deschole of 50.4 feet				
		<u>13</u>					Bottom of Borehole at 50.4 feet				

G		UAN	TA ACE	Quanta Su 4308 N Ba Spokane V	rker R	D	9027		BORI	NG NUN	<b>IBE</b>		<b>H2</b> ≞1 C	
		gineering + Cons		Telephone	: 509-	-892-9	409							
									PROJECT NAME Northern Pass TL -		tion #2	2		
PROJ	ECT N	JMBER _	16004	4					PROJECT LOCATION Clarksville, Ne	w Hampshire				
DATE	STAR	<b>FED</b> <u>9/1</u>	/16		сом	PLETE	<b>D</b> 9/1/16		GROUND ELEVATION 1287.1 ft	HOLE SIZE	6"			
DRILL		ONTRAC ⁻		SW Cole				LATITUDE <u>45.01919167</u> LONGITUDE <u>-71.4620333</u>					3333	
							ary		DRILLING EQUIPMENT CME 850	_ SPT HAMM	ER A	utoma	tic	
LOGG	GED BY	S. Lain	g		CHEC	KED	BY J.T. McGinnis	6	GROUND WATER LEVEL:					
NOTE	s								AT END OF DRILLING Not End	ountered				
		LYPE ER	۲۲ % (	LS JE)	PEN.	<u>0</u>					RE Г (%)		RBERG	ITENT
(tt) (tt)	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG			MATERIAL DESCRIPTION		MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)
		SPT 1	50	3-10-14-20 (24)	)		coarse gravel	, dark	Poorly Graded SAND with silt (SP-SM) yellowish brown, moist, medium denso d, subrounded	, little fine to e, fine to	10.6			
1285		SPT 2	71	34-15-24- 14 (39)					AVEL with silt and sand (GP-GM), light se grained gravel, fine to medium grain		-			
	5	SPT 3	75	11-17-34- 30 (51)					with gravel (ML), dark yellowish brown, e grained gravel, fine to coarse grained		7.5			
1280		SPT 4	79	20-19-22- 25 (41)			coarse graine	d gra	avel (SM), dark yellowish brown, wet, d vel, fine to coarse grained sand, angula	ır 	10.1			16.8
		SPT 5	83	13-17-18- 20 (35)	_		moist, dense, subangular	fine t	avel (SM), dark yellowish brown and oli to coarse grained gravel, fine grained s	ve gray, and,	11.8	20	NP	45.8
- 	 	SPT 6	75	8-19-15-13 (34)	8		- dark yellowis	sh brc	own from 10 to 14 feet					
							- very dense f	rom 1	14 to 50.8 feet					
	_ 15	SPT			-									
 _1270	 		73	32-50/5"	_									
	20	SPT			-		- 							
¦			82	37-50/5"	-		· · ·							
1265	L -													
	L													
	1													
- 1	25	1					•							
	_ 23_			21-31-27-	1									
1260		SPT 9	67	42 (58)										
	  30						- dark yellowis	sh bro	own from 29 to 39 feet					




Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

# BORING NUMBER BH 206 PAGE 2 OF 2

PROJECT NUMBER       1001       PROJECT LOCATION       Clastscrillo, New Hampahre ¹ / ₂ = ¹	CLIENT PA	R Electric	cal Cor	ntractors			PROJECT NAME Northern Pass TL - Transition S	Station #2	2	
Image: Property of the second seco	PROJECT N	UMBER _	16004				PROJECT LOCATION Clarksville, New Hampshi	e		 
1255       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -			RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG		MOISTURE CONTENT (%)		FINES CONTENT (%)
1250       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	 1 <u>255</u> 	SPT 10	87	27-50/6"			Silty SAND with gravel (SM), dark yellowish brown and olive gray, noist, dense, fine to coarse grained gravel, fine grained sand, subangular <i>(continued)</i>			
1245       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -			71	19-37- 50/5"	-					
1240       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		SPT 12	70	30-50/4"	-					
- <u>50</u> <u>14</u> <u>5</u> <u>29-50/4</u>		SPT		50/4"						
Bottom of Borehole at 50.8 feet	 _ <u>50</u>		5	29-50/4"	_		dark yellowish brown from 49 to 50.8 feet			
		<b>—</b> <u>14</u>					Bottom of Borehole at 50.8 feet			

	NT <u>P</u> A		struction cal Co	Quanta Su 4308 N Ba Spokane V Telephone ntractors	rker R alley, 509	D WA 99 -892-94		PROJECT NAME Northern Pas	s TL - 1	Transi	tion St	ation	PAGE 1 OF 1
DATE	STAR		1/16					PROJECT LOCATION       Clarksvil         GROUND ELEVATION       1304.11         LATITUDE       45.01934167	ť	HO	LE SIZ	E _6"	
LOGO	GED BY		ıg				BY J.T. McGinnis	DRILLING EQUIPMENT <u>CME 8</u> GROUND WATER LEVEL: AT END OF DRILLING <u>N</u>		_		MER	Automatic
(ft) (ft)	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATER	IAL DESCRIPTION	MOISTURE CONTENT (%)			FINES CONTENT (%)	REMARKS
		SPT 1	50	3-4-6-11 (10)			FILL: Silty SAND ( dark yellowish bro grained sand, sub	SM), little fine to coarse gravel, wn, moist, loose, fine to coarse rounded					Infiltration test casing installed in an adjacent borehole to a depth of approximately 4
1300		SPT 2	63	3-4-3-7 (7)			organics, moderat grained sand, (orig GLACIOFLUVIAL:	Silty GRAVEL with sand (GM),	29.0	26	NP	43.3	feet.
	5	SPT 3	83	17-9-13-29 (22)			Silty SAND with gr	avel (SM), light olive gray to dark noist, medium dense to very rse grained gravel, fine to					A bulk sample was obtained from 5 to 10 feet. % fines = 32.6% Resistivity =
			100	33-50/2"			Silty GRAVEL with brown, moist, dens subangular	n sand (GM), dark yellowish se, fine to coarse grained sand,	_				13,000 ohm-cm pH = 7.0
1295		SPT 5	83	16-15-21- 22 (36)			TILL: SILT with gra moist, hard, fine to subangular	avel (ML), dark yellowish brown, o coarse grained gravel,	_				
		SPT 6		26-26-23- 21 (49)									The ESHWT is at a depth below 12 feet.
							Bottom	of Borehole at 12.0 feet					

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/9/16 12:02 - C:USERSUTMCGINNIS/DOCUMENTS/16004 GINT/16004 NORTHERN PASS TRANSITION 2.GPJ





# Appendix B QS Laboratory Test Results



#### SUMMARY OF LAB TESTING RESULTS

#### NORTHERN PASS TRANSMISSION LINE PROJECT

TRANSITION STATION #2 PROJECT NO.: 16004

SAM	MPLE INFORMATIO	N										LAB TEST	RESULTS						
BOREHOLE	FIELD SAMPLE		MOISTURE CONTENT	ORGANIC CONTENT OF SOIL	Si	ieve Analysi	s (ASTM D42	22)	% PASSING NO. 200		ERBERG LI STM D43:		MODIFIED (ASTM	PROCTOR D1557)			SOIL CHEMISTRY		
No.	ID	DEPTH (ft)	(ASTM D2216) (%)	(ASTM D2794) (%)	% Gravel	% Sand	% Silt	% Clay	SEIVE (ASTM D1140)	ш	PL	PI	Max. Dry Density (pcf)	Optimum Moisture Content (%)	STRENGTH OF ROCK (ASTM D7102) (psi)	SO ₄ (ASTM D516) (ug/g)	CHLORIDE (ASTM D512) (ug/g)	pH (ASTM G51)	RESISTIVITY (AASHTO T288) (ohm-cm)
BH 201	\$1	0-2	9.4						14.3										
BH 201	S2	2-4	4.1		42.2	46.5	1:	1.4											
BH 201	\$3	4-6	4.7																
BH 201	\$4	6-8	4.2																
BH 201	S5	8-10	5.6																
BH 201	\$6	10-12	5.7																
BH 202	\$1	0-2	20.6																
BH 202	S2	2-4	17.1																
BH 202	S6	10-12	12.9																
BH 203	\$1	0-2	20.9																
BH 204	S2	2-4	26.3						25.8	30	NP	NP							
BH 204	BULK	5-10							25.4							7.8 ^A	< 5.5 ^A	6.3	24,000
BH 205	\$1	0-2	11.8						12.3										
BH 205	S2	2-4	10.8						15.3										
BH 206	\$1	0-2	10.6																
BH 206	\$3	4-6	7.5																
BH 206	S4	6-8	10.1						16.8										
BH 206	S5	8-10	11.8		27.3	26.9	4	5.8		20	NP	NP							
INF 201	S2	2-4	29.0		7.0	49.6	43	3.3		26	NP	NP							
INF 201	BULK	5-10							32.6							21 ^A	< 5.5 ^A	7.0	13,000
INF 202	S2	2-4	14.3						22.5										

NOTES:

General - Testing performed by S.W. Cole unless otherwise noted.

A - Testing performed by Absolute Resource Associates as a subcontractor to S.W. Cole.



Various, NH

Multiple

Quanta Subsurface

**Transition Station 2** 

Northern Pass Transmission Line

**Project Name:** 

**Client:** 

**Project Location:** 

Material Source:

Material Description:

#### Report of Moisture Content of Soil and Rock

ASTM D2216-10

Project Number:	16-0600
Lab ID:	Multiple
Date Received:	09/13/16
Date Completed:	09/15/16
Tested By:	BLG

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
15056S	³ ⁄8"	TS-2, BH-201, S1, 0-2'	9.4%
15057S	³ ⁄8"	TS-2, BH-201, S2, 2-4'	4.1%
15058S	³ ⁄8"	TS-2, BH-201, S3, 4-6'	4.7%
15059S	³ ⁄8"	TS-2, BH-201, S4, 6-8'	4.2%
15060S	³ ⁄8"	TS-2, BH-201, S5, 8-10'	5.6%
15061S	3/8"	TS-2, BH-201, S6, 10-12'	5.7%
15062S	3/8"	TS-2, BH-202, S1, 0-2'	20.6%
15063S	3/8"	TS-2, BH-202, S2, 2-4'	17.1%
15064S	3/8"	TS-2, BH-202, S6, 10-12'	12.9%
15065S	3/8"	TS-2, BH-203, S1, 0-2'	20.9%

Comments:

Reviewed By:

CBM



Various, NH

Multiple

Quanta Subsurface

**Transition Station 2** 

Northern Pass Transmission Line

**Project Name:** 

**Client:** 

**Project Location:** 

Material Source:

Material Description:

#### Report of Moisture Content of Soil and Rock

ASTM D2216-10

Project Number:	16-0600
Lab ID:	Multiple
Date Received:	09/13/16
Date Completed:	09/15/16
Tested By:	BLG

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
15066S	³ ⁄8"	TS-2, BH-204, S2, 2-4'	26.3%
15067S	3/8"	TS-2, BH-205, S1, 0-2'	11.8%
15068S	3/8"	TS-2, BH-205, S2, 2-4'	10.8%
15069S	3/8"	TS-2, BH-206, S1, 0-2'	10.6%
15070S	3/8"	TS-2, BH-206, S3, 4-6'	7.5%
15071S	3/8"	TS-2, BH-206, S4, 6-8'	10.1%
15072S	³ /8"	TS-2, BH-206, S5, 8-10'	11.8%
15073S	³ /8"	TS-2, INF-201, S2, 2-4'	29.0%
15074S	³ /8"	TS-2, INF-202, S2, 2-4'	14.3%

