

Technical Memorandum

То:	Stephanie Labbe
	PAR Electrical Contractors
	60 Fuller Road
	Chicopee, MA 01020
From:	Balin Strickler
	Quanta Subsurface
	4308 N Barker Road
	Spokane Valley, WA 99027
Date:	November 10, 2016
Re:	Northern Pass – Underground HDD/Trenchless Geotechnical Study

Introduction

In accordance with our proposal dated April 12, 2016 and your authorization, we have completed a geotechnical drilling and a laboratory testing program for the Northern Pass Transmission line project in New Hampshire. The work was authorized in phases and completed under Par Electrical Contractors (PAR) job number of 29-6-1683 and 29-6-1684. The Northern Pass Transmission line project consists of construction of both overhead and underground transmission lines over much of New Hampshire, traversing from North to South. The underground portions of this alignment traverses approximately 60 miles of the proposed alignment. As part of the underground design, there are up to sixty trenchless underground crossings that require horizontal directional drilling (HDD) services in addition to thermal resistivity properties of the subsurface materials.

In order to complete the underground design at the HDD locations, Quanta Subsurface (QS) was contracted to perform a geotechnical field exploration and laboratory testing program at many of the locations to compliment the work that has been previously completed. The purpose of QS's geotechnical exploration and laboratory testing services for this phase of the project was to further characterize the subsurface materials at specific locations and to collect samples for thermal resistivity testing at specific depths on behalf of the HDD designer, Brierley Associates, contracted by PAR. QS performed the drilling and laboratory testing at the direction of Brierley Associates.

Figure 1 provides a map of the proposed route through New Hampshire. The area investigated included the middle section of underground construction as shown. The area of underground construction at the northern end of the project was not included in this investigation.

Scope of Work

The scope of work for this project generally includes:

- Review of the readily available aerial photographs and published geologic literature, including maps and reports pertaining to the project vicinity.
- Mark out the boring locations and notification of the local utility locating service prior to drilling.
- Drilling, logging, and sampling 81 borings to depths ranging from 35 to 75 feet below the existing ground surface. The boring logs and core photos are presented in Appendix A and B.
- Perform laboratory tests on selected samples obtained from the borings to evaluate index material properties and thermal resistivity values. The results of the index testing are in Appendix C and thermal resistivity testing are presented in Appendix D.
- Preparation of this memorandum presenting our findings of geotechnical investigation for this phase of the project.

Geotechnical Exploration and Laboratory Testing

QS's geotechnical field exploration program was conducted to evaluate the existing subsurface conditions and to collect samples to evaluate the index material and thermal resistivity properties of the subsurface materials at depths selected by Brierley Associated and PAR. Our evaluation included the drilling and logging of the subsurface materials as well as the collection of samples for laboratory testing. The exploration program was performed between May and September of 2016. SW Cole Exploration of Londonderry, New Hampshire and their subcontractor GeoSearch Environmental Contractors of Fitchburg, MA advanced 81 borings using either hollow stem or solid flight augers along the proposed underground alignment to depths ranging from 35 to 75 feet below the existing ground surface and performed Standard Penetration Tests (SPT), in accordance with ASTM D1586, at 5-foot intervals. An auto-hammer was used for the SPT sampling. When rock was encountered the boreholes were advanced using wet rotary wash methods with either a roller bit or double tube coring methods.

Permits were required from the New Hampshire Department of Transportation for all of the borings. Shoreland permits were required for select borings. One-call utility locates were utilized for the entire project and a private utility locator was employed by SW Cole Exploration in areas of heightened concern. Traffic control and police details were subcontracted by SW Cole Exploration to provide support during the drilling program.

The drilling program was conducted under the supervision of QS representatives. The subsurface materials encountered at each boring location were visually classified by QS personnel in the field in general accordance with the USCS soil classification system and the QS rock core logging procedure, generally in accordance with International Society of Rock Mechanics procedures. Soil samples were collected using glass jars or 6-inch stainless steel sleeves, capped and then bagged for storage to protect from moisture loss and material disturbance. Rock core was logged, boxed and photographed.

The following provides several important notes with respect to the presented logs.

- 1. The origin or genesis of the subsurface materials was not noted on the electronic logs provided in Appendix A.
- 2. Mud rotary methods were used and the boreholes were backfilled immediately with a bentonite/grout mixture due to all the boreholes being on the New Hampshire DOT right-of-way, groundwater elevation was interpreted and placed on the logs however it should be considered approximate and needs to be verified.
- 3. Due to poor ground conditions, steel casing was abandoned in the following boreholes. The borehole was grouted with the casing remaining in the borehole.
 - a. BH11-B, approximately 44 to 49 feet below ground surface.
 - b. BH47-B, approximately 4 to 65 feet below ground surface.

Soil and rock core samples from the investigation were selected by Brierley. Laboratory testing included grain size, moisture content, atterberg limits, rock strength, and rock abrasivity. Laboratory results are provided in Appendix B.

The thermal resistivity samples were selected based on preliminary HDD designs developed by Brierley. The samples were collected, packaged and shipped to the GeoTherm USA (GeoTherm) laboratory located in Livermore, California. Stainless steel sleeves were prioritized for testing. Laboratory results are provided in Appendix C.

Table 1 provides a summary of the boreholes, locations, depths (borehole, bedrock, and groundwater) and the thermal resistivity sample info and results. The table includes previous work completed by others at the request of PAR.

Geological Unit Descriptions

The following section describes the regional and local geology of the project area and descriptions of the surficial soil and bedrock units mapped along the alignment where the HDD underground investigation was conducted.

Regional Geology

The surficial geology of the White Mountains in New Hampshire is derived from the erosional and depositional processes of the continental and mountain glaciers of the Wisconsin Glacial Episode during the late Pleistocene Epoch. The dominant glacial soils that are found in this region are glacial till, glaciofluvial and glacio-lacustrine deposits. Younger post glacial deposits formed from the numerous rivers, streams and lakes that dominate the landscape. These include alluvium and stream terrace deposits.

Bedrock in the White Mountains are comprised of folded and faulted Paleozoic sedimentary and volcanic rocks that have been regionally metamorphosed and intruded by large and small bodies of plutonic rocks. The grade of metamorphism ranges from the chlorite zone at one extreme to the sillimanite zone at the other (Billings, 1980). The majority of the rocks mapped in

this region consist of granite, quartz diorite, schist, granofels/gneiss, and localized zones of felsic pegmatites.

Site Geology and Unit Descriptions

Organic Soil/Wetland Deposits

An approximate 2 foot to 6 foot layer of organic soil was encountered in several borings that were drilled away from the edge of the roadway. This unit consists of very loose to loose, dark brown to brown, Silty Sand and Sandy Silt with varying amounts of organics. Organic soils were also found underlying the fill in areas within the vicinity of existing wetlands.

Artificial Fill

Artificial fill has been placed within the existing roadways and is present in the majority of the borings advanced for this investigation. The approximate thickness of the fill ranged from 2 feet to upwards of 10 feet. This unit consists of loose to medium dense, brown to reddish brown, fine to medium grained, Silty Sand, Poorly Graded Sand with Silt, and Sandy Silt with varying amounts of gravel.

<u>Alluvium</u>

Alluvium is present at numerous locations along the alignment. It is primarily found proximal to existing rivers and streams as flood plain deposits. The thickness of the alluvium is variable with transitions to underlying units being gradual. Typically, this unit consists of very loose to dense, pale brown to olive gray to light brown, fine grained or fine to medium grained, Poorly Graded Sand with Silt, Silty Sand or Poorly Graded Sand with varying amounts of gravel.

Stream Terrace Deposits

The stream terrace deposits are mapped in the vicinity of existing streams and rivers on terraces cut into glacial deposits in the valleys. The approximate thickness of these units ranged from 3 feet to 20 feet. Typically, this unit consists of medium dense to very dense, moderate brown to olive brown to yellowish brown, Silty Sand with Gravel, Poorly Graded Sand with Silt and Gravel, Silty Gravel with Sand, or Poorly Graded Gravel with Sand. Cobbles and boulders were also present in varying amounts.

Glaciolacustrine Deposits

The glacio-lacustrine deposits are generally described as sand, gravel, silt and clay that were laid down during deglaciation of the region. Material from these sediments was derived mostly from within ice sheet and transported by meltwater and deposited as deltas into ponded water bodies (Koteff, 2009). The approximate thickness of these units was less than 50 feet. Typically, this unit consists of soft to stiff, loose to medium dense, gray to light olive gray, Sandy Silt and Silty Sand with varying amounts of clay and thin to varved bedding planes present.

Glaciofluvial Deposits

The glaciofluvial deposits are described as sands and gravels with minor amounts of silt and clay that were deposited within high energy meltwater channels draining into the valleys. The approximate thickness of these units was less than 50 feet. Typically, this unit consist of medium dense to very dense, light brown to grayish brown, Poorly Graded Sand with Gravel and Silt, Poorly Graded Gravel with Sand, or Silty Gravel with Sand with varying amounts of cobbles and boulders.

<u>Till</u>

The glacial till is described as light to dark gray, nonsorted to poorly sorted mixture of clay, silt sand, gravel, cobbles and boulders. Varying proportions of silt and sand form the matrix along with a variety of irregular shapes rock fragments. Most of the till deposits are found in the upland portions of the region and thicknesses can range from 20 feet to more than 100 feet (Hildreth, 2014). Typically, this unit consists of medium dense to very dense, gray to dark gray, Silty Sand with Gravel, Sandy Silt with Gravel, Silty Gravel with Sand, or Clayey Sand with Gravel with varying amounts of boulders.

Bedrock

The majority of the rocks mapped in this region consist of granite, quartz diorite, schist, granofels/gneiss, and localized zones of felsic pegmatites. All of these rock types were encountered within the project alignment. The weathering profile was typically fresh to slightly weathered, with occasional zones of highly weathered material at the contact with overburden soils. The rock strength ranges from medium strong to very strong and is largely dependent on weathering profiles. Numerous felsic dikes and sills were observed within many of the metamorphic units along with localized pegmatite zones.

References

Billings, Marland P., 1980, "The Geology of New Hampshire Part II Bedrock Geology".

Hildreth, Carol T., 2014, Surficial geologic map of the Woodstock 7.5 minute quadrangle, New Hampshire: New Geologic Survey, scale 1:24,000.

Koteff, Carl, 2009, Surficial geologic map of the Webster 7.5 minute quadrangle, New Hampshire: New Hampshire Geologic Survey, scale 1:24,000.

Closure

We appreciate the opportunity to assist PAR with this geotechnical investigation. If you have any questions, please contact Balin Strickler at 509.789.7747 or bstrickler@quantasubsurface.com

Attachments

Table 1 – Geotechnical Summary Table Figure 1 – Alignment Overview Map

Appendices

Appendix A – Exploratory Test Boring Logs

Appendix B – Core Photograph Logs

Appendix B – Index Testing Results

Appendix C – Thermal Resistivity Test Results

Alignment Name	Geotech Company	Borehole ID	Date Drilled	Borehole	Coordinates	Borehole Depth (ft)	Depth to Rock (ft)	Depth to Groudwater (ft)	GeoTherm Report Date	Sample ID	Sample Type	Sample Depth (ft)	Material Type	Lab Det Thermal I (°C-ci	ermined Resistivity m/W)	Moisture Content (%)	Dry Density (pcf)	Notes
				Latitude	Longitude									Wet	Dry			
North (Trenchless)	Terracon	B-2A	1/15/2016	44.245206	-71.762253	17	4	Not Observed	2/17/2016	B-2A	Bulk	6' - 9' 8' 10'	ROCK	64	210	11	110	
North (Trenchless)	Terracon	B-4A B-5	1/15/2016	44.193342	-71.756322	17		4	2/17/2016	B-4A B-5	Bulk	<u>8 - 10</u> 8' - 10'	SOIL (SP)	35	105	9	119	
North (Trenchless)	Terracon	B-5A	1/15/2016	44.168781	-71.764208	17		16	2/17/2016	B-5A	Bulk	8' - 10'	SOIL (ML)	39	147	12	118	
North (Trenchless)	Terracon	B-6	1/15/2016	44.158589	-71.777301	17		5	2/17/2016	B-6	Bulk	8' - 10'	SOIL (SM)	34	127	13	124	
North (Trenchless)	Terracon	B-6A	1/15/2016	44.1475	-71.789025	17		8	2/17/2016	B-6A	Bulk	8' - 10'	SOIL (SM)	36	137	14	120	
North (Trenchless)	Terracon	B-7 B-7A	1/12/2016	44.134031	-71 799756	15.8	14.5	9	2/17/2016	B-7 B-7A	Bulk	8 - 10 8' - 10'	SOIL (SM)	44	131	10	104	
North (Trenchless)	Terracon	B-8	1/12/2016	44.113134	-71.813851	15.8	15.8	6	2/17/2016	B-8	Bulk	8' - 10'	SOIL (GM)	58	253	23	101	
North (Trenchless)	Terracon	B-8A	1/12/2016	44.103156	-71.821477	17		12	2/17/2016	B-8A	Bulk	8' - 10'	SOIL (SP)	68	196	4	115	
North (Trenchless)	Terracon	B-9	1/8/2016	44.093082	-71.827365	17		8	2/17/2016	B-9	Bulk	10' - 14'	SOIL (GW/GM)	40	141	12	122	
North (Trenchless)	Terracon	B-9A B-10	1/8/2016	44.08395	-71.81225	1/		12	2/17/2016	B-9A B-10	Bulk	10 [°] - 14 [°] 8' - 11'	SOIL (SP/SM)	52	209	12	118	
North (Trenchless)	Terracon	B-10A	1/8/2016	44.062669	-71.792333	10.7		9	2/17/2016	B-10A	Bulk	8' - 10'	SOIL (GP/GM)	51	191	16	112	
North (Trenchless)	Terracon	B-11	1/7/2016	44.047567	-71.79316	15		Not Observed	2/17/2016	B-11	Bulk	8' - 10'	SOIL (SM)	68	174	6	116	
North (Trenchless)	Terracon	B-11A	1/7/2016	44.037327	-71.785886	15.1	13.5	Not Observed	2/17/2016	B-11A	Bulk	9' - 12'	SOIL (SM)	45	168	14	116	
North (Trenchless)	Terracon	B-12	1/6/2016	44.032376	-71.768103	15.3	7	Not Observed	2/17/2016	B-12	Bulk	6'- 10'	SOIL (SP/SM)	48	215	23	104	
North (Trenchless)	Terracon	B-12A B-12A	1/8/2016	44.024317	-71.752317	17	7	Not Observed	2/17/2016	B-12A B-12A	Core	10-14	ROCK	43	68	<1	120	
North (Trenchless)	Terracon	<u>B-13A</u>	1/6/2016	44.028594	-71.719139	14	8	4	2/17/2016	<u>B-13A</u>	Core	<u>11'</u> - 12'	ROCK	53	71	<1	169	
North (Trenchless)	Terracon	B-14	1/6/2016	44.031538	-71.701313	17		Not Observed	2/17/2016	B-14	Bulk	8' - 10'	SOIL	45	126	11	131	
BB (Trenchless)	Terracon	B-32B	1/7/2016	44.056789	-71.794133	66	14	9	2/17/2016	B-32B	Bulk	10' - 14'	SOIL	46	173	14	116	
BB (Trenchless)	Terracon	В-32В В-32В	1/8/2016	44.056789 44.056789	-/1./94133 -71 794133	00 66	14	9 9	2/17/2016	В-32В R-32R	Core	20.5 - 21' 29' - 30'	ROCK	48 50	00 65	<1	1// 179	
BB (Trenchless)	Terracon	B-32B B-32B	1/10/2016	44.056789	-71.794133	66	14	9	2/17/2016	B-32B B-32B	Core	41' - 42'	ROCK	47	73	<1	179	
BB (Trenchless)	Terracon	B-32B	1/11/2016	44.056789	-71.794133	66	14	9	2/17/2016	B-32B	Core	50' - 51'	ROCK	49	71	<1	174	
BB (Trenchless)	Terracon	B-32B	1/12/2016	44.056789	-71.794133	66	14	9	2/17/2016	B-32B	Core	60' - 61'	ROCK	42	66	<1	177	
BB (Trenchless)	Terracon	B-38A	1/5/2016	44.031712	-71.694427	68 68	34.5	5.5	2/17/2016	B-38A	Bulk	<u>9' - 11'</u> 20' - 22'	SOIL	57	189	11	113	
BB (Trenchless)	Terracon	B-38A B-38A	1/7/2016	44.031712	-71.694427	68	34.5	5.5	2/17/2016	B-38A B-38A	Bulk	30' - 34'	SOIL	51	170	9	119	
BB (Trenchless)	Terracon	B-38A	1/8/2016	44.031712	-71.694427	68	34.5	5.5	2/17/2016	B-38A	Core	40' - 41'	ROCK	45	60	<1	165	
BB (Trenchless)	Terracon	B-38A	1/9/2016	44.031712	-71.694427	68	34.5	5.5	2/17/2016	B-38A	Core	49' - 50'	ROCK	43	59	<1	164	
BB (Trenchless)	Terracon	B-38A	1/10/2016	44.031712	-71.694427	68 (5	34.5	5.5	2/17/2016	B-38A	Core	62' - 62.5'	ROCK	32	78	1	164	
BB (Trenchless)	Terracon	B-38B B-38B	1/5/2016	44.03136	-71.692443	65	38.5	6	2/17/2016	B-38B B-38B	Bulk	20' - 24'	SOIL	45 49	147	9	123	
BB (Trenchless)	Terracon	B-38B	1/7/2016	44.03136	-71.692443	65	38.5	6	2/17/2016	B-38B	Bulk	35' - 38.5'	SOIL	44	130	14	118	
BB (Trenchless)	Terracon	B-38B	1/8/2016	44.03136	-71.692443	65	38.5	6	2/17/2016	B-38B	Core	40' - 41'	ROCK	41	68	<1	163	
BB (Trenchless)	Terracon	B-38B	1/9/2016	44.03136	-71.692443	65	38.5	6	2/17/2016	B-38B	Core	50' - 51'	ROCK	54	70	<1	166	
BB (Trenchless)	Terracon	B-38B B-38C	1/10/2016	44.03136	-71.692443	65	38.5	6	2/17/2016	B-38B B-38C	Core	60' - 61'	ROCK	42	171	1 13	157	
BB (Trenchless)	Terracon	B-38C B-38C	1/12/2016	44.0313	-71.690878	65	45.8	6	2/17/2016	B-38C B-38C	Bulk	20' - 25'	SOIL	60	171	10	120	
BB (Trenchless)	Terracon	B-38C	1/14/2016	44.0313	-71.690878	65	45.8	6	2/17/2016	B-38C	Bulk	30' - 35'	SOIL	54	195	20	109	
BB (Trenchless)	Terracon	B-38C	1/15/2016	44.0313	-71.690878	65	45.8	6	2/17/2016	B-38C	Core	48' - 49'	ROCK	46	66	<1	170	
BB (Trenchless)	Terracon	B-38C	1/16/2016	44.0313	-71.690878	65	45.8	6	2/17/2016	B-38C	Core	53' - 54'	ROCK	41	72 81	1	170	
BB (Trenchless)	Terracon	B-39B	12/28/2015	44.0313	-71.690878	63 64	43.8	5	2/17/2016	B-39B	Bulk	05 - 04 10' - 14'	SOIL	56	214	14	172	
BB (Trenchless)	Terracon	B-39B	12/29/2015	44.024453	-71.685138	64	19	5	2/17/2016	B-39B	Core	22' - 23'	ROCK	45	79	<1	171	
BB (Trenchless)	Terracon	B-39B	12/30/2015	44.024453	-71.685138	64	19	5	2/17/2016	B-39B	Core	29' - 30'	ROCK	49	63	<1	169	
BB (Trenchless)	Terracon	B-39B	12/31/2015	44.024453	-71.685138	64	19	5	2/17/2016	B-39B	Core	39' - 40'	ROCK	39	56	<1	166	
BB (Trenchless)	Terracon	B-39B B-39B	1/1/2016	44.024453	-71.685138	64 64	19	5	2/17/2016	B-39B B-39B	Core - R/	49' - 50' 59' - 60'	ROCK	45	67 58	<1	164	
WBR3	H&A	B-49A	12/14/2015	43.772011	-71.685088	66	1)	47.7	1/4/2016	B-39B B-49A	S4/5	14'-16', 19'-21'	SOIL (SP)	58	263	20	110	
WBR3	H&A	B-49A	12/16/2015	43.772011	-71.685088	66		47.7	1/4/2016	B-49A	S8/9	34'-36', 39'-41'	SOIL (SP)	60	269	20	110	
WBR3	H&A	BH-049B	12/15/2015	43.770482	-71.685248	66	<u> </u>	39	1/6/2016	BH-049B	S5	19'-21'	SOIL (SP)	53	258	23	110	
WBR3 WRR3	Н&А Н <i>&</i> г Δ	ВН-049В ВН-050 л	12/16/2015	43.770482	-/1.685248	66 67		<u> </u>	1/6/2016	BH-049B BH-050A	<u>\$9</u> \$5	39'-41' 20'-22'	SOIL (SP)	54 52	266 137	23 Q	110	
WBR3	H&A	BH-050A BH-050A	12/19/2015	43.769195	-71.685629	67		16.5	1/6/2016	BH-050A BH-050A	S8 & S9	35'-37' & 40'-42'	SOIL (SP)	49	245	17	120	
WBR3	H&A	BH-050B	12/16/2015	43.767829	-71.686364	65		8.9	1/6/2016	BH-050B	S5	20'-22'	SOIL (SP)	57	307	28	110	
WBR3	H&A	BH-050B	12/17/2015	43.767829	-71.686364	65		8.9	1/6/2016	BH-050B	S11	50'-52'	SOIL (SP/SM)	55	324	25	115	
WBR3 WBP3	H&A H&A	BH-050C	12/14/2015	43.767187	-71.686835	65 65	45.5	9.2	1/6/2016	BH-050C	S5 & S6	20'-22' & 25'-27'	SOIL (SP)	62	432	40	109	
Route 3 Crossing	H&A	НА-2	11/24/2013	45.018367	-71.464639	41	45.5	9.2	12/19/2013	НА-2	<u>S3</u>	9'-11'	SOIL (SM)	35	98	10	109	
Route 3 Crossing	H&A	HA-2	11/24/2013	45.018367	-71.464639	41		18	12/19/2013	HA-2	S5	19'-21'	SOIL (SP/SM)	34	93	10	127	
Route 3 Crossing	H&A	HA-2	11/24/2013	45.018367	-71.464639	41		18	12/19/2013	HA-2	S7	29'-29.5'	SOIL (SP/SM)	37	95	11	125	
Route 3 Crossing	H&A	HA-2	11/24/2013	45.018367	-71.464639	41	20	18	12/19/2013	HA-2	\$9 \$2	39'-39.2'	SOIL (GP)	35	88	8	130	
Route 3 Crossing	нал нал	HA-3 (OW)	11/18/2013	45.019393	-71,464572	50	39	22.1	12/19/2013	HA-3 (OW)	55 & S6	9-11 19'-23'	SOIL (SIVI)	40	125	10	124	
Route 3 Crossing	H&A	HA-3 (OW)	11/18/2013	45.019393	-71.464572	50	39	22.7	12/19/2013	HA-3 (OW)	<u>S8</u>	29'-31'	SOIL (SM)	43	143	15	113	
Route 3 Crossing	H&A	HA-3 (OW)	11/18/2013	45.019393	-71.464572	50	39	22.7	12/19/2013	HA-3 (OW)	S10	39'-41'	SOIL (SM)	40	123	11	125	
Route 3 Crossing	H&A	HA-3(OW)	11/18/2013	45.019393	-71.464572	50	39	22.7	12/19/2013	HA-3(OW)	S12	49'-49.3'	SOIL (SM)	39	107	9	128	
Route 3 Crossing	пал Н&А	HA-3 (OW)	11/18/2013	45.019393	-/1.404572	50	39	22.7	12/19/2013	HA-3 (OW)	C2 C3	63'-63 5'	ROCK	33	73 65	0.8	107	
Route 3 Crossing	H&A	HA-3 (OW)	11/18/2013	45.019393	-71.464572	50	39	22.7	12/19/2013	HA-3 (OW)	C4	<u>69</u> '-70'	ROCK	37	64	0.5	179	
Route 3 Crossing	H&A	HA-3 (OW)	11/18/2013	45.019393	-71.464572	50	39	22.7	12/19/2013	HA-3 (OW)	C7	80'-80.6'	ROCK	36	69	0.5	176	
Route 3 Crossing	H&A	HA-3 (OW)	11/18/2013	45.019393	-71.464572	50	39	22.7	12/19/2013	HA-3 (OW)	C8	89'-89.5'	ROCK	35	67	0.5	176	
Route 3 Crossing	H&A	НА-5	12/4/2013	45.021646	-71.463937	80	44.8	9	12/31/2013	HA-5	S5	19'-22'	SOIL (GP)	33	90	8	129	