Comments:

Reviewed By:

CBM



#### Percent Finer than No. 200 ASTM D1140

Project Number:	16-0600		
Project Name:	Northern Pass Trans	mission	
Sample ID:	15056S		
Sample Source:	TS-2, BH-201, S1, 0-	2'	
Client Sample Description:	SM		
% Pas	sing # 200:	14.3	
	-		
Sample ID:	15066S		
Sample Source:	TS-2, BH-204, S2, 2-	4'	
Client Sample Description:	SM		
% Pas	sing # 200:	25.8	
Sample ID:	15067S		
	TS-2, BH-205, S1, 0-	2'	
Client Sample Description:			
	_		
% Pas	sing # 200:	12.3	
,		1210	
Sample ID:	15068S		
	TS-2, BH-205, S2, 2-	4'	
Client Sample Description:			
	0.11		
% Pas	sing # 200:	15 3	
701 43	5mg // 200.	19.9	
Sample ID:	15071S		
	TS-2, BH-206, S4, 6-	8'	
Client Sample Description:		<u> </u>	
cheft Sample Description.	JIVI		
% Dag	sing # 200:	16.8	
701 03		10.0	



#### Percent Finer than No. 200 ASTM D1140

Project Number:	16-0600
Project Name:	Northern Pass Transmission

Sample ID:	15074S			
Sample Source:	TS-2, INF-202, S2, 2-	4'		
Client Sample Description:	SM	_		
% Pas	sing # 200:	22.5		

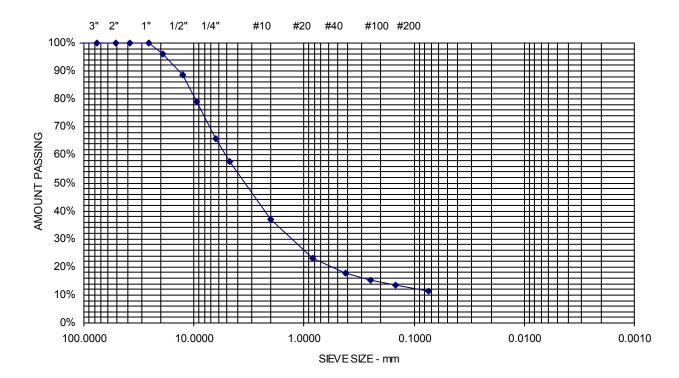


#### Percent Finer than No. 200 ASTM D1143

Project Number:	16-0600	
Project Name:	Northern Pass Transn	hission Line
Sample ID:	152125	
Sample Source:	TS-2, BH-204, BULK, 5-1	כי
Client Sample Description:	SM	
% Pas	sing # 200: 25.4	4
Sample ID:	152135	
	TS-2, INF-201, BULK, 5-1	0'
Client Sample Description:	SM	
% Pas	sing # 200: 32.0	5



**Report of Gradation** 


ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15057S
Date Received	9/13/2016
Date Completed	9/16/2016
Tested By	ANTONIO SANTIAGO

Material Source TS-2, BH-201, S2, 2-4'

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%	1
150	<b>.</b>	100	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	96	
12.5 mm	1/2"	89	
9.5 mm	3/8"	79	
6.3 mm	1/4"	66	
4.75 mm	No. 4	58	42.2% Gravel
2.00 mm	No. 10	37	
850 um	No. 20	23	
425 um	No. 40	18	46.5% Sand
250 um	No. 60	15	
150 um	No. 100	14	
75 um	No. 200	11.4	11.4% Fines



CBM

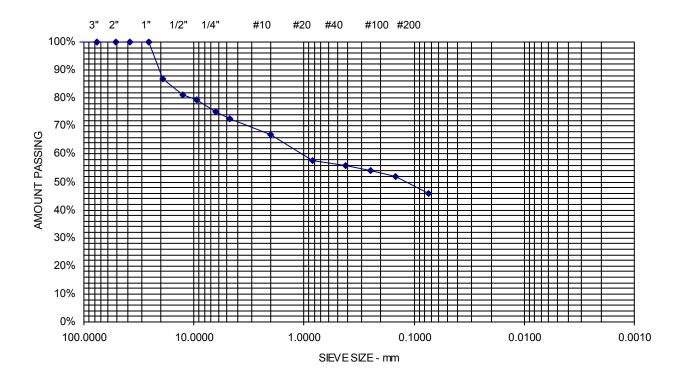


**Report of Gradation** 

ASTM C-117 & C-136

Project Numbe	er 16-0600
Lab ID	15072S
Date Received	9/13/2016
Date Complete	ed 9/16/2016
Tested By	

Client QUANTA SUBSURFACE


LABORATORY TESTING SERVICES

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

#### Material Source TS-2, BH-206, S5, 8-10'

Project Name

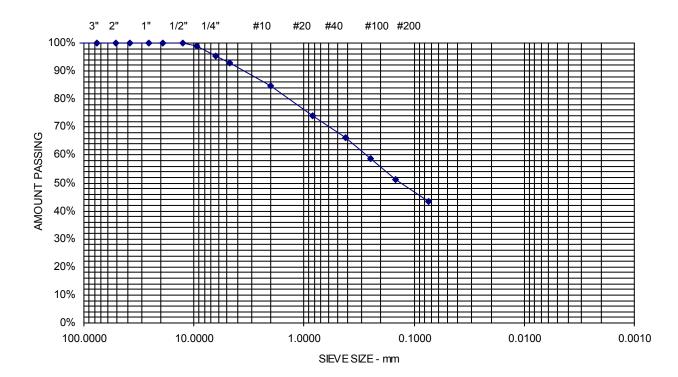
<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	L
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	87	
12.5 mm	1/2"	81	
9.5 mm	3/8"	79	
6.3 mm	1/4"	75	
4.75 mm	No. 4	73	27.3% Gravel
2.00 mm	No. 10	67	
850 um	No. 20	58	
425 um	No. 40	56	26.9% Sand
250 um	No. 60	54	
150 um	No. 100	52	
75 um	No. 200	45.8	45.8% Fines



СВМ



**Report of Gradation** 


ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
	LABORATORT TESTING SERVICES
Client	QUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15073S
Date Received	9/13/2016
Date Completed	9/16/2016
Tested By	ANTONIO SANTIAGO

Material Source TS-2, INF-201, S2, 2-4'

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	95	
4.75 mm	No. 4	93	7% Gravel
2.00 mm	No. 10	85	
850 um	No. 20	74	
425 um	No. 40	66	49.6% Sand
250 um	No. 60	59	
150 um	No. 100	51	
75 um	No. 200	43.3	43.3% Fines



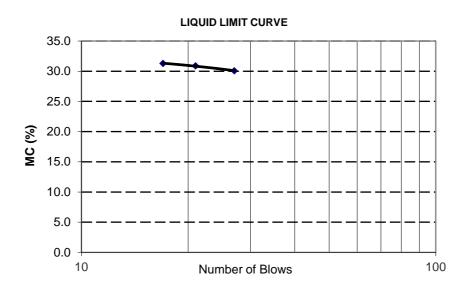




## **Report of Atterberg Limits**

ASTM D4318-10 - Method A

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various NH	Lab ID:	15066S
Client:	Quanta Subsurface	Date Received:	09/13/16
Material Description:	SM	Date Completed:	09/20/16
Material Source:	TS-2, BH-204, S2, 2-4'	Tested By:	BLG


Liquid Limit

Plastic Limit

**Plasticity Index** 

Non-Plastic

30



Material Retained On the No. 40 Sieve:	48%
As-received Moisture Content:	27%

Comments:

Reviewed By:

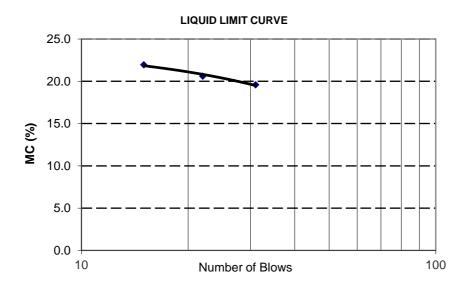
СВМ



## **Report of Atterberg Limits**

ASTM D4318-10 - Method A

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various NH	Lab ID:	15072S
Client:	Quanta Subsurface	Date Received:	09/13/16
Material Description:	GM	Date Completed:	09/20/16
Material Source:	TS-2, BH-206, S5, 8-10'	Tested By:	BLG
Material Source:	IS-2, BH-206, S5, 8-10	Tested By:	BLG


Liquid Limit

Plastic Limit

**Plasticity Index** 

**Non-Plastic** 

20



Material Retained On the No. 40 Sieve: 38%
As-received Moisture Content: 13%

Comments:

Reviewed By:

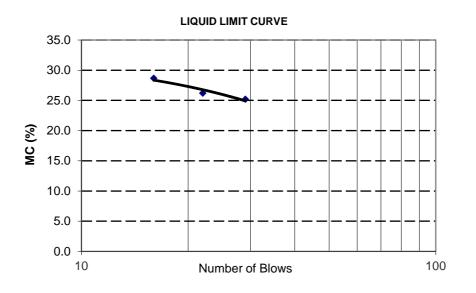
СВМ



## **Report of Atterberg Limits**

ASTM D4318-10 - Method A

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various NH	Lab ID:	15073S
Client:	Quanta Subsurface	Date Received:	09/13/16
Material Description:	SM	Date Completed:	09/20/16
Material Source:	TS-2, INF-201, S2, 2-4'	Tested By:	BLG


Liquid Limit

Plastic Limit

**Plasticity Index** 

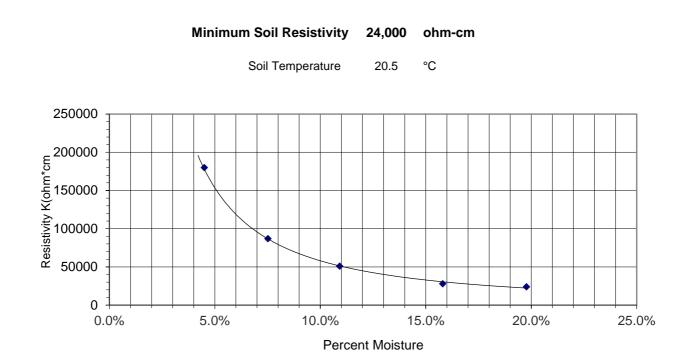
Non-Plastic

26



Material Retained On the No. 40 Sieve:	38%
As-received Moisture Content:	13%

Comments:


Reviewed By:

СВМ

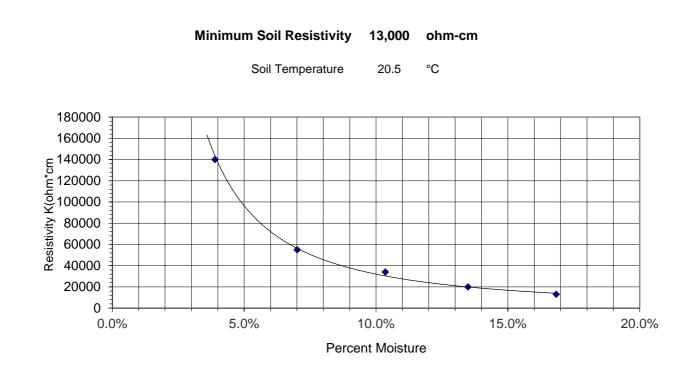


AASHTO T288

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various, NH	Lab ID:	15212S
Client:	SWCOLE Explorations, LLC	Date Received:	10/17/16
Material Description:	SM	Date Completed:	10/27/16
Material Source:	TS-2, BH-204, BULK, 5-10'	Tested By:	BLG



Comments:


Reviewed By:

СВМ



AASHTO T288

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various, NH	Lab ID:	15213S
Client:	SWCOLE Explorations, LLC	Date Received:	10/17/16
Material Description:	SM	Date Completed:	10/27/16
Material Source:	TS-2, INF-201, BULK, 5-10'	Tested By:	BLG



Comments:

Reviewed By:

СВМ

Ducie of ID: N	AC 0000										
Project ID: NI Job ID: 38											
Sample#:											
•	BH-204, 5-10'										
Matrix:	Solid Percent	t Dry: 90	).9% Resul	ts expr	essed on	a dry we	eight b	asis.			
Sampled:	10/17/16 11:00		Reporting		Instr Dil'n		Prep		Analy	/sis	
Parameter		Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Chloride		< 5.5	5.5	ug/g	1	JZL			10/25/16		E300.0A
Sulfate pH		7.8 6.3	5.5	ug/g pH	1 1	JZL APA			10/25/16 10/21/16		E300.0A SW9045C
		0.0		pri		/ / .		1002001	10/2 1/ 10	1.10	01100100
•	38207-002										
Sample ID: Matrix:	MF-201, 5-10'	t Drv: Q1	I.8% Resul	te avni	no besse	a dry we	hight h	acie			
	10/17/16 11:00	с Diy. ЭТ		is evhi			-	4010.	Analy	veie	
Parameter		Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Date	Time	Reference
Chloride		< 5.5	5.5	ug/g	1	JZL		1602921	10/25/16	15:38	E300.0A
Sulfate		21	5.5	ug/g	1	JZL			10/25/16		E300.0A
рН		7.0		рН	1	APA		1602861	10/21/16	4:20	SW9045C
Sample#:	38207-003										
	BH-309, 1-6'										
Matrix:		t Dry: 92	2.9% Resul	ts expr	ressed on	a dry we	eight b	asis.			
-	10/17/16 11:00		Reporting		Instr Dil'n	Analust	Prep	Datab	Analy		D.(
Parameter Chloride		Result < 5.4	Limit 5.4	Units ug/g	Factor 1	Analyst JZL	Date	Batch	Date 10/25/16	Time	Reference E300.0A
Sulfate		20	5.4	ug/g	1	JZL			10/25/16		E300.0A
рН		7.5		pН	1	APA		1602861	10/21/16	4:25	SW9045C
Sample#.	38207-004										
	BH-304, 4-6.5'										
Matrix:		t Dry: 91	.4% Resul	ts expr	essed on	a dry we	eight b	asis.			
Sampled:	10/17/16 11:00		Reporting		Instr Dil'n		Prep		Analy	/sis	
Parameter		Result	Limit	Units		Analyst	Date	Batch	Date	Time	Reference
Chloride		< 5.5	5.5	ug/g	1	JZL			10/25/16		E300.0A
Sulfate pH		11 6.0	5.5	ug/g pH	1	JZL APA			10/25/16 10/21/16		E300.0A SW9045C
pri		0.0		рп	1	AL A		1002001	10/21/10	4.50	01100400
	38207-005										
	BH-404, 1-10'			to our		o drawa	iabth	aaia			
Matrix:		t Dry: 92	2.9% Resul	is expl		a ury we	-	asis.			
Sampled: Parameter	10/17/16 11:00	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Analy Date	/sis Time	Reference
Chloride		< 5.4	5.4	ug/g	1 racior	JZL	Dutt		10/25/16		E300.0A
Sulfate		< 5.4	5.4	ug/g	1	JZL			10/25/16		E300.0A
рН		6.2		рН	1	APA		1602861	10/21/16	4:35	SW9045C



Project ID: NPT 16-0600 Job ID: 38207										
Sample#: 38207-006 Sample ID: BH-405, 2-4.75'										
Matrix: Solid Perce	nt Dry: 91	% Results	expres	sed on a	dry weig	iht bas	sis.			
Sampled: 10/17/16 11:00		Reporting		Instr Dil'n		Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Chloride	< 5.5	5.5	ug/g	1	JZL		1602921	10/25/16	16:44	E300.0A
Sulfate	13	5.5	ug/g	1	JZL		1602921	10/25/16	16:44	E300.0A
рН	5.3		рΗ	1	APA		1602861	10/21/16	4:40	SW9045C
Sample#: 38207-007 Sample ID: BH-902, 5-10'										
Matrix: Solid Perce	nt Dry: 96	.9% Resul	ts expr	essed on	a drv we	eiaht ba	asis.			
	- J									
Sampled: 10/17/16 11:00	- J	Reporting		Instr Dil'n		0		Analy	/sis	
	Result				Analyst	Prep Date	Batch	Analy Date	rsis Time	Reference
Sampled: 10/17/16 11:00		Reporting	·	Instr Dil'n		Prep	Batch	2	Time	Reference E300.0A
Sampled: 10/17/16 11:00 Parameter	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep	Batch 1602921	Date	Time 17:00	
Sampled: 10/17/16 11:00 Parameter Chloride	Result < 5.2	Reporting Limit 5.2	Units ug/g	Instr Dil'n Factor 1	Analyst JZL	Prep	Batch 1602921 1602921	Date 10/25/16	Time 17:00 17:00	E300.0A
Sampled: 10/17/16 11:00 Parameter Chloride Sulfate pH Sample#: 38207-008 Sample ID: BH-905, 5-10'	Result < 5.2 11 <b>5.6</b>	Reporting Limit 5.2 5.2	Units ug/g ug/g pH	Instr Dil'n Factor 1 1 1	Analyst JZL JZL APA	Prep Date	Batch 1602921 1602921 1602861	Date 10/25/16 10/25/16	Time 17:00 17:00	E300.0A E300.0A
Sampled:       10/17/16       11:00         Parameter       Parameter       Parameter         Chloride       Sulfate       Parameter         Sulfate       Sample#:       38207-008         Sample ID:       BH-905, 5-10'         Matrix:       Solid       Perce	Result < 5.2 11 <b>5.6</b>	Reporting Limit 5.2 5.2	Units ug/g ug/g pH	Instr Dil'n Factor 1 1 1	Analyst JZL JZL APA	Prep Date	Batch 1602921 1602921 1602861	Date 10/25/16 10/25/16 10/21/16	Time 17:00 17:00 4:45	E300.0A E300.0A
Sampled:       10/17/16       11:00         Parameter       Parameter       Parameter         Chloride       Sulfate       Parameter         Sulfate       Sulfate       Parameter         pH       38207-008       Parameter         Sample ID:       BH-905, 5-10'       Perce         Matrix:       Solid       Perce         Sampled:       10/17/16       11:00	Result < 5.2 11 5.6 nt Dry: 97	Reporting Limit 5.2 5.2 .1% Resul Reporting	Units ug/g ug/g pH ts expr	Instr Dil'n Factor 1 1 1 essed on Instr Dil'n	Analyst JZL JZL APA	Prep Date eight bar	Batch 1602921 1602921 1602861 asis.	Date 10/25/16 10/25/16 10/21/16 Analy	Time 17:00 17:00 4:45	E300.0A E300.0A SW9045C
Sampled:       10/17/16       11:00         Parameter	Result < 5.2 11 5.6 nt Dry: 97 Result	Reporting Limit 5.2 5.2 .1% Resul Reporting Limit	Units ug/g ug/g pH ts expr Units	Instr Dil'n Factor 1 1 1 essed on Instr Dil'n Factor	Analyst JZL JZL APA a dry we	Prep Date	Batch 1602921 1602921 1602861 asis. Batch	Date 10/25/16 10/25/16 10/21/16 Analy Date	Time 17:00 17:00 4:45	E300.0A E300.0A SW9045C Reference
Sampled:       10/17/16       11:00         Parameter       Parameter       Parameter         Chloride       38207-008       Parameter         Sample ID:       BH-905, 5-10'       Perce         Matrix:       Solid       Perce         Sampled:       10/17/16       11:00         Parameter       Chloride       Parameter	Result < 5.2 11 5.6 nt Dry: 97 Result < 5.2	Reporting Limit 5.2 5.2 .1% Resul Reporting Limit 5.2	Units ug/g pH ts expr Units ug/g	Instr Dil'n Factor 1 1 1 essed on Instr Dil'n Factor 1	Analyst JZL JZL APA a dry we Analyst JZL	Prep Date eight bar	Batch 1602921 1602861 1602861 asis. Batch 1602921	Date 10/25/16 10/25/16 10/21/16 Analy Date 10/25/16	Time 17:00 17:00 4:45 Xsis Time 17:16	E300.0A E300.0A SW9045C Reference E300.0A
Sampled:       10/17/16       11:00         Parameter	Result < 5.2 11 5.6 nt Dry: 97 Result	Reporting Limit 5.2 5.2 .1% Resul Reporting Limit	Units ug/g ug/g pH ts expr Units	Instr Dil'n Factor 1 1 1 essed on Instr Dil'n Factor	Analyst JZL JZL APA a dry we	Prep Date eight bar	Batch 1602921 1602921 1602861 asis. Batch 1602921 1602921	Date 10/25/16 10/25/16 10/21/16 Analy Date	Time 17:00 17:00 4:45 xsis Time 17:16 17:16	E300.0A E300.0A SW9045C Reference





# Appendix C Infiltration Field Test Results



## **Borehole Infiltration Test**

Project Name:	Northern Pass	Test Date:	9/21/2016
Project No.:	16-0600	Tested By:	NMC
Client:	Quanta Subsurface	Reviewed By:	СВМ
Test Location:	INF-201, Transition Station #2		

Tria	l #1	Trial #2		Tria	l #3	Tria	#4
Time Elapsed	Depth to						
(min)	Water (ft)						
0	1.4	0	2.3	0	2.5	0	2.5
2	2.3	2	2.5	2	2.6	2	2.6
4	2.4	4	2.6	4	2.6	4	2.6
6	2.5	6	2.7	6	2.6	6	2.6
8	2.7	8	2.8	8	2.6	8	2.6
10	2.7	10	2.8	10	2.6	10	2.6
15	2.8	15	2.8	15	2.6	15	2.6
20	2.8	20	2.8	20	2.6	20	2.7
25	2.8	25	2.9	25	2.7	25	2.7
30	2.9	30	2.9	30	2.7	30	2.7
35	2.9	35	2.9	35	2.7	35	2.7
40	2.9	40	2.9	40	2.7	40	2.7
45	2.9	45	3.0	45	2.7	45	2.7
50	3.0	50	3.0	50	2.7	50	2.8
55	3.0	55	3.0	55	2.8	55	2.8
60	3.0	60	3.0	60	2.8	60	2.8
(ft/hr)	1.6	(ft/hr)	0.7	(ft/hr)	0.3	(ft/hr)	0.4
(in/hr)	19.2	(in/hr)	8.4	(in/hr)	3.6	(in/hr)	4.2

**Test Summary** 

Average Infiltration Rate (in/hr)	5.4	discarded Trial #1, likely stil saturating
Pre-Soak Performed 9/19/2016 6:33		
Hole Depth from Top of Casing (ft)	4.6	
Casing Stick-up from Ground Surface (ft)	1.0	
Pre-Infiltration Test Water Depth (ft)	no water	

Notes:

1) Testing was performed in accordance with guidelines presented in the Nhew Hampshire Stormwater Manual (Vol 2; Table 2-3).