Alignment Name	Geotech Company	Borehole ID	Date Drilled	Borehole	Coordinates	Borehole Depth (ft)	Depth to Rock (ft)	Depth to Groudwater (ft)	GeoTherm Report Date	Sample ID	Sample Type	Sample Depth (ft)	Material Type	Lab Det Thermal I (°C-ci	ermined Resistivity m/W)	Moisture Content (%)	Dry Density (pcf)	Notes
				Latitude	Longitude									Wet	Dry	_		
Route 3 Crossing	H&A	HA-5	12/4/2013	45.021646	-71.463937	80	44.8	9	12/31/2013	HA-5	\$7 \$0	29'-29.5'	SOIL (SP)	38	101	9	129	
Route 3 Crossing	H&A	HA-5 C-2	12/4/2013	45.021646	-71.463937	00)	12/31/2013	HA-5 C-2	C2	51.3'-52'	ROCK	36	67	0.4	119	
Route 3 Crossing	H&A	HA-5 C-3		45.021646	-71.463937				12/31/2013	HA-5 C-3	C4	60'-60.5'	ROCK	34	72	0.4	179	
Route 3 Crossing	H&A	HA-5 C-5		45.021646	-71.463937				12/31/2013	HA-5 C-5	C6	70.3'-71'	ROCK	33	68	0.7	181	
Route 3 Crossing	H&A	HA-5 C-7	0/14/2016	45.021646	-71.463937	55	25	0	12/31/2013	HA-5 C-7	C7	79.1'-79.5'	ROCK	35	71	1.7	179	
Northern Pass	Quanta Subsurface	BH-10A BH-10A	9/14/2016	44.25831	-/1./5/35	55	25	8	10/26/2016	83 RC 1	Sleeve	15	Soll (SW) Rock	65 44	60	/	126	
Northern Pass	Quanta Subsurface	BH-10B	8/25/2016	44.25834	-71.75711	34.5	13.5	9	10/26/2016	S2	sleeve	10	Soil (SM)	46	131	11	133	
Northern Pass	Quanta Subsurface	BH-10B	8/26/2016	44.25834	-71.75711	34.5	13.5	9	10/11/2016	RC 1	Core	27.5	Rock	40	67	< 1	163	
Northern Pass	Quanta Subsurface	BH-11A	8/25/2016	44.246844	-71.762787	55.5		Not Observed	10/26/2016	S3	sleeve	14	Soil (SM)	42	120	8	136	
Northern Pass	Quanta Subsurface	BH-11A	8/26/2016	44.246844	-71.762787	55.5	45	Not Observed	10/26/2016	<u>S6</u>	sleeve	29	Soil (ML)	59 59	142	12	117	
Northern Pass	Quanta Subsurface	BH-11B BH-11B	8/24/2016	44.246276	-71.762695	49	45	Not Observed	10/26/2016	<u> </u>	sleeve	24	Soil (SC)	58 47	167	15	123	
Northern Pass	Quanta Subsurface	BH-12A	8/25/2016	44.23011	-71.7542	52.5	44.5	7.5	10/26/2016		sleeve	24	Soil (SM)	56	331	23	102	
Northern Pass	Quanta Subsurface	BH-12A	8/26/2016	44.23011	-71.7542	52.5	44.5	7.5	10/26/2016	S 7	sleeve	35	Soil (SP)	51	244	23	106	
Northern Pass	Quanta Subsurface	BH-12B(A)	9/19/2016	44.2295	-71.75355	65	49.5	8	10/26/2016	S3	sleeve	15	Soil (SW)	107	386	7	93	
Northern Pass	Quanta Subsurface	BH-12B(A)	8/25/2016	44.22956	-71.75351	65	49.5	8	10/26/2016	<u>S7</u>	sleeve	35	Soil (ML)	61	325	35	96	
Northern Pass	Quanta Subsurface	BH-13A	8/30/2016	44.22727	-71.748035	55.5		10	10/26/2016	\$3 \$7	sleeve	20	Soil (SM)	55	341	27	100	
Northern Pass	Quanta Subsurface	BH-13A BH-13B	8/25/2016	44.22727	-71.748033	55.5 66.5		10	10/26/2016	<u> </u>	sleeve		Soil (SM)	38	323 149	24	104	
Northern Pass	Quanta Subsurface	BH-13B	8/26/2016	44.226402	-71.748031	66.5		8	10/26/2016	\$3 \$3	sleeve	35.5	Soil (SP)	40	161	30	114	
Northern Pass	Quanta Subsurface	BH-14A	8/18/2016	44.188953	-71.749505	55	52	Not Observed	10/26/2016	S4	sleeve	19	Soil (SP)	58	_205	20	108	
Northern Pass	Quanta Subsurface	BH-14A	8/19/2016	44.188953	-71.749505	55	52	Not Observed	10/26/2016	S5	sleeve	24	Soil (GW)	54	133	8	123	
Northern Pass	Quanta Subsurface	BH-14B	8/19/2016	44.188386	-71.74947	68	58.5	Not Observed	10/26/2016	<u>S3</u>	sleeve	14	Soil (GW)	48	115	10	130	
Northern Pass	Quanta Subsurface	BH-14B	8/20/2016	44.188386	-71.74947	<u>68</u>	58.5	Not Observed	10/26/2016	<u>S5</u>	sleeve	24	Soil (SP)	50	196	20	109	
Northern Pass	Quanta Subsurface	BH-15A BH-15A	8/22/2016	44.176802	-71.759432	54	43.5	7	10/26/2016	<u> </u>	sleeve	4	Soil (SM)	53	270	19	110	
Northern Pass	Quanta Subsurface	BH-15B	8/22/2016	44.175619	-71.760083	65	+3.5	9	10/26/2016	S1	sleeve	4	Soil (SW)	58	377	20	98	
Northern Pass	Quanta Subsurface	BH-15B	8/23/2016	44.175619	-71.760083	65		9	10/26/2016	S8	sleeve	34	Soil (SP)	56	258	24	104	
Northern Pass	Quanta Subsurface	BH-16A	8/12/2016	44.170527	-71.763182	56		15	10/26/2016	S3	sleeve	15	Soil (CL)	78	231	18	109	
Northern Pass	Quanta Subsurface	BH-16A	8/13/2016	44.170527	-71.763182	56	10.5	15	10/26/2016	<u>S8</u>	sleeve	40.5	Soil (SC-SM)	48	366	25	101	
Northern Pass	Quanta Subsurface	BH-16B	8/11/2016	44.16875	-71.76424	65	43.5	16	10/26/2016	S6	sleeve	29	Soil (ML)	68	288	24	100	
Northern Pass	Quanta Subsurface	BH-10D BH-17A	8/12/2016	44.10873	-71.76424	59.5	43.3	10	10/26/2016		sleeve		Soil (ML)	04 65	193	13	104	
Northern Pass	Quanta Subsurface	BH-17A	8/25/2016	44 163945	-71 768159	59.5		14	10/26/2016	<u> </u>	sleeve	45.5	Boulder	52	119	9	132	
Northern Pass	Quanta Subsurface	BH-17B	8/24/2016	44.162901	-71.769364	65		Not Observed	10/24/2016	S5	Sleeve	24	Soil (SM)	42	145	10	132	
Northern Pass	Quanta Subsurface	BH-17B	8/25/2016	44.162901	-71.769364	65		Not Observed	10/24/2016	S8	Sleeve	39	Soil (SW)	39	177	15	117	
Northern Pass	Quanta Subsurface	BH-18A	8/22/2016	44.160754	-71.772223	60	42	5	10/24/2016	S5	Sleeve	25.5	Soil (GM)	38	113	10	132	
Northern Pass	Quanta Subsurface	BH-18A	8/23/2016	44.160754	-71.772223	60	42	5	10/24/2016	<u>S7</u>	Sleeve	34.5	Soil (SM/GM)	52	184	19	110	
Northern Pass	Quanta Subsurface	BH-18B	8/1//2016	44.160278	-/1.//3119	65	38.5	8	10/24/2016	S8 PC 1	Sleeve	<u> </u>	Soil (SM)	48	191 66	20	112	
Northern Pass	Quanta Subsurface	BH-19A	8/16/2016	44.159863	-71.774448	64.5	34	14	10/24/2016	<u>S3</u>	Sleeve	15	Soil (SM)	41	209	24	100	
Northern Pass	Quanta Subsurface	BH-19A	8/17/2016	44.159863	-71.774448	64.5	34	14	10/11/2016	RC 1	Core	41.2	Rock	42	63	< 1	160	
Northern Pass	Quanta Subsurface	BH-19B	8/16/2016	44.159021	-71.776425	65	40	5	11/3/2016	S2	sleeve	9	Soil (SM)	74	274	6	109	
Northern Pass	Quanta Subsurface	BH-19B	8/17/2016	44.159021	-71.776425	65	40	5	10/24/2016	S6	Sleeve	30	Soil (SM)	44	249	23	90	
Northern Pass	Quanta Subsurface	BH-19C	8/16/2016	44.158117	-/1.//8291	55.5		6	10/24/2016	<u> </u>	Sleeve	19	Soil (CL)	51 30	129	15	119	
Northern Pass	Quanta Subsurface	BH-20A	8/15/2016	44.148089	-71.788438	65	3.5	4	10/11/2016	RC 2	Core	17	Rock	36	69	< 1	164	
Northern Pass	Quanta Subsurface	BH-20A	8/15/2016	44.148089	-71.788438	65	3.5	4	10/11/2016	RC 6	Core	35.8	Rock	35	66	< 1	166	
Northern Pass	Quanta Subsurface	BH-20B	8/15/2016	44.146662	-71.789704	64.5	43.5	7	10/24/2016	S5	Sleeve	24	Soil (ML)	57	231	20	108	
Northern Pass	Quanta Subsurface	BH-20B	8/16/2016	44.146662	-71.789704	64.5	43.5	7	10/24/2016	<u>S8</u>	Sleeve	39	Soil (SM)	45	168	16	119	
Northern Pass	Quanta Subsurface	BH-21A	8/8/2016	44.134289	-/1./85108	60		Not Observed	10/24/2016	\$5 \$0	Sleeve	24	Soil (SW)	45	182	10	129	
Northern Pass	Quanta Subsurface	BH-21A BH-21B	8/9/2016	44.134289	-71.785373	60.5		Not Observed	10/24/2016		Sleeve	14	Soil (SP)		128	25	101	
Northern Pass	Quanta Subsurface	BH-21B BH-21B	8/9/2016	44.133542	-71.785373	60.5		Not Observed	10/24/2016	S3	Sleeve	39	Soil (SC)	55	192	22	107	
Northern Pass	Quanta Subsurface	BH-22A	8/8/2016	44.132478	-71.786794	60.5		4	10/24/2016	S6	Sleeve	29	Soil (SC)	61	247	20	91	
Northern Pass	Quanta Subsurface	BH-22A	8/9/2016	44.132478	-71.786794	60.5		4	10/24/2016	S9	Sleeve	44	Soil (SM)	48	152	14	124	
Northern Pass	Quanta Subsurface	BH-22B	8/9/2016	44.131465	-71.788498	60.5		8	10/24/2016	<u>\$5</u>	Sleeve	24	Soil (SM)	46	229	21	98	
Northern Pass	Quanta Subsurface	BH-22B BH-22C	8/10/2016	44.131465	-/1./88498	60.5		8	10/24/2016	<u> </u>	Sleeve	39	Soil (ML)		206	23	92	
Northern Pass	Quanta Subsurface	BH-22C BH-22C	8/10/2016	44.130473	-71.79014	61		19	10/24/2016	<u> </u>	Sleeve	45	Soil (SC/SM)	37	115	17	117	
Northern Pass	Quanta Subsurface	BH-23A	8/10/2016	44.121873	-71.80201	65	13	Not Observed	10/24/2016	S2	Sleeve	10	Soil (GM)	46	141	12	124	
Northern Pass	Quanta Subsurface	BH-23B	8/10/2016	44.121202	-71.802866	50	21	Not Observed	10/24/2016	<u>S1</u>	Sleeve	4	Soil (SM)	54	167	8	115	
Northern Pass	Quanta Subsurface	BH-23B	8/11/2016	44.121202	-71.802866	50	21	Not Observed	10/24/2016	S4	Sleeve	19	Soil (SM)	49	180	12	112	
Northern Pass	Quanta Subsurface	BH-23B	8/11/2016	44.121873	-71.80201	50	21	Not Observed	11/9/2016	<u>\$9</u>	Core	44	Rock	44 20	63	<1	173	
Northern Pass	Quanta Subsurface	вп-24А ВН-24А	8/6/2016	44.080709	-/1.8048/ _71 80487	59.1	52.5	0 8	10/21/2016	53 59	Sleeve	14 44	Soil (SW)	51	550 167	23	101	
Northern Pass	Quanta Subsurface	BH-24B	8/5/2016	44.07939	-71.8028	60	32.3	Not Observed	10/21/2016	\$3 \$3	Sleeve	14	Soil (SP)	44	184	22	106	
Northern Pass	Quanta Subsurface	BH-24B	8/6/2016	44.07939	-71.8028	60	32	Not Observed	10/21/2016	<u>S6</u>	Sleeve	29	Soil (SP)	48	217	24	100	
Northern Pass	Quanta Subsurface	BH-25A	8/4/2016	44.077212	-71.796636	64.5	61.5	Not Observed	10/26/2016	S2	sleeve	9.5	Soil (SM)	48	151	11	121	
Northern Pass	Quanta Subsurface	BH-25A	8/5/2016	44.077212	-71.796636	64.5	61.5	Not Observed	10/21/2016	<u>S7</u>	Sleeve	34	Soil (ML)	63	292	26	98	
Northern Pass	Quanta Subsurface	ВН-25В ВН 25Р	8/4/2016	44.076661	-/1./95868	59.4		Not Observed	10/21/2016	<u>S4</u>	Sleeve	19	Soil (SW)	49 50	210	11	136	
Northern Pass	Quanta Subsurface	вп-23в ВН-26А	8/9/2016	44.075701	-71,795008	59.4 65	58.5	14	10/21/2016	57 	Sleeve	54 14	Soil (ML) Soil (GW)		94	7	97	
Northern Pass	Quanta Subsurface	BH-26A	8/10/2016	44.075701	-71.795224	65	58.5	14	10/21/2016	<u>S7</u>	Sleeve	34	Soil (SP)	41	245	29	<u>9</u> 6	

Alignment Name	Geotech Company	Borehole ID	Date Drilled	Borehole	· Coordinates	Borehole Depth (ft)	Depth to Rock (ft)	Depth to Groudwater (ft)	GeoTherm Report Date	Sample ID	Sample Type	Sample Depth (ft)	Material Type	Lab Det Thermal I (°C-cı	ermined Resistivity n/W)	Moisture Content (%)	Dry Density (pcf)	Notes
				Latitude	Longitude									Wet	Dry			
Northern Pass	Quanta Subsurface	BH-26B	8/9/2016	44.074412	-71.794962	56		9.5	10/21/2016	S3	Sleeve	15	Soil (SC)	55	189	21	109	
Northern Pass	Quanta Subsurface	вн-206 ВН-27А	8/3/2016	44.071945	-71.794962	60.5		9.5 21	10/21/2016	S4	Sleeve	<u></u>	Soil (SM)	42	 98	10	130	
Northern Pass	Quanta Subsurface	BH-27A	8/4/2016	44.071945	-71.79349	60.5		21	10/21/2016	S8	Sleeve	39	Soil (SW)	53	227	10	127	
Northern Pass	Quanta Subsurface	BH-27B	8/3/2016	44.070541	-71.79307	64.5		Not Observed	10/21/2016	S4	Sleeve	19	Soil (SM)	50	138	13	122	
Northern Pass	Quanta Subsurface	BH-27B BH 28A	8/4/2016	44.070541	-71.79307	64.5	12.5	Not Observed	10/21/2016	<u>S8</u>	Sleeve	39	Soil (SP)	62 48	189	16	117	
Northern Pass	Quanta Subsurface	BH-28A BH-28A	8/2/2016	44.064102	-71.791791	55.4	12.5	13	10/11/2016	RC 5	Core	39.7	Rock	38	66	<1	157	
Northern Pass	Quanta Subsurface	BH-28B	8/9/2016	44.0634	-71.792078	64.8	13	12	10/11/2016	RC 1	Core	21.8	Rock	30	62	< 1	157	
Northern Pass	Quanta Subsurface	BH-28B	8/9/2016	44.0634	-71.792078	64.8	13	12	10/11/2016	RC 7	Core	41	Rock	32	71	< 1	155	
Northern Pass	Quanta Subsurface	BH-29A BH-29A	8/1/2016	44.062078	-71.792366	55	5.2	3	10/11/2016	RC 4	Core	18	Rock	37	73	< 1	162	
Northern Pass	Quanta Subsurface	BH-29A BH-29B	7/30/2016	44.06086	-71.792500	65	4.5	5	10/11/2016	RC 7	Core	20	Rock	39	69	<1	163	
Northern Pass	Quanta Subsurface	BH-29B	7/30/2016	44.06086	-71.79262	65	4.5	5	10/11/2016	RC 6	Core	36	Rock	40	63	< 1	163	
Northern Pass	Quanta Subsurface	BH-30A	8/1/2016	44.05728	-71.79368	75.3	11.5	Not Observed	10/11/2016	RC 4	Core	23	Rock	32	60	< 1	168	
Northern Pass	Quanta Subsurface	BH-30A BH-31A	8/1/2016	44.05728	-/1./9368	75.3	85	Not Observed	10/11/2016	RC 9 RC 3	Core	<u> </u>	Rock	36	59 61	< 1	165	
Northern Pass	Quanta Subsurface	BH-31A BH-31A	7/28/2016	44.05224	-71.79299	75	8.5	Not Observed	10/11/2016	RC 11	Core	54	Rock	46	65	<1	165	
Northern Pass	Quanta Subsurface	BH-31B	7/29/2016	44.05091	-71.79307	70	33	Not Observed	10/21/2016	S5	Sleeve	24	Soil (SP)	40	151	21	117	
Northern Pass	Quanta Subsurface	BH-31B	7/30/2016	44.05091	-71.79307	70	33	Not Observed	10/11/2016	RC 4	Core	52.7	Rock	35	66	< 1	162	
Northern Pass	Quanta Subsurface	BH-32A BH-32A	7/28/2016	44.04594	-/1./9316	65	9	Not Observed	10/11/2016	RC / RC 12	Core	<u> </u>	ROCK	41	62 69	<1	166	
Northern Pass	Quanta Subsurface	BH-32B	7/27/2016	44.04503	-71.79238	65.8	7.5	Not Observed	10/11/2016	RC 4	Core	26	Rock	38	65	<1	164	
Northern Pass	Quanta Subsurface	BH-32B	7/28/2016	44.04503	-71.79238	65.8	7.5	Not Observed	10/11/2016	RC 12	Core	63.7	Rock	50	72	< 1	162	
Northern Pass	Quanta Subsurface	BH-33A	7/24/2016	44.037962	-71.788749	65	23	13	10/21/2016	S6	Sleeve	30	Soil (GW)	46	108	12	133	
Northern Pass	Quanta Subsurface	ВН-33А ВН-33В	7/25/2016 7/25/2016	44.037962 44.037574	-/1./88/49 _71 787038	65 65 3	23 18	13 Not Observed	10/11/2016	RC 2 RC 2	Core	<u> </u>	Rock	44 40	70	< 1	158	
Northern Pass	Quanta Subsurface	BH-33B	7/26/2016	44.037574	-71.787038	65.3	18	Not Observed	10/11/2016	RC 8	Core	51	Rock	39	65	< 1	155	
Northern Pass	Quanta Subsurface	BH-34A	7/21/2016	44.03458	-71.776303	75	24	Not Observed	10/11/2016	RC 2	Core	33	Rock	49	67	< 1	154	
Northern Pass	Quanta Subsurface	BH-34A	7/22/2016	44.03458	-71.776303	75	24	Not Observed	10/11/2016	RC 5	Core	47	Rock	51	70	< 1	158	
Northern Pass	Quanta Subsurface	BH-34B BH-34B	7/18/2016	44.034284	-/1.//4499 -71 774499	64.5 64.5	17	Not Observed	10/21/2016	RC 6	Core	<u> </u>	Soil (SW) Rock	42 38	73	< 1	120	
Northern Pass	Quanta Subsurface	BH-35A	7/19/2016	44.031741	-71.767429	60	16	Not Observed	10/21/2016	S2	Sleeve	9	Soil (SM)	51	149	12	119	
Northern Pass	Quanta Subsurface	BH-35A	7/20/2016	44.031741	-71.767429	60	16	Not Observed	10/11/2016	RC 9	Core	55	Rock	35	66	< 1	160	
Northern Pass	Quanta Subsurface	BH-35B	7/14/2016	44.03088	-71.765988	75	15.5	Not Observed	10/21/2016	S1	Sleeve	4	Soil (SM)	54	140	8	118	
Northern Pass	Quanta Subsurface	BH-35B BH-36A	7/11/2016	44.03088	-71 755236	/5 64 3	15.5	Not Observed	10/11/2016	RC 11	Sleeve	<u> </u>	ROCK Soil (SP)	37 43	/1	<1	159	
Northern Pass	Quanta Subsurface	BH-36A	7/12/2016	44.026654	-71.755236	64.3		22	10/21/2016	S10	Sleeve	54	Soil (ML)	54	308	15	119	
Northern Pass	Quanta Subsurface	BH-36B	7/11/2016	44.025879	-71.753953	63	27	Not Observed	10/18/2016	S3	Sleeve	14	Soil (SW)	54	198	26	97	
Northern Pass	Quanta Subsurface	BH-36B	7/12/2016	44.025879	-71.753953	63	27	Not Observed	10/11/2016	RC 6	Core	54	Rock	37	74	< 1	163	
Northern Pass	Quanta Subsurface	BH-36C BH-36C	7/13/2016	44.024846	-71.752797	45	12	Not Observed	10/18/2016	RC 3	Core	40.6	Soil (SM) Rock	<u> </u>	68 68	< 1	123	
Northern Pass	Quanta Subsurface	BH-37A	7/10/2016	44.021807	-71.731939	61.5	52	Not Observed	10/18/2016	S3	Sleeve	14	Soil (SM)	83	248	16	113	
Northern Pass	Quanta Subsurface	BH-37A	7/11/2016	44.021807	-71.731939	61.5	52	Not Observed	10/18/2016	S6	Sleeve	29	Soil (SW)	61	167	10	111	
Northern Pass	Quanta Subsurface	BH-37B BH 37B	7/10/2016	44.022703	-71.730831	65.5		Not Observed	10/18/2016	<u>S2</u>	Sleeve	9	Soil (SC)	50 65	137	9	129	
Northern Pass	Quanta Subsurface	BH-37B BH-39A	8/31/2016	44.026477	-71.684915	64.5	37.5	14	10/18/2016	<u> </u>	Sleeve	15	Soil (SM)	54	142	10	117	
Northern Pass	Quanta Subsurface	BH-39A	9/1/2016	44.026477	-71.684915	64.5	37.5	14	10/18/2016	S6	Sleeve	35	Soil (SP)	64	198	12	115	
Northern Pass	Quanta Subsurface	BH-40A	7/8/2016	43.959632	-71.681034	60		Not Observed	10/18/2016	<u>S2</u>	Sleeve	10	Soil (SW)	213	494	7	112	
Northern Pass	Quanta Subsurface	BH-40A BH-40B	7/9/2016	43.959632	-71.681034	60		Not Observed	10/18/2016	<u>\$5</u> \$2	Sleeve	10	Soil (SP)	59 187	213	15	110	
Northern Pass	Quanta Subsurface	BH-40B	7/7/2016	43.959002	-71.680658	65.5		Not Observed	10/18/2016	S2 S4	Sleeve	19	Soil (SW)	57	302	19	110	
Northern Pass	Quanta Subsurface	BH-41A	6/27/2016	43.933037	-71.685085	59	36	10	10/18/2016	S5	Sleeve	23.5	Soil (ML)	72	239	25	97	
Northern Pass	Quanta Subsurface	BH-41A	6/28/2016	43.933037	-71.685085	59	36	10	10/11/2016	RC 2	Core	42	Rock	39 55	68	<1	158	
Northern Pass	Quanta Subsurface	BH-41B BH-41B	6/29/2016	43.932130	-71.684899	65	43	3	10/18/2016	54 58	Sleeve	40	Soil (SW)	64	364	23	104	
Northern Pass	Quanta Subsurface	BH-42A	6/29/2016	43.91228	-71.685617	65	58	9	10/18/2016	S2	Sleeve	9	Soil (GW)	48	170	12	109	
Northern Pass	Quanta Subsurface	BH-42A	6/30/2016	43.91228	-71.685617	65	58	9	10/18/2016	S7	Sleeve	34	Soil (CL)	77	278	21	102	
Northern Pass	Quanta Subsurface	BH-42B BH 42B	6/23/2016	43.911429	-71.685413	75.2	13.5	9.5	10/11/2016	RC 2	Core	17	Rock	42	63 61	<1	164	
Northern Pass	Quanta Subsurface	BH-42B BH-43A	6/22/2016	43.907335	-71.683611	64.5	15.5	12	10/18/2016	S2	Sleeve	10	Soil (SM)	40 69	214	8	100	
Northern Pass	Quanta Subsurface	BH-43A	6/23/2016	43.907335	-71.683611	64.5		12	10/18/2016	S9	Sleeve	35	Soil (SP)	55	355	26	101	
Northern Pass	Quanta Subsurface	BH-43B	6/21/2016	43.906264	-71.683279	64	37.5	12	10/18/2016	S2	Sleeve	9	Soil (SW)	55	183	5	111	
Northern Pass	Quanta Subsurface	ВН-43В ВН-44А	6/16/2016	43.906264	-/1.683279 -71.666688	64 65 5	31.5	<u>12</u> 4	10/18/2016	<u> </u>	Sleeve	29	Soil (SP) Soil (CH)	60 51	198	17	108	
Northern Pass	Quanta Subsurface	BH-44A	6/17/2016	43.852522	-71.666688	65.5		4	10/18/2016	<u>S11</u>	Sleeve	55	Soil (GM)	58	151	10	131	
Northern Pass	Quanta Subsurface	BH-44B	6/14/2016	43.851987	-71.66675	65.5		9	10/17/2016	S5	Sleeve	24	Soil (CH)	65	182	18	111	
Northern Pass	Quanta Subsurface	BH-44B	6/15/2016	43.851987	-71.66675	65.5		9	10/17/2016	S11	Sleeve	54	Soil (CH)	62	166	20	114	
Northern Pass	Quanta Subsurface	вн-45А Вн-45а	0/15/2016 6/16/2016	43.851604	-/1.000945	65.5 65.5		<u>у</u> 9	10/17/2016	S6 S12	Sleeve	<u> </u>	Soil (CH) Soil (SM)	49 64	206	12	110	
Northern Pass	Quanta Subsurface	BH-45B	6/13/2016	43.851019	-71.666825	<u>6</u> 5.5		9	10/17/2016	S1	Sleeve	4	Soil (GW)	44	129	8	126	
Northern Pass	Quanta Subsurface	BH-45B	6/14/2016	43.851019	-71.666825	65.5		9	10/17/2016	S11	Sleeve	54	Soil (CL)	58	142	11	118	
Northern Pass	Quanta Subsurface	BH-46A	6/12/2016	43.847311	-71.665164	75.4		9	10/17/2016	S3	Sleeve	14.5	Soil (SM)	68 60	192	11	108	
Northern Pass	Quanta Subsurface	BH-46B	6/8/2016	43.846835	-71.665082	65.5		13	10/17/2016	S11 S3	Sleeve	14.5	Soil (ML)	81	270	32	93	
Northern Pass	Quanta Subsurface	BH-46B	6/9/2016	43.846835	-71.665082	65.5		13	10/26/2016	S10	Sleeve	56	Soil (SM)	46	274	19	106	
Northern Pass	Quanta Subsurface	BH-47A	6/6/2016	43.803143	-71.673827	61	54.5	12	10/17/2016	S2	Sleeve	9	Soil (SM/GM)	55	160	7	114	

Alignment Name	Geotech Company	Borehole ID	Date Drilled	Borehole	Coordinates	Borehole Depth (ft)	Depth to Rock (ft)	Depth to Groudwater (ft)	GeoTherm Report Date	Sample ID	Sample Type	Sample Depth (ft)	Material Type	Lab Det Thermal I (°C-cı	ermined Resistivity m/W)	Moisture Content (%)	Dry Density (pcf)	Notes
				Latitude	Longitude									Wet	Dry			
Northern Pass	Quanta Subsurface	BH-47A	6/7/2016	43.803143	-71.673827	61	54.5	12	10/17/2016	S5	Sleeve	24	Soil (SM/GM)	48	153	17	113	
Northern Pass	Quanta Subsurface	BH-47B	6/6/2016	43.802948	-71.673913	65	40	12	10/17/2016	S 3	Sleeve	14	Soil (GW)	41	109	10	132	
Northern Pass	Quanta Subsurface	BH-47B	6/7/2016	43.802948	-71.673913	65	40	12	10/17/2016	S 6	Sleeve	29.5	Soil (GM)	60	174	8	117	
Northern Pass	Quanta Subsurface	BH-48A	6/5/2016	43.798943	-71.673911	65.5		13	10/17/2016	S5	Sleeve	24	Soil (SC)	54	145	10	129	
Northern Pass	Quanta Subsurface	BH-48A	6/6/2016	43.798943	-71.673911	65.5		13	10/17/2016	S12	Sleeve	64	Soil (SM)	61	152	9	125	
Northern Pass	Quanta Subsurface	BH-48B	6/2/2016	43.797593	-71.673646	65		22	10/17/2016	S 6	Sleeve	29	Soil (GM)	54	168	16	118	
Northern Pass	Quanta Subsurface	BH-48B	6/3/2016	43.797593	-71.673646	65		22	10/17/2016	S13	Sleeve	64	Soil (ML)	65	177	12	125	
Northern Pass	Quanta Subsurface	BH-51A	6/1/2016	43.750602	-71.686727	65.3		9	10/17/2016	S 3	Sleeve	14	Soil (SW)	42	109	11	125	
Northern Pass	Quanta Subsurface	BH-51A	6/2/2016	43.750602	-71.686727	65.3		9	10/17/2016	S 6	Sleeve	29	Soil (PT)	86	643	69	57	
Northern Pass	Quanta Subsurface	BH-51B	6/1/2016	43.750292	-71.686417	65		8	10/17/2016	S4	Sleeve	18	Soil (SM/GM)	55	134	11	120	
Northern Pass	Quanta Subsurface	BH-51B	6/2/2016	43.750292	-71.686417	65		8	10/17/2016	S7	Sleeve	33	Soil (SM/GM)	48	118	13	126	
Northern Pass	Quanta Subsurface	BH-52A	5/31/2016	43.729822	-71.675867	60	12.5	9	10/11/2016	RC 2	Core	22.8	Rock	38	70	< 1	159	
Northern Pass	Quanta Subsurface	BH-52A	6/1/2016	43.729822	-71.675867	60	12.5	9	10/11/2016	RC 5	Core	38.5	Rock	40	67	< 1	162	
Northern Pass	Quanta Subsurface	BH-52B	5/30/2016	43.728816	-71.676103	60	41.7	7.5	10/17/2016	S5	Sleeve	24	Soil (SM)	58	177	19	99	
Northern Pass	Quanta Subsurface	BH-52B	5/31/2016	43.728816	-71.676103	60	41.7	7.5	10/11/2016	RC 4	Core	49.5	Rock	44	74	< 1	160	

Reference: http://www.northernpass.us/route-info.htm

ATTACHMENT A

Exploratory Test Boring Logs

BORING NUMBER BH-10A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PRO

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:07 - C:\USERS\LGSCHWIND\DESKTOP\BETH.GPJ

PROJ		IBER	16004			PROJECT LOCATION Bethlehem, NH	
05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
· _	SPT 4	100	50/2"			BEDROCK: Moderately weathered (III) to highly weathered (IV), light gray to dark gray, fine to coarse grained, strong (R4) to very strong (R5), GRANODIORITE GNEISS, with hornblende, foliated <i>(continued)</i>	recovered for SPT 4 roller bit drilled 20 to 25 ft to confirm bedrock
25						Fresh (I), strong (R4) to very strong (R5)	NX Double Tube coring started at 25 ft
· -	RC 1	92 (82)				5 natural discontinuities per run 0 mechanical breaks per run	3.13 min/ft
30						Fresh (I) to slightly weathered (II), strong (R4) to very strong (R5)	
	RC 2	100 (88)				4 natural discontinuities per run 2 mechanical breaks per run	3.10 min/ft
35						Fresh (I) to slightly weathered (II), strong (R4) to very strong (R5) -becomes dark greenish gray to medium light gray, with chlorite and epidote alteration	
· -	RC 3	100 (100)				0 natural discontinuities per run 0 mechanical breaks per run	3.03 min/ft
40						Fresh (I) to slightly weathered (II), strong (R4) to very strong (R5)	
	RC	100			2	3 natural discontinuities per run	3.03 min/ft

CLIENT PAR Electrical Contractors

BORING NUMBER BH-10A

PAGE 3 OF 3

PROJI		BER	16004			PROJECT LOCATION Bethlehem, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	4	(96)				1 mechanical break per run Fresh (I) to slightly weathered (II), strong (R4) to very strong (R5) <i>(continued)</i>	
-						Fresh (I), strong (R4) to very strong (R5) -becomes dark gray to medium light gray	
-	RC 5	98 (98)				0 natural discontinuities per run 3 mechanical breaks per run	3.83 min/ft
50						Fresh (I), strong (R4) to very strong (R5) -becomes medium light gray to dark greenish gray	
-	RC 6	92 (92)				4 natural discontinuities per run 4 mechanical breaks per run	4.53 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water
55					<u> / </u> t	Bottom of Borehole at 55.0 feet Groundwater estimated at 8.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

	\mathbf{S}		ATA Qua FACE 430	anta S 8 N Ba	ubsurf arker F	face RD	00027	BORIN	G NUMBE	PAGE 1 OF 2
		ngineering + Co	nstruction Tele	ephon	e: 509	, WA 9 -892-	9409			
CLI	IENT P	AR Electi	rical Contra	ctors				PROJECT NAME Northern Pass		
PR	OJECT	UMBER	16004					PROJECT LOCATION _Bethlehem, NH		
DA	TE STAF	RTED 8/	26/16		сом	PLET	ED 8/30/16	GROUND ELEVATION	HOLE SIZE 4 in	1
DR		ONTRA	CTOR SW	Cole	-			LATITUDE 44.25834	LONGITUDE -7	1.75711
DR		NETHOD	Solid Ster	m Aug	er/Muc	d Rota	ary / NX/Series 8	DRILLING EQUIPMENT Diedrich D50	SPT HAMMER	140 lb Auto
LO	GGED B	YJ. Me	lton		CHE	CKED	BY S. Kearney	GROUND WATER LEVEL:	_	
NO	TES							$\overline{\nabla}$ AT TIME OF DRILLING 9.0ft*		
DEPTH	(ft) SAMPLE TYPE	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		REMARKS
		PT 90 1 90 2 67	18-50 18-27-19 (46)	SM			SILTY SAND WITH fine to medium grai	H GRAVEL (SM), trace clay, yellowish gray, ined, subangular	damp, dense,	4 inch casing advanced to 5 ft begin mud rotary
ERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:07 - C:\USERS\LGSCHWIR		PT 100 3	50/4"			13.5	-10.5 to 13.0 ft, enc BEDROCK: Possib weathered and stro silty clay	countered highly weathered granitic boulder	s becoming less e, with lenses of	no sample recovered no sample recovered
ENER,		4	<u> </u>	1						recovered 3 inch inner
ප <u>ි</u> _20) _									casing advanced

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-10B

PAGE 2 OF 2

CLIENT PAR Electrical Contractors

	PROJE	ECT NUN	IBER .	16004			PROJECT LOCATION _Bethlehem, NH	
	(J) (J) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
							BEDROCK: Possible contact with weathered SCHIST bedrock becoming less weathered and stronger until coring starts at 24.5 ft, very dense, with lenses of silty clay (continued)	to 19.5 ft
	25	SPT		50/0"			Fresh (I), grayish blue green to pale blue, very fine to fine grained, very strong (R5), SCHIST, foliated Fresh (I), very strong (R5)	no sample recovered NX Double Tube coring begins at 24.5 ft
-	-	RC 1	100 (88)				1 natural discontinuity per run 4 mechanical breaks per run	2.55 min/ft poor water circulation
KTOP\BETH.GPJ	30	RC	100				Fresh (I), very strong (R5) 1 natural discontinuity per run	2.65 min/ft
SERS/LGSCHWIND/DES	-	2	(93)				7 mechanical breaks per run 34.5	abandoned hole due to presence of hydrocarbon odor Backfilled with 96 lbs cement, 5 lbs bentonite, 10 gal
AL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:07 - C:\USEF							Bottom of Borehole at 34.5 feet Groundwater estimated at 9.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	water
GENEF								

BORING NUMBER BH-11A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Sugar Hill, NH	
(tt) (tt) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	-			ML		SANDY SILT WITH GRAVEL (ML), light olive gray, hard, fine grained gravel, fine grained sand, angular to subangular <i>(continued)</i>	
 - 25 	SPT 5	50	50/1"	ML		-from approximately 23 to 28 ft, increase in gravel content, becomes SANDY GRAVELLY SILT	no sample recovered
	SPT 6	60	50/5"	ML		-28 to 29 ft encountered boulder	cobble collapsed into hole and lodged at 15 ft,
1/7/16 17:28 - C.USERSILGSCHWINDIDESKTOF	SPT 7	67	50/3"	ML			no sample recovered
SENERAL BH / TP / WELL - GINT STD US (AB GPU - 11	SPT 8	67	70	ML		-decrease in gravel content	multiple cobbles collapsing into hole when tripping out resulting in increased drill time

BORING NUMBER BH-11A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUME	BER	16004				PROJECT LOCATION Sugar Hill, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
				ML			SANDY SILT WITH GRAVEL (ML), light olive gray, hard, fine grained gravel, fine grained sand, angular to subangular (<i>continued</i>)	
	SPT 9	91	47-50/5"	ML				
	V SPT	90	46-50/4"	SM		<u>46.0</u>	SAND WITH SILT (SM), light olive gray, very dense, fine grained sand	
							-52 to 55 ft encountered boulder	SPT sample
 55				 		<u>54.5</u>	LEAN CLAY WITH SAND (CL), light olive gray, hard, medium plasticity, fine	taken at 55 ft, below boulder Backfilled with
	SPT 11	100	50			55.5	grained sand Bottom of Borehole at 55.5 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	188 lbs cement, 15 lbs bentonite, 35 gal water

BORING NUMBER BH-11B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

Image: Set and Set an	PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _Sugar Hill, NH	
4 (194) SM SILTY SAND WITH GRAVEL (SM) moderate brown, moist, very dense, fine to medium grained carse grained gravel, subangular to subrounded, minor exidation (continued) 25 SPT 83 50-40-50 SM 26 SPT 67 50/3** SM 30 67 50/3** SM -possible contact with weathered bedrock becoming less weathered and stronger until confirmed at 45 ft, light gray to moderate brown 30 - - - - 40 - - - - 40 - - - - 40 - - - - 40 - - - -	05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
SPT 83 50-40-50 SN SN SN SPT 67 50/3" SN SN SN SN SN SN SN SN SN SN		4		(94)	SM		SILTY SAND WITH GRAVEL (SM), moderate brown, moist, very dense, fine to medium grained, coarse grained gravel, subangular to subrounded, minor oxidation <i>(continued)</i>	
SPT 67 50/3* SM - possible contact with weathered bedrock becoming less weathered and stronger until confirmed at 45 ft, light gray to moderate brown - smple recovered	 _ 25 	SPT 5	83	50-40-50 (90)	SM			
35	 _ <u>30</u>	SPT 6		50/3"	SM		-possible contact with weathered bedrock becoming less weathered and stronger until confirmed at 45 ft, light gray to moderate brown	
40 SPT 70 29-50/4" SM -becomes moderate gray		SPT 7		50/1"	SM		-34 to 36 ft encountered boulder	no sample recovered
	 - 40	SPT 8	70	29-50/4"	SM		-becomes moderate gray	

BORING NUMBER BH-11B

PAGE 3 OF 3

PROJECT NAME _Northern Pass

PROJECT NUMBER 16004

CLIENT PAR Electrical Contractors

PROJECT LOCATION Sugar Hill, NH

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
45	o SPT 10		50/3"	SM		45.0	SILTY SAND WITH GRAVEL (SM), moderate brown, moist, very dense, fine to medium grained, coarse grained gravel, subangular to subrounded, minor oxidation (continued) Casing stuck and could not be removed, hole abandoned, casing was grouted into borehole from 44 to 49 ft, may present an issue for horizontal directional drilling equipment. BEDROCK: Slightly weathered (II) to moderately weathered (III), SCHIST	no sample recovered roller bit drilling from 45 to 49 ft advanced 3 inch casing from 9 to 49 ft casing stuck at 49 ft and could not be removed, hole abandoned, may present an issue for horizontal directional drilling equipment Backfilled with 264 lbs cement, 15 lbs bentonite, 30 gal water

QUANTA SUBSURFACE Protection of Construction Construction

BORING NUMBER BH-12A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	BER	16004				PROJECT LOCATION Franconia, NH	
0 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	SPT 4	78	6-8-8 (16)	ML			SILT WITH SAND (ML), light brown, very stiff (continued)	
 <u>25</u>	SPT 5	72	5-4-7 (11)	ML			-becomes olive gray, stiff	
			()					
	SPT 6	78	5-5-6 (11)	ML				
						33.0		poor circulation at
				SM			SAND WITH SILT (SM), medium dark gray, medium dense, micaceous	33 ft
	SPT 7	44	7-5-6 (11)					
							-boulders and cobbles at 38 ft	
40	SPT 8	72	11-8-16 (24)	SМ			-increase in gravel and silt content	
	<u> </u>					• 1	(Continued Next Page)	1

BORING NUMBER BH-12A

PAGE 3 OF 3

. .

...

	PAR Elect	rical Contra	ctors			
PROJEC	T NUMBER	16004			PROJECT LOCATION _ Franconia, NH	
(ft) (ft) sambi E TVDE	SAMPLE LITE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-			SM	4	-increase in gravel and silt content <i>(continued)</i>	
45	SPT 100	50/1"			BEDROCK: Fresh (I), light gray to medium dark gray, fine to medium grained, strong (R4), SCHIST	
-	9					installed
50	SPT 100 10	50/1"	J			wheels on bit locked up/worn flat at 52.5 Backfilled with 188 lbs cement
				5	2.5 Bottom of Borehole at 52.5 feet	10 lbs bentonite
					Groundwater estimated at 7.5 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-12B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004

PRO.	JECT NUN	IBER	16004					PROJECT LOCATION Franconia, NH	
(#) 50 DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC	POG		MATERIAL DESCRIPTION	REMARKS
	SPT 4	56	14-30-16 (46)	GW- GM			00.5	WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), greenish gray, dense, fine to coarse grained gravel, fine to coarse grained sand, subangular to subrounded (<i>continued</i>)	
	_			ML			22.5	SILT WITH SAND (ML), trace gravel, medium dark gray, medium stiff, low plasticity, fine grained gravel, subangular to subrounded	
	SPT 5	44	4-4-3 (7)						
	-								
SKTOP\FRANC.GPJ	SPT 6	56	3-5-5 (10)	ML				-becomes stiff	
SERS/LGSCHWIND/DE	-								
- 11/7/16 17:54 - C:\U	SPT 7	72	5-4-5 (9)	ML				-becomes light olive gray	
GINT STD US LAB.GP.	-								
40 	SPT 8	72	6-8-22 (30)	ML				-becomes hard, with fine to coarse grained sand	4 inch casing
GENE								(Continued Next Page)	advanced to 42 ft

QUANTA SUBSURFACE Protection of Construction Construction

BORING NUMBER BH-12B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ		IBER	16004				PROJECT LOCATION Franconia, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
				ML			-becomes hard, with fine to coarse grained sand (continued)	
 	SPT 9	100	13-10-21 (31)	ML			-increase in fine to coarse grained gravel content	
 <u>50</u>	SPT 10	100	50/4"			<u>49.5</u>	BEDROCK: Possible contact with weathered SCHIST bedrock becoming less weathered and stronger with depth, light olive gray	
 <u>55</u> 	SPT 11		50/2"	1			Fresh (I) to slightly weathered (II), light gray to dark gray, fine to medium grained, strong (R4) to medium strong (R3), SCHIST, trace pyrite	roller bit drilled from 54 to 65 ft, description from cuttings no sample recovered
 60	SPT 12	<u>100</u>	50/1"					coring not possible due to hole conditions
 <u>65</u>	SPT 13	100	50/5"			65.0	Bottom of Borehole at 65.0 feet Groundwater estimated at 8.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method	sample recovered likely cave in material Backfilled with 180 lbs cement, 10 lbs bentonite, 30 gal water

G			FACE Spo	anta S 8 N Ba okane ephon	ubsurf arker F Valley e: 509	face RD , WA 9-892	99027 -9409	BORIN	G NUMBE	RBH-13A PAGE 1 OF 3
CLIE	NT PAR	Electr	ical Contra	ctors				PROJECT NAME Northern Pass		
PROJ	IECT NUM	IBER	16004					PROJECT LOCATION Franconia, NH		
DATE	STARTE	D _8/3	30/16		COM	IPLET	TED 8/30/16	GROUND ELEVATION	1	
DRILI	LING CON	ITRAC	TOR SW	Cole				LATITUDE <u>44.22727</u>	LONGITUDE7	1.748035
DRILI	LING MET	HOD	Solid Ster	m Aug	er/Muc	d Rota	ary	DRILLING EQUIPMENT _ Diedrich D50	SPT HAMMER _	140 lb Auto
LOGO	GED BY	J. Mel	ton		CHE	CKEE	DBY S. Kearney			
NOTE	ES	1	1	1	1	1		AT TIME OF DRILLING10.0ft*		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		REMARKS
	SPT 1	67	28-46-43 (89) 50/4"	GM- GP GP		9.5	SILTY GRAVEL WI yellowish brown, da gravel, subangular t ⊽ COBBLES AND PO grained gravel, suba	TH SAND AND COBBLES (GM), with aspl mp, very fine to fine grained, fine to very co o rounded	halt, dusky barse grained	backfill from vacuum truck to 9 ft 4 inch casing advanced to 10 ft, begin mud rotary
	SPT	50	6-6-6	SM- ML		18.5	SILTY SAND AND S dense to stiff, fine g	SANDY SILT (SM-ML), trace clay, light oliv rained sand	e gray, medium	
								(Continued Ne	ext Page)	

BORING NUMBER BH-13A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ	JECT NUN	IBER	16004				PROJECT LOCATION Franconia, NH	
(tt) 20 20 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	3		(12)	SM- ML			SILTY SAND AND SANDY SILT (SM-ML), trace clay, light olive gray, medium dense to stiff, fine grained sand <i>(continued)</i>	
 _ <u>25</u> _ 	SPT 4	100	6-7-9 (16)	SM- ML				
	SPT 5	67	4-5-10 (15)	SM- ML			-with minor zones of oxidation	
SS/LGSCHWIND/DESKTOP/F	-			 ML		32.5	SANDY SILT (ML), light olive gray, very stiff, non plastic, fine grained sand	
GPJ - 11/7/16 17:18 - C:\USE1	SPT 6	89	5-7-12 (19)	-				
/ TP / WELL - GINI SID US LAE	SPT 7	100	5-6-5 (11)	ML			-becomes stiff, with minor zones of oxidation	
GENERAL BH	-			ML- CL		<u>42.0</u>	SILT AND CLAY (ML-CL), light olive gray, stiff, low plasticity	

(Continued Next Page)

BORING NUMBER BH-13A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	IBER	16004				PROJECT LOCATION Franconia, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC	L C G	MATERIAL DESCRIPTION	REMARKS
				ML- CL			SILT AND CLAY (ML-CL), light olive gray, stiff, low plasticity (continued)	
45	SPT 8	100	4-8-3 (11)					
						48.	0	_
	SPT		4-5-6	ML			dense to stiff, minor zones of oxidation	
50	9	100	(11)	-				
55	SPT 10	89	8-12-14 (26)	SM- ML		55	5	Backfilled with 93 Ibs cement, 5 lbs bentonite, 10 gal
			1				Bottom of Borehole at 55.5 feet Groundwater estimated at 10.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	∖ <u>water</u>

BORING NUMBER BH-13B

PAGE 2 OF 4

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	BER	16004			PROJECT LOCATION Franconia, NH	
HL (H) DEPTH 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	SPT 4	78	20-16-12 (28)	GM GM		GRAVEL WITH SILT AND SAND (GM), dusky yellowish brown, moist, very dense, fine to coarse grained gravel, fine to coarse grained sand, subangular <i>(continued)</i>	
_ 25 _	SPT 5	50	11-9-11 (20)	GM		-increase in coarse grained sand	
				SM		SAND WITH SILT (SM), trace gravel, pale olive, medium dense, fine grained gravel, fine to medium grained sand, subangular to subrounded, zones of oxidation	
	SPT 6	67	8-5-6 (11)	SM			
 	SPT 7	78	5-6-8 (14)	SM		-increase in silt content	
40	SPT 8	78	5-6-9 (15)	SM		-with layers of medium grained sand	

BORING NUMBER BH-13B

PAGE 3 OF 4

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:18 - C:USERS/LGSCHWIND/DESKTOP/FRANC.GPJ

PROJECT NAME Northern Pass PROJECT LOCATION Franconia, NH

		. 0					
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
				SM		SAND WITH SILT (SM), trace gravel, pale olive, medium dense, fine grained gravel, fine to medium grained sand, subangular to subrounded, zones of oxidation <i>(continued)</i>	
	SPT 9	72	7-7-8 (15)	SM			
<u> </u>	SPT 10	83	10-9-8 (17)	SM			
_ 55 _	SPT 11	0	5-6-7 (13)	SM		-gravel becomes angular to subrounded	
<u>60</u>	SPT 12	94	5-6-7 (13)	SM		-without gravel	
65	SPT		21-24-40	SM		-becomes very dense, with fine to coarse grained sand, with fine grained, subangular to subrounded gravel, decrease in silt content	rock fragment caught in end of sampler

BORING NUMBER BH-13B

PAGE 4 OF 4

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass
PROJECT LOCATION Franconia, NH

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	13	72	(64)	SM		66.5		Backfilled with 188 lbs cement,
							Bottom of Borehole at 66.5 feet Groundwater estimated at 8.0 feet below ground surface. Stable groundwater	30 gal water

Groundwater estimated at 8.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-14A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

		IDER	16004				
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
20	4		(43)	SP-		POORLY GRADED SAND WITH GRAVEL (SP-GP), moderate yellowish brown, dense, fine grained gravel, fine grained sand, subangular (continued)	
_				GP		fine grained gravel, fine to medium grained sand, subangular	
-					°0°		
_							
25	SPT 5	39	20-20-18 (38)				
					000		
					000 000		
						27.4 SILTY SAND WITH GRAVEL (SM), dark vellowish brown, medium dense, fine	
-				Sivi		grained gravel, fine grained sand, angular	
-				-			
30	SPT 6	61	13-8-14 (22)				
_							
_							
	SPT	56	14-7-11	SM		-becomes micaceous	
35	7	50	(18)				
-							
_							
_						with trace gravel, fine to medium grained sand	
_	_						
40	SPT	61	4-7-11 (18)	SM			
	Ĭ		(.0)				
-							
-							

BORING NUMBER BH-14A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

ī

OJECT NUMBER	R <u>16004</u>			PROJECT LOCATION Franconia, NH	
(ff) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-				-with trace gravel, fine to medium grained sand (continued)	
5 SPT 83	6-4-8 (12)	SM			
-		_			
<u>)</u> 10 83	8-6-11 (17)	SM		-with weak laminations	
-			52.0	BEDROCK: Banded GNEISS or SCHIST, with quartz and chlorite, boulder or possible bedrock encountered at 52 ft	no sample recovered Backfilled with
SPT 0	50/1"	J			188 lbs cement, 15 lbs bentonite, 35 gal water
<u></u>		1		Bottom of Borehole at 55.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-14B

PAGE 2 OF 4

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:18 - C:\USERS\LGSCHWIND\DESKTOP\FRANC.GPJ

PROJ	ECT NUM	BER	16004	PROJECT LOCATION Franconia, NH									
05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS					
	4		(25)	SP			-becomes dense (continued)						
				SP-		<u>22.0</u>	POORLY GRADED SAND WITH SILT (SP-SM), moderate yellowish brown,						
· _				SM			dense, me to medium granicu sand, weak bedding						
	SPT 5	0	14-15-18 (33)	SP- SM									
	SPT 6	78	5-6-11 (17)	SP- SM			-becomes medium dense, dark yellowish orange, minor amounts of subangular gravel						
 35	SPT 7	89	11-12-17 (29)	SP- SM									
	SPT 8	83	14-15-18 (33)	SP- SM		41.0	-becomes dense, yellowish brown, micaceous						
				SM			SAND WITH SILT AND GRAVEL (SM), moderate yellowish brown, very dense, fine grained gravel, fine to medium grained sand, subangular						

BORING NUMBER BH-14B

PAGE 3 OF 4

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004		PROJECT LOCATION Franconia, NH								
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS						
 45	SPT	67	49-40-48	SM SM		SAND WITH SILT AND GRAVEL (SM), moderate yellowish brown, very dense, fine grained gravel, fine to medium grained sand, subangular <i>(continued)</i>							
			(88)										
	SPT 10	33	23-13-10 (23)	SP- GP	48.0	POORLY GRADED GRAVELLY SAND (SP-GP), dark yellowish brown, medium dense, fine grained gravel, fine to medium grained sand, subangular	hole caved from 25 to 49 ft, 3 inch casing advanced to 49 ft lost circulation						
 _ 55 _	SPT 11	0	23-50/5"	SP- GP		-becomes very dense, gravel content increases,	3 inch casing advanced to 54 ft lost circulation						
 _ 60	SPT 12	60	50/5"		58.	5 BEDROCK: Possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth	3 inch casing advanced to 59 ft no sample recovered						
						GNEISS, contains quartz, chlorite							

BORING NUMBER BH-14B

PAGE 4 OF 4

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Franconia, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
						GNEISS, contains quartz, chlorite <i>(continued)</i>	Backfilled with 188 lbs cement, 15 lbs bentonite, 35 gal water
				•		Bottom of Borehole at 68.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-15A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:18 - C:USERS/LGSCHWIND/DESKTOP/FRANC.GPJ

PROJ	IECT NUM	BER	16004	PROJECT LOCATION Franconia, NH									
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS						
	4		(8)	SM		SILTY SAND WITH GRAVEL (SM), greenish gray to gray, moist, medium dense, fine grained gravel, fine to medium grained sand, subangular <i>(continued)</i>							
	SPT 5	56	5-8-7 (15)	SM		-becomes medium dense							
	SPT 6	56	5-3-4 (7)	SM		-becomes loose, without gravel							
35	SPT 7	67	4-3-4 (7)	SM		-becomes brown, with low plasticity clay laminations							
	SPT 8	56	3-2-3 (5)	SM		-becomes light olive brown							

BORING NUMBER BH-15A

PAGE 3 OF 3

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
- 45 -	SPT 9	75	4-50/2"	SM		BEDROCK: Possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, light olive brown and moderate reddish orange	-
	SPT 10	-	50/0"			Fresh (I), dusky blue, medium to coarse grained, strong (R4) to very strong (R5), GRANODIORITE GNEISS, moderately foliated, minor oxidation on surfaces	no sample recovered
-	RC 1	94 (94)			54.0	0 natural discontinuities per run 3 mechanical breaks per run	1.96 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water
						Bottom of Borehole at 54.0 feet Groundwater estimated at 7.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-15B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Franconia, NH					
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
	4		(10)	SM		SAND WITH SILT (SM), trace gravel, moderate yellowish brown, loose, fine grained gravel, fine to medium grained sand, subrounded <i>(continued)</i>					
	SPT 5	0	4-4-6 (10)	SM			no sample recovered, changed sample catcher				
	SPT 6	50	6-11-11 (22)	SM		-becomes micaceous, with weak bedding					
	SPT 7	0	3-4-4 (8)	SM		-becomes loose					
	SPT 8	72	5-3-4 (7)	SM							
-											

CLIENT PAR Electrical Contractors

BORING NUMBER BH-15B

PAGE 3 OF 3

PROJECT NAME Northern Pass
PROJECT LOCATION Franconia, NH

PROJECT NUMBER 1600

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:18 - C:USERS\LGSCHWIND\DESKTOP\FRANC.GPJ

SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION REMARKS SAND WITH SILT (SM), trace gravel, moderate yellowish brown, loose, fine SM grained gravel, fine to medium grained sand, subrounded (continued) -becomes medium dense SM 20-8-15 SPT 17 45 9 (23) -48 to 49 ft encountered boulder, possible contact with weathered bedrock becoming less weathered and stronger with depth SPT 50/4" 50 10 50 SPT -with fine grained sand SM 43-50/5" 82 11 55 SPT -becomes dark yellowish orange to dark yellow 67 50 SM 12 60 Backfilled with 188 lbs cement, SPT -becomes light olive gray 15 lbs bentonite, 0 49-50/2" SM 13 35 gal water 65 Bottom of Borehole at 65.0 feet Groundwater estimated at 9.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey

deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-16A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _Easton, NH					
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
	4	83	8-9-11 (20)	SM SP- SM		POORLY GRADED SAND WITH SILT (SP-SM), light olive gray, medium dense, fine grained sand <i>(continued)</i>					
- <u>25</u> -	SPT 5	100	9-10-10 (20)	SP- SM							
- 30	SPT 6	100	8-9-9 (18)	SP- SM							
- - 35	SPT 7	78	5-5-5 (10)	sc	33.3	CLAYEY SAND (SC), light olive brown, medium dense, very fine to fine grained					
- - 40	V CDT		8.8.0	sc	40.0						
-	8	100	(17)	SP- SM		POORLY GRADED SAND WITH SILT (SP-SM), light olive gray, medium dense, fine grained					

BORING NUMBER BH-16A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION _Easton, NH					
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
				SP- SM		POORLY GRADED SAND WITH SILT (SP-SM), light olive gray, medium dense, fine grained <i>(continued)</i>					
_ 45	SPT 9	89	11-10-12 (22)	SP- SM							
	SPT	100	11-11-12	SP-							
	10		(23)			53.0					
AST.GPJ				CL		SANDY CLAY (CL), light olive gray to light olive brown, stiff, very fine to fine grained					
	SPT 11	100	7-7-9 (16)			56.0	Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water				

Bottom of Borehole at 56.0 feet Groundwater estimated at 15.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERS/LGSCHWIND/DESKTOP/EAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-16B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	IECT NUM	BER	16004	004 PROJECT LOCATION Easton, NH								
05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC	LOG		REMARKS				
	4		(0)	SM		21	SILTY SAND (SM), olive, medium dense, fine grained sand (continued)					
	-			ML			SANDY SILT (ML), olive to olive gray, stiff, non plastic, fine grained sand					
	SPT 5	61	5-5-6 (11)	-								
	SPT 6	78	4-3-5 (8)	ML			-becomes medium stiff, olive	4 inch casing advanced to 30 ft				
 	SPT		5-5-5	ML			-becomes stiff					
35		0	(10)	-								
40	SPT 8	SPT 78	6-5-6 (11)	ML								

BORING NUMBER BH-16B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERSILGSCHWIND/DESKTOP/EAST.GPJ

ROJECT NUMBER	16004	PROJECT LOCATION _ Easton, NH	
CELTIN (ft) (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	NATERIAL DESCRIPTION	REMARKS
45	<u>, 50/1</u> " ,	ML 43.5 SANDY SILT (ML), olive to olive gray, stiff, non plastic, fine grained sand (continued) BEDROCK: Possible contact with weathered SCHIST bedrock becoming less weathered and stronger with depth, olive gray to reddish yellow, fine grained	3 inch casing advanced where it was damaged, casing pulled and 4 inch casing reinstalled to 35 ft lost circulation at 47 ft
50 SPT 100	30-50/5"		
55 	50/3"		hole collapsing, advanced 3 inch casing to 54 ft
50 SPT 88	40-50/2"		
65 SPT 100	49-50/3"	Bottom of Borehole at 65.0 feet Groundwater estimated at 16.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey	Backfilled with 188 lbs cement, 15 lbs bentonite, 35 gal water

BORING NUMBER BH-17A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

	PROJECT NUMBER 16004							PROJECT LOCATION Easton, NH					
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC I OG		MATERIAL DESCRIPTION	REMARKS				
-	20	SPT 4	100	9-7-9 (16)	SM SP- SM			POORLY GRADED SAND WITH SILT (SP-SM), light olive gray, dense, fine grained <i>(continued)</i>					
		SPT 5	83	21-27-30 (57)	SP- SM			-with fine grained, subangular gravels, becomes very dense					
ST.GPJ		SPT 6	100	10-13-14 (27)	SM		28.0	SILTY SAND WITH GRAVEL (SM), trace clay, light olive gray, medium dense, fine grained, fine grained gravel, subangular					
7/16 17:14 - C:\USERS\LGSCHWIND\DESKTOP\EA		SPT 7	67	16-23-31 (54)	SM			-becomes very dense, with grayish blue green silt lenses					
TP / WELL - GINT STD US LAB.GPJ - 11/7/		SPT 8	100	22-29-18 (47)	SM- ML		38 <u>.5</u>	SAND AND SILT (SM-ML), grayish blue green, hard, low plasticity, very fine grained, stratified with 1/4 inch lenses of silty sand with fine grained gravel					
GENERAL BH /	_				SM- ML			-42.5 to 47.5 ft encountered boulder, possible contact with weathered bedrock becoming less weathered and stronger with depth					

BORING NUMBER BH-17A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C.USERSILGSCHWINDIDESKTOPIEAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-17B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PRUJ		DER	10004				
20 DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	4		(41)	SM		SILTY SAND WITH GRAVEL (SM), light olive gray, dense, fine grained, coarse grained gravel, subangular <i>(continued)</i>	
- 25	SPT 5	56	19-24-25 (49)	SM			
30	SPT 6	50	9-9-10 (19)	SM		-becomes medium dense, micaceous, without gravel	
35	SPT 7	61	5-5-8 (13)	SM		-becomes medium gray, very dense, with minor clay lenses of low plasticity	
40	SPT 8	59	8-9-50/5"	SM		-40 to 43 ft encountered boulder, possible contact with weathered bedrock becoming less weathered and stronger with depth	

BORING NUMBER BH-17B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	_16004			PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
- 45 -	SPT 9	56	9-19-30 (49)	SC- SM	43.	^{D, SILTY TO CLAYEY SAND WITH GRAVEL (SC-SM), medium light gray, dense, fine grained, subangular}	
_ _ 50 _	SPT 10	67	30-50/3"	-		-becomes light gray to dusky yellow, increase in clay content	
_ 	SPT 11	83	28-50-50 (100)	SC- SM		-becomes brownish gray, increase in gravel content	
- - 60 -	SPT 12	0	28-29-34 (63)	SC- SM		-decrease in gravel content	
- - 65						Bottom of Borehole at 65.0 feet	no sample due to hole instability Backfilled with 188 lbs cement, 15 lbs bentonite 25 gal water

BORING NUMBER BH-18A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION Easton, NH

(tt) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_	4	67	8-7-7 (14)	ML		-with trace clay <i>(continued)</i>	
-	-			SM- GM		23.5 SANDY GRAVEL WITH SILT (SM-GM), trace clay, yellowish brown to light olive gray, dense, very fine to fine grained, medium to coarse grained gravel, subangular	_
25	SPT 5	50	13-16-17 (33)				
-	_					-becomes medium dense, GRAVELLY SAND WITH SILT	
<u>30</u>	SPT	100	7-6-11	SM- GM			
GSCHWIND\DESKTOP\EAST.GF			(17)	-		-1/4 inch layers of silty gravel with sand	
C:/ISERS/I	SPT	100	7-10-11	SM- GM			
9H / TP / WELL - GINT STD US LAB.GPJ - 1177/16 17:14 - 1 0 0	- - - - - - - - - - - - - - - - - - -	100	(21) 28-21-9 (30)	SM- GM			
SENERAL E	-					42.0	
						(Continued Next Page)	

BORING NUMBER BH-18A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NU	IBER	16004			PROJECT LOCATION _Easton, NH						
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS					
 	SPT 9	100	50/1"			BEDROCK: Possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, white and grayish black, medium grained, extremely weak, feldspars weathered to clay <i>(continued)</i>	no sample recovered					
 - 50	SPT 10	100	50/1"	-			no sample recovered 3 inch casing advanced to 49.5 ft NX Double Tube					
TOP/EAST.GPJ	RC 1	100 (100)				Fresh (I), very light gray and grayish black, medium to coarse grained, strong (R4), GRANODIORITE GNEISS, granular, with minor zones of chlorite mineralization, foliated 0 natural discontinuities per run 0 mechanical breaks per run	coring started at 52 ft 2.19 min/ft					
- 11/7/16 17:14 - C:USERS\LGSCHWINDIDESK	RC 2	100 (100)				Fresh (I), strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run	2.01 min/ft Backfilled with 279 lbs cement, 15 lbs bentonite, 30 gal water					
GENERAL BH / TP / WELL - GINT STD US LAB.GPJ						Bottom of Borehole at 60.0 feet Groundwater estimated at 5.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.						