2) The Average Infiltration Rate (in/hr) presented is based on field measurements; a safety factor has not been applied.



Project Name:	Northern Pass	Test Date:	9/21/2016
Project No.:	16-0600	Tested By:	NMC
Client:	Quanta Subsurface	Reviewed By:	CBM
Test Location:	INF-202, Transition Station #2	_	

Tria	l #1	Tria	l #2	Tria	l #3	Tria	#4
Time Elapsed (min)	Depth to Water (ft)						
0	2.2	0	2.5	0	2.9	0	2.6
2	2.2	2	2.5	2	2.9	2	2.6
4	2.3	4	2.6	4	2.9	4	2.7
6	2.3	6	2.7	6	3.0	6	2.8
8	2.4	8	2.8	8	3.0	8	2.9
10	2.4	10	2.9	10	3.0	10	2.9
15	2.5	15	3.0	15	3.1	15	3.0
20	2.6	20	3.1	20	3.2	20	3.1
25	2.7	25	3.2	25	3.3	25	3.2
30	2.8	30	3.3	30	3.3	30	3.3
35	2.8	35	3.4	35	3.4	35	3.4
40	2.9	40	3.5	40	3.5	40	3.5
45	3.0	45	3.6	45	3.5	45	3.5
50	3.1	50	3.6	50	3.6	50	3.6
55	3.1	55	3.8	55	3.7	55	3.7
60	3.2	60	3.9	60	3.7	60	3.8
(ft/hr)	1.0	(ft/hr)	1.4	(ft/hr)	0.8	(ft/hr)	1.2
(in/hr)	12.0	(in/hr)	16.8	(in/hr)	9.6	(in/hr)	14.4

**Test Summary** 

Average Infiltration Rate (in/hr)	13.2
Pre-Soak Performed 9/19/2016 6:38	pm
Hole Depth from Top of Casing (ft)	4.8
Casing Stick-up from Ground Surface (ft)	1.0
Pre-Infiltration Test Water Depth (ft)	no water

#### Notes:

1) Testing was performed in accordance with guidelines presented in the Nhew Hampshire Stormwater Manual (Vol 2; Table 2-3).

2) The Average Infiltration Rate (in/hr) presented is based on field measurements; a safety factor has not been applied.



# Appendix D Summary of Geotechnical Design Parameters



#### Summary of Geotechnical Design Parameters Transition Station #2

### Boring BH 201

Sublayer Depth Sublayer (ft)		pth	Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
	0	13	SM/SP-SM	20	115	32	-	-	-
Glaciofluvial Deposits	13	18	SP-SM	49	125	38	-	-	-
	18	23	GP-GM	93	140	43	-	-	-
Till	23	50	ML	100+	135	40	-	-	-

#### Boring BH 202

Sublayer Description		ayer pth t) Bot.	Material Description	Average N ₆₀	Effective Unit Weight (pcf)	Soil Friction Angle (deg)	Soil Undrained Strength (psf)	(Rock Mas	drock ss Equivalent oulomb Fit) Cohesion (psf)
Topsoil	0	2	I	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL					
	2	3.5	ML	43	125	34	-	-	-
Glaciofluvial Deposits	3.5	7	ML	100+	135	40	-	-	-
	7	17	SM	29	125	34	-	-	-
Till	17	21	ML	100+	135	40	-	-	-

#### Boring BH 203

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	1		REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL					ILL
Glaciofluvial Deposits	1	2.5	SP-SM	23	120	32			
	2.5	8	ML	68	130	39			
Till	8	9.5	ML	28	115	31			
	9.5	10	ML	100+	135	40	-	_	-



#### Summary of Geotechnical Design Parameters (cont) Transition Station #2

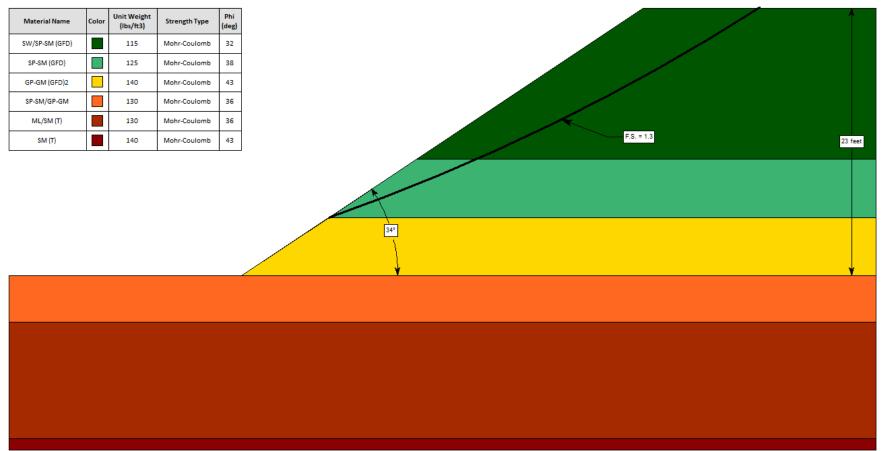
#### Boring BH 204

Sublayer	Sublayer Depth er (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Existing Fill	0	2							
Original Topsoil	2	3.5		REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL					
Glaciofluvial Deposits	3.5	16	SM/SP-SM	66	135	40	-	-	-
Till	16	22	ML	89	135	40	-	-	-

#### Boring BH 205

Sublayer	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description		Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Glaciofluvial	0	4	GM/SM	9	115	29	-	-	-
Deposits	4	22	SM/ML	36	125	36	-	-	-
Till	22	28	ML	54	125	36	-	-	-
Till	28	50	ML	100+	135	40	-	-	-

#### Boring BH 206

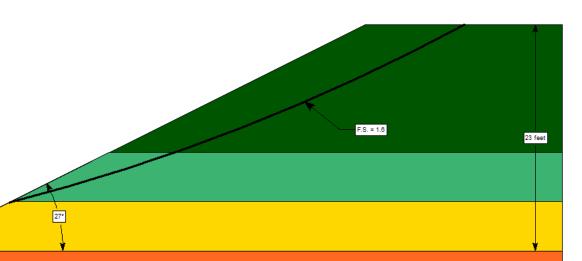

Sublayer	Sublayer Depth Sublayer (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Glaciofluvial Deposits	0	4	SP-SM/ GP-GM	39	130	36	-	-	-
Till	4	14	ML/SM	50	130	36	-	-	-
1111	14	50	SM	100+	140	43	-	-	-

#### **Controlled Structural Fill**

Sublayer	Sublayer Depth Sublayer (ft)		Material	Average	Effective Unit	Friction Angle	Undrained Strength	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	(deg)	(psf)	Friction Angle (deg)	Cohesion (psf)
Structural Fill	-	-	SM/ML	-	125	30	-	-	-



# Appendix E SLIDE 7.0 Stability Outputs






# Output 1 - BH 201/BH 206 1.5 (H) to 1 (V)

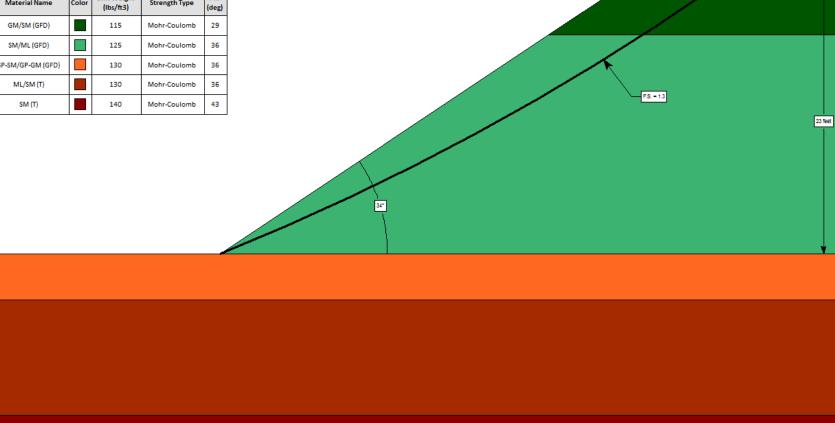
Northern Pass TL – Transition Station #2 Slope Stability Analysis

Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Phi (deg)
SW/SP-SM (GFD)		115	Mohr-Coulomb	32
SP-SM (GFD)		125	Mohr-Coulomb	38
GP-GM (GFD)		140	Mohr-Coulomb	43
SP-SM/GP-GM		130	Mohr-Coulomb	36
ML/SM (T)		130	Mohr-Coulomb	36
SM (T)		140	Mohr-Coulomb	43



Project No.: 16004 Date: December 2016

# Project No.


Output 2 - BH 201/BH 206 2 (H) to 1 (V)

Northern Pass TL – Transition Station #2 Slope Stability Analysis



Base Map: Slide 7.0.

Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Phi (deg)
GM/SM (GFD)		115	Mohr-Coulomb	29
SM/ML (GFD)		125	Mohr-Coulomb	36
SP-SM/GP-GM (GFD)		130	Mohr-Coulomb	36
ML/SM (T)		130	Mohr-Coulomb	36
SM (T)		140	Mohr-Coulomb	43

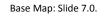


Base Map: Slide 7.0.



Northern Pass TL – Transition Station #2 **Slope Stability Analysis** 

Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Phi (deg)
GM/SM (GFD)		115	Mohr-Coulomb	29
SM/ML (GFD)		125	Mohr-Coulomb	36
SP-SM/GP-GM (GFD)		130	Mohr-Coulomb	36
ML/SM (T)		130	Mohr-Coulomb	36
SM (T)		140	Mohr-Coulomb	43


27*



F.S. = 1.6

Northern Pass TL – Transition Station #2 Slope Stability Analysis

23 feet



QUANTA SUBSURFACE

#### INFILTRATION FEASIBILITY REPORT

#### Transition Station #2 Clarksville, NH December 15, 2016

#### TABLE OF CONTENTS:

- I. Location of the practice
- II. Existing topography at the location of the practice
- III. Test pit or boring locations
- IV. Seasonal high water table (SHWT) and bedrock elevations
- V. Profile descriptions
- VI. Soil plan in the area of the proposed practice
- VII. Summary of Field Testing data used to determine the infiltration rate

The project proposes one system that requires infiltration to function property. This system is identified on the plans as Infiltration Basin.