BORING NUMBER BH-18B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:\USERS\LGSCHWIND\DESKTOP\EAST.GPJ

AMPLE TYPE A NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	C.S.	<u>ں</u>		
4			U.S.	GRAPH LOG	MATERIAL DESCRIPTION	REMARKS
		(8)	SP		-with minor zones of oxidation (continued)	
					3.5	
			ML-		SILT AND SAND (ML-SM), light olive gray, medium dense to stiff, low plasticity, very fine grained	
SPT 5	100	5-5-5 (10)	5101			
					8.5	contact based on
			GM		SILTY GRAVEL WITH SAND (GM), dark yellow to light olive gray, dense, very fine to fine grained, medium to coarse grained gravel, subangular	drill action
SPT 6	22	18-13-15 (28)				
SPT 7	67	20-12-22 (34)	GM		-angular to subangular gravel	
SPT 8	100	31-50			BEDROCK: Possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, light olive gray	
	SPT 5 SPT 6 SPT 7 SPT 8	SPT 100 SPT 22 SPT 22 SPT 67 SPT 67 SPT 100	SPT 100 5-5-5 (10) SPT J J SPT 22 18-13-15 (28) SPT J J SPT 67 20-12-22 (34) SPT 67 20-12-22 (34) SPT 67 31-50 SPT 100 31-50	SPT 100 5-5-5 SM SPT 22 18-13-15 GM SPT 22 18-13-15 GM SPT 67 20-12-22 GM SPT 67 20-12-22 GM SPT 67 31-50 SM	SPT 5 100 5.5-5 (10) SM SPT 6 22 18-13-15 (28) GM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SPT 100 5-5-5 SM 28.5 SPT 100 5-5-5 SM 28.5 SPT 22 18-13-15 SN 28.5 SPT 22 18-13-15 SN SN SPT 67 20-12-22 GM SN SPT 67 67 20-12-22 GM SPT 67 67 20-12-22 GM SPT 67 67 20-12-22 SPT 100 31-50 SN SPT 100 31-50

BORING NUMBER BH-18B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:\USERS\LGSCHWIND\DESKTOP\EAST.GPJ

PROJ	ECT NUN	BER	16004			PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	SPT 9	_ 0 _)	50/2"			BEDROCK: Possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, light olive gray <i>(continued)</i>	3 inch casing advanced to 44 ft no sample recovered
50	SPT 10	0	(50/1")				roller bit through highly weathered zone of rock
<u>55</u>	RC 1	98 (98)				Fresh (I), very light gray and dark gray, medium to coarse grained, strong (R4), GRANODIORITE GNEISS, granular, foliated Fresh (I), strong (R4) -becomes weakly foliated, minor zones of chlorite mineralization 0 natural discontinuities per run 7 mechanical breaks per run	1.68 min/ft
	RC 2	100 (100)				Fresh (I), strong (R4), strong gneissic foliation 0 natural discontinuities per run 3 mechanical breaks per run	1.97 min/ft Backfilled with
65						65.0 Bottom of Borehole at 65.0 feet Groundwater estimated at 8.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposite and use of mud return ca a drilling method.	15 lbs bentonite, 30 gal water

QUANTA SUBSURFACE Proteometric Subscription Construction Construction

BORING NUMBER BH-19A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	/IBER	16004			PROJECT LOCATION _Easton, NH					
(tt) DEPTH 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
			(15)	SP- SM		POORLY GRADED SAND (SP-SM), light olive gray to dark yellowish orange, medium dense, fine grained, with lenses of silty clay <i>(continued)</i>					
 	SPT 5	100	5-7-6 (13)	SP- SM		-with medium grained, subangular, gravel					
MINDIDESKTOPLEAST.GPJ	SPT 6	100	7-7-8 (15)	SP- SM							
LAB.GPJ - 11/7/16 17:14 - C:/USERS/LGSCH	SPT 7	-	50/0"	 - 		BEDROCK: Moderately weathered (III), very light gray and dusky yellowish green, medium to coarse grained, very weak (R1) to medium weak (R2), GRANODIORITE GNEISS, granular, moderately foliated, with chlorite mineralization	no sample recovered				
BH/TP/WELL-GINT STD US	SPT 8		50/1"	=		Fresh (I), strong (R4)	no sample recovered 3 inch casing advanced to 39 ft				
GENERAL	RC 1	100 (100)				0 natural discontinuities per run 5 mechanical breaks per run	1.98 min/ft				

BORING NUMBER BH-19A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

Ρ

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERSILGSCHWIND\DESKTOP\EAST.GPJ

(ft)	PLE TYPE JMBER	DVERY % RQD)	3LOW DUNTS VALUE)	S.C.S.	RAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	SAMI NU	REC	ΞŏΞ		5		
						Fresh (I), strong (R4) (continued)	
5						Fresh (I), strong (R4)	
	RC 2	100 (100)				0 natural discontinuities per run 5 mechanical breaks per run	1.58 min/ft
						Fresh (I), strong (R4) -strong gneissic foliation between 49.9 to 50.8 ft	
1 1	RC 3	100 (100)				0 natural discontinuities per run 3 mechanical breaks per run	2.66 min/ft
						Fresh (I), strong (R4), with alkali feldspar grains	
	RC 4	100 (100)				0 natural discontinuities per run 3 mechanical breaks per run	2.62 min/ft
-						Fresh (I), strong (R4), gneissic foliation weakens	
_	RC 5	100 (100)				0 natural discontinuities per run 2 mechanical breaks per run	2.29 min/ft
						5	Backfilled with 279 lbs cement, 15 lbs bentonite 30 gal water

QUANTA SUBSURFACE Protection of Construction Construction

BORING NUMBER BH-19B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	IECT NUN	IBER .	16004			PROJECT LOCATION _Easton, NH				
0 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS			
	-			GP		POORLY GRADED GRAVEL WITH SAND (GP), dark brown, very dense, medium to coarse grained, subangular <i>(continued)</i> -22 ft encountered boulder	4 inch casing			
 25 	SPT 5	56	7-6-5 (11)	SM		SAND WITH SILT (SM), trace gravel, brown, medium dense, medium to coarse grained, coarse grained gravel, subangular	advance to 23 it			
 		73	50/6"			BEDROCK: Possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, light gray, fine to medium grained				
C:USERS/LGSCHWIND/DESKTOP/EAG	SPT	0	50/5"	-			no sample recovered 4 inch casing			
STD US LAB.GPJ - 11/7/16 17:14 - 1							advanced to 35 ft			
GENERAL BH / TP / WELL - GINT	SPT 8		50/0"			Fresh (I), very light gray, medium to coarse grained, strong (R4), GRANODIORITE GNEISS, granular, foliated, with large quartz veins	begin mud rotary to 45 ft			

BORING NUMBER BH-19B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

DEPTH

PROJ	ECT NUM	BER	16004			PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-						Fresh (I), very light gray, medium to coarse grained, strong (R4), GRANODIORITE GNEISS, granular, foliated, with large quartz veins (continued)	NQ Double Tube coring started at
-	RC 1	98 (98)				0 natural discontinuities per run 10 mechanical breaks per run	45 ft 4.07 min/ft
50						-50 to 52 ft core loss	
-	RC 2	60 (44)				Fresh (I), strong (R4), with chlorite alteration, without quartz veins 0 natural discontinuities per run 6 mechanical breaks per run	3.09 min/ft
55						Highly weathered (IV), extremely weak (R0) -55 to 58.5 ft core loss	
-	RC 3	22 (22)				0 natural discontinuities per run 9 mechanical breaks per run	6.31 min/ft drilling issues caused hole to be
-						Slightly weathered (II), light gray to medium dark gray, medium strong (R3), moderate foliation, increase in biotite	59.5 ft mechanically fractured zone
						Groundwater estimated at 5.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	59.35 ft Backfilled with 188 lbs cement, 15 lbs bentonite, 35 gal water

		JAN BSUR	FACE FACE refuction Contraction	anta S 8 N B okane ephon ctors	ubsur arker F Valley ie: 509	face RD , WA 9-892	99027 -9409	BORIN	G NUMBE	RBH-19C PAGE 1 OF 3	
PROJ		/IBER	16004	51013				PROJECT LOCATION Easton, NH			
		 	10/10		0.01						
		U <u>8/</u>			CON	IPLE	1EU 8/16/16	GROUND ELEVATION HOLE SIZE <u>4 in</u>			
			Solid Ster		or/Mu		20/	DRILLING FOLIIPMENT Diedrich D50	SDT HAMMER	1.776291	
LOGO	GED BY	J. Mel	ton	n Aug	CHE		DBY S. Kearnev	GROUND WATER LEVEL:			
NOTE	S							$\underline{\nabla}$ AT TIME OF DRILLING <u>6.0ft</u> *			
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		REMARKS	
	-			GM			SILTY GRAVEL WI to fine grained, mec oxidation	ITH SAND (GM), trace asphalt, light brown, dium to coarse grained gravel, subangular,	, moist, very fine extensive	solid stem auger to 5 ft	
	SPT 1	100	26-36-49 (85)	GM SM		5.5	SILTY SAND WITH ✓ SILTY SAND WITH very fine to fine grai of oxidation through	GRAVEL (SM), yellowish brown to light br ined, medium to coarse grained gravel, sub nout	own, very dense, bangular, zones	4 inch casing advanced to 5 ft, begin mud rotary	
	SPT 2	100	6-10-11 (21)	SM							
	SPT 3	100	8-11-14 (25)	CL- ML		13.8	SILTY CLAY (CL-M	IL), grayish blue to grayish green, very stiff,	low plasticity		
GENERAL BH/ IP/ WE	-			CL- ML			-becomes hard, hig gravel	h dry strength, with medium to coarse grain	ned, subangular,		

BORING NUMBER BH-19C

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _Easton, NH					
05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
	4	100	12-23-23 (46)	CL- ML		SILTY CLAY (CL-ML), grayish blue to grayish green, very stiff, low plasticity (continued)					
25	SPT 5	100	31-50	CL- ML							
-											
_				SM	28.5	SILTY SAND WITH GRAVEL (SM), light olive gray, very dense, very fine to fine grained, medium to coarse grained gravel, possible weathered bedrock contact, locally gneiss and schist, highly to moderately weathered	_				
30	SPT 6	100	38-50/3"	-							
_											
35	SPT	100	50/4"	-		-with trace clay	no sample recovered				
_											
-						-with silt					
40	SPT 8	100	43-50/4"	1							
_							contact based on drill action, high				
-				GM		SILTY GRAVEL WITH SAND (GM), trace clay, yellowish brown, very dense, very fine to fine grained, medium to coarse grained gravel, subangular	amount of vibration in drill stem				

(Continued Next Page)

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C.USERS\LGSCHWINDIDESKTOP\EAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-19C

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER	16004		PROJECT LOCATION _Easton, NH	
DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S. GRAPHIC	MATERIAL DESCRIPTION	REMARKS
45 SPT 100 9	50/4"	G G	SILTY GRAVEL WITH SAND (GM), trace clay, yellowish brown, very dense, very fine to fine grained, medium to coarse grained gravel, subangular (continued)	no sample recovered
 50 SPT 100 10	50/4"	G M M M	-minor zones of oxidation throughout	
	48-50/5"	SM	53.0 SILTY SAND WITH GRAVEL (SM), light olive gray, very dense, very fine to fine grained, medium grained gravel, subangular, with clay lenses	Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water
	40-30/3		Bottom of Borehole at 55.5 feet Groundwater estimated at 6.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	20 gai water

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

BORING NUMBER BH-20A

PAGE 2 OF 3

PROJECT LOCATION	Easton, NH

	(tt) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
							Fresh (I), strong (R4) to very strong (R5)	
-		RC 3	100 (100)				0 natural discontinuities per run 5 mechanical breaks per run	minor water loss around casing, no water loss in borehole 2.32 min/ft
	<u>25</u>						-25 to 25.7 ft core loss Fresh (I), strong (R4), with pyrite filled veins, coarse grained	
-	-	RC 4	87 (87)				0 natural discontinuities per run 8 mechanical breaks per run	3.35 min/ft
-	-						Fresh (I), medium strong (R3)	
P\EAST.GPJ	<u>30 </u>						-30 to 30.2 ft core loss Fresh (I), strong (R4), becomes medium to coarse grained, without pyrite	
SCHWIND\DESKTC	-	RC 5	96 (96)				1 natural discontinuity per run 12 mechanical breaks per run	3.58 min/ft
6 17:14 - C:\USERS\LG	- <u>35</u>						Strong (R4) to very strong (R5)	
TD US LAB.GPJ - 11/7/1	_	RC 6	100 (100)				0 natural discontinuities per run 11 mechanical breaks per run	3.28 min/ft
3H / TP / WELL - GINT S	- 40						Fresh (I), strong (R4)	casing issues causing slow drill time
GENERAL E	_	RC 7	100 (100)				2 natural discontinuities per run	4.76 min/ft

CLIENT PAR Electrical Contractors

BORING NUMBER BH-20A

PAGE 3 OF 3

PROJECT NAME Northern Pass PROJECT LOCATION Easton, NH

FRUJECI NUMBER 10004	PROJECT	NUMBER	16004
----------------------	---------	--------	-------

	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	 _ 45 _						2 mechanical breaks per run Fresh (I), strong (R4) <i>(continued)</i>	
-		RC	100				0 natural discontinuities per run	3 41 min/ft
-	 50	8	(100)				7 mechanical breaks per run	0.41 1110/1
		50	00				-50 to 50.1 ft core loss Fresh (I), strong (R4)	
rop\east.gpj		9	98)				0 natural discontinuities per run 8 mechanical breaks per run	3.23 min/ft
SILGSCHWINDIDESK							Fresh (I), strong (R4) to very strong (R5), increase in biotite content	
1/7/16 17:14 - C:\USERS		RC 10	100 (100)				0 natural discontinuities per run 2 mechanical breaks per run	2.01 min/ft
^r STD US LAB.GPJ - 1							-60 to 60.6 ft core loss Fresh (I), strong (R4) to very strong (R5)	mechanically fractured zone from 60.6 to 65 ft from drill
L BH / TP / WELL - GINT		RC 11	88 (88)				0 natural discontinuities per run >20 mechanical breaks per run	2.70 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 20 gal water
GENERAL	65					[/ ,]	65.0 Bottom of Borehole at 65.0 feet Groundwater estimated at 4.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

LLEN PROJECT NAME Nother Pass PROJECT NUMBER 1904 PROJECT NAME Nother Pass DATE STARTED 8/15/16 COMPLETED 8/15/16 GROUND ELEVATION HOLE SIZE 4 in DATE STARTED 8/15/16 COMPLETED 8/15/16 GROUND ELEVATION HOLE SIZE 4 in DORLING CONTRACTOR SWI Cole CANTUDE 41 49692 LONGTUDE - 71.789704 Barbon LOGGED BY J. Metion CHECKED BY S. Kearney GROUND WATER LEVEL: CONTENT NOTES VIELING CONTRACTOR SVI COMMER 1/20 b Auto GROUND WATER LEVEL: 0 VIELING CONTRACTOR SVI COMMER SVI COMMER 1/20 b Auto 0 VIELING CONTRACTOR SVI COMMER 1/20 b Auto GROUND WATER LEVEL: 0 VIELING CONTRACTOR SVI COMMER 1/20 b Auto SVI COMMER 1/20 b Auto 0 SVI TAME SVI TAMER 1/20 b Auto SVI TAMER 1/20 b Auto 0 SVI TAME SVI TAME SVI TAMER 1/20 b Auto SVI TAMER 1/20 b Auto	C N			ACE PACE Participation Partici	anta S 08 N Ba okane ephon	ubsurfao arker RD Valley, V ie: 509-8	ce VA 99027 192-9409	BORIN	G NUMBE	R BH-20B PAGE 1 OF 3	
ATE STATE B 21516 COMPLETED 81516 GROUND ELEVAND HOLE SIZE 4 in DRILING CONTRACTOR SW Cole DRILING CONTRACTOR SW Cole LATITUDE 4140802 LONGITUDE -71.789704 DRILING METHOD Sold Stem Augen/Aud Rolary DRICK SW Cole DRILING CONTRACTOR SW Cole DOGED BY J. Meton CHECKED BY S. Kearney DRILING CONTRACTOR SW THAMMER 140 E Auto LOCGED BY J. Meton CHECKED BY S. Kearney Z AT TIME OF DRILLING 7.0ft* EXCHANCE KEVEL NOTES SET Y GRAVEL WITH SAND (GM), trace asphalt, moderate brown, moist, fine Sold stem auger to subangular to subangular Sold stem auger to subangular 0 GM ST	PRO.	NT <u>par</u> Ject Num	Electri	ical Contra 16004	ctors			PROJECT NAME Northern Pass PROJECT LOCATION Faston NH			
I AIT C STATUCE GUILLING CATHRACTOR WC CORE INTUDE 54146262 LONGITUDE 77.178774 DRILLING OKTRACTOR WC CORE INTUDE 54146622 LONGITUDE 77.178774 LOGGED BY J. Melton CHECKED BY S. Kearney GROUND WATER LEVEL: SPT HAMMER 1401b Auto NOTES				15/16		COMP					
DRILLING METHOD Solid Stem AugerMuld Rotary DRILLING EQUIPMENT Diedich D50 SPT HAMMER 140 ib Auto NOTES Image: CheckED BY S. Kearney GROUND WATER LEVEL: Image: CheckED BY S. Kearney With By Statistic Stat	DATE		NTRAC	TOR SW	Cole	COMP		LATITUDE 44.146662	1.789704		
LOGGED BYI.Methon CHECKED BY _S. Keamey GROUND WATER LEVEL: NOTES ✓ AT TIME OF DRILLING _ ZOR* F_BO Start TIME OF DRILLING _ ZOR* REMARKS Start Y GRAVEL WITH SAND (GM), trace asphal, moderate brown, moist, fine to come grained gravel, fine grained sand, angular to subbangular START TZ START TZ START GM START TZ START GM START GM <	DRIL	LING MET	THOD	Solid Ster	m Aug	er/Mud F	Rotary	DRILLING EQUIPMENT Diedrich D50	SPT HAMMER	140 lb Auto	
NOTES Cart Time of DRULLING_TOR* Image: Second s	LOG	GED BY _	J. Mel	ton		CHEC	KED BY S. Kearney	GROUND WATER LEVEL:			
Harden Weigen Starting Staring Star	NOTE	ES	1	1		1		_ \Box AT TIME OF DRILLING 7.0ft*			
SILTY GRAVEL WITH SAND (GM), trace asphal, moderate brown, moist, fine to coarse grained gravel, fine grained sand, angular to subangular to coarse grained gravel, fine grained sand, angular to subangular to coarse grained gravel, fine grained sand, angular to subangular to the coarse grained gravel, fine grained sand, angular to subangular to the coarse grained gravel, fine grained sand, angular to subangular to coarse grained gravel, fine grained sand, angular to subangular to coarse grained gravel, fine grained sand, angular to subangular to the coarse grained gravel, fine grained sand, angular to subangular to coarse grained gravel, fine grained sand, angular to subangular to coarse grained gravel, fine grained sand, angular to subangular gravel to the coarse grained gravel, fine grained sand, angular to subangular gravel to the coarse grained gravel, fine grained sand, angular to subangular gravel to the coarse grained gravel, fine grained sand, angular to subangular gravel to the coarse grained gravel, fine gravel, angular to subangular gravel to the coarse grained gravel, fine gravel, with subangular gravel to the coarse grained gravel, with weak comentation dill action and cuttings to the coarse grained gravel, with weak comentation the coarse grained gravel, fine gravel, with weak comentation to sample recovered to the coarse gravel, with weak comentation the coarse gravel, the coarse gravel action and cuttings to the coarse gravel, the coarse gravel action and cuttings to the coarse gravel action	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		REMARKS	
-becomes medium dense -becomes medium dense -the comes medium dense -the come		-			GM		SILTY GRAVEL WI to coarse grained g	TH SAND (GM), trace asphalt, moderate b ravel, fine grained sand, angular to subang	orown, moist, fine ular	solid stem auger to 11 ft	
A inch casing advanced to 11 for the second of the second	GPU	SPT 1	72	3-4-11 (15)	GM		-becomes medium of $\overline{\Sigma}$ -becomes moderate	dense e yellowish brown, very dense, with subang	ular gravel		
15 SPT 100 50/3" GM -becomes light olive gray, with weak cementation no sample recovered 15 - - - - - - - 20 SPT 88 45-48- 50/4" GM - - -	1177/16 17:14 - C.USERSILGSCHWINDDESKTOPHEASIL	SPT 2	100	50/6"	_ GM		-11 to 15.5 ft encou	ntered boulder		4 inch casing advanced to 11 ft, begin mud rotary contact with boulder based on drill action and cuttings	
20 SPT 4 88 45-48- 50/4" GM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8H / TP / WELL - GINT STD US LAB.GPJ - 1 201 201 201 201 201 201 201 201 201 201	SPT 3	100	50/3"	GM		-becomes light olive	e gray, with weak cementation		no sample recovered	
	GENERAL B	SPT 4	88	45-48- 50/4"	GM		-with low plasticity c	lay lenses			

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERS/LGSCHWIND/DESKTOP/EAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-20B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

P

PROJECT NUMBER		16004	16004 PROJECT LOCATION Easton, NH						
(ff) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	တို MATERIAL DESCRIPTION	REMARKS			
- - 25	X SPT 5	100	50/5"	GM ML	-with low plasticity clay lenses <i>(continued)</i>	icity, very fine grained			
 	SPT 6	100	50/3"	SM	SILTY SAND WITH GRAVEL (SM), moderate yellowish t grained gravel, fine to medium grained sand, subangular	prown, very dense, fine no sample recovered			
- <u>35</u> -	SPT 7	100	31-50/5"	SM					
_ 	SPT 8	100	29-30-50 (80)	SM					

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERS\LGSCHWIND\DESKTOP\EAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-20B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ		IBER	16004			PROJECT LOCATION Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 _ <u>45</u>	SPT 9	100	50/3"	SM		BEDROCK: Possible weathered GNEISS bedrock encountered between 45 and 50 ft bgs, becoming less weathered and stronger with depth -45 to 48.5 ft encountered boulders	no sample recovered contact with boulder based on drill action and cuttings
	SPT 10	100	50/6"				
 <u>55</u>	SPT 11	100	50/4"				
 60	SPT 12	100	50/2"	/			no sample recovered
	SPT		50/0"				no sample recovered Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water

Bottom of Borehole at 64.5 feet Groundwater estimated at 7.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

(Continued Next Page)

BORING NUMBER BH-21A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C.USERS\LGSCHWINDIDESKTOP\EAST.GPJ

PROJ	ROJECT NUMBER 16004					PROJECT LOCATION _Easton, NH				
(t) (t) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS			
	4		(52)	SW- SM		-becomes olive gray to olive <i>(continued)</i>				
 _ <u>25</u> 	SPT 5	67	9-10-12 (22)	SW- SM		-without gravel, medium dense				
 	SPT 6	67	10-10-15 (25)	SW- SM						
	-			SP- SM		fine to medium grained sand, weak cementation				
35 	SPT 7	78	12-12-15 (27)	-						
 <u>40</u>	SPT 8	72	5-6-10 (16)	SP- SM						

BORING NUMBER BH-21A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

QUANTA SUBSURFACE Projection of Construction Registering a Registering a Construction Registering a Registering

BORING NUMBER BH-21B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _Easton, NH			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
 <u>25</u> 	SPT 5	33	50	GM		-becomes light olive gray, increase in silt/clay content <i>(continued)</i> - 21 to 22.5 ft schistose boulder encountered	no sample recovered		
30	SPT 6	89	9-11-13 (24)	SP- SM		POORLY GRADED SAND (SP-SM), moderate yellowish brown, medium dense, fine grained			
35	SPT 7	83	22-15-15 (30)	SM		SAND WITH SILT (SM), yellowish gray, dense, very fine to fine grained			
40	SPT 8	100	12-11-11 (22)	SM		-becomes medium dense			

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:\USERS\LGSCHWIND\DESKTOP\EAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-21B

PAGE 3 OF 3

PROJECT NAME Northern Pass

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004 PROJECT LOCATION Easton, NH SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION REMARKS -becomes medium dense (continued) SM SM 7-8-10 SPT 89 45 <u>45.0</u> 9 (18) FAT CLAY (CH-CL), light olive gray, very stiff, medium plasticity, very fine CHgrained, minor zones of oxidation CL <u>47.0</u> SILTY CLAY (CL), light olive gray, very stiff, low to medium plasticity, very fine CL grained, laminated, iron oxide staining SPT 7-9-20 89 50 10 (29) no sample SPT 0 50/1" recovered -with gravel CL 11 55 <u>58.0</u> POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), light olive gray, SPmedium dense, very fine to fine grained, fine grained gravel SM Backfilled with 186 lbs cement, SPT 12-14-15 10 lbs bentonite, 44 60 12 (29) 20 gal water Bottom of Borehole at 60.5 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-22A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _Easton, NH	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_	4		(12)	SM		SILTY SAND (SM), grayish red to reddish brown, medium dense, very fine to fine grained <i>(continued)</i>	
- 25 -	SPT 5	44	5-5-7 (12)	SM			
- - <u>30</u>	SPT 6	50	5-5-7 (12)	SM			
- - 35	SPT 7	56	3-4-6 (10)	SM			
- - 40	SPT 8	67	9-8-12 (20)	SM	38.0	SILTY SAND WITH GRAVEL (SM), dark gray, medium dense, very fine to fine grained, subangular	hole collapsed from 20 to 40 ft,
-							inch casing advanced to 25 f

BORING NUMBER BH-22A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
45	SPT 9	67	17-37-47 (84)	SM SM		SILTY SAND WITH GRAVEL (SM), dark gray, medium dense, very fine to fine grained, subangular <i>(continued)</i> -becomes dense	
 <u>- 50</u>	SPT 10	.100	50/3"	SM		-with coarse grained gravel	
 <u>55</u>	SPT 11	56	32-30-38 (68)	SM- ML		-becomes dark gray to brown, fine to medium grained, increasing silt content	
 <u>- 60</u>	SPT 12	56	15-29-30 (59)	 		SANDY SILT (ML), brown, hard, laminated	Backfilled with 188 lbs cement, 15 lbs bentonite, 30 gal water
						Bottom of Borehole at 60.5 feet Groundwater estimated at 4.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-22B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERS/LGSCHWIND/DESKTOP/EAST.GPJ

PROJ	IECT NUM	BER	16004		PROJECT LOCATION _Easton, NH	
(#) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	MATERIAL DESCRIPTION	REMARKS
	4		(11)	SM- ML	-very fine to fine grained, decrease in silt content (continued)	
	SPT 5	50	4-4-3 (7)	SM- ML	-becomes loose	
- - 30	SPT 6	33	5-5-7 (12)	SM- ML	-becomes medium dense	
- - 35	SPT 7	44	5-5-8 (13)	SM- ML		
-	-			- <u>-</u> -	37.5 SILT (ML), little sand, moderate brown, very stiff, low plasticity, Jamina	ated, iron
-					oxide staining, clay lenses	
40	SPT 8	44	5-6-10 (16)			rate
-						

CLIENT PAR Electrical Contractors

BORING NUMBER BH-22B

PAGE 3 OF 3

PROJECT NAME Northern Pass

PROJECT NUMBER 16004

PROJECT LOCATION Easton, NH SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION REMARKS SILT (ML), little sand, moderate brown, very stiff, low plasticity, laminated, iron ML oxide staining, clay lenses (continued) -slight increase in clay lenses, ML SPT 11-11-12 56 45 9 (23) 45.3 SILTY SAND (SM), moderate brown, dense, very fine to fine grained, -minor SM clay lenses SM 13-35-11 SPT 44 50 10 (46) GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:\USERS\LGSCHWIND\DESKTOP\EAST.GPJ -becomes medium dense SM SPT 18-16-10 44 55 11 (26) no sample recovered, difficult drilling due to borehole instability 60 Backfilled with SPT 0 50 SM 60.5 188 lbs cement, 12 Bottom of Borehole at 60.5 feet 15 lbs bentonite, Groundwater estimated at 8.0 feet below ground surface. Stable groundwater 25 gal water elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

⁽Continued Next Page)

BORING NUMBER BH-22C

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	BER .	16004				PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	SPT 4	100	6-5-8 (13)	ML			SANDY SILT (ML), dark yellow, stiff, low plasticity, fine grained (continued)	
 <u>- 25</u> 	SPT 5	83	9-7-9 (16)	 SM		23.5	SILTY SAND (SM), light olive gray, medium dense, low plasticity, very fine to fine grained	
 <u></u>	SPT 6	89	7-7-7 (14)	SM			- with zones of oxidation	
				SP- SM		<u>33.0</u>	POORLY GRADED SAND WITH SILT (SP-SM), light olive gray, medium dense, fine to medium grained	
<u>35</u>	SPT 7	100	6-7-9 (16)					
				 		38.5	SANDY SILT (ML), light olive gray, stiff, medium plasticity, very fine grained, laminated bedding, minor oxidation along bedding planes	
40	SPT 8	100	5-5-7 (12)					
			_					

BORING NUMBER BH-22C

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

	PROJ	ECT NUN	IBER	16004				PROJECT LOCATION _Easton, NH	
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	 _ 45 _ 	SPT 9	83	12-16-15 (31)	ML SC- SM		43.5	CLAYEY TO SILTY SAND WITH GRAVEL (SC-SM), yellowish brown to light olive gray, dense, low plasticity, fine grained gravel, fine to medium grained sand, subangular	
	 <u>50</u>	SPT 10	100	18-25-21 (46)	SM		48.5	SILTY SAND (SM), dark yellow to light olive gray, dense, fine grained, spotty oxidation throughout	hole caved at 50 ft
VLGSCHWIND\DESKTOP\EAST.GPJ	 <u>55</u>	SPT 11	100	11-19-31 (50)	SM			-becomes light olive gray, laminated with oxidized layers	3 inch casing advanced to 55 ft
LAB.GPJ - 11/7/16 17:14 - C:\USERS'	 _ 60	SPT 12	100	8-10-15 (25)	SM		61.0	-becomes light olive gray to dark yellow, medium dense, with oxidized layers	Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water
SENERAL BH / TP / WELL - GINT STD US								Bottom of Borehole at 61.0 feet Groundwater estimated at 19.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-23A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
						BEDROCK: Possible contact with weathered SCHIST becoming less weathered and stronger with depth <i>(continued)</i>	
 	SPT 5		50/0"			-becomes massive, gray to dark gray, medium grained, extremely weak	no sample recovered rock is not strong enough to core, mud rotary drilling for remainder of boring
 	SPT 6	100	50/1"	=		Highly weathered (IV), gray to dark gray, medium to coarse grained, very weak (R1) to medium weak (R2), SCHIST, granular	no sample recovered
 	SPT 7	100	50/1"	П			no sample recovered
 	SPT 8	100	50/1"	/		-with minor zones of oxidation	no sample recovered

BORING NUMBER BH-23A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJ		IBER	16004			PROJECT LOCATION _ Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 	SPT 9	67	40-26-27 (53)			BEDROCK: Possible contact with weathered SCHIST becoming less weathered and stronger with depth (continued)	
 <u>50</u>	SPT 10	100	50/3"				no sample recovered
	SPT 11	100 /	50/1"				no sample recovered
SIDUS LABGPU - 11///16 17:14 - CUSEKS 00	SPT 12	0	50/1"				no sample recovered
GENERAL BH / TP / WELL - GINI	SPT 13	100	50/1"		65.0	Bottom of Borehole at 65.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	no sample recovered Backfilled with 279 lbs cement, 15 lbs bentonite, 30 gal water

CLIENT PAR Electrical Contractors

BORING NUMBER BH-23B

PAGE 2 OF 3

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:USERS\LGSCHWINDIDESKTOP\EAST.GPJ

PROJECT NUMBER		16004			PROJECT LOCATION _Easton, NH			
DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS	
	4		(39)	_ SM		SILTY SAND WITH GRAVEL (SM), trace gravel, brown, moist, fine grained gravel, fine to medium grained sand, subrounded <i>(continued)</i> BEDROCK: Highly weathered (IV), very weak (R1), GRANODIORITE GNEISS, possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, black and white	_	
	SPT 5		50/0"	-			no sample recovered attempted to spin 3 inch casing to 24 ft, broke off at 10 ft, casing removed rock is not strong enough to core, mud rotary drilling for remainder of	
 _ <u>30</u> 	SPT 6	0	50/1"				no sample recovered 1.5-2 min/ft	
	SPT 7	_ 0 _/	50/2"	-			no sample recovered	
 _ 40 _ 	SPT 8		50/0"	-			no sample recovered 1.5-2 min/ft	

BORING NUMBER BH-23B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
45	SPT 9		50/0"			BEDROCK: Highly weathered (IV), very weak (R1), GRANODIORITE GNEISS, possible contact with weathered GNEISS bedrock becoming less weathered and stronger with depth, black and white (continued) -becomes stronger Fresh (I) to slightly weathered (II), black and white, medium to coarse grained, strong (R4) to very strong (R5), becomes black and white, medium to coarse grained, biotite rich	no sample recovered
	RC 1	84 (84)				0 natural discontinuities per run 3 mechanical breaks per run	2.46 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 20 gal water

Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-24A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Easton, NH	
b DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	4		(36)	SP- SM		POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), olive to olive brown, dense, fine to coarse grained sand, subangular to subrounded (continued)	advanced to 20 ft, begin mud rotary lost circulation
 25	SPT 5	67	5-6-9 (15)	SP- SM		-becomes olive gray and red, medium dense, without silt, with zones of oxidation	4 inch casing advanced to 24 ft
				ML		SILT WITH SAND (ML), medium dense, medium plasticity	
30	SPT 6	56	6-7-8 (15)	SP- SM		28.5 POORLY GRADED SAND WITH SILT (SP-SM), olive gray, medium dense, fine grained sand	
						-becomes olive, very micaceous	
35	SPT 7	72	7-8-11 (19)	SP- SM		-becomes onve, very micaceous	
			7 10 15	SP-			
40	8	78	(27)	SM			

CLIENT PAR Electrical Contractors

BORING NUMBER BH-24A

PAGE 3 OF 3

QUANTA SUBSURFACE Engeweng - Commutation C

BORING NUMBER BH-24B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJI	ECT NUN	MBER .	16004			PROJECT LOCATION Laston, NH	
(ff) 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	4	67	15-10-10 (20)	SM		SILTY SAND (SM), moderate yellowish brown, medium dense, fine grained sand <i>(continued)</i>	advanced to 20 ft
	SPT 5	72	6-8-10 (18)	SM		-becomes micaceous	
 30	SPT 6	78	13-20-13 (33)	SM	32.0	-becomes dense, with trace gravel, oxidized laminations	
 <u>35</u> 	SPT 7	<u>\ 100 /</u>	50/1"			BEDROCK: Possible contact with weathered SCHIST bedrock becoming less weathered and stronger with depth	poor sample recovery
 40	SPT 8	<u>\ 100 /</u>	50/1"	7			poor sample recovery

BORING NUMBER BH-24B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 45	SPT		50/0"	-		Fresh (I), dark gray, fine to medium grained, strong (R4), SCHIST, with pyrite and chlorite alteration Fresh (I), strong (R4)	no sample recovered NQ Double Tube
	RC 1	80				0 natural discontinuities per run	coring started at 44.8 1.97 min/ft
 <u>50</u>						-48.8 to 49.8 ft core loss Fresh (I), dark gray, fine to medium grained, strong (R4), SCHIST	
	RC 2	100 (98)			x+++ x ++ x ++ x ++ x ++ x ++	 Fresh (I), white and gray, coarse grained, strong (R4) to very strong (R5), PEGMATITE, intrusion with garnet, chlorite and epidote alteration 1 natural discontinuity per run 1 mechanical break per run 	2.10 min/ft
 _ <u>55</u>						Fresh (I), strong (R4) Fresh (I), dark gray, fine to medium grained, strong (R4), SCHIST	
	RC 3	100 (100)				 Fresh (I), strong (R4), PEGMATITE, intrusion with garnet, muscovite, and chlorite alteration Fresh (I), dark gray, fine to medium grained, strong (R4), SCHIST, chlorite filled fractures 0 natural discontinuities per run 2 mechanical breaks per run 	1.89 min/ft
 <u>60</u>						0.0	Backfilled with 188 lbs cement, 10 lbs bentonite, 20 gal water
						Bottom of Borehole at 60.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

S			FACE Qua Spot	anta S 8 N Ba okane ephon	ubsurfac arker RD Valley, V e: 509-8	:e VA 99027 92-9409	BORING NUMBER BH-25A PAGE 1 OF 3 PROJECT NAME Northern Pass				
	NT <u>PAR</u> Ject Num	Electr	Ical Contrac 16004	ctors			PROJECT NAME NOTTHER Pass PROJECT LOCATION Easton. NH				
			1/16		COMP			in			
		יש <u>8/4</u> אדראר	TOR SW	Cole	COMPI	-ΕΙΕυ <u>δ/4/10</u>	LATITUDE 44 077212	LONGITUDE -7	1.796636		
DRIL	LING MET	HOD	Solid Ster	n Aug	er/Mud F	Rotary	DRILLING EQUIPMENT Diedrich D50	SPT HAMMER	140 lb Auto		
LOGO	GED BY _	S. Tig	er		CHECH	ED BY S. Kearney	GROUND WATER LEVEL:	_			
NOTE	ES							erved*			
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		REMARKS		
	-			SM		SILTY SAND WITH o grained gravel, fine to	GRAVEL (SM), grayish brown, moist, meo o medium grained sand, subangular to su	lium dense, fine brounded	solid stem auger to 5 ft		
	SPT 1	33	4-4-16 (20)	SM		-becomes moderate	brown		4 inch casing advanced to 5 ft, begin mud rotary		
	SPT 2	100	50/4"	SM					rock fragment caught in end of sampler		
BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C:U	SPT 3	67	20-16-14 (30)	SM		-12 to 13 ft encounte	red boulders gray, dense, with iron oxide zones				
GENERAL						-without oxidation					
-							(Continued Ne	ext Page)			

BORING NUMBER BH-25A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	PROJECT NUMBER 16004 PROJECT LOCATION Easton, NH											
05 DEPTH (ft) 05	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS				
	4 4	67	8-9-11 (20)	SM			SILTY SAND WITH GRAVEL (SM), grayish brown, moist, medium dense, fine grained gravel, fine to medium grained sand, subangular to subrounded <i>(continued)</i>					
<u>25</u> 	SPT 5	56	8-12-13 (25)	SM			-with trace gravel					
30	SPT 6	67	10-11-13 (24)	SM		33.0	-with iron oxide laminations					
				ML			SILT (ML), little sand, light olive gray, very stiff, fine grained, laminated bedding, iron oxide bedding planes					
35	SPT 7	72	9-10-12 (22)									
40			9-9-10	ML								
	8	67	(19)	_								

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:14 - C.USERS\LGSCHWINDIDESKTOP\EAST.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-25A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	BER	16004				PROJECT LOCATION Easton, NH	
UEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC	L C C	MATERIAL DESCRIPTION	REMARKS
-				ML			SILT (ML), little sand, light olive gray, very stiff, fine grained, laminated bedding, iron oxide bedding planes <i>(continued)</i>	
45	SPT 9	72	8-8-10 (18)	ML			-becomes micaceous	
-								
50	SPT 10	72	6-9-7 (16)	ML				
-								
-								
55	SPT 11	44	9-10-10 (20)	ML			-without iron oxide laminations	
-						50.0	-gravel laver	
-				SP- SM		<u> 50.0</u>	POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), dark yellowish brown, very dense, fine grained gravel, medium to coarse grained sand, angular to subangular	
50	SPT 12	0	38-37-30 (67)					
_						61.5	BEDROCK: Possible contact with weathered SCHIST bedrock becoming less weathered and stronger with depth	
-	SPT 13		50/0"				-contains schistose fragments	poor sample recovery Backfilled with
	<u> </u>			<u> </u>		64.5	Bottom of Borehole at 64.5 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	282 lbs cement, 15 lbs bentonite, 30 gal water

BORING NUMBER BH-25B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004				PROJECT LOCATION _Easton, NH					
(tt) DEPTH 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS				
	4		(67)	SM			SILTY SAND WITH GRAVEL (SM), brown, moist, medium dense, fine to coarse grained gravel, fine to medium grained sand, subrounded <i>(continued)</i>					
 <u>25</u> 	SPT 5	78	12-10-16 (26)	SM		26 5	-becomes olive gray, medium dense, decrease in gravel content					
				ML		<u>.120.5</u>	SILT WITH SAND (ML), olive gray, very stiff, low plasticity, micaceous					
	SPT 6	72	10-10-15 (25)	ML								
AB.GFJ - 11///16 17:15 - C/OSERS/LGSCHV	SPT 7	100	7-10-10 (20)	ML								
	SPT 8	100	5-6-10 (16)	ML			-very micaceous					

BORING NUMBER BH-25B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:15 - C.USERS\LGSCHWINDIDESKTOP\EAST.GPJ

ROJECT NUMBEI	R <u>16004</u>	PROJECT LOCATION _Easton, NH									
(ft) (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	BLOW COUNTS (N VALUE) M.S.C.S.	GRAPHIC 1.00	LOG	MATERIAL DESCRIPTION	REMARKS					
-		ML			SILT WITH SAND (ML), olive gray, very stiff, low plasticity, micaceous (continued)						
45 SPT 9 72	8-8-12 (20)	ML									
50 SPT 89) 5-5-10 (15)	ML	-		-becomes olive, with minor amounts of clay						
-		 ML	-	52.0	SANDY SILT WITH GRAVEL (ML), olive gray, hard						
55 SPT 100	0 50	ML			-becomes dark brown -54.5 to 56.5 ft encountered boulder with quartz and mica, possible contact with weathered bedrock becoming less weathered and stronger with depth	rock fragment caught in end of sampler					
- - -	0 50/5"					Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water no sample					
		4		59.4	Bottom of Borehole at 59.4 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	recovered					

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-26A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004

PRO	JECT NU	IBER	16004			PROJECT LOCATION _Easton, NH					
(#) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
			(41)	SP- SM		SAND WITH GRAVEL AND SILT (SP-SM), reddish brown, moist, dense, fine to coarse grained gravel, fine to medium grained sand, subrounded <i>(continued)</i>	no sample				
_ 25	SPT 	0	18-17-22 (39)	SP- SM			recovered, damaged sampler basket				
30 30	- 		50/0"	SP- SM		-28 to 32 ft encountered biotite schist boulder	no sample recovered				
	-			SM		32.0 SAND WITH SILT (SM), olive to olive gray, medium dense, fine grained sand, micaceous	-				
5 LAB.GPU - 11/7/16 17:15 - C:USERSILGS	- SPT 7 	78	9-10-15 (25)	-		-increasing silt content and decreasing in gravel content					
	- -	78	8-10-16 (26)	SM		-becomes olive gray					
						(Continued Next Page)					

BORING NUMBER BH-26A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

REMARKS
no sample recovered
no sample recovered 3ackfilled with 38 lbs cement, 5 lbs bentonite.
no rec }ack 38 lb 35 g

BORING NUMBER BH-26B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _Easton, NH	
05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
		100	7-8-7 (15)	CL- ML	23.8	LEAN CLAY (CL-ML), light olive gray, stiff, low to medium plasticity, oxidized laminations <i>(continued)</i>	
25	SPT 5	100	7-9-9 (18)	SC- SM		CLAYEY TO SILTY SAND (SC-SM), light olive gray, medium dense, low plasticity, fine grained, minor zones of oxidation	
30				SM	28.0	SILTY SAND (SM), light olive gray, medium dense, fine grained, oxidized	
	SPT 6	100	6-6-7 (13)	-			
35	SPT 7	89	7-7-7 (14)	SM			
	SPT 8	89	8-9-10 (19)	SM		-becomes dark yellow, fine to medium grained	

BORING NUMBER BH-26B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION _Easton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_				SM		SILTY SAND (SM), light olive gray, medium dense, fine grained, oxidized (continued)	
_ 45 _	SPT 9	78	8-8-10 (18)	SM			
	SPT 10	100	7-9-9 (18)	SM		-becomes highly oxidized	
55	SPT 11	100	8-12-13 (25)	SM		-becomes light olive gray	Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water
						Bottom of Borehole at 56.0 feet Groundwater estimated at 9.5 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-27A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Thornton, NH				
HL DEPTH 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS			
	4		(41)	SM- GM		POORLY GRADED GRAVEL AND SAND WITH SILT (SM-GM), yellowish brown to pale yellowish brown, dense, fine to coarse grained gravel, fine to ∑ coarse grained sand, subrounded <i>(continued)</i>				
 25 	SPT 5	33	9-11-21 (32)	SM- GM		-with zones of oxidation				
30	SPT 6	94	10-11-18 (29)	SM- GM						
35	SPT 7	56	20-16-25 (41)	SM- GM		-becomes moderately cemented				
40	SPT 8	100	13-19-17 (36)	SP- SM		POORLY GRADED SAND (SP-SM), little to trace silt, pale yellowish brown to yellowish brown, dense, fine to medium grained				

BORING NUMBER BH-27A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	IECT NUM	BER	16004				PROJECT LOCATION Thornton, NH			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS		
45	SPT 9	100	33-21-27 (48)	SP- SM SM- GM		44.0	POORLY GRADED SAND (SP-SM), little to trace silt, pale yellowish brown to yellowish brown, dense, fine to medium grained <i>(continued)</i> SILTY SAND AND GRAVEL (SM-GM), pale yellowish brown to yellowish brown, dense, fine to coarse grained gravel, fine grained sand, subangular, zones of oxidation			
	-			SM			-without oxidation, with small clay lenses, moderate cementation			
	SPT 10	67	26-20-21 (41)	GM						
SSILGSCHWINDIDESKTOPWOOD.G	SPT 11	100	29-25-39 (64)	SM- GM			-minor zones of oxidation, moderate to weak cementation, very dense			
IS LAB.GPJ - 11/7/16 17:39 - C:USEF	SPT 12	100	19-16-19 (35)	SM- GM		60.5	-becomes dense Bottom of Borehole at 60.5 feet Groundwater estimated at 21.0 feet below ground surface. Stable groundwater	poor circulation at 58 ft cave in at 60 ft Backfilled with 186 lbs cement, 15 lbs bentonite, 35 gal water		
GENERAL BH / TP / WELL - GINT STD I							deposits and use of mud rotary as a drilling method.			

BORING NUMBER BH-27B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _ Thornton, NH						
(tt) 20 DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS					
	4	44	31-44-26 (70)	SW SM- SW		SAND WITH SILT AND GRAVEL (SM-SW), light olive gray, very dense, fine grained gravel, fine to coarse grained sand, micaceous <i>(continued)</i>						
25				SP- SM		POORLY GRADED SAND WITH GRAVEL (SP-SM), little silt, moderate yellowish brown, very dense, fine grained gravel, fine to medium grained sand, subangular, zones of iron oxidation						
	SPT 5	44	28-22-32 (54)	-								
	SPT		5-10-12	SP-		-becomes medium dense, without iron oxidation						
	6	50	(22)									
	SPT	39	9-25-22	SP- SM		-becomes dense, contains bedded gravel						
B.GPJ - 11///16 17.39 -	· ·		(47)									
	SPT	72	28-33-48	SP- SM		0.5						
	8		(81)	SM		SAND WITH SILT AND GRAVEL (SM), dark yellowish brown, very dense, fine grained gravel, fine to medium grained sand, subangular						

BORING NUMBER BH-27B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:USERSILGSCHWINDIDESKTOPIWOOD.GPJ

	PROJECT LOCATION Thornton, NH	
(ft) SAMPLE TYPE NUMBER RECOVERY % BLOW COUNTS (N VALUE) U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
5SPT10050/4"SM	SAND WITH SILT AND GRAVEL (SM), dark yellowish brown, very dense, fine grained gravel, fine to medium grained sand, subangular <i>(continued)</i>	
- - - - - - - -		
SPT 100 39-50/4" SM	-with subangular to rounded, fine grained gravel	
- - - - - - - - - - - - - - - - - - -	-with zones of oxidation	
SPT 72 39-45-50 (95) SM	-with iron oxide laminations	Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water

BORING NUMBER BH-28A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION ______ Thornton, NH

DEPTH (ft) 50	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	H	1	(100)				0 mechanical breaks per run Fresh (I), strong (R4) <i>(continued)</i>	coring started at 19.7 ft 1.83 ft/min
	- - -	२C 2	100 (100)				0 natural discontinuities per run 6 mechanical breaks per run	2.40 ft/min
-							Fresh (I), very strong (R5)	
- 30		२С 3	100 (100)				0 natural discontinuities per run 5 mechanical breaks per run	2.47 ft/min
DESKTOP/WOOD.GPJ							Fresh (I), dark gray, fine to coarse grained, very strong (R5)	
	- -	4	100 (90)				2 natural discontinuities per run 5 mechanical breaks per run	3.26 ft/min
.GPJ - 11/7/16 17:39 -		20	100				Fresh (I), strong (R4) to very strong (R5)	
L - GINT STD US LAB		5	(100)				3 mechanical breaks per run 39.0 BEDROCK: Fresh (I), very strong (R5), QUARTZ MONZONITE, porphyritic, feldspar phenocrysts up to 2 inches long	2.57 ft/min
ENERAL BH / TP / WEL							Fresh (I), very strong (R5)	
~			100			r 2 `.		

BORING NUMBER BH-28A

PAGE 3 OF 3

		1					
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
- 45	6	(100)				5 mechanical breaks per run Fresh (I), very strong (R5) <i>(continued)</i> Fresh (I), very strong (R5)	2.37 ft/min
	RC 7	100 (100)				0 natural discontinuities per run 3 mechanical breaks per run	2.20 ft/min
50						Fresh (I), very strong (R5), with felsic lenses	
- 55	RC 8	100 (98)				1 natural discontinuity per run 5 mechanical breaks per run	2.33 ft/min Backfilled with 188 lbs cement 10 lbs bentonite 20 gal water

deposits and use of mud rotary as a drilling method.

(Continued Next Page)

CLIENT PAR Electrical Contractors

PROJECT NUMB

ŕ

ĉ

SAMPLE TYPE NUMBER

RC

1

RC

2

RC

3

RC

4

80

(46)

100

(86)

DEPTH (ft)

20

25

BORING NUMBER BH-28B

PAGE 2 OF 3

8.37 min/ft

7.70 min/ft

PROJECT NAME Northern Pass

BER	16004			PROJECT LOCATION Thornton, NH					
RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
92 (72)			×+×× +×+ +×+ ××+ ×+× ×+×	2 natural discontinuities per run 8 mechanical breaks per run Fresh (I), very strong (R5) <i>(continued)</i>	recovered 11.32 min/ft; drilled in low gear				
100 (100)			+ + × + + + × + + + × +	Fresh (I), very strong (R5) -becomes medium to very coarse grained 0 natural discontinuities per run 12 mechanical breaks per run	27.87 min/ft installed new drill				
87 (87)			x+x++ +x ++ +x +++ +x ++++x ++++++x ++++++++	-24.5 to 24.6 ft core loss Fresh (I), very strong (R5) 0 natural discontinuities per run 9 mechanical breaks per run	bit 6.33 min/ft				
90 (55)			×++× +× +× +× +× +× +× +× +× +× +× +× +×	 Fresh (I), very strong (R5) -fractured, iron oxidized zone between 26.3 to 27.4 ft -with chlorite mineralization 7 natural discontinuities per run 16 mechanical breaks per run 	8.60 min/ft				

	30	
OD.GPJ		
rop\wo		
D\DESK		
CHWIN		RC
S)LGS		5
:\USEF	35	
7:39 - C		
/7/16 1		
PJ - 11		
LAB.G		50
STD US		6
- GINT	40	
/ WELL		
H / TP		
RAL BF		
ENEF		

Fresh (I), very strong (R5) -with quartz, muscovite, biotite, chlorite, and garnet

3 natural discontinuities per run 16 mechanical breaks per run

Fresh (I), very strong (R5) -becomes pale yellowish green and very light gray

-with iron staining, fracture zone between 37.8 to 38.6 ft 5 natural discontinuities per run 12 mechanical breaks per run

Fresh (I), very strong (R5) -becomes very pale green and very light gray

BORING NUMBER BH-28B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

PROJECT NAME Northern Pass

PROJ	ECT NUM	BER	16004			PROJECT LOCATION Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
45	RC 7	100 (100)			x++x x++x x++x x++ x x+ + x + + x x++ + x + + x + + + x x++ + x + + + x + + + + + + + + + + + +	Fresh (I), very strong (R5) <i>(continued)</i> 0 natural discontinuities per run 9 mechanical breaks per run	7.61 min/ft
	RC 8	100 (100)			x+xx x+xx x+xx x+xx x+x x+x x+x + x + x	Fresh (I), very strong (R5) -with feldspar 0 natural discontinuities per run 8 mechanical breaks per run	7.50 min/ft
	RC 9	90 (90)			**************************************	 -51 to 51.5 ft core loss Fresh (I), very strong (R5) -becomes very pale green, pale yellowish green, very light gray, and brownish gray 0 natural discontinuities per run 8 mechanical breaks per run 	6.09 min/ft
	RC 10	100 (100)			+x+x x+x x+x x+x x+x x+x x+x x+x x+x x+	Fresh (I), very strong (R5) -becomes yellowish gray, very light gray, brownish gray 0 natural discontinuities per run 10 mechanical breaks per run	14.15 min/ft
	RC 11	100 (100)			+++×++× ++× ++× ++× ++× ++× ++× ++× ++×	Fresh (I), very strong (R5) -becomes yellowish gray and very light gray -becomes yellowish gray, very light gray, and very pale green -becomes yellowish gray, very light gray, and reddish orange 0 natural discontinuities per run 13 mechanical breaks per run -becomes yellowish gray, very light gray, and very pale green Bottom of Borehole at 64.8 feet	10.66 min/ft Backfilled with 94 Ibs cement, 15 Ibs bentonite, 20 gal water

elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

(Continued Next Page)

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

BORING NUMBER BH-29A

PAGE 2 OF 3

PRO	DJECT	NUME	BER _	16004			PROJECT LOCATION Thornton, NH	
HLdad 20	(II) SAMPLE TYPE	NUMBER	RECUVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-							2 mechanical breaks per run Fresh (I), strong (R4) <i>(continued)</i>	
-						1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Fresh (I), strong (R4) -with feldspar phenocrysts, biotite and pyrite	
- 25 -		RC 5 (100 100)				0 natural discontinuities per run 1 mechanical break per run	3.45 min/ft
-							-quartz vein with medium grained garnets throughout Fresh (I), strong (R4) -weakly to moderately foliated	
30 radio cer	-	RC 6 (100 100)				0 natural discontinuities per run 1 mechanical break per run	3.56 min/ft
SCHWIND/DESKT							Fresh (I), strong (R4) -becomes very weakly foliated, porphyritic	
1/7/16 17:39 - C:\USERS\LG		RC 7	96 (96)				0 natural discontinuities per run 3 mechanical breaks per run	3.47 min/ft
TD US LAB.GPJ - 1							Fresh (I), strong (R4) -becomes weakly foliated	
AL BH / TP / WELL - GINT S		RC 8(100 100)				0 natural discontinuities per run 4 mechanical breaks per run	3.64 min/ft
GENER							Fresh (I), strong (R4) to very strong (R5) -becomes massive	