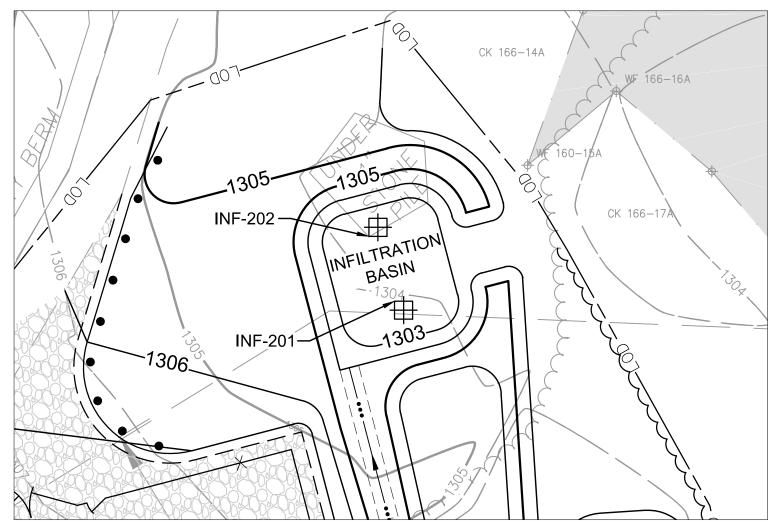
#### I. Location of the practice

Infiltration Basin 1 is located at the northeastern side of the proposed transition station yard.

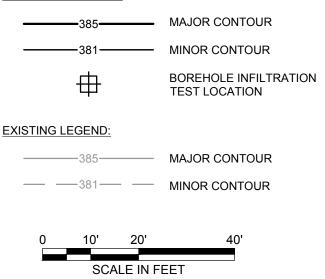
#### II. Existing topography at the location of the practice

The existing topography within the area of the infiltration basin is relatively flat with gravel cover.

#### **III.** Test pit or boring locations


In accordance with Env-Wq 1504.12(c), NHDES requires that a minimum number of test pits or borings be dug or drilled in the location of the system, depending on the size of the proposed system.

Infiltration Basin is 670 square feet in area. Two borehole infiltration tests were performed in the location of this practice. The test locations, identified as INF-201 and INF-202, are shown on the attached boring location plan.


THE NORTHERN PASS

## TRANSITION STATION #2 INFILTRATION BASIN BORING LOCATION PLAN





#### PROPOSED LEGEND:



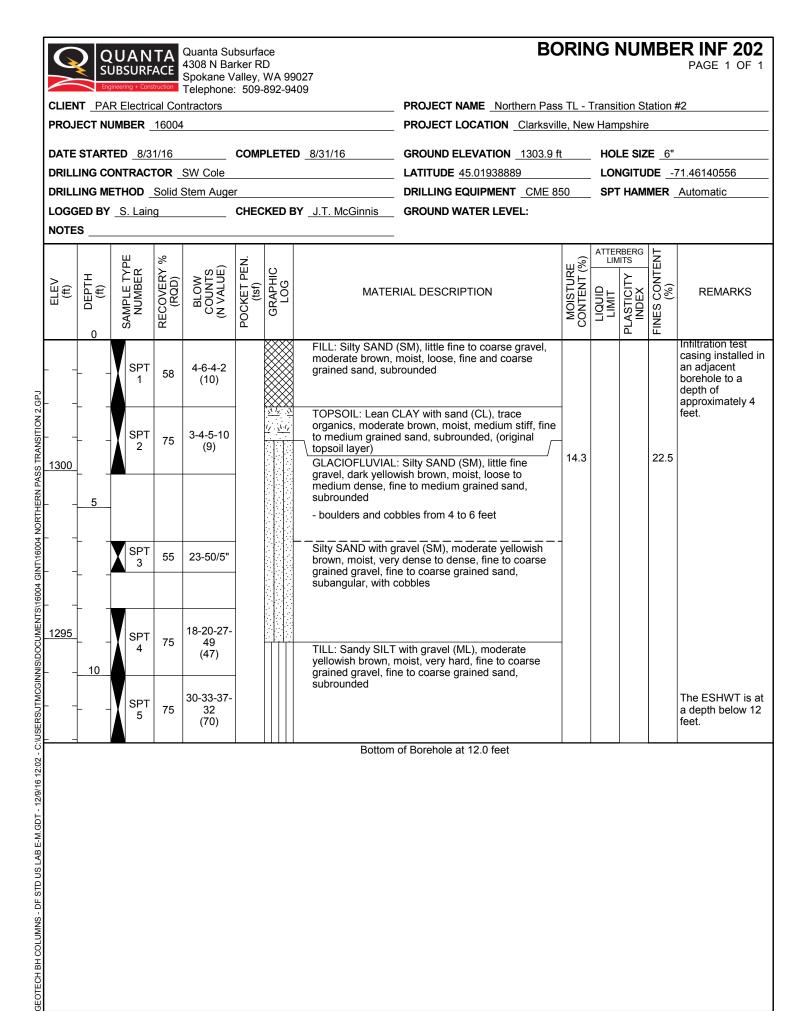
#### NOTES:

- BACKGROUND INFORMATION TAKEN FROM "EXISTING CONDITIONS PLAN" FOR TRANSITION STATION #2, ROUTE 3, CLARKSVILLE, NH. PREPARED BY CHA, CONSULTING, INC. DATED NOVEMBER 14, 2013. LAST REVISED DECEMBER 1, 2014. WETLAND FLAGS SHOWN ARE BASED ON LOCATIONS PROVIDED BY NORMANDEAU, WETLAND FLAGS WERE DELINEATED BY NORMANDEAU IN 2013.
- 2. NEW HAMPSHIRE STATE PLANE COORDINATE SYSTEM HORIZONTAL DATUM - NAD83 VERTICAL DATUM - NAVD88
- 3. PROPOSED CONTOURS AND SPOT ELEVATIONS INDICATED REFER TO TOP OF FINISH SURFACE.
- 4. ALL FILL AND CUT SLOPES ARE 3-FT HORIZONTAL TO 1-FT VERTICAL (3:1) UNLESS NOTED OTHERWISE.

The following borehole test data was collected on August 31, 2016.

Infiltration Basin:

Bottom of Basin Elevation = 1303.0


- INF-201: Existing Surface Elevation of Borehole = 1304.1 SHWT = Below 1298.0 BEDROCK = not found Deepest Elevation of Borehole = 1292.1
- INF-202: Existing Surface Elevation of Borehole = 1303.9 SHWT = Below 1298.0 BEDROCK = not found Deepest Elevation of Borehole = 1291.9

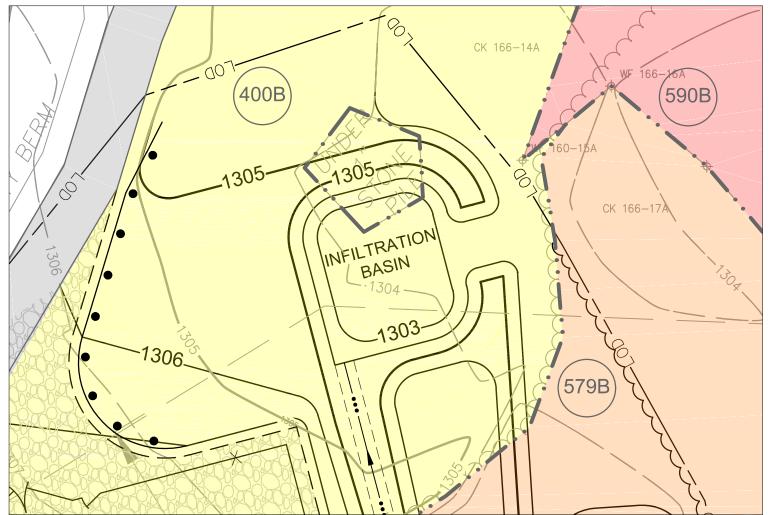
#### V. Profile descriptions

Refer to attached boring logs for soil profile descriptions at INF-201 and INF-202 boreholes.

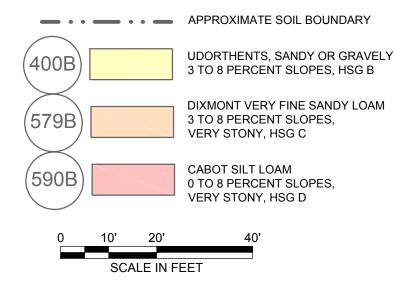
	NT <u>P</u> A		struction cal Co	Quanta Su 4308 N Ba Spokane V Telephone ntractors	rker R alley, 509	D WA 99 -892-94		PROJECT NAME Northern Pas	s TL - 1	Transi	tion St	ation	PAGE 1 OF 1
DATE	STAR		1/16					PROJECT LOCATION       Clarksvill         GROUND ELEVATION       1304.11         LATITUDE       45.01934167	ť	HO	LE SIZ	E _6"	
LOGO	GED BY		ıg				BY J.T. McGinnis	DRILLING EQUIPMENT <u>CME 8</u> GROUND WATER LEVEL: AT END OF DRILLING <u>N</u>		_		MER	Automatic
(ft) (ft)	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATER	IAL DESCRIPTION	MOISTURE CONTENT (%)			FINES CONTENT (%)	REMARKS
		SPT 1	50	3-4-6-11 (10)			FILL: Silty SAND ( dark yellowish bro grained sand, sub	SM), little fine to coarse gravel, wn, moist, loose, fine to coarse rounded					Infiltration test casing installed in an adjacent borehole to a depth of approximately 4
1300		SPT 2	63	3-4-3-7 (7)			organics, moderat grained sand, (orig GLACIOFLUVIAL:	Silty GRAVEL with sand (GM),	29.0	26	NP	43.3	feet.
	5	SPT 3	83	17-9-13-29 (22)			Silty SAND with gr	avel (SM), light olive gray to dark noist, medium dense to very rse grained gravel, fine to					A bulk sample was obtained from 5 to 10 feet. % fines = 32.6% Resistivity =
			100	33-50/2"			Silty GRAVEL with brown, moist, dens subangular	n sand (GM), dark yellowish se, fine to coarse grained sand,	_				13,000 ohm-cm pH = 7.0
1295		SPT 5	83	16-15-21- 22 (36)			TILL: SILT with gra moist, hard, fine to subangular	avel (ML), dark yellowish brown, o coarse grained gravel,	_				
		SPT 6		26-26-23- 21 (49)									The ESHWT is at a depth below 12 feet.
							Bottom	of Borehole at 12.0 feet					

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/9/16 12:02 - C:USERSUTMCGINNIS/DOCUMENTS/16004 GINT/16004 NORTHERN PASS TRANSITION 2.GPJ




#### VI. Soil plan in the area of the proposed practice

Refer to attached plan for a delineation of soil series near Infiltration Basin, as determined by a soil survey report prepared by Normandeau Associates, Inc. The report is entitled "Northern Pass Transmission Project, Soil Survey Report for Transition Stations, Substation Expansions and Converter Terminal" dated February 6, 2015.




# TRANSITION STATION #2 INFILTRATION BASIN SOIL SERIES PLAN





#### SOIL LEGEND:



#### NOTES:

- 1. SOIL INFORMATION TAKEN FROM "NORTHERN PASS TRANSMISSION PROJECT, SOIL SURVEY REPORT FOR TRANSITION STATIONS, SUBSTATION EXPANSIONS, AND CONVERTER TERMINAL" PREPARED BY NORMANDEAU ENVIRONMENTAL CONSULTANTS, DATED FEBRUARY 6, 2015.
- 2. NEW HAMPSHIRE STATE PLANE COORDINATE SYSTEM HORIZONTAL DATUM - NAD83 VERTICAL DATUM - NAVD88
- 3. PROPOSED CONTOURS AND SPOT ELEVATIONS INDICATED REFER TO TOP OF FINISH SURFACE.
- 4. ALL FILL AND CUT SLOPES ARE 3-FT HORIZONTAL TO 1-FT VERTICAL (3:1) UNLESS NOTED OTHERWISE.