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

BORING NUMBER BH-29A

PAGE 3 OF 3

PROJECT NAME Northern Pass PROJECT LOCATION ______ Thornton, NH

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	RC 9	100 (100)				Fresh (I), strong (R4) to very strong (R5) <i>(continued)</i> 0 natural discontinuities per run 1 mechanical break per run -smaller feldspar phenocrysts between 45.6 to 48 ft	4.04 min/ft
 50	RC 10	100 (100)				Fresh (I), strong (R4) to very strong (R5) -massive to weakly foliated 0 natural discontinuities per run 2 mechanical breaks per run -weakly foliated	4.66 min/ft
 55	RC 11	100 (100)				Fresh (I), strong (R4) to very strong (R5) 0 natural discontinuities per run 1 mechanical break per run -transitions to weakly to moderately foliated	3.77 min/ft Backfilled with 186 lbs cement, 25 lbs bentonite, 30 gal water
						Bottom of Borehole at 55.0 feet Groundwater estimated at 3.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027

BORING NUMBER BH-29B

PAGE 2 OF 3

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:\USERS\LGSCHWIND\DESKTOPWOOD.GPJ

40

RC 7

100 (100)

CLIEN	T PAR	Electri	ical Contrac	epnon ctors	e: 509	-892-9409 PROJECT NAME Northern Pass	
PROJ		IBER	16004			PROJECT LOCATION _ Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	RC 3	100 (100)				Fresh (I), strong (R4) <i>(continued)</i> 0 natural discontinuities per run 2 mechanical breaks per run Fresh (I), strong (R4)	2.82 min/ft
	RC 4	100 (100)				-massive to weakly foliated 0 natural discontinuities per run 1 mechanical break per run	2.82 min/ft
	RC 5	100 (100)				Fresh (I), strong (R4) 0 natural discontinuities per run 1 mechanical break per run -increase in phenocryst size	3.02 min/ft
	RC 6	100 (97)				Fresh (I), strong (R4) 0 natural discontinuities per run 1 mechanical break per run -vein of mafic minerals, including pyrite and biotite -becomes massive, without foliation	3.40 min/ft

Fresh (I), strong (R4)

-large feldspar phenocrysts 0 natural discontinuities per run 4 mechanical breaks per run

-becomes weakly foliated

3.26 min/ft

CLIENT PAR Electrical Contractors

Ρ

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

65

BORING NUMBER BH-29B

PAGE 3 OF 3

282 lbs cement, 15 lbs bentonite,

35 gal water

PROJECT NAME Northern Pass

PROJ	ECT NUN	BER	16004			PROJECT LOCATION _ Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
					21121221212	Fresh (I), strong (R4)	
	RC 8	100 (100)				0 natural discontinuities per run 3 mechanical breaks per run -increase in feldspar phenocrysts and pyrite	3.74 min/ft
50	RC 9	100 (100)				Fresh (I), strong (R4) -becomes very weakly foliated, massive 0 natural discontinuities per run 1 mechanical break per run	3.25 min/ft
						-large feldspar phenocrysts, with biotite, quartz, and pyrite Fresh (I), strong (R4)	
	RC 10	100 (100)				-becomes weakly foliated, with quartz phenocrysts, biotite and pyrite mafics 0 natural discontinuities per run 2 mechanical breaks per run	
60	PC	100			12/13/12/13/11/14/14/14/14/14/14/14/14/14/14/14/14/	Fresh (I), strong (R4) -becomes massive, quartz phenocrysts	
	11 11	(100)			10020000000000000000000000000000000000	1 mechanical break per run	3.37 min/ft
65	RC 12	100 (100)				Fresh (I), strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run	4.29 min/ft Backfilled with 282 lbs cement,

Bottom of Borehole at 65.0 feet Groundwater estimated at 5.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-30A

PAGE 2 OF 4

CLIENT PAR Electrical Contractors

P

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:USERS/LGSCHWIND/DESKTOP/WOOD.GPJ

PROJ	ECT NUN	IBER	16004		PROJECT LOCATION NH						
5 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
	RC 3	100 (100)				Fresh (I), strong (R4), siliceous alteration, with quartz, pyrite, garnet, amphibole, and muscovite 0 natural discontinuities per run 2 mechanical breaks per run Eresh (I), strong (R4)	2.50 min/ft				
 	RC 4	100 (100)				 -becomes fine to coarse grained, with pyrite and chlorite filled fractures 1 natural discontinuity per run 0 mechanical breaks per run 	2.20 min/ft				
 	RC 5	100 (100)				Fresh (I), strong (R4) Fresh (I), strong (R4), with chlorite alteration 1 natural discontinuity per run 4 mechanical breaks per run	2.30 min/ft				
<u> </u>	RC 6	100 (100)				Fresh (I), strong (R4) -with garnet and hornblende 1 natural discontinuity per run 4 mechanical breaks per run	2.00 min/ft				
<u>40</u>	RC 7	100				Fresh (I) to slightly weathered (II), strong (R4) -with pyrite, garnet, and chlorite alteration, weak foliation 0 natural discontinuities per run 2 mechanical breaks per run	2.40 min/ft				

BORING NUMBER BH-30A

PAGE 3 OF 4

REMARKS

2.30 min/ft

2.40 min/ft

2.30 min/ft

2.29 min/ft

1.94 min/ft

	CLIEN	IT PAR	Electri	cal Contra	ctors		PROJECT NAME Northern Pass
	PROJECT NUMBER 16004						PROJECT LOCATION _ Thornton, NH
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
							Fresh (I) to slightly weathered (II), strong (R4) (continued)
							Fresh (I) to slightly weathered (II), strong (R4) -without pyrite
		RC 8	100 (100)				1 natural discontinuity per run 4 mechanical breaks per run
							Fresh (I), strong (R4) -with garnet and hornblende
OP\WOOD.GPJ		RC 9	100 (100)				0 natural discontinuities per run 1 mechanical break per run
LGSCHWIND\DESKT	_ 55 _						Fresh (I), strong (R4)
11/7/16 17:39 - C:\USERS\		RC 10	100 (100)				0 natural discontinuities per run 2 mechanical breaks per run
IS LAB.GPJ -							Fresh (I), strong (R4)
VELL - GINT STD U		RC 11	100 (100)				0 natural discontinuities per run 2 mechanical breaks per run
IERAL BH / TP / V	65	RC 12	100 (100)				Fresh (I), strong (R4) 1 natural discontinuity per run 1 mechanical break per run
SEN							Fresh (I), strong (R4)

BORING NUMBER BH-30A PAGE 4 OF 4

ractors	PROJECT NAME Northern Pass			
	PROJECT LOCATION _ Thornton, NH			
U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
	-with pyrite Fresh (I), strong (R4) <i>(continued)</i> 1 natural discontinuity per run 3 mechanical breaks per run	2.10 min/ft		
	Fresh (I) to slightly weathered (II), strong (R4) -chlorite healed fracture from 72.2 to 75 ft 1 natural discontinuity per run 2 mechanical breaks per run	2.20 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water		
	Bottom of Borenoie at 75.3 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.			
		Itactors PROJECT NAME_Northern Pass PROJECT LOCATIONThomton, NH Image: I		

CLIENT PAR Electrical Contractors

BORING NUMBER BH-31A

PAGE 2 OF 4

PROJECT NAME Northern Pass

PROJECT	NUMBER	16004	

o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	Π					BEDROCK: Fresh (I), medium strong (R3), SCHIST (continued)	
	\square					Fresh (I), strong (R4)	
						BEDROCK: Fresh (I), very light gray and dark gray, fine to coarse grained, strong (R4) to very strong (R5), QUARTZ MONZONITE, foliated, porphyritic, feldspar phenocrysts up to 2 inches long	
	RC 4	100 (100)			12111111111111111111111111111111111111	0 natural discontinuities per run 2 mechanical breaks per run	2.60 min/ft
_ 25							
	- RC	100			27777 27777	0 natural discontinuities per run 0 mechanical breaks per run	switched to series 7 drill bit
		((100))				Fresh (I), strong (R4) to very strong (R5), with schistose lenses	
	RC 6	100 (100)			11111111111111111111111111111111111111	0 natural discontinuities per run 2 mechanical breaks per run	3.00 min/ft
00					1) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Fresh (I), strong (R4) to very strong (R5), without schistose lenses	
	RC 7	100 (100)				0 natural discontinuities per run 1 mechanical break per run	2.30 min/ft
					112 12 12 12 12 12 12 12 12 12 12 12 12	Fresh (I), strong (R4) to very strong (R5)	
STD US LAB	RC 8	100 (100)			×+×+	38.5 0 natural discontinuities per run 39.0 1 mechanical break per run	- 3.50 min/ft
40 40						40.0 Fresh (I), strong (R4) to very strong (R5), PEGMATTE, granitic, pegmatitic intrusion with garnet Fresh (I), very light gray and dark gray, fine to coarse grained, strong (R4) to very strong (R5), QUARTZ MONZONITE, feldspar phenocrysts Fresh (I), strong (R4) to very strong (R5), PEGMATITE, granitic, pegmatitic	switched to series
AL BH / TF					×+×× +×+ +×++	42.0 intrusion Fresh (I), strong (R4)	8 drill bit
GENEF					1111		
						(Continued Next Page)	

BORING NUMBER BH-31A

PAGE 3 OF 4

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:\USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

PROJ	ECT NUN	BER	16004			PROJECT LOCATION Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
- 45	RC 9	100 (96)				BEDROCK: Fresh (I), very light gray and dark gray, fine to coarse grained, strong (R4) to very strong (R5), QUARTZ MONZONITE, porphyritic, feldspar phenocrysts <i>(continued)</i> 2 natural discontinuities per run 0 mechanical breaks per run	2.90 min/ft
- - 50	RC 10	100 (98)				Fresh (I), strong (R4) 1 natural discontinuity per run 4 mechanical breaks per run	2.40 min/ft
-	RC	100				50.2 BEDROCK: Fresh (I), dark gray black, fine grained, strong (R4), SCHIST, with pyrite and chlorite, foliated Fresh (I), medium strong (R3) to strong (R4) 0 natural discontinuities per run	2 30 min/ft
- <u>55</u> -	11	(100)				4 mechanical breaks per run Fresh (I), medium strong (R3) to strong (R4), with chlorite alteration	2.30 minut
	RC 12	100 (70)				6 natural discontinuities per run 2 mechanical breaks per run	2.10 min/ft
- - 65	RC 13	100 (98)				Fresh (I), medium strong (R3) to strong (R4) 1 natural discontinuity per run 3 mechanical breaks per run	1.90 min/ft

BORING NUMBER BH-31A

PAGE 4 OF 4

CLIENT PAR Electrical Contractors PROJECT NAME Northern Pass							
PROJECT	NUMBEF	R _16004			PROJECT LOCATION Thornton, NH		
DEPTH (ft) SAMPLE TYPE	NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS	
	RC 100 14 (98))		x+x x++x x++x x++x x++x x++x x+x +x	BEDROCK: Fresh (I), medium to coarse grained, very strong (R5), PEGMATITE, quartz rich, with feldspar and biotite, pegmatite zone 2 natural discontinuities per run 2 mechanical breaks per run	2.20 min/ft	
F	RC 100 15 (83)))			BEDROCK: Fresh (I), dark gray, fine to medium grained, medium strong (R3) to strong (R4), SCHIST, foliated 6 natural discontinuities per run 0 mechanical breaks per run	2.00 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water	
					Bottom of Borehole at 75.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.		

QUANTA SUBSURFACE Progressing - Construction Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-31B

PAGE 2 OF 4

CLIENT PAR Electrical Contractors

PROJ	IECT NU	MBER	16004			PROJECT LOCATION _ Thornton, NH			
(#) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
	4	39	28-21-15 (36)	SM		SILTY SAND WITH GRAVEL (SM), dusky yellowish brown, dense, fine to coarse grained gravel, fine to coarse grained sand, subangular to subrounded, zones of iron oxidation <i>(continued)</i>			
	-					-becomes moderate brown, medium dense, fine to medium grained sand, decrease in gravel content			
	SPT 5	67	11-11-11 (22)	SM					
	-								
30 30	SPT 6	39	4-5-4 (9)	SM		-becomes trace, fine grained gravel			
	-				3	3.0	_		
- T	_					BEDROCK: Fresh (I), moderate orangeish pink to very light gray, medium to coarse grained, strong (R4), QUARTZ MONZONITE, porphyritic, with feldspar phenocrysts up to 2 inches	3 inch casing		
25 - C: USERS	SPT 7	-	50/0"	_			advanced to 34.5 ft no sample recovered		
ID US LAB.GPJ - 11/	-						NQ Double Tube		
	RC	100				1 natural discontinuity per run Fresh (I), strong (B4)	coring started at 39 ft 2.50 min/ft		
		<u>, (U)</u>			11121111111111111111111111111111111111	0 mechanical breaks per run Fresh (I), strong (R4) to very strong (R5) -becomes orangeish pink to white, with muscovite, garnet, and pyrite, fractures filled with chlorite			
GENER	RC 2	100 (84)				1 natural discontinuity per run 10 mechanical breaks per run	5.67 min/ft		
						(Continued Next Page)			

CLIENT PAR Electrical Contractors

BORING NUMBER BH-31B

PAGE 3 OF 4

PROJECT NAME Northern Pass

PROJECT	NUMBER	16004

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
					57.77 2.2.27	Fresh (I), strong (R4) to very strong (R5) <i>(continued)</i>	
45					11/1/		
						Fresh (I), strong (R4) to very strong (R5)	
- ·					×+×× +×+	BEDROCK: Fresh (I), moderate orangeish pink to very light gray, medium to	-
					+× ++ × ×+	-with garnet and epidote mineralization, chlorite alteration	
	3	(98)			+x+ +×++	0 natural discontinuities per run 4 mechanical breaks per run	3.20 min/ft
					x+x x + x +	Fresh (I), strong (R4)	
	11				× x+ x+××		
50	μ_		-		+× +; +× ++ × ×+	Freeh (I) to slightly weathered (II), medium strong (P3) to strong (P4)	
	Ш				+x++ +x++		
					× × · ×+ <u>×</u> ×	51.5	-
	R	2 100				(R4), GNEISS, with chlorite, epidote 1 natural discontinuity per run	0.50 min/ft
2	4	(96)				0 mechanical breaks per run	3.50 min/π
DOD.G	Ш						
	╂		-			Fresh (I) to slightly weathered (II), medium strong (R3) to strong (R4)	
LGSCH					\mathbb{Z}		
ISERS	R(2 100 (94)				1 natural discontinuity per run 1 mechanical break per run	2.70 min/ft
 :-							
1 17:3							
60							
B.GPJ					1	Fresh (I) to slightly weathered (II), medium strong (R3) to strong (R4), with chlorite, epidote, and pyrite	
- ISL	11						
	6	(96)				0 mechanical breaks per run	3.00 min/ft
P/WE							
	11						
65 EKAL	╢		-			65.0 BEDROCK: Fresh (I) to slightly weathered (II), medium strong (R3) to strong	-
GE						(R4), QUARTZ MONZONITE (Continued Next Page)	

BORING NUMBER BH-31B

PAGE 4 OF 4

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ	ECT NUI	MBER	16004			PROJECT LOCATION _ Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
					2772/12 2772/12 2772/12	BEDROCK: Fresh (I) to slightly weathered (II), medium strong (R3) to strong (R4), QUARTZ MONZONITE <i>(continued)</i>	
	RC 7	100 (80)				4 natural discontinuities per run 6 mechanical breaks per run	2.10 min/ft
						Fresh (I) to slightly weathered (II), grayish green, medium grained, medium strong (R3) to strong (R4), GNEISS, with chlorite, epidote	Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water
1						Bottom of Borehole at 70.0 feet	

Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

CLIENT PAR Electrical Contractors

BORING NUMBER BH-32A

PAGE 2 OF 3

PROJECT NAME Northern Pass

DEPTH (ff) 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_	RC 3	100 (92)				Fresh (I), strong (R4) <i>(continued)</i> Fresh (I), very strong (R5), becomes blueish gray and medium light gray, highly silicified with vertical fractures healed with quartz and orthoclase, zones of extensive pyritic and mafic mineralization from 20.8 to 22.6 ft, foliated 2 natural discontinuities per run 9 mechanical breaks per run	4.00 min/ft
25						Fresh (I), very strong (R5)	poor circulation
-	RC 4	100 (100)				3 natural discontinuities per run 6 mechanical breaks per run Fresh (I), extremely strong (R6)	3.45 min/ft
30						Fresh (I), very strong (R5) Fresh (I), very strong (R5), becomes light gray to dark gray, very fine to medium grained with zones of pyritic and mafic mineralization	poor circulation
WINDIDESKTOPIWOOD.GP	RC 5	100 (96)				2 natural discontinuities per run 6 mechanical breaks per run	5.00 min/ft
TISERS/LGSCH	RC	100				Fresh (I), very strong (R5) 0 natural discontinuities per run	installed new drill
/16 17:39 - C:\\	6	(100)				3 mechanical breaks per run Fresh (I), medium dark gray to dark gray, very fine grained, strong (R4) to very	3.45 min/ft
- GINT STD US LAB.GPJ - 11/7 0	RC 7	100 (100)				1 natural discontinuity per run 4 mechanical breaks per run	3.85 min/ft
GENERAL BH / TP / WELL						Fresh (I), strong (R4) to very strong (R5)	

DEPTH

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:\USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-32A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PR

PROJECT NAME Northern Pass

PROJI	ECT NUN	BER	16004			PROJECT LOCATION Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
45	RC 8	100 (100)				Fresh (I), strong (R4) to very strong (R5) <i>(continued)</i> 1 natural discontinuity per run -vertical quartz microfractures 3 mechanical breaks per run	3.57 min/ft
						Fresh (I), strong (R4) to very strong (R5)	
50	RC 9	100 (100)				2 natural discontinuities per run 4 mechanical breaks per run -becomes weakly foliated	3.57 min/ft
-						Fresh (I), strong (R4) to very strong (R5)	poor circulation
- 55_	RC 10	100 (100)				0 natural discontinuities per run 6 mechanical breaks per run	3.23 min/ft
-						Fresh (I), strong (R4) to very strong (R5)	
60	RC 11	100 (100)				0 natural discontinuities per run 4 mechanical breaks per run -quartz veins and microfractures between 59.6 to 62 ft	poor circulation 3.57 min/ft
-						Fresh (I), strong (R4) to very strong (R5)	
- 65	RC 12	100 (100)				1 natural discontinuity per run 2 mechanical breaks per run	4.55 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 35 gal water

Bottom of Borehole at 65.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004

BORING NUMBER BH-32B

PAGE 2 OF 4

PROJECT	LOCATION	Thornton,	NH

(#) DEPTH 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	RC 3	100 (100)				Fresh (I), very strong (R5) <i>(continued)</i> -with felsic lenses 0 natural discontinuities per run 0 mechanical breaks per run	4.00 min/ft
	RC 4	100 (100)				Fresh (I), very strong (R5) 0 natural discontinuities per run 2 mechanical breaks per run	3.60 min/ft
ERSILGSCHWINDIDESKTOPW00D.GPJ	RC 5	100 (100)				Fresh (I), very strong (R5) 0 natural discontinuities per run 1 mechanical break per run	3.10 min/ft
NT STD US LAB.GPJ - 11/7/16 17:39 - C:/USE	RC 6	100 (90)				Fresh (I), very strong (R5) -with felsic lenses 2 natural discontinuities per run 0 mechanical breaks per run	3.10 min/ft
GENERAL BH / TP / WELL - GI	RC 7	100 (100)				41.7 BEDROCK: Fresh (I), medium dark gray grayish black, fine to coarse grained, strong (R4), SCHIST 0 natural discontinuities per run	2.00 min/ft

BORING NUMBER BH-32B

PAGE 3 OF 4

CLIENT PAR Electrical Contractors

PROJ	ECT NU	MBER	16004			PROJECT LOCATION Thornton, NH					
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
45						2 mechanical breaks per run BEDROCK: Fresh (I), medium dark gray grayish black, fine to coarse grained, strong (R4), SCHIST <i>(continued)</i> Fresh (I), strong (R4)					
	RC 8	100 (98)				1 natural discontinuity per run 4 mechanical breaks per run	2.90 min/ft				
50						BEDROCK: Fresh (I), medium dark gray grayish black, fine to coarse grained, very strong (R5), QUARTZ MONZONITE, porphyritic, with felsic lenses, and chlorite alteration Fresh (I), very strong (R5)					
	RC 9	100 (100)				0 natural discontinuities per run 2 mechanical breaks per run	3.00 min/ft				
	RC	80				Fresh (I), very strong (R5) -with amphibole 0 natural discontinuities per run	1 ft of core broken off downhole, retrieved on next run 2 60 min/ft				
- 11///16 17:39 - C:USE 09	10	(80)				2 mechanical breaks per run Fresh (I), strong (R4)	2.00 minut				
	RC 11	100 (100)				BEDROCK: Fresh (I), grayish black, fine to coarse grained, strong (R4), SCHIST, with amphibole and weak schistose foliation 0 natural discontinuities per run 3 mechanical breaks per run	- 1.88 min/ft				
	RC 12	100 (100)				Fresh (I), strong (R4) 0 natural discontinuities per run 1 mechanical break per run	Backfilled with 188 lbs cement, 10 lbs bentonite, 20 gal water				

	CLIEN		JAN BSURI	ACE Cal Contrac	anta S 8 N Ba kane ephon ctors	ubsurf arker F Valley e: 509	face RD , WA 99 9-892-94	BORING NUMBER 409 PROJECT NAME Northern Pass	BORING NUMBER BH-32B PAGE 4 OF 4 PROJECT NAME Northern Pass			
	PROJI		IBER	16004				PROJECT LOCATION _ Thornton, NH				
	1				1	1	1					
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS			
GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 117/116 17:39 - C:UJSERS/LGSCHWIND/DESKTOP-WOOD.GPJ							V65.8/~	Bottom of Borehole at 65.8 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.				

QUANTA SUBSURFACE Protection of Construction Construction

BORING NUMBER BH-33A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004						PROJECT LOCATION _ Thornton, NH					
0 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
	4		(15)	SP- SM		POORLY GRADED SAND WITH SILT (SP-SM), light olive gray to dark yellowish orange, wet, medium dense, fine to medium grained, iron oxide staining <i>(continued)</i>					
25	SPT 5	100	45-50/2"			BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth	4 inch casing advanced to 24 ft, begin mud rotary				
30	SPT 6	83	48-50-42 (92)			-minor zones of oxidation	poor circulation				
35	SPT 7	100	42-50			-oxidation throughout					
40	SPT 8	100									

CLIENT PAR Electrical Contractors

BORING NUMBER BH-33A

PAGE 3 OF 3

PROJECT NAME Northern Pass

PROJECT NUMBER 16	004
-------------------	-----

	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
F						1.1.2.1. 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth (continued)	3 inch casing advanced to 44 ft
	45						Fresh (I), grayish green and yellowish green, very fine to fine grained, very strong (R5), GRANITE, chlorite and epidote present, highly silicified	NX Double Tube coring started at 44 ft
	· -	RC 1	100 (100)				Fresh (I) to slightly weathered (II), strong (R4), becomes yellowish green and light greenish gray, medium to coarse grained, with chlorite and pyrite mineralization, granular 4 natural discontinuities per run 3 mechanical breaks per run	vertical healed joints with visual offsets from 46 to 50.3 ft 6.25 min/ft
							Fresh (I), strong (R4), with epidote, pyrite, and minor potassium feldspar mineralization	
	· _	RC 2	100 (98)				3 natural discontinuities per run 4 mechanical breaks per run	3.57 min/ft
DD.GPJ								poor circulation
ND/DESKTOP/WOC						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Fresh (I), strong (R4), becomes medium grained, pyrite and potassium feldspar mineralization	
39 - C:\USERS\LGSCHWI	· -	RC 3	100 (100)				0 natural discontinuities per run 7 mechanical breaks per run	3.03 min/ft
AB.GPJ - 11/7/16 17:	60						Fresh (I), strong (R4)	
ELL - GINT STD US L	· -	RC 4	100 (100)				2 natural discontinuities per run 8 mechanical breaks per run	3.23 min/ft
ERAL BH / TP / W	65	RC 5	100 (100)			1712 1717	Fresh (I), strong (R4) 0 natural discontinuities per run 65.0 0 mechanical breaks per run	5.88 min/ft Backfilled with 228 lbs cement, 15 lbs bentonite, 30 gal water
GENE							Bottom of Borehole at 65.0 feet Groundwater estimated at 13.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

CLIENT PAR Electrical Contractors

BORING NUMBER BH-33B

PAGE 2 OF 3

PRO	JECT NUN	IBER	16004			PROJECT LOCATION Thornton, NH					
(t) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
-	_					BEDROCK: Possible contact with weathered QUARTZ MONZONITE bedrock becoming less weathered and stronger with depth (continued)	roller bit to 24 ft to confirm bedrock				
- - _ 25 -	- SPT - 5 - RC - 1	<u>0</u> 100 (100)	50/1"/	i.		0 natural discontinuities per run 0 mechanical breaks per run Fresh (I), medium dark gray, fine to coarse grained, strong (R4) to very strong (R5), QUARTZ MONZONITE, porphyritic, with 2 inch feldspar phenocrysts Fresh (I), strong (R4) to very strong (R5) -with chlorite alteration and pyrite mineralization	poor sample recovery 3.00 min/ft NQ Double Tube coring started at 24 ft				
-	RC _ 2	100 (93)				1 natural discontinuity per run 0 mechanical breaks per run	2.70 min/ft				
- - 30	- RC 3	100 (100)/				0 natural discontinuities per run 0 mechanical breaks per run Fresh (I), strong (R4) to very strong (R5) -without pyrite mineralization	3.33 min/ft				
VIND/DESKTOP/WOC	- RC - 4	100 (98)				1 natural discontinuity per run 0 mechanical breaks per run	3.30 min/ft				
17:39 - C:/USERS/LGSCHV						Fresh (I), strong (R4) -oxidized joint fractures and felsic inclusion 2 inches wide, no chlorite alteration					
0 US LAB.GPJ - 11/7/16	RC - 5	98 (96)				-felsic intrusion 7 inches wide 1 natural discontinuity per run 0 mechanical breaks per run	3.10 min/ft				
TP/WELL - GINT STL						Fresh (I), very strong (R5)					
GENERAL BH /	RC - 6	100 (88)				2 natural discontinuities per run 0 mechanical breaks per run -pegmatitic siliceous alteration with garnet, muscovite, pyrite, and chlorite alteration between 42 to 43.6 ft	5.20 min/ft				

CLIENT PAR Electrical Contractors

BORING NUMBER BH-33B

PAGE 3 OF 3

PROJECT NAME Northern Pass

|--|

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-					1.1.2.1 2.1.2.1 2.1.2.1	Fresh (I), very strong (R5) <i>(continued)</i>	
_ 45						Fresh (I), strong (R4) to very strong (R5) -with chlorite and epidote alteration	
-	- 7	98 (90)				2 natural discontinuities per run 0 mechanical breaks per run	3.60 min/ft
- 50					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Fresh (I) to slightly weathered (II), strong (R4) -becomes green, with epidote and chlorite alteration	
.GPJ	- RC - 8	100 (88)				3 natural discontinuities per run 0 mechanical breaks per run	2.70 min/ft
						-becomes gray, no alteration Fresh (I), strong (R4)	
7:39 - C:\USERS\LGSCHW	- 9	80 (76)				3 natural discontinuities per run 0 mechanical breaks per run	2.80 min/ft
B.GPJ - 11/7/16 1 09						Fresh (I), strong (R4)	
L - GINT STD US LA	- RC 10	100 (100)			12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 natural discontinuities per run 0 mechanical breaks per run	3.40 min/ft
VERAL BH / TP / WEI	- RC 11	100 (100)				Fresh (I), strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run	3.00 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water
GEI						Bottom of Borehole at 65.3 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-34A

PAGE 2 OF 4

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004

	PROJ		BER .	16004			PROJECT LOCATION _ Thornton, NH	
-	05 DEPTH (ff)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-		SPT 5	0	7-6-5 (11)	SM SP- SM		POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), dark brown, dense, fine to medium grained sand, subangular to subrounded, cobbles present <i>(continued)</i>	
		SPT 6	_	50/0"			BEDROCK: Fresh (I), medium dark gray, fine to coarse grained, strong (R4), QUARTZ MONZONITE, porphyritic	3 inch casing advanced to 24.5 ft
						17777777777777777777777777777777777777	8 natural discontinuities per run 0 mechanical breaks per run	no sample
DP\WOOD.GPJ		SPT 7 RC 1	100 (100)	50/0"		~?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 natural discontinuities per run Fresh (I), strong (R4) to very strong (R5) 0 mechanical breaks per run	recovered 2.14 min/ft NQ Double Tube coring started at 29 ft
ERS/LGSCHWIND/DESKT0	 	RC 2	94 (86)				6 natural discontinuities per run 0 mechanical breaks per run -silicic alteration present Fresh (I), very strong (R5)	3.10 min/ft
PJ - 11/7/16 17:39 - C:\US		RC 3	100 (62)				Fresh (I), very strong (R5) -with silicic alteration zone 0.7 ft wide with muscovite, quartz, and garnet mineralization Fresh (I), strong (R4) to very strong (R5)	1.80 min/ft
ELL - GINT STD US LAB.G							-sincic alteration -without silicic alteration Fresh (I), strong (R4) to very strong (R5) -silicic alteration zone 3.2 ft thick with quartz muscovite garnet and epidote	
GENERAL BH / TP / WE		RC 4	100 (88)			1212 12 12 12 12 12 12 12 12 12 12 12 12	6 natural discontinuities per run 0 mechanical breaks per run	1.80 min/ft

BORING NUMBER BH-34A

PAGE 3 OF 4

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:39 - C:\USERS\LGSCHWIND\DESKTOPWOOD.GPJ

PROJECT NAME Northern Pass

PROJ	ECT NUN	BER	16004	6004 PROJECT LOCATION Thornton, NH									
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS						
						Fresh (I), strong (R4) to very strong (R5) -silicic alteration Fresh (I), strong (R4) to very strong (R5) <i>(continued)</i>							
45						Fresh (I), strong (R4) to very strong (R5) -without silicic alteration, with zones of oxidation							
 	RC 5	100 (82)				6 natural discontinuities per run 0 mechanical breaks per run	1.50 min/ft						
50						Fresh (I), strong (R4) to very strong (R5) -without zones of oxidation							
 	RC 6	100 (84)				5 natural discontinuities per run 0 mechanical breaks per run	1.50 min/ft						
55						Fresh (I), strong (R4) to very strong (R5)							
 	RC 7	90 (90)				1 natural discontinuity per run 0 mechanical breaks per run	2.60 min/ft						
60					+×++ +×++ ××+	PEGMATITE DIKE, porphyritic, silicic alteration							
	RC 8	100 (100)			+ × ++ +× ++ × ×+ ×+× ×	1 natural discontinuity per run 0 mechanical breaks per run	installed series 10 drill bit						
	RC 9 RC 10 RC 11 RC 12	100 (100) 100 (0) 100 (100) (100) (100)			++× ×++× ×+× ×+× ×+ + +× ×++ ×+× ×+× ×+× ×+× ×+× ×+× ×+× ×+	-possible fault between 61.5 to 62.5 ft O natural discontinuities per run O mechanical breaks per run O natural discontinuities per run O mechanical breaks per run 1 natural discontinuity per run O mechanical breaks per run O natural discontinuities per run O mechanical breaks per run	clayey material blocking core barrel 13.70 min/ft						
65					+× ++ × ×+ ×+× ×	-becomes light gray 65.5 Fresh (I), very strong (R5)	installed new drill bit						

BORING NUMBER BH-34A

PAGE 4 OF 4

CLIENT PAR Electrical Contractors

PROJECT NUMBER			16004 PROJECT LOCATION Thornton, NH								
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
	RC 13	100 (42)				BEDROCK: Fresh (I), dark gray, fine to medium grained, strong (R4), SCHIST (<i>continued</i>) 0 natural discontinuities per run 0 mechanical breaks per run	2.30 min/ft				
 75	RC 14	100 (80)				70.3 BEDROCK: Fresh (I), medium dark gray, fine to coarse grained, strong (R4), QUARTZ MONZONITE, chlorite alteration 9 natural discontinuities per run 0 mechanical breaks per run	2.65 min/ft				
	•					Bottom of Borehole at 75.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.					