#### VII. Summary of Field Testing data used to determine the infiltration rate

The infiltration rate for Infiltration Basin was determined using the Field Measurement method described in Env-Wq 1504.13.

The Ksat was measured with a **Borehole Infiltration Test.** 

INF-201: The average Ksat of the tests was <u>5.4 inches per hour.</u> INF-202: The average Ksat of the tests was <u>13.2 inches per hour.</u>

After applying a factor of safety, the design rate used in the drainage analysis is <u>2.7 inches per hour.</u>



# **Borehole Infiltration Test**

Project Name:	Northern Pass	Test Date:	9/21/2016
Project No.:	16-0600	Tested By:	NMC
Client:	Quanta Subsurface	Reviewed By:	CBM
Test Location:	INF-201, Transition Station #2		

Tria	l #1	Tria	l #2	Tria	l #3	Tria	#4
Time Elapsed	Depth to						
(min)	Water (ft)						
0	1.4	0	2.3	0	2.5	0	2.5
2	2.3	2	2.5	2	2.6	2	2.6
4	2.4	4	2.6	4	2.6	4	2.6
6	2.5	6	2.7	6	2.6	6	2.6
8	2.7	8	2.8	8	2.6	8	2.6
10	2.7	10	2.8	10	2.6	10	2.6
15	2.8	15	2.8	15	2.6	15	2.6
20	2.8	20	2.8	20	2.6	20	2.7
25	2.8	25	2.9	25	2.7	25	2.7
30	2.9	30	2.9	30	2.7	30	2.7
35	2.9	35	2.9	35	2.7	35	2.7
40	2.9	40	2.9	40	2.7	40	2.7
45	2.9	45	3.0	45	2.7	45	2.7
50	3.0	50	3.0	50	2.7	50	2.8
55	3.0	55	3.0	55	2.8	55	2.8
60	3.0	60	3.0	60	2.8	60	2.8
(ft/hr)	1.6	(ft/hr)	0.7	(ft/hr)	0.3	(ft/hr)	0.4
(in/hr)	19.2	(in/hr)	8.4	(in/hr)	3.6	(in/hr)	4.2

**Test Summary** 

Average Infiltration Rate (in/hr)	5.4	discarded Trial #1, likely stil saturating
Pre-Soak Performed 9/19/2016 6:33	pm	
Hole Depth from Top of Casing (ft)	4.6	
Casing Stick-up from Ground Surface (ft)	1.0	
Pre-Infiltration Test Water Depth (ft)	no water	

Notes:

1) Testing was performed in accordance with guidelines presented in the Nhew Hampshire Stormwater Manual (Vol 2; Table 2-3).

2) The Average Infiltration Rate (in/hr) presented is based on field measurements; a safety factor has not been applied.



Project Name:	Northern Pass	Test Date:	9/21/2016
Project No.:	16-0600	Tested By:	NMC
Client:	Quanta Subsurface	Reviewed By:	CBM
Test Location:	INF-202, Transition Station #2	_	

Tria	l #1	Tria	l #2	Tria	l #3	Tria	#4
Time Elapsed (min)	Depth to Water (ft)						
0	2.2	0	2.5	0	2.9	0	2.6
2	2.2	2	2.5	2	2.9	2	2.6
4	2.3	4	2.6	4	2.9	4	2.7
6	2.3	6	2.7	6	3.0	6	2.8
8	2.4	8	2.8	8	3.0	8	2.9
10	2.4	10	2.9	10	3.0	10	2.9
15	2.5	15	3.0	15	3.1	15	3.0
20	2.6	20	3.1	20	3.2	20	3.1
25	2.7	25	3.2	25	3.3	25	3.2
30	2.8	30	3.3	30	3.3	30	3.3
35	2.8	35	3.4	35	3.4	35	3.4
40	2.9	40	3.5	40	3.5	40	3.5
45	3.0	45	3.6	45	3.5	45	3.5
50	3.1	50	3.6	50	3.6	50	3.6
55	3.1	55	3.8	55	3.7	55	3.7
60	3.2	60	3.9	60	3.7	60	3.8
(ft/hr)	1.0	(ft/hr)	1.4	(ft/hr)	0.8	(ft/hr)	1.2
(in/hr)	12.0	(in/hr)	16.8	(in/hr)	9.6	(in/hr)	14.4

**Test Summary** 

Average Infiltration Rate (in/hr)	13.2
Pre-Soak Performed 9/19/2016 6:38	pm
Hole Depth from Top of Casing (ft)	4.8
Casing Stick-up from Ground Surface (ft)	1.0
Pre-Infiltration Test Water Depth (ft)	no water

#### Notes:

1) Testing was performed in accordance with guidelines presented in the Nhew Hampshire Stormwater Manual (Vol 2; Table 2-3).

2) The Average Infiltration Rate (in/hr) presented is based on field measurements; a safety factor has not been applied.

**APPENDIX I – WETLAND DELINEATION REPORT (BY OTHERS)** 

WETLANDS REPORT INFORMATION INCLUDED UNDER SEPARATE COVER

### APPENDIX J - POLLUTANT LOADING CALCULATIONS

Condition	Point of Analysis (PoA) Number	Sub-Area Number	Area Description	Land Use	BMP Is the Impervious Area Disconnected in accordance with Chapter 6, Volume 1 of the NH Stormwater Manual or is the BMP an Infiltration BMP designed in accordance with Alteration of Terrain regulations (Env-Wq 1500)?	Pervious Undisturbed (i.e, forest, meadow, etc.)	Pervious Disturbed (i.e. lawn or other area that will be fertilized regularly)	Pervious Pavement that filters and infiltrates all stormwater (no underdrains)	Pervious Disturbed Other	Description of Pervious Disturbed Other	Pervious Pavement that filters but does not infiltrate all stormwater (has underdrains)	Impervious Roof	Impervious Road	Impervious Parking and Drives	Impervious Sidewalks	Impervious Surface Water	Impervious Other	Description of Impervious Other	Impervious Total (prior to Disconnection or Infiltration BMP Credit)	Total Area	Composite % Impervious (without disconnection or Infiltration credit)	Composite % Impervious (with disconnection or Infiltration credit)
Pre-Development	Pre-1	Pre-1	Pre-Dev Watershed Map Area 1	Forest/Rural Open	NO	Acres 111.69	Acres 0.00	<b>Acres</b> 0.00	<b>Acres</b> 0.00	Acres 111.69	<b>Acres</b> 0.00	<b>Acres</b> 0.00	<b>Acres</b> 2.47	<b>Acres</b> 0.00	<b>Acres</b> 0.00	<b>Acres</b> 0.00	<b>Acres</b> 0.00		<b>Acres</b> 2.47	Acres 114.16	2.17%	2.17%
Pre-Development Pre-Development	Pre-2	Pre-2	Pre-Dev Watershed Map Area 2	Forest/Rural Open	NO NO	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.12	0.00	0.00	0.00	0.00		0.12	0.12 0.00	100.00%	100.00%
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		·
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		·
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00		0.00	0.00 0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00		0.00	0.00 0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	0.00		I
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00 0.00	0.00		I
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		

#### TS-2 Simple Method_11162016.xlsx Pre-Dev_Sub Area Wksht

Condition	Point of Analysis (PoA) Number	Sub-Area Number	Area Description	Land Use BMP	Is the Impervious Area Disconnected in accordance with Chapter 6, Volume 1 of the NH Stormwater Manual of is the BMP an Infiltration BMP designed in accordanc with Alteration of Terrain regulations (Env-Wq 1500)?	Pervious Undisturbed (i.e, forest, e meadow, etc.)	Pervious Disturbed (i.e. lawn or other area that will be fertilized annually) Acres	Pervious Pavement that filters and infiltrates all stormwater (no underdrains) Acres	Pervious Disturbed Other Acres	Description of Pervious Disturbed Other	Pervious Total	Pervious Pavement that filters but does not infiltrate all stormwater (has underdrains)	Impervious Roof Acres	Impervious Road Acres	Impervious Parking and Drives Acres	Impervious Sidewalks Acres	Impervious Surface Water Acres	Impervious Other Acres	Description of Impervious Other	Impervious Total (Prior to Disconnection or Infiltration BMP Credit) Acres	Total Area Acres	Composite % Impervious (without disconnectio d n or Infiltration credit)	Composite % Impervious (with disconnectio n or Infiltration credit)
Post-Development	Post-1	Post-1A	Post-Dev Watershed Map Area 1A	Forest/Rural Open	NO	111.09	0.00	0.00	0.37	grass/meadow, not	111.46	0.00	0.00	2.19	0.00	0.00	0.00	0.00		2.19	113.65	1.93%	1.93%
Post-Development	Post-1	Post-1B	Post-Dev Watershed Map Area 1B			0.00	0.00	0.41	0.13	fertilized grass/meadow, not	0.54	0.00	0.00	0.01	0.00	0.00	0.02	0.00		0.03	0.57	5.58%	0.00%
										fertilized grass/meadow, not													
Post-Development Post-Development	Post-2	Post-2	Post-Dev Watershed Map Area 2	Forest/Rural Open	NO	0.00	0.00	0.00	0.02	fertilized	0.02	0.00	0.00	0.04	0.00	0.00	0.00	0.00		0.04	0.06	63.49%	63.49%
Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00		0.00 0.00	0.00		
Post-Development Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00	0.00		0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00		0.00 0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO	0.00	0.00	0.00	0.00		0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00	0.00		0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00		0.00 0.00	0.00 0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00		0.00 0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00		0.00 0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00	0.00		0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00		0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00		0.00 0.00	0.00 0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00	t	
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00		0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00 0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00 0.00	0.00	<del>_</del>	
Post-Development Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development					NO NO	0.00	0.00	0.00	0.00		0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Post-Development					NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		

#### TS-2 Simple Method_11162016.xlsx Post-Dev_Sub Area Wksht

Date (MM/DD/YYYY):	11/16/2016		
Project Name:	Transition Station #2		
Town/City:	Clarksville, Coos County		
Impacted Surface Waters:	Upper Connecticut		
Applicant:	Northern Pass Transmission, LLC.		
DES File #:			
Average Annual Precipitation P	40.20	inches	ONLY INPUT VALUES IN BLUE SHADED C
Fraction of Annual Runoff events that produce runoff	0.90	(usually 0.9)	
Fraction of Annual Runoff events that produce runoff	0.90	(usually 0.9)	

Credit for Using Low Nutrient Fertilizer: If there are managed turf areas under post development conditions that are to be fertilized annually, reductions in post development nutrient (TP and TN) loadings can be realized by by providing enforceable documents (i.e., deed restrictions) requiring land owners to use low nutrient fertilizer. To get low nutrient fertilizer pollutant reductions input the proposed reduced fertilizer application rates for post development development for TP and TN in the table below. Low nutrient fertilizers must have application rates less than the standard fertilizer application rate shown in the table. Then input the percent of each land use in each post development sub-area that is managed turf that is fertilzed annually.

STANDARD FERTILIZER APPLICATION RATE (lbs/acre/year) PROPOSED REDUCED FERTILIZER APPLICATION RATES FOR POST-DEVELOPMENT (lbs/acre/year) INITIAL PERCENT REDUCTION PERCENT OF CITIZENS THAT WILL COMPLY WITH REDUCED APPLICATION RATES

Fertilizer Reduction	Calculator
TP	TN
15.0	150.0
0.0	44.0
100.0%	70.7%
50%	50%
10%	10%
5.0%	3.5%
0.11	1.74

PRE-DEVELOPMENT CONDITIONS			POST-DEVELOPMENT CONDITIO	NS		of area that is managed		
	Area	Impervious Area		Area	Impervious Area	Area Fertilized Annually		
Total Area (All Sub-Areas) (acres)	114.28	2.59		114.29	2.23	0.00		
		Insert information for 1st sub-area below						
ub_Area_ID	Pre-1		Sub_Area_ID	Post-1A				
oint of Analysis (PoA) Number	Pre-1		Point of Analysis (PoA) Number	Post-1				
otal Area for Sub-Area (acres)	114.16	2.47	Total Area in Sub-Area (acres)	113.65	2.19	0.00		
Land Use	Area	la	Land Use	Total Area for each Land Use	la	Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-T EMC
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/l
rom HWG	0.00	0.00%	From HWG	0.00	0.000/	0.00/	0.44	4 50
Residential Roof Commercial Roof	0.00 0.00	0.00% 0.00%	Residential Roof Commercial Roof	0.00 0.00	0.00% 0.00%	0.0% 0.0%	0.11 0.14	1.50 2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.14	1.9
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.3
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.0
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.1
Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.1
Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.2
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.0
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.5
om CDM			From CDM					
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.9
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.9
Forest/Rural Open	114.16	2.17%	Forest/Rural Open	113.65	1.93%	0.0%	0.11	1.7
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.6
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.9

ELLS	

Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%
Urban Open	0.00	0.00%	% Urban Open		0.00%
Water/Wetland	0.00	0.00%	Water/Wetland		0.00%
		Insert information for 2nd sub-area	below		
Sub_Area_ID	Pre-2		Sub_Area_ID	Post-1B	
Point of Analysis (PoA) Number	Pre-2		Point of Analysis (PoA) Number	Post-1	
		0.40	Total Area in Such Area (correct)	0.67	0.00
Total Area for Sub-Area (acres)	0.12	0.12	Total Area in Sub-Area (acres)	0.57	0.00

Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 2nd sub-area below						
ub_Area_ID	Pre-2		Sub_Area_ID	Post-1B				
pint of Analysis (PoA) Number	Pre-2		Point of Analysis (PoA) Number	Post-1				
otal Area for Sub-Area (acres)	0.12	0.12	Total Area in Sub-Area (acres)	0.57	0.00	0.00		
Land Use	Area	la	Land Use	Area	la	Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
	(acres)	(% Impervious)	Land Use	(acres)	(% Impervious)	%	mg/L	mg/L
om HWG	(46103)	(70 impervious)	From HWG	(40103)		70	mg/E	iiig/L
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
om CDM			From CDM					
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open	0.12	100.00%	Forest/Rural Open	0.57	0.00%	0.0%	0.11	1.74
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 3rd sub-area below						
ub Area ID			Sub Area ID	Post-2				

Sub_Area_ID			Sub_Area_ID	Post-2			
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-2			
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.06	0.04	0.00	
			-				

Land Use	Area	la
	(acres)	(% Impervious)
From HWG		
Residential Roof	0.00	0.00%
Commercial Roof	0.00	0.00%
Commercial/Res Parking	0.00	0.00%
Residential Street	0.00	0.00%
Urban Highway	0.00	0.00%
Lawns	0.00	0.00%
Driveway	0.00	0.00%
Residential (general)	0.00	0.00%
Commercial (general)	0.00	0.00%
Industrial (general)	0.00	0.00%
From CDM		
Agriculture and Pasture	0.00	0.00%
Commercial	0.00	0.00%
Forest/Rural Open	0.00	0.00%

	d Use	Area	la	Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
Land	u use			0/		···· · //
From HWG		(acres)	(% Impervious)	%	mg/L	mg/L
	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Co	mmercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
	Residential Street	0.00	0.00%	0.0%	0.55	1.40
	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
	Lawns	0.00	0.00%	0.0%	2.10	9.10
	Driveway	0.00	0.00%	0.0%	0.56	2.10
	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM						
A	griculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
	Commercial	0.00	0.00%	0.0%	0.33	2.97
	Forest/Rural Open	0.06	63.49%	0.0%	0.11	1.74

Highway	0.00	0.00%	Highway	0.00	0.00%
Industrial	0.00	0.00%	Industrial	0.00	0.00%
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%
		Insert information for 4th sub-area b	below		
Sub_Area_ID			Sub_Area_ID		
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number		
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.00	0.00

_								
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 4th sub-area l	below					
Sub_Area_ID			Sub_Area_ID					
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number					
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.00	0.00	0.00		
						Demonstrat American		
						Percent of Area that is managed turf (i.e.,	Post-TP EMC	Post-TN
						fertilized annually)	FUSI-IF EINIC	EMC
Land Use	Area	la	Land Use	Area	la	leitinzed annually)		
	(acres)	(% Impervious)	Lailu Ose	(acres)	(% Impervious)	%	mg/L	mg/L
From HWG	(acres)	(% impervious)	From HWG	(acres)	( // Impervious)	/0	ing/∟	iiig/L
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM			From CDM					
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open	0.00	0.00%	Forest/Rural Open	0.00	0.00%	0.0%	0.11	1.74
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 5th sub-area I	below					
Sub_Area_ID			Sub_Area_ID					
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number					
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.00	0.00	0.00		

Land Use	Area (acres)	<b>la</b> (% Impervious)		
From HWG				
Residential Roof	0.00	0.00%		
Commercial Roof	0.00	0.00%		
Commercial/Res Parking	0.00	0.00%		
Residential Street	0.00	0.00%		
Urban Highway	0.00	0.00%		
Lawns	0.00	0.00%		
Driveway	0.00	0.00%		
Residential (general)	0.00	0.00%		
Commercial (general)	0.00	0.00%		
Industrial (general)	0.00	0.00%		
From CDM				
Agriculture and Pasture	0.00	0.00%		

			Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
Land Use	Area	la			
	(acres)	(% Impervious)	%	mg/L	mg/L
From HWG					
Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM					
Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98

Date (MM/DD/YYYY):
Project Name:
Town/City:
Impacted Surface Waters:
Applicant:
DES File #:

Sub-Area

11/16/2016 Transition Station #2 Clarksville, Coos County Upper Connecticut Northern Pass Transmission, LLC.

# ONLY CHANGE VALUES SHADED IN BLUE

PRE DEVELOPMENT INPUT BMP DESCRIPTIONS

INPUT OVERALL REMOVAL EFFICIENCIES (%) FOR POLLUTANTS TSS TP TN

Dre 4			-00/
Pre-1	0%		
Pre-2	0%		
0.00	0%		
0.00	0%		
0.00	0%		
0.00	0%	<i>б</i> о%	0%
0.00	0%	ώ 0%	0%
0.00	0%	6 0%	0%
0.00	0%	6 0%	0%
0.00	0%	ώ 0%	0%
0.00	0%	ώ 0%	
0.00	0%	ώ 0%	0%
0.00	0%	6 0%	0%
0.00	0%	6 0%	
0.00	0%	ώ 0%	0%
0.00	0%	ώ 0%	0%
0.00	0%	6 0%	
0.00	0%	6 0%	0%
0.00	0%	6 0%	0%
0.00	0%	<b>б</b> о%	0%
0.00	0%	ы́ 0%	
0.00	0%	6 0%	
0.00	0%	6 0%	
0.00	0%		
0.00	0%		

#### POST DEVELOPMENT Sub-Area

#### INPUT BMP DESCRIPTIONS

#### INPUT OVERALL REMOVAL EFFICIENCIES (%) FOR POLLUTANTS TSS TP TN

Post-1A		0%	0%	0
Post-1B	Infiltration Basin (> 75ft from surface water)	90%	65%	60
Post-2		0%	0%	0'
0.00		0%	0%	0'
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	0
0.00		0%	0%	C
0.00		0%	0%	C
0.00		0%	0%	С
0.00		0%	0%	C

	(603) 271-2304	
	PO Box 95, Concord, NH 03302-0095	
2015-04-15	www.des.nh.gov	Tab 5 of 9

11/16/2016

#### TS-2 Simple Method_11162016.xlsx OVERALL SUMMARY

Date (MM/DD/YYYY): Project Name: Town/City: Impacted Surface Waters: Applicant: DES File #: 11/16/2016 Transition Station #2 Clarksville, Coos County Upper Connecticut Northern Pass Transmission, LLC.

TOTAL PRE -DEVELOPMENT (PRE-DEV) AREA (ACRES) =	114.28
TOTAL PRE-DEV EFFECTIVE IMPERVIOUS AREA (ACRES) =	2.59
TOTAL PRE-DEV PERCENT EFFECTIVE IMPERVIOUS (%) =	2.3%
TOTAL POST DEVELOPMENT (POST-DEV) AREA (ACRES) =	114.29
TOTAL POST-DEV EFFECTIVE IMPERVIOUS AREA (ACRES) =	2.23
TOTAL POST-DEV PERCENT EFFECTIVE IMPERVIOUS (%) =	2.0%
TOTAL POST-DEV AREA THAT IS FERTILIZED ANNUALLY (ACRES) =	0.00
TOTAL POST-DEV PERCENT OF AREA THAT IS FERTILIZED ANNUALLY (%) =	0.0%

	TSS	TP	TN
	(LBS/YR)	(LBS/YR)	(LBS/YR)
PRE DEVELOPMENT LOADS (NO BMPS)	3355.2	7.2	114.5
PRE DEVELOPMENT LOADS (WITH BMPS)	3355.2	7.2	114.5
PRE DEVELOPMENT LOAD REDUCTION DUE TO BMPS	0.0	0.0	0.0
PROPOSED PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	NA	5.0%	3.5%
POST DEVELOPMENT LOADS (NO BMPS)	3219.9	6.9	109.9
POST DEVELOPMENT LOADS (WITH BMPS)	3209.1	6.9	109.6
POST DEVELOPMENT LOAD REDUCTION DUE TO BMPS	10.8	0.0	0.2
POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE)	-146.1	-0.3	-4.9
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-4.4%	-4.3%	-4.2%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	-4.2%	-4.2%	-4.2%

Date (MM/DD/YYYY):	11/16/2016
Project Name:	Transition Station #2
Town/City:	Clarksville, Coos County
Impacted Surface Waters:	Upper Connecticut
Applicant:	Northern Pass Transmission, LLC.
DES File #:	

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-146.1
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-4.4%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	-4.2%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	0.3%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-4.5%

#### PRE-DEVELOPMENT

PRE-DEVELOP												
PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (Ibs/yr)	LOAD (WITH BMPS) (Ibs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-1	Pre-1	114.16	2.47	NA	TSS	NA		3308.8	3308.8	0.0	0.0%
PRE	Pre-2	Pre-2	0.12	0.12	NA	TSS	NA		46.4	46.4	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
		TOTAL	114.28	2.59				TOTAL	3355.2	3355.2	0.0	0.0%