CLIENT PAR Electrical Contractors

BORING NUMBER BH-34B

PAGE 2 OF 3

PRC	JECT	NUMBE	R 16004			PROJECT LOCATION Thornton, NH	
DEPTH 50	SAMPLE TYPE	RECOVERY %	(NULUE) (NVALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	_					BEDROCK: Possible contact with weathered QUARTZ MONZONITE bedrock becoming less weathered and stronger with depth <i>(continued)</i> Fresh (I), medium dark gray, medium to coarse grained, strong (R4), QUARTZ MONZONITE, porphyritic	ft
		PT 0 5 10 7C (10 1	50/1")))	7		Fresh (I), strong (R4) Fresh (I), strong (R4) to very strong (R5) -becomes fine to coarse grained	no sample recovered NQ Double Tube coring started at 24 ft 3.00 min/ft
-		RC 10 2 (10))			0 natural discontinuities per run 0 mechanical breaks per run	1.90 min/ft
- 30 - 30						Fresh (I), strong (R4) to very strong (R5)	
GSCHWINDIDESKTOP		RC 10 3 (10	0)			0 natural discontinuities per run 1 mechanical break per run	2.30 min/ft
7/16 17:39 - C:\USERS\L						Fresh (I) to slightly weathered (II), strong (R4)	
r std us Lab.gpJ - 11/		RC 10 4 (86)))			5 natural discontinuities per run 0 mechanical breaks per run	4.20 min/ft
BH / TP / WELL - GIN1			_			Fresh (I), strong (R4) to very strong (R5)	
GENERAL		RC 10 5 (86)))			4 natural discontinuities per run 0 mechanical breaks per run	6.40 min/ft

CLIENT PAR Electrical Contractors

BORING NUMBER BH-34B

PAGE 3 OF 3

PROJECT NAME Northern Pass

PROJECT NUMBER 16004	NUMBER 16004
----------------------	--------------

DEDTU	(ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_	- 45					2012 12 12 12 12 12 12 12 12 12 12 12 12 1	Fresh (I), strong (R4) to very strong (R5) <i>(continued)</i> Fresh (I), strong (R4)	
-		RC 6	100 (100)				0 natural discontinuities per run 0 mechanical breaks per run	1.90 min/ft
_	50		100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fresh (I), strong (R4)	
PWOOD.GPJ	-	7	(100)			1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	0 mechanical breaks per run	1.70 min/ft
LGSCHWIND\DESKTC	55	RC	96			177 177 177 177 177 177 177 177 177 177	Fresh (I), strong (R4) to very strong (R5) 1 natural discontinuity per run	2 20 min/#
/7/16 17:39 - C:\USERS' I I	-	8	(94)				0 mechanical breaks per run	2.20 mm//t
D US LAB.GPJ - 11	<u>60</u>					1235 124 1235 124	Fresh (I), strong (R4) -1 ft felsic intrusion	
BH / TP / WELL - GINT STI	_	RC 9	100 (94)				5 natural discontinuities per run 0 mechanical breaks per run	3.90 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water
GENERAL E						F A	Bottom of Borehole at 64.5 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

CLIENT PAR Electrical Contractors

BORING NUMBER BH-35A

PAGE 2 OF 3

PROJECT NUMBER 16004

|--|

	05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
		<u> </u>	(<u>100)</u> /			11.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 mechanical breaks per run Fresh (I), medium strong (R3)	19.5 ft 2.00 min/ft
	· -	RC	96				Fresh (I), medium strong (R3) to strong (R4) 4 natural discontinuities per run	1.50 min/ft
		2	(80)				1 mechanical break per run	1.50 min/π
							Fresh (I), medium strong (R3) to strong (R4) -minor veins of chlorite alteration from 25 to 30 ft	
		RC 3	100 (92)				3 natural discontinuities per run 0 mechanical breaks per run	2.13 min/ft
SKTOP\WOOD.GPJ		PC	100				Fresh (I), strong (R4)	
JSERS/LGSCHWIND/DE	 35	4	(100)				0 mechanical breaks per run	2.30 min/ft
J - 11/7/16 17:39 - C:\	 	RC	100				Fresh (I), strong (R4)	
ELL - GINT STD US LAB.GF		5	(100)				0 mechanical breaks per run Fresh (I), strong (R4)	3.60 min/ft
ERAL BH / TP / WE			100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
GENE		RC 6	(92)				4 natural discontinuities per run 0 mechanical breaks per run	4.10 min/ft

CLIENT PAR Electrical Contractors

BORING NUMBER BH-35A

PAGE 3 OF 3

PROJECT NAME Northern Pass

PROJECT NUMBER 16004	CT NUMBER 16004
----------------------	-----------------

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Fresh (I), strong (R4) <i>(continued)</i>	
45						Fresh (I), strong (R4) -zones of chlorite alteration from 45 to 50 ft	
	RC 7	100 (100)				0 natural discontinuities per run 0 mechanical breaks per run	5.50 min/ft
<u>50</u>						Fresh (I), strong (R4)	
T	RC 8	100 (84)				7 natural discontinuities per run 0 mechanical breaks per run	3.50 min/ft
						Fresh (I), strong (R4)	
/16 17:39 - C:\USERS	RC 9	100 (82)				9 natural discontinuities per run 0 mechanical breaks per run	2.20 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite,
ENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/1						Bottom of Borehole at 60.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	30 gal water

BORING NUMBER BH-35B

PAGE 2 OF 4

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass PROJECT LOCATION ______ Thornton, NH

05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 	SPT 4	0	50/2"		ANTANANANANANANANANANANANANANANANANANAN	BEDROCK: Possible contact with weathered QUARTZ MONZONITE bedrock becoming less weathered and stronger with depth (continued)	no sample recovered, granitic fragments in spoon tip 3 inch casing advanced to 27 ft begin mud rotary started at 27.5 ft
	RC 3	100 (83)				Slightly weathered (II), pale blueish green and white, coarse grained, medium strong (R3) to strong (R4), QUARTZ MONZONITE, epidote and chlorite rich, highly oxidized joints, foliated	NQ Double Tube coring started at 33 ft
GINT STD US LAB.GPJ-11/7/16.17:3 06	RC 4	100 (75)				36.5 36.5 Slightly weathered (II), medium strong (R3) to strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run	started getting fluid return
ERAL BH / TP / WELL	RC 5	83 (78)				Slightly weathered (II), medium strong (R3) to strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run Slightly weathered (II), medium strong (R3) to strong (R4)	2.50 min/ft 3.89 min/ft
GEP	RC	100				>20 natural discontinuities per run	7.00 min/ft

CLIENT PAR Electrical Contractors

BORING NUMBER BH-35B

PAGE 3 OF 4

PROJECT NAME Northern Pass

PROJECT NUMBER 16004

	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
Ē		6 RC 7	(0) 88 (63)			11111111111111111111111111111111111111	0 mechanical breaks per run Slightly weathered (II), medium strong (R3) to strong (R4) 0 natural discontinuities per run	changed drill bit from series 8 to series 6 9.38 min/ft
	45	RC 8	100 (100)				Fresh (I), medium strong (R3) to strong (R4), becomes porphyritic, with chlorite and pyrite mineralization 0 natural discontinuities per run 0 mechanical breaks per run Fresh (I) to slightly weathered (II), medium strong (R3) to strong (R4) -becomes blueish gray to green, with chlorite, epidote, and pyrite mineralization	
-	- 50	RC 9	100 (58)				8 natural discontinuities per run 0 mechanical breaks per run	4.10 min/ft
SKTOP/WOOD.GPJ	- - 55	RC 10	100 (72)			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Fresh (I) to slightly weathered (II), medium strong (R3) to strong (R4) 51.0 BEDROCK: Fresh (I), light gray to medium dark gray, medium strong (R3) to strong (R4), PEGMATITE -becomes green to greenish gray, with chlorite, epidote, and garnet mineralization 8 natural discontinuities per run 0 mechanical breaks per run	2.80 min/ft
- 11/7/16 17:39 - C:\USERS\LGSCHWIND\DE	60	RC 11	100 (66)			x+xx x+xx x+xx x+xx x+x x+x +x	Fresh (I), medium strong (R3) to strong (R4) 5 natural discontinuities per run 0 mechanical breaks per run -becomes grayish green to light gray, with chlorite and epidote	2.38 min/ft
AL BH / TP / WELL - GINT STD US LAB.GPJ -	- - 65	RC 12	94 (60)			x x+x x x x x x x x x x x x x x x x x x x x	 Fresh (I), strong (R4), becomes light gray to very pale brown, fine to coarse grained, with feldspar phenocrysts 8 natural discontinuities per run 0 mechanical breaks per run 	2.40 min/ft
GENER						+× ++ × ×+ ×+ <u>×</u> ×	Fresh (I), strong (R4) -minor chlorite alteration and garnet mineralization (Continued Next Page)	

CLIENT PAR Electrical Contractors

BORING NUMBER BH-35B

PAGE 4 OF 4

PROJECT NAME Northern Pass

PROJ		IBER	16004			PROJECT LOCATION Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	RC 13	100 (78)			x+1x x+1x x+1x x+1x x+1x x+1x x+1x x+1x	Fresh (I), strong (R4) <i>(continued)</i> 5 natural discontinuities per run 0 mechanical breaks per run	4.70 min/ft
	RC 14	100 (100)			×++× ×++× ×++× +×× +× +× +× +× +× +×× +× +× +× +× +×	Fresh (I), strong (R4) -with garnet mineralization 0 natural discontinuities per run 0 mechanical breaks per run Fresh (I), strong (R4)	15.94 min/ft installed new drill bit
	RC 15	100 (94)			^ × + + × × + + × × + + × × + + + + × × + + + + × × + + + + + × + + + + × + + + + × + + × + + + × + × + + × + × + × + × + + × +	2 natural discontinuities per run 0 mechanical breaks per run	2.94 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water

Bottom of Borehole at 75.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

		JAN SURF Electri	ACE Cal Contract 16004	anta S 8 N Ba okane ephon ctors	ubsur arker I Valley e: 509	face RD v, WA 9-892-	99027 9409 PR PR	OJECT NAME <u>Northern Pass</u>	G NUMBE	RBH-36A PAGE 1 OF 3
	STADTE	י די די	12/16		CON	דם וסו	ED 7/13/16 CP			
DRILL			TOR SW	Cole	CON		ED <u>1113/10</u> GR	TITUDE 44 026654	LONGITUDE -7	1 755236
DRILL	LING MET	HOD	Solid Ster	n Aug	er/Mu	d Rota	ry / NQ/Series 8 DR	ILLING EQUIPMENT Diedrich D50	SPT HAMMER	140 lb Auto
LOGO	SED BY	S. Kea	arney		CHE	CKED	BY S. Kearney GR	OUND WATER LEVEL:	—	
NOTE	S							$\overline{2}$ at time of drilling <u>22.0ft</u> *		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		REMARKS
	-			SM			SILTY SAND WITH GRA grained gravel, fine to coa	VEL (SM), dark brown, moist, very de arse grained sand, subrounded	nse, coarse	solid stem auger to 10 ft
	SPT 1		50/0"	GM		4.5	SILTY GRAVEL (GM), br gravel, angular to subang fragments -possible contact with we stronger with depth	own and dark gray, very dense, fine to ular, broken, medium to coarse grain athered bedrock becoming less weath	o coarse grained ed, boulder nered and	
16 1740 - C:USERS/LGSCHWINDDESKTOPW000.GFU	SPT 2		50/2"	GМ			-encountered fresh to slig boulder with argillite cobb	htly weathered, medium strong to stro les	ong granite	abandoned hole at 9.1 ft, drilled offset hole 1.5 ft N no sample recovered 4 inch casing advanced to 10 ft, begin wet rotary cored through boulder from 13.5
BH/TP/WELL-GINT STD US LAB. GPJ - 11/17/ 10 10 10 10 10 10 10 10 10 10	RC 1	100 (100)								to 16 ft using series 8 bit switched to roller bit begin mud rotary
GENERAL 20	SPT 3	60	50/5"	GM						

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:\USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-36A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER	R 16004	Mode PROJECT LOCATION _ Thornton, NH						
02 DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS			
		GM						
		SW- SM		SAND WITH SILT (SW-SM), brown, very dense, medium grained sand □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
	27-32-36 (68)	SW- SM						
) 37-50/5"	SW- SM		-silt content increases with trace gravel				
) 50/3"	SM		gravel, fine to medium grained sand, subangular				
40 40	33-50/3"	SW- SM		WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown, very dense, fine to coarse grained gravel, fine to coarse grained sand, subrounded, iron oxide staining	hole collapsed from 34 to 39 ft, 3 inch casing advanced to 39 ft			
		SP-	• • . • <u>.4</u> 2	<u></u>				

BORING NUMBER BH-36A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass
PROJECT LOCATION Thornton, NH

	1	1	1				T
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 _ <u>45</u>	SPT 8	100	28-42-58 (100)	SP- SM		POORLY GRADED SAND WITH SILT (SP-SM), trace gravel, brown and orange, very dense, fine to coarse grained gravel, fine to medium grained sand, subrounded, iron oxide staining <i>(continued)</i>	
 <u></u>	SPT 9	100	50	SP- SM		-becomes dark gray	3 inch casing advanced to 49 ft
	SPT	100	50///"	 ML		53.0 SANDY SILT WITH GRAVEL (ML), dark gray, hard, fine to coarse grained gravel, fine to coarse grained sand, angular	
				•			roller bit to determine if
60	SPT	100	50/4"	ML		-with fine subangular gravel	bedrock present
	SPT	_25_	50/4"	ML		64.3 Bottom of Borehole at 64.3 feet Groundwater estimated at 22.0 feet below ground surface. Stable groundwater	no sample recovered Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water
						elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-36B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ROJECT NUMBER				PROJECT LOCATION NH		
B DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS	
 25	SPT 5	10	50/5"	SM 21. SM	SAND WITH SILT AND GRAVEL (SM), grayish brown, very dense, fine to coarse grained gravel, fine to coarse grained sand, subangular <i>(continued)</i> SILTY SAND WITH GRAVEL (SM), grayish brown, very dense, fine to coarse grained gravel, fine to coarse grained sand, subangular	poor sample recovery	
				27. 	0 BEDROCK: Fresh (I), white grayish black, medium strong (R3) to strong (R4), PEGMATITE, pyrite and galena mineralization, quartz veins 0.5 inch thick Fresh (I), medium strong (R3) to strong (R4)	3 inch casing advanced to 29 ft NQ Double Tube coring started at 29 ft	
	RC 1	100 (85)		x x++x x++x x++x x++x x x+x +x x+x x+x +x x+x x x++ x++	5 natural discontinuities per run 8 mechanical breaks per run	4.34 min/ft	
 	RC 2	43 (0)		tx x+xx x+xx x+xx x+xx x+xx x+xx x+xx x	Fresh (I), medium strong (R3) to strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run -37 to 39 ft core loss	6.38 min/ft	
	RC 3	100 (98)			0 BEDROCK: Fresh (I), dark gray and white, fine to coarse grained, strong (R4), QUARTZ MONZONITE, with feldspar phenocrysts 3 natural discontinuities per run 0 mechanical breaks per run	- 5.40 min/ft	

BORING NUMBER BH-36B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

Ρ

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:\USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _ Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
- 45 -	RC 4	100 (94)				 BEDROCK: Fresh (I), dark gray and white, fine to coarse grained, strong (R4), QUARTZ MONZONITE, with feldspar phenocrysts <i>(continued)</i> Fresh (I), strong (R4) to very strong (R5) 3 natural discontinuities per run 0 mechanical breaks per run 	4.60 min/ft
- 50	RC 5	100 (100)				Fresh (I), strong (R4) to very strong (R5) -quartz veins 1mm thick from 49-54 ft 0 natural discontinuities per run 1 mechanical break per run	4.50 min/ft
- <u>55</u> -	RC 6	100 (100)				Fresh (I), strong (R4) to very strong (R5) -quartz veins absent 0 natural discontinuities per run 0 mechanical breaks per run	5.20 min/ft
- 60	RC 7	100 (98)				Fresh (I), strong (R4) to very strong (R5) -feldspar content increases 1 natural discontinuity per run	8.75 min/ft
					63	.0 Bottom of Borehole at 63.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	bit worn out at 63 ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water

BORING NUMBER BH-36C

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION _ Thornton, NH				
05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS			
 <u>25</u> 	SPT 5	75	50/4"			BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth <i>(continued)</i>	3 inch casing			
	RC 1	100 (78)				Fresh (I), white grayish black, strong (R4), QUARTZ MONZONITE, foliated, porphyritic 8 natural discontinuities per run 0 mechanical breaks per run	advanced to 29 ft no sample recovered NQ Double Tube coring started at 29 ft 5.10 min/ft original hole, 2.00 min/ft new hole			
10 US LAB.GPJ - 11///16 17/40 - C:USERSILGSCHV	RC 2	88 (84)			10111111111111111111111111111111111111	Fresh (I), strong (R4) -becomes grayish black below 34 ft. 4 natural discontinuities per run 0 mechanical breaks per run	bit worn out at 34 ft, new bit installed hole abandoned at 34 ft, Backfilled with 188 lbs cement, 10 lbs bentonite, 20 gal water offset hole drilled 2 ft N 3.00 min/ft			
	RC 3	100 (90)			127.034.027.034.027.034.027.03 127.034.027.034.027.027.027.027.027.027.027.027.027.027	Fresh (I), strong (R4) -foliation absent from 39 to 41 ft. 5 natural discontinuities per run 0 mechanical breaks per run	4.65 min/ft			

BORING NUMBER BH-36C

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION Thornton, NH

presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 	RC 4	100 (100)				Fresh (I), strong (R4) <i>(continued)</i> Fresh (I), strong (R4) 0 natural discontinuities per run 0 mechanical breaks per run Bottom of Borehole at 45.0 feet Croundwater net chargered. Stable groundwater elevations are unpertain due to	5.25 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 20 gal water

			ACE PACE Pactor FACE FACE Factor Faco	anta S 8 N Ba okane ephon	ubsurf arker F Valley, e: 509	ace RD , WA)-892-	99027 -9409	BORING NUMBER BH-37A PAGE 1 OF 3			
CLIE	NT PAR	Electr	ical Contra	ctors				PROJECT NAME Northern Pass			
PRO.	JECT NUN	IBER	16004					PROJECT LOCATION _ Thornton, NH			
DATE	E STARTE	D <u>7/</u>	11/16		СОМ	PLET	TED 7/12/16	GROUND ELEVATION	in		
DRIL	LING CON	ITRAC	CTOR SW	Cole				LATITUDE <u>44.021807</u>	LONGITUDE7	71.731939	
DRIL	LING MET	HOD	Solid Ster	n Aug	er/Mud	Rota	ary	DRILLING EQUIPMENT Diedrich D5	0 SPT HAMMER	140 lb Auto	
LOG	GED BY _	S. Tig	er		CHE	CKEE	BY <u>S. Kearney</u>		XI 14		
NOT	=>								DServed."	1	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		REMARKS	
	-			SM			SILTY SAND WITH (loose, coarse grained	GRAVEL (SM), trace organics, grayish I gravel, fine to medium grained sand,	brown, moist, subrounded	solid stem auger to 5 ft	
- · ·	SPT 1	57	50	SM			-becomes dense			4 inch casing advanced to 5 ft	
	-			SM- ML		8.0	SILTY SAND (SM-MI gravel, fine to mediur	_), trace to little gravel, light olive gray, n grained sand, subrounded, gravel int	dense, fine grained erbedded	hole relocated 2 ft	
	SPT 2	83	8-17-21 (38)	-						E after casing shifted	
1/:40 - 0:005F	-						-boulders present at	12 ft			
15	SPT 3	100	27-40- 50/2"	SM- ML			-becomes very dense	e, and iron oxide staining			
	-						-boulders present at a	16 ft			
	SPT	72	32-45-15	SM- ML			-interbedded with fine	e to coarse grained sand (2 inches thic	K)		

QUANTA SUBSURFACE Progressing - Construction Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-37A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	IECT NUN	IBER	16004			PROJECT LOCATION NH	
(#) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	4		(60)	SM- ML		-interbedded with fine to coarse grained sand (2 inches thick) (continued)	
 <u>25</u>	SPT 5	100	45-50/5"	SM- ML		-with trace fine grained subangular gravel; iron staining and stratified sand absent	
 <u>30</u>	SPT 6	91	41-50/5"	SM		28.0 SAND WITH SILT (SM), trace gravel, medium dark gray, very dense, fine grained gravel, fine to coarse grained sand, subrounded	
	SPT 7	80	50/5"	- SM			no sample recovered
	SPT 8	100	50/4"	CL- ML		SILT OR CLAY WITH SAND AND GRAVEL (CL-ML), medium dark gray, hard, low plasticity, fine grained gravel, fine to coarse grained sand, subangular	no sample recovered, gravel caught in sampler
H U						(Operformed March Depen)	

BORING NUMBER BH-37A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER	16004		PROJECT LOCATION _ Thornton, NH				
DEPTH (ft) (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	OHDO BOO MATERIAL DESCRIPTION	REMARKS			
45 SPT 89	47-50/3"	ML- SM	43.5 SAND AND SILT (ML-SM), trace gravel, medium dark gray, hard, low plasticity, fine grained gravel, fine grained sand				
SPT 71 50	50	ML- SM					
	▲ 50/2"		52.0 BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth	poor sample recovery			
60 <u>60</u> <u>12</u>	<u>, 50/1"</u>		61.5 Bottom of Borehole at 61.5 feet Groundwater at absorved. Stable groundwater elevations are upgettein due to	no sample recovered Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water			

CLIENT PAR Electrical Contractors

BORING NUMBER BH-37B

PAGE 2 OF 3

PROJECT NAME Northern Pass
PROJECT LOCATION Thornton, NH

PROJECT NUMBER 16004

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) REMARKS MATERIAL DESCRIPTION 20 (80) 4 -with medium to coarse grained sand, fine to coarse grained gravel (continued) X ML -drilled through cobble zones at 21 ft -gravel content increases ML SPT 14-26-44 72 25 5 (70) -cobble zone at 26-28 ft ML 16-30-38 SPT 50 30 6 (68) ML SPT 7 38-41-50 89 35 (91) -with fine grained sand, subrounded gravel ML SPT 19-25-32 78 40 8 (57)

BORING NUMBER BH-37B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	-			ML		-with fine grained sand, subrounded gravel (continued)	
_ 45	SPT 9	83	23-31-41 (72)	ML		-sand content increases	
	SPT 10	89	17-26-34 (60)	ML		-gravel content decreases	
asiLeschwinddeskTopwood.gpu	SPT 11	78	16-28-45 (73)	ML			
NT STD US LAB.GPJ - 11/7/16 17:40 - C.USEF	SPT 12	83	21-44-58 (102)	ML		-with fine to coarse grained sand, subangular gravel	sand plugging up drill rod
GENERAL BH / TP / WELL - GI	SPT 13	94	5-26-47 (73)	ML		65.5 Bottom of Borehole at 65.5 feet Groundwater not observed. Stable groundwater elevations are uncertain due to	Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water

CLIE PRC DAT	ENT <u>PAR</u> DJECT NUM E STARTE	Electri	ical Contrac			02 0400	BORING NUMBER BH-39A PAGE 1 OF 3			
DAT	ESTARTE		16004	ctors			PROJECT NAME Northern Pass			
	COLARIE		1000+		0045					
DRII		ם <u>9/1</u> ודRAC	TOR SW	Cole	COMPL	EIEU <u>9/2/16</u>	LATITUDE 44.026477	LONGITUDE -7	1.684915	
DRI	LING MET	HOD	Hollow Ste	em Au	iger/Mud	Rotary / NX/Series 8	DRILLING EQUIPMENT Diedrich D50	SPT HAMMER	140 lb Auto	
LOG	GED BY _	J. Mel	ton		CHECK	ED BY S. Kearney	GROUND WATER LEVEL:			
NOT	'ES			1			AT TIME OF DRILLING14.0ft*			
o DEPTH	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		REMARKS	
- CINT STD US LAB.GPJ - 11/7/16 17:40 - C:UUSERS/LGSCHWIND/DESKTOP/WOOD.GPJ 2	- SPT 1	67	<u>50/1"</u> 21-18-13 (31)	SM GP SM		ASPHALT SILTY SAND WITH to coarse grained gr GRAVELS WITH Co gravel, subangular SILTY SAND WITH gravel, fine to medic ⊈	GRAVEL AND COBBLES (SM), brown, m ravel, fine to medium grained sand, subrou OBBLES AND SAND (GP), medium to coa	oist, loose, fine nded	4 inch casing advanced to 7.5 ft, begin mud rotary	
GENERAL BH / TP / WE	SPT	0	12-11-9	SM		-becomes medium o	dense	vyt Pagel	no sample recovered	

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:\USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-39A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ		BER	16004			PROJECT LOCATION _ Thornton, NH	
05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	3		(20)			-becomes medium dense (continued)	
-	-			SM		-becomes moderate yellowish brown	
 	SPT 4	28	8-10-9 (19)	SM			no sample recovered
	SPT 5	50	7-8-7 (15)	SM		-with trace medium to coarse grained subangular gravel	
- - 35	SPT 6	50	9-11-12 (23)	SM		-with trace clay	
	SPT 7		50/0"		37.5 37.5	BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth	roller bit to confirm bedrock no sample recovered

CLIENT PAR Electrical Contractors

BORING NUMBER BH-39A

PAGE 3 OF 3

PROJECT NAME Northern Pass

PROJECT LOCATION _ Thornton, NH

PROJECT NUMBER 10004	PROJECT NUMBER 16004	
----------------------	----------------------	--

BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:/USERS/LGSCHWIND/DESKTOP/WOOD.GPJ

GENERAL

SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY (RQD) U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION REMARKS no sample BEDROCK: Possible contact with weathered GRANITIC bedrock becoming recovered less weathered and stronger with depth (continued) SPT 50/0" NX Double Tube coring started at 44.5 ft 8 Fresh (I), very light gray and dark gray, medium to coarse grained, strong (R4), 45 GRANÌTE 3 natural discontinuities per run RC 100 1.75 min/ft 2 mechanical breaks per run 1 (93)Fresh (I), strong (R4) 50 0 natural discontinuities per run RC 100 2.06 min/ft (100) 3 mechanical breaks per run 2 -with very coarse grained feldspar phenocrysts Fresh (I), strong (R4) 55 RC 100 2 natural discontinuities per run 1.86 min/ft 3 (94)1 mechanical break per run -with extensive pyrite mineralization from 57 to 59.5 ft Fresh (I), strong (R4) 60 RC 100 0 natural discontinuities per run 1.95 min/ft (100)0 mechanical breaks per run 4 Backfilled with 289 lbs cement, 15 lbs bentonite, 30 gal water Bottom of Borehole at 64.5 feet Groundwater estimated at 14.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-40A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