Date (MM/DD/YYYY):	11/16/2016
Project Name:	Transition Station #2
Town/City:	Clarksville, Coos County
Impacted Surface Waters:	Upper Connecticut
Applicant:	Northern Pass Transmission, LLC.
DES File #:	

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-146.1
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-4.4%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	-4.2%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	0.3%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-4.5%

#### POST-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (Ibs/yr)	LOAD (WITH BMPS) (Ibs/yr)	LOAD REDUCTION DUE TO BMPS (Ibs/yr)	PERCENT REMOVAL
POST	Post-1A	Post-1	113.65	2.19	0.00	TSS	NA		3191.6	3191.6	0.0	0.0%
POST	Post-1B	Post-1	0.57	0.00	0.00	TSS	NA	Infiltration Basin (> 75ft from surface water)	11.9	1.2	10.8	90.0%
POST	Post-2	Post-2	0.06	0.04	0.00	TSS	NA		16.3	16.3	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
		TOTAL	114.29	2.23	0.00			TOTAL	3219.9	3209.1	10.8	0.3%

Date (MM/DD/YYYY):	11/16/2016
Project Name:	Transition Station #2
Town/City:	Clarksville, Coos County
Impacted Surface Waters:	Upper Connecticut
Applicant:	Northern Pass Transmission, LLC.
DES File #:	

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-0.3
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-4.3%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	-4.2%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	0.2%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-4.4%

#### PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (Ibs/yr)	LOAD (WITH BMPS) (Ibs/yr)	LOAD REDUCTION DUE TO BMPS (Ibs/yr)	PERCENT REMOVAL
PRE	Pre-1	Pre-1	114.16	2.47	NA	TP	NA		7.1	7.1	0.0	0.0%
PRE	Pre-2	Pre-2	0.12	0.12	NA	TP	NA		0.1	0.1	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
		TOTAL	114.28	2.59				TOTAL	7.2	7.2	0.0	0.0%

Date (MM/DD/YYYY):	11/16/2016
Project Name:	Transition Station #2
Town/City:	Clarksville, Coos County
Impacted Surface Waters:	Upper Connecticut
Applicant:	Northern Pass Transmission, LLC.
DES File #:	

#### POST-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (Ibs/yr)	LOAD (WITH BMPS) (Ibs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-1A	Post-1	113.65	2.19	0.00	ТР	5.0%		6.9	6.9	0.0	0.0%
POST	Post-1B	Post-1	0.57	0.00	0.00	ТР	5.0%	Infiltration Basin (> 75ft from surface water)	0.0	0.0	0.0	65.0%
POST	Post-2	Post-2	0.06	0.04	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	ТР	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	ТР	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	ТР	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	ТР	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	ТР	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
		TOTAL	114.29	2.23	0.00			TOTAL	6.9	6.9	0.0	0.2%

Date (MM/DD/YYYY):	11/16/2016
Project Name:	Transition Station #2
Town/City:	Clarksville, Coos County
Impacted Surface Waters:	Upper Connecticut
Applicant:	Northern Pass Transmission, LLC.
DES File #:	

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-4.9
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-4.2%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	-4.2%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	0.2%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-4.4%

#### PRE-DEVELOPMENT

PRE-DEVELOP		-			-	-					-	
PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (Ibs/yr)	LOAD (WITH BMPS) (Ibs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-1	Pre-1	114.16	2.47	NA	TN	NA		112.9	112.9	0.0	0.0%
PRE	Pre-2	Pre-2	0.12	0.12	NA	TN	NA		1.6	1.6	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
		TOTAL	114.28	2.59				TOTAL	114.5	114.5	0.0	0.0%

Date (MM/DD/YYYY):	11/16/2016
Project Name:	Transition Station #2
Town/City:	Clarksville, Coos County
Impacted Surface Waters:	Upper Connecticut
Applicant:	Northern Pass Transmission, LLC.
DES File #:	

#### POST-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (Ibs/yr)	LOAD (WITH BMPS) (Ibs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-1A	Post-1	113.65	2.19	0.00	TN	3.5%		108.9	108.9	0.0	0.0%
POST	Post-1B	Post-1	0.57	0.00	0.00	TN	3.5%	Infiltration Basin (> 75ft from surface water)	0.4	0.2	0.2	60.0%
POST	Post-2	Post-2	0.06	0.04	0.00	TN	3.5%		0.6	0.6	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
		TOTAL	114.29	2.23	0.00			TOTAL	109.9	109.6	0.2	0.2%

#### Waterbody Quality Assessment Report | WATERS | US EPA



http://ofmpub.epa.gov/waters10/attains_waterbody.control?p_au_id=NHRIV801010203-07&p_cycle=2008 Last updated on Friday, May 29, 2015

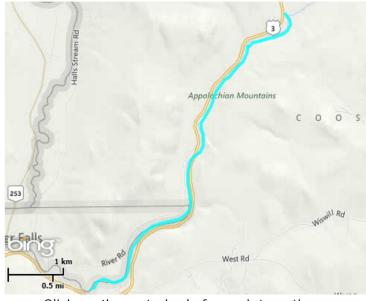
Watershed Assessment, Tracking & Environmental ResultS

You are here: EPA Home *Water *WATERS *Water Quality Assessment and TMDL Information *Waterbody Quality Assessment Report

#### Return to home page

#### On This Page

- <u>Water Quality</u>
   <u>Assessment</u>
   <u>Status</u>
- <u>Causes of</u>
   <u>Impairment</u>
   <u>Probable</u>
   <u>Sources</u>
- <u>Sources</u> <u>Contributing to</u> <u>Impairments</u> • <u>TMDLs That</u>
- <u>IMDLs Inat</u>
   <u>Apply to This</u>
   <u>Waterbody</u>
   <u>Provious Cause</u>
- <u>Previous Causes</u> of Impairment <u>Now Attaining</u> <u>All Uses</u>


#### **State:** New Hampshire Waterbody ID: NHRIV801010203-07 Location: 010801010203, Connecticut River, Unknown Fishery State Waterbody Type: River **EPA** Waterbody Type: Rivers and Streams Water Size: 4.17 Units: miles Watershed Name: Upper

Waterbody History Report

Connecticut

Data are also available for these years: 2010 2006 2004 2002

## 2008 Waterbody Report for Connecticut River



Click on the waterbody for an interactive map

#### Features

- About This Database
   (Integrated Report)
- Assessing Water Quality (Questions and Answers)
- Integrated Reporting Guidance
- Previous National Water Quality Reports
- EnviroMapper for Water
- AskWATERS
- EPA WATERS Homepage
- Exchange Network
- Assessment Database
- Statewide Statistical Surveys
- How's My Waterway Local
   Search tool
- Pollution Categories Summary Document
- Nitrogen and Phosphorus Pollution Data Access Tool (NPDAT)

#### Water Quality Assessment Status for Reporting Year 2008

#### The overall status of this waterbody is Impaired.

	Description of this table	
Designated Use	Designated Use Group	<u>Status</u>
Aquatic Life		Impaired

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) 108 5/29/2015

#### Waterbody Quality Assessment Report | WATERS | US EPA

Page	2	of	3
	_	~	-

	Fish, Shellfish, And Wildlife Protection And Propagation	
Drinking Water After Adequate Treatment	Public Water Supply	Good
Fish Consumption	Aquatic Life Harvesting	Impaired
Primary Contact Recreation	Recreation	Not Assessed
Secondary Contact Recreation	Recreation	Good
Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Not Assessed

#### **Causes of Impairment for Reporting Year 2008**

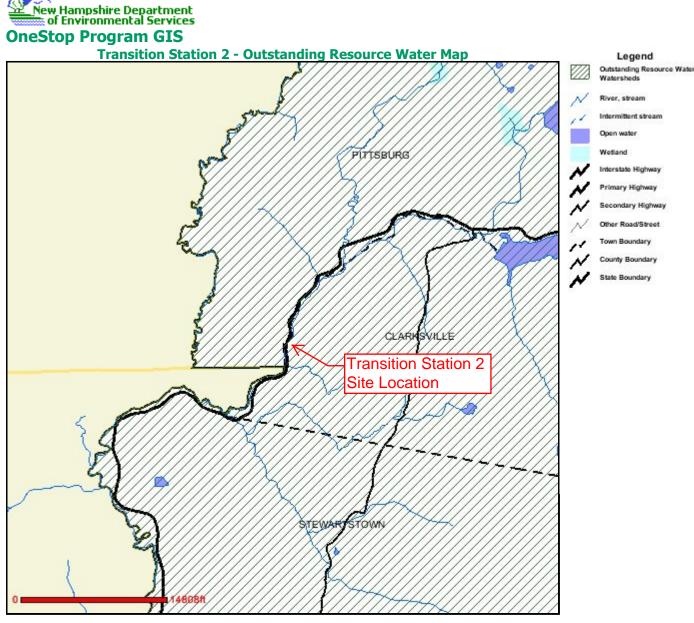
Description of this table							
<u>Cause of</u> <u>Impairment</u>	Cause of Impairment Group	Designated Use (s)	State TMDL Development Status				
Lead	Metals (other than Mercury)	Aquatic Life	TMDL needed				
Mercury	Mercury	Fish Consumption	TMDL completed				
рН	pH/Acidity/Caustic Conditions	Aquatic Life	TMDL needed				

#### Probable Sources Contributing to Impairment for Reporting Year 2008

Description of this table							
Probable Source	Probable Source Group	Cause(s) of Impairment					
Atmospheric Deposition - Toxics	Atmospheric Deposition	Mercury					
Source Unknown	Unknown	Lead; pH					

#### TMDLs That Apply to this waterbody

#### Description of this table


TMDL Document	TMDL	TMDL Pollutant	TMDL Pollutant	Cause(s) of Impairment
Name	Date	Description	Source Type	Addressed
<u>Ne Regional</u> Mercury Tmdl	Dec-20- 2007	Mercury	Nonpoint Source	Mercury

#### Previous Causes of Impairments Now Attaining All Uses

#### Description of this table

<u>Cause of</u> Impairment	<u>Cycles</u> Listed	<u>WOS</u> <u>Attainment</u> <u>Date</u>	WQS Attainment Reason	WOS Attainment Comments
Polychlorinated Biphenyls (PCBs)	2002, 2004, 2006	1500-30-2009	Applicable WQS attained, due to change in WQS.	

Transition Station 2 - Outstanding Resource Water Map



Map Scale = 1 : 188156 (1" = 3 miles or 15680 feet)

The information contained in the OneStop Program GIS is the best available according to the procedures and standards of each of the contributing programs and of the GIS. The different programs are regularly maintaining the information in their databases. As a result, the GIS may not always provide access to all existing information, and it may occasionally contain unintentional inaccuracies. The Department can not be responsible for the misuse or misinterpretation of the information presented by this system.



Map prepared 7/15/2015 9:07:00 AM





Burns & McDonnell New England Office 108 Leigus Road Wallingford, CT 06492 Phone: 203-284-8590 Fax: 203-284-3693 www.burnsmcd.com

Burns & McDonnell: Making our clients successful for more than 100 years