	(1) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	_	4		(8)	SP- SM		-becomes medium dense <i>(continued)</i>	
-	_ 25	SPT 5	44	8-7-7 (14)	SP- SM		-with fine, subrounded gravel	
KTOPWOOD.GPJ	- - 30 -	SPT 6	50	8-8-8 (16)	SP- SM		-with subrounded to subangular gravel	
7/16 17:40 - C:\USERS\LGSCHWIND\DESI	- 35 -	SPT 7	0	20-20-13 (33)	SP- SM		-becomes dense	hole collapsed from 29 to 34 ft no sample recovered 3 inch casing advanced to 35 ft
IERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/	- - 40 -	SPT 8	44	8-8-9 (17)	SP- SM		-becomes medium dense, with trace gravel	
Е СЕ								

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:USERS/LGSCHWIND/DESKTOP/WOOD.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-40A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ		IBER	16004			PROJECT LOCATION _ Thornton, NH			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
				SP- SM		-becomes medium dense (continued)			
45	SPT 9	72	9-12-12 (24)	SP- SM					
	SPT 10	56	14-13-15 (28)	SP- SM		-with fine to coarse grained gravel			
	SPT 11	78	20-19-23 (42)	SP- SM			3 inch casing advanced to 55 ft		
							Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water		
	1	1	1		<u>r - 1111</u>	Bottom of Borehole at 60.0 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	, ,		

BORING NUMBER BH-40B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:\USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

PROJECT N	UMBER	16004		PROJECT LOCATION _ Thornton, NH									
0 DEPTH (ft) SAMPLE TYPE NIIMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	MATERIAL DESCRIPTION REMARKS									
	•	(13)	SP- SM	SAND (SP-SM), little silt, and gravel, brown, medium dense, fine grained gravel, fine to medium grained sand, subrounded <i>(continued)</i>									
_25SF	5 ^T 56	8-8-8 (16)	SP- SM	-with trace gravel									
<u>30</u> SF	²⁷ 50	8-9-8 (17)	SP- SM										
<u>35</u> _ _ _	27 61	9-9-8 (17)	SP- SM										
40 SF	² 7 72	8-9-9 (18)	SP- SM										

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:40 - C:USERS\LGSCHWIND\DESKTOP\WOOD.GPJ

65

78

(22)

65 5

13

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-40B

PAGE 3 OF 3

30 gal water

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION _ Thornton, NH SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION REMARKS SAND (SP-SM), little silt, and gravel, brown, medium dense, fine grained SPgravel, fine to medium grained sand, subrounded (continued) SM SP-10-8-10 SPT SM 78 45 9 (18) SP-SPT 11-10-8 SM 72 50 10 (18) -with fine grained gravel SP-SPT 9-10-12 SM 61 55 11 (22) -gravel content increases SP-SPT 11-14-12 SM 67 60 12 (26) Backfilled with SP-282 lbs cement, SPT 11-11-11 SM 15 lbs bentonite,

Bottom of Borehole at 65.5 feet Groundwater not observed. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-41A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	PROJECT NUMBER 16004 PROJECT LOCATION Thornton, NH										
(#) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
				ML- SM		SAND AND SILT (ML-SM), grayish brown, stiff, non plastic, fine g laminated (continued)	rained sand,				
 <u>25</u>	SPT 5	44	3-3-8 (11)	ML		-sand content increases	changed from 3 inch bit to 3 7/8 inch bit				
				SM		SILTY SAND (SM), dusky yellowish green, very dense, fine to me sand	dium grained changed back to 3 inch bit				
 <u>30</u>	SPT 6	11	38-25-25 (50)				granitic fragments in shoe 3 inch casing advanced to 30 ft				
 <u>35</u>	SPT 7	60	50/5"	SM			no sample recovered				
 	SPT 8 RC 1	 100 (100),	50/0"		xx+xx xx+xx xx+xx xx+xx xx+xx xx+xx xx+xx+xx+xx xx+x+x+x xx+x+x+x+x xx+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x	 BEDROCK: Fresh (I), light gray to medium dark gray, medium str PEGMATITE, porphyritic 0 natural discontinuities per run 0 mechanical breaks per run Fresh (I), medium strong (R3) BEDROCK: Fresh (I), medium gray, medium to coarse grained, v 	no sample recovered NQ Double Tube coring started at 38.5 ft 1.50 min/ft				
	RC 2	98 (88)				 (R5), GRANITE, porphyritic 6 natural discontinuities per run 0 mechanical breaks per run 	6.61 min/ft				

BORING NUMBER BH-41A PAGE 3 OF 3

CLIENT PAR Electrical Co -trootor

			10004				
(ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-						BEDROCK: Fresh (I), medium gray, medium to coarse grained, very strong (R5), GRANITE, porphyritic <i>(continued)</i>	
, 	RC 3	98 (94)				-quartz veins up to 2 cm in width present 3 natural discontinuities per run 0 mechanical breaks per run	7.51 min/ft
_	PC	64				-49 to 49.6 ft core loss Fresh (I), strong (R4) -quartz veins 1 cm and 13 cm wide	
_	4	(52)				0 mechanical breaks per run	3.00 min/ft
-						Fresh (I), strong (R4) -becomes medium grained	
-	RC 5	100 (100)				0 natural discontinuities per run 0 mechanical breaks per run	3.30 min/ft Backfilled with 186 lbs cement, 10 lbs bentonite 20 gal water

BORING NUMBER BH-41B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004		PROJECT LOCATION _ Thornton, NH							
05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	OHATERIAL DESCRIPTION	REMARKS						
	4		(10)	SM	-becomes medium dense, minor zones of oxidation (continued)							
_ 25 _	SPT 5	83	4-6-4 (10)	SM SM	24.5 SAND WITH SILT (SM), yellowish gray and yellowish brown, medium dense, fine to medium grained, iron oxide staining	3 inch casing advanced to 24 ft						
 _ <u>_ 30</u>	SPT 6	100	7-7-10 (17)	SM								
 <u>35</u>	SPT 7	89	7-7-8 (15)	SM								
 40	SPT 8	94	14-15-14 (29)	SP- SM	38.5 POORLY GRADED SAND WITH SILT (SP-SM), yellowish brown, medium dense, highly oxidized	3 inch casing advanced to 40 ft						
						caving noted						

BORING NUMBER BH-41B

PAGE 3 OF 3

	PROJECT	NUMBER	16004
--	---------	--------	-------

DEPTH (ft)

45

50

55

BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:33 - C:\USERS\LGSCHWIND\DESKTOP\THOR.GPJ

GENERAL

CLIENT PAR Electrical Contractors PROJECT NAME Northern Pass PROJECT LOCATION _ Thornton, NH % SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY (RQD) U.S.C.S. MATERIAL DESCRIPTION REMARKS 43 0 BEDROCK: -43 to 44.6 ft core loss 3 inch casing stuck at 43 ft during removal Fresh (I), strong (R4), QUARTZ MONZONITE, with foliation zones throughout RC 1 natural discontinuity per run 68 3.22 min/ft 0 mechanical breaks per run 2 (68)-48 to 48.8 ft core loss Fresh (I), yellowish gray to light gray, strong (R4), QUARTZ MONZONITE, with feldspar phenocrysts RC 2 natural discontinuities per run 82 4.17 min/ft 3 (82) 0 mechanical breaks per run 52.0 ×+×× +×+ BEDROCK: Fresh (I), yellowish gray to light gray, very strong (R5), + PEGMATITE Fresh (I), very strong (R5), extensive fluorite and mica mineralization throughout below 52 ft *+ ×+ 54.8 ×+ 100 RC BEDROCK: Fresh (I), medium light gray to greenish gray, medium strong (R3), (100)4 QUARTZ MONZONITE 3.85 min/ft 1 natural discontinuity per run 3 mechanical breaks per run -57 to 57.2 ft core loss Fresh (I), medium strong (R3)

deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-42A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	PROJECT NUMBER 16004 PROJECT LOCATION Thornton, NH											
(tj) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC 1 OC	0	MATERIAL DESCRIPTION	REMARKS				
	4		(28)	GP- GM			POORLY GRADED GRAVEL WITH SAND (GP-GM), moderate brown, medium dense, medium to coarse grained, subangular <i>(continued)</i>					
 	SPT 5	0	8-8-8 (16)	GP- GM				no sample recovered				
30 30 	SPT 6	6	6-7-6 (13)	ML		28.0	SILT (ML), blueish gray, stiff, non plastic, information logged from cutting return	no sample recovered				
11///1617:33 - C:/USERS/LGSCHWIND/DE	SPT 7	6	7-8-9 (17)	ML				no sample recovered				
	SPT 8	61	9-11-12 (23)	SP- SM		38.0	POORLY GRADED SAND WITH SILT (SP-SM), blueish gray, medium dense, fine grained sand, laminated bedding					

BORING NUMBER BH-42A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	_16004			PROJECT LOCATION _ Thornton, NH			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
				SP- SM		POORLY GRADED SAND WITH SILT (SP-SM), blueish gray, medium dense, fine grained sand, laminated bedding <i>(continued)</i>			
 _ 45	SPT 9	83	8-7-8 (15)	SP- SM		-with stratified bedding			
 <u>50</u>	SPT 10	11	16-16-12 (28)	SP- SM		-coarse to medium grained, 1 inch thick layers	hard layer at 47 ft no sample recovered		
евснимирревитнов.евл 55 	SPT 11	39	25-27-15 (42)	SP- SM		-becomes medium dark gray, dense	hard layer at 53 ft rock fragment caught in end of sampler		
LLL - GINT STD US LAB.GPJ - 11/7/16 17:33 - C.USERSILC	RC 1	7			25. 25. 26. 27. 27. 27. 27. 27. 27. 27. 27	0 BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth or boulders and cobbles -porphyritic, white to light gray, coarse to very coarse grained, strong, granitic pegmatite with garnet phenocrysts recovered in core run 0 natural discontinuities per run 0 mechanical breaks per run	3 inch casing advanced to 59.5 ft NQ Double Tube coring started at 59.5 ft 2.00 min/ft 3 inch casing advanced to 61 ft begin mud rotary from 61 to 65 ft		
NERAL BH / TP / WE	-				x+x +x +x +x +x +x +x +x +x +x +x +x +x	_0 -no SPT due to hole collapse from 62 to 65 ft Bottom of Borehole at 65.0 feet	Backfilled with 470 lbs cement, 25 lbs bentonite, 50 gal water		
GEI						Groundwater estimated at 9.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.			

30

35

40

RC

5

RC

6

RC

7

96 (82)

46

(0)

100

(100)

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:34 - C:\USERS\LGSCHWIND\DESKTOP\THOR.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409 **BORING NUMBER BH-42B**

PAGE 2 OF 4

REMARKS

2.40 min/ft

2.20 min/ft

2.40 min/ft

2.10 min/ft

core barrel plugged, redrilled several times

CLIEN			ectri	cal Contrac	ctors	PROJECT NAME Northern Pass	
PROJ				10004			
DEPTH (ft) (ft)	SAMPLE TYPE NI IMBER	RECOVERY %	(RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
						X	Fresh (I), very strong (R5)
	R	C 1 3 (9	00 95)				8 natural discontinuities per run 3 mechanical breaks per run
							Fresh (I), very strong (R5)
	R 2	C 1	00 98)				5 natural discontinuities per run 0 mechanical breaks per run

Fresh (I), very strong (R5)

4 natural discontinuities per run 0 mechanical breaks per run	
Fresh (I), very strong (R5)	

8 natural discontinuities per run 2 mechanical breaks per run

Fresh (I), very strong (R5) 2 natural discontinuities per run 0 mechanical breaks per run

Fresh (I), very strong (R5)

BORING NUMBER BH-42B

PAGE 3 OF 4

CLIENT PAR Electrical Contractors PROJECT NUMBER 16004

PR	PROJECT NUMBER 16004							PROJECT LOCATION _ Thornton, NH				
DEPTH	(ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD) BLOW COUNTS (N VALUE) U.S.C.S. GRAPHIC LOG			MATERIAL DESCRIPTION	REMARKS					
4	_ _ 5	RC 8	95 (86)				45.2	Fresh (I), very strong (R5) <i>(continued)</i> 3 natural discontinuities per run 0 mechanical breaks per run	1.62 min/ft			
-	_	RC 9	100 (84)			1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1		BEDROCK: Slightly weathered (II), light blueish gray, medium grained, strong (R4), GRANITE, trace chlorite 4 natural discontinuities per run 0 mechanical breaks per run	2.00 min/ft			
- - 5	_ _ 0	RC 10	100 (98)				- - - - - - -	Slightly weathered (II), strong (R4) -becomes light greenish gray and grayish orange with trace chlorite and 10 cm wide pegmatite dikes 3 natural discontinuities per run 1 mechanical break per run	4.80 min/ft			
ESKTOP/THOR.GPJ	- - - 5	RC 11	100 (100)					Fresh (I), strong (R4) -becomes weakly porphyritic, dark gray, medium to coarse grained 1 natural discontinuity per run 0 mechanical breaks per run	10.00 min/ft			
U - 11/7/16 17:34 - C:\USERS\LGSCHWIND\DE	- - - - 0	RC 12	90 (88)					Fresh (I), strong (R4) -becomes light gray with trace chlorite and 15 cm wide pegmatite dikes 4 natural discontinuities per run 0 mechanical breaks per run	11.00 min/ft			
LL - GINT STD US LAB.GP	-	RC 13	83 (73)			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Fresh (I), strong (R4) 5 natural discontinuities per run 0 mechanical breaks per run -becomes light gray, iron oxide stained	22.60 min/ft, running in 4th gear			
GENERAL BH / TP / WE	5	RC 14 RC 15	100 (100) 100 (65)			×++× ×+× ×+× ×+× ×+× ×+× ×+× ×+× ×+× ×+		BEDROCK: Fresh (I), light gray and pinkish gray, coarse to very coarse grained, strong (R4), PEGMATITE, porphyritic with chlorite and trace garnet 0 natural discontinuities per run 0 mechanical breaks per run Slightly weathered (II), strong (R4) 4 natural discontinuities per run	2.67 min/ft			

BORING NUMBER BH-42B

PAGE 4 OF 4

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	RC 16	96 (92)			×++>	0 mechanical breaks per run -becomes coarse grained Slightly weathered (II), strong (R4) <i>(continued)</i> BEDROCK: Slightly weathered (II), greenish gray, medium to coarse grained, strong (R4), GRANITE, porphyritic, healed fault zone between 66.3 to 68 ft 3 natural discontinuities per run 0 mechanical breaks per run -chlorite alteration present	8.96 min/ft
						Fresh (I), strong (R4)	7.13 min/ft
 75	RC 17	80 (64)				10 natural discontinuities per run 0 mechanical breaks per run	Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water

Bottom of Borehole at 75.2 feet Groundwater estimated at 9.5 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

QUANTA SUBSURFACE Quanta Subsurface 4308 N Barker RD Spokano Volkov Mit 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-43A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJ	ROJECT NUMBER <u>16004</u>					PROJECT LOCATION NH						
(#) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS					
	SPT 6	11	(12) 2-1-1 (2)	SP- SM		POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), pale yellowish brown, medium dense, fine grained, medium to coarse grained sand, angular <i>(continued)</i>	replaced sampler basket					
	SPT 7	0	16-10-11 (21)	SP- SM		-becomes medium dense, gravel content increases						
	SPT	0	8-9-7	SP-		-fine grained sand	fine sand and silt in return water increased SPT test to 24 inches hole open to					
	8	0	(16)				bottom, attempted to clear out gravels causing issues drilled open, very little cuttings from 29 to 34 ft					
	SPT 9	100	5-4-7 (11)	SP- SM		-becomes stratified, medium dense, rounded gravel						
	SPT 10	61	7-7-7 (14)	SP- SM								
GENERAL B												

BORING NUMBER BH-43A

PAGE 3 OF 3

PROJECT NUMBER 16004

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

QUANTA SUBSURFACE Projection of Construction Registering a Registering a Construction Registering a Registering

BORING NUMBER BH-43B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

IMBER	16004		PROJECT LOCATION _ Thornton, NH					
RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	MATERIAL DESCRIPTION	REMARKS				
	(8)	SP- SM	POORLY GRADED SAND (SP-SM), little silt, and gravel, pale brown, mois medium dense, fine to coarse grained, subangular (continued)	i,				
Г ₆₇	7-50/3"	SP- SM	-becomes medium dense, medium to coarse grained -24.5 to 26.5 ft encountered boulders	lost circulation 3 inch casing advanced to 25.5 ft				
т ₇₂	8-8-20 (28)	SP- SM		lost circulation 3 inch casing advanced to 30 ft				
г ₆₇	27-44-35 (79)	SM	34.0 SILTY SAND WITH GRAVEL (SM), gray, very dense, fine to coarse graine gravel, fine to medium grained sand, subangular	tri-cone				
г ₃₆	22-50/5"		BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth	continued to have circulation problems, casing advanced every run				
	JMBER % ((GOR) T 67 T 72 T 72 T 67 T 67 T 36	JMBER 16004 % (i) % (i) % (i) (i) (i)	JMBER 16004 S GO SINDO SO S MOTO SP- SM I GO IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IMBER 16004 PROJECT LOCATION Thernton, NH Image: Stress of the stress of t				

QUANTA SUBSURFACE Progressing - Construction Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-43B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUI	MBER	16004			PROJECT LOCATION Thornton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 45	SPT 9	0	40-50/3"			BEDROCK: Possible contact with weathered GRANITIC bedrock becoming less weathered and stronger with depth <i>(continued)</i>	3 inch casing advanced to 44 ft
							3.17 min/ft
						Fresh (I), gray, coarse grained, very strong (R5), GRANITE, weakly foliated	NQ Double Tube coring started at 49 ft
	RC 1	100 (98)				4 natural discontinuities per run 0 mechanical breaks per run	4.70 min/ft
						Fresh (I), very strong (R5)	
1 C:UUSERS/LGSCHV	RC 2	100 (100)				1 natural discontinuity per run 0 mechanical breaks per run	12.30 min/ft lost circulation
AB.GPJ - 11/7/16 1						Fresh (I), very strong (R5)	
	RC 3	98 (98)				Fresh (I), very strong (R5) to extremely strong (R6) -becomes dark gray, quartz content increases from 61 to 62 ft 2 natural discontinuities per run 0 mechanical breaks per run Fresh (I), very strong (R5)	26.60 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water
GENERAL BH						Bottom of Borehole at 64.0 feet Groundwater estimated at 12.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-44A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

F

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:UUSERS\LGSCHWIND\DESKTOP\CAMP.GPJ

PROJECT NAME Northern Pass

ROJ	ECT NUM	IBER	16004			PROJECT LOCATION Campton, NH	
(#) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	4		(44)	GM		-becomes dense, medium to coarse grained gravel (continued)	
- 25 -	SPT 5	89	33-29-41 (70)	<u>GM</u> SM		-higher percentage of silt in matrix 4.5 SILTY SAND TO SILT AND SAND (SM), light olive gray and yellowish gray, very dense, low to medium plasticity, very fine to fine grained, alternating sand seams and silt beds	3 inch casing advanced to 25 ft
- 30 -	SPT 6	100	24-35-50 (85)	SM		-lenses of sand and silt throughout	
- - 35	SPT 7	83	28-44-50 (94)	GM		3.0 SILTY GRAVEL WITH SAND (GM), light olive gray, very dense, medium to coarse grained gravel, fine grained sand, subangular	3 inch casing advanced to 34 ft
- - 40	SPT 8	89	16-28-41 (69)	SM		8.0 SILTY SAND (SM), light olive gray, dense, fine grained	3 inch casing advanced to 39 ft

3 inch casing advanced to 42 ft

BORING NUMBER BH-44A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

F

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:UUSERS/LGSCHWIND/DESKTOP/CAMP.GPJ

PROJECT NAME Northern Pass

ROJ	ECT NUN	IBER	16004			PROJECT LOCATION Campton, NH	
(ff)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
- 45	SPT 9	100	19-33-46 (79)	CL- SC	43.3	CLAYEY SAND (CL-SC), light olive gray and yellowish gray, very dense to hard, low to medium plasticity, fine grained, alternating sand seams	
-				SM	48.0	SILTY SAND WITH GRAVEL (SM), light olive gray, very dense, fine grained gravel, fine grained sand, subangular	
50 _	SPT 10	100	24-25-44 (69)	-			
- 55	SPT 11	100	45-49-50 (99)	GM		SILTY GRAVEL WITH SAND (GM), light olive gray, very dense, medium to coarse grained gravel, fine grained sand, subangular	
-				CL-		CLAYEY SAND (CL-SC), light olive gray and yellowish gray, very dense to hard low to medium plasticity, very fine to fine grained, alternating sand seams	3 inch casing advanced to 57 ft
<u>30</u> -	SPT 12	100	14-27-50 (77)	50			
- 65	SPT 13	100	17-31-39 (70)	CL- SC	65.5		Backfilled with 200 lbs cement, 25 lbs bentonite, 28 gal water

Groundwater estimated at 4.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-44B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:\USERS\LGSCHWIND\DESKTOP\CAMP.GPJ

PROJECT NAME Northern Pass

PROJECT NUMBER		16004			PROJECT LOCATION Campton, NH						
(#) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC I OG		MATERIAL DESCRIPTION	REMARKS			
	SPT 4	94	16-33- 50/5"	ML			SANDY SILT (ML), dark gray, hard, low plasticity, fine grained sand, thin beds of fine grained sand <i>(continued)</i>	to seal off permeable zone			
 25	SPT 5	75	27-50	ML			-sand content increases				
							-thin lenses of sand	drilled open hole			
 _ <u>30</u>	SPT 6	100	39-50	ML							
<u>35</u> 	SPT 7	100	33-50/4"	ML							
						<u>38.0</u>					
 _ 40 	SPT 8	90	33-50/4"	ML		41.5					
				CL- ML			SANDY CLAY TO SANDY SILT (CL-ML), little gravel, dark gray, moist, hard, low plasticity, fine grained gravel, medium to coarse grained sand, subangular				

(Continued Next Page)

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:\USERS\LGSCHWIND\DESKTOP\CAMP.GPJ

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-44B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

JECT NUMBER	16004		PROJECT LOCATION Campton, NH	
SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S. GRAPHIC	MATERIAL DESCRIPTION	REMARKS
SPT 100	42-50/3"	CL- ML CL- ML	SANDY CLAY TO SANDY SILT (CL-ML), little gravel, dark gray, moist, hard, low plasticity, fine grained gravel, medium to coarse grained sand, subangular (continued)	
-			-becomes low to medium plasticity, very weak laminated planes	
SPT 100	23-32- 50/5"	CL- ML		
SPT 89	27-34-50 (84)	CL- ML		
SPT 100	22-37- 50/3"	CL- ML		
- - - - - SPT 13 100	31-37-50 (87)	CL- ML	65.5	Backfilled with 282 lbs cement, 20 lbs bentonite, 30 gal water

QUANTA SUBSURFACE Projection of Construction Registering a Registering a Construction Registering a Registering

BORING NUMBER BH-45A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Campton, NH					
C DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
				CL		LEAN CLAY (CL), dark gray, hard, low plasticity, fine grained sand, varved, low to medium induration <i>(continued)</i> -with sand, medium plasticity, moderately indurated	advanced to 20 ft				
	SPT 5	89	21-32-50 (82)				6 inch undisturbed sample collected				
30	SPT 6	89	21-38-50 (88)	CL							
35	SPT 7	94	22-24-48 (72)	CL							
40	SPT 8	94	21-31-50 (81)	CL							

BORING NUMBER BH-45A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

	16004		PROJECT LOCATION Campton, NH														
DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	MATERIAL DESCRIPTION	REMARKS													
-		CL	-with sand, medium plasticity, moderately indurated (continued)														
45 SPT 100	21-27-41 (68)	CL															
50 SPT 100	28-32-50 (82)	CL	-sand content increases														
_			52.0 SILTY SAND (SM), dark gray, very dense, low plasticity, fine grained sand.														
_		511	laminated clay beds														
55 SPT 78	13-23-30 (53)																
-																	
60 SPT 83	16-26-39 (65)	SM															
65 SPT 94	13-28-30 (58)	SM		Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water													

BORING NUMBER BH-45B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:\USERS\LGSCHWIND\DESKTOP\CAMP.GPJ

PROJ	ECT NUM	16004			PROJECT LOCATION Campton, NH				
05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
				CL		LEAN CLAY WITH SAND (CL), grayish green, hard, low plasticity, very fine grained, minor gravel/gravelly sand <i>(continued)</i>			
	SPT 5	89	33-41-50 (91)	CL		-varved zones throughout			
 	SPT 6	100	31-49-50 (99)	CL		-trace medium to coarse grained angular gravel			
 	SPT 7	100	24-34-45 (79)	CL					
 40 	SPT 8	89	25-33-42 (75)	CL		-with granitic-schistose gravel in weakly cemented matrix			

BORING NUMBER BH-45B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

BORING NUMBER BH-46A

PAGE 2 OF 4

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION Campton, NH

	(tt) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION SILTY SAND WITH GRAVEL (SM), brown, moist, loose, fine to coarse grained	REMARKS
	 - 25 	SPT 5	81	33-50/4" 32-46- 50/4"	SM		gravel, fine to medium grained sand, subrounded <i>(continued)</i> -gravel content increases -becomes greenish gray	
KTOP\CAMP.GPJ	 _ <u>30</u> 	SPT 6	60	50/5"	SM		-mottled, fine to medium grained sand	
- 11/7/16 17:10 - C:\USERS\LGSCHWIND\DES		SPT 7	83	37-50	SM		-stratified, 1/2 inch lenses of fine grained sand	
NERAL BH / TP / WELL - GINT STD US LAB.GPJ	 _ <u>40 _</u> 	SPT 8	50	50	SM		-becomes olive gray, increase in gravel content, medium to coarse grained sand, fine grained gravel, subrounded, mottled	no sample recovered
Ю							(Continued Next Page)	

BORING NUMBER BH-46A

PAGE 3 OF 4

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:UUSERS/LGSCHWIND/DESKTOP/CAMP.GPJ

PRO.	IECT NUN	IBER	16004			PROJECT LOCATION Campton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
45	SPT 9	50	50/4"	SM SM		SILTY SAND WITH GRAVEL (SM), brown, moist, loose, fine to coarse grained gravel, fine to medium grained sand, subrounded <i>(continued)</i>	no sample recovered
50	SPT 10	67	50/3"	SM		-becomes dark gray, fine to coarse grained, angular gravel	no sample recovered
55	SPT 11	100	50/4"	SM		-with fine grained sand -56 to 58 ft encountered boulder	
<u>60</u>	SPT 12	100	50	SM	62.0		
65	- - - - - - - - - - - - - - - - - - -	89	25-34-40 (74)	SP- SM		POORLY GRADED SAND (SP-SM), little silt, light gray, very dense, medium grained	highly permeable zone

BORING NUMBER BH-46A

PAGE 4 OF 4

PROJECT NAME Northern Pass

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004				PROJECT LOCATION Campton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
				SP- SM		68.0	POORLY GRADED SAND (SP-SM), little silt, light gray, very dense, medium grained <i>(continued)</i>	
				ML			SANDY SILT (ML), tan, hard, fine grained sand, stratified, mottled, lenses of medium to coarse grained sand	
	SPT 14	78	23-22-25 (47)	-				
	SPT 15	82	11-25- 50/5"	ML				Backfilled with 372 lbs cement, 20 lbs bentonite, 30 gal water

Bottom of Borehole at 75.4 feet Groundwater estimated at 9.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:10 - C:\USERS\LGSCHWIND\DESKTOP\CAMP.GPJ

CLIENT PAR Electrical Contractors

BORING NUMBER BH-46B

PAGE 2 OF 3

PROJ	ECT NUMB	BER _	16004			PROJECT LOCATION Campton, NH	
05 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	4	65	23-43- 50/5"	SM		GRAVELLY SAND WITH SILT (SM), orange, very dense, medium to coarse grained <i>(continued)</i> -21 to 23 ft encountered boulder	
 _ <u>25</u>	SPT 5	80	25-50/4"	SM	23.0	0 SILTY SAND WITH GRAVEL (SM), orangeish brown, very dense, fine to coarse grained gravel, fine to medium grained sand, subangular, iron oxide staining -gravel content increases -25.5 to 26.5 ft encountered boulder	
 - 30	× SPT	0	50/3"	SM			no sample recovered, cobble in spoon tip
35	SPT 1	100	50-50/3"	SM		-becomes light brown and gray, mottled	
		0	50/5"	SM			no sample recovered
							slow drilling
							rig chatter increases

BORING NUMBER BH-46B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION Campton, NH

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
45 45 50 50 50 50 	SPT 9	100	50/4"	SM SM		SILTY SAND WITH GRAVEL (SM), orangeish brown, very dense, fine to coarse grained gravel, fine to medium grained sand, subangular, iron oxide staining (<i>continued</i>) -43.5 to 46 ft encountered fresh, white and black, medium to coarse grained, strong granite boulder	3 inch casing advance to 51 ft
H / TP / WELL - GINT STD US LAB.GPJ - 11/7/16							no sample attempted, cobbles and gravel present Backfilled with
GENERAL B	SPT	100	50	SM		-gravel and cobble zones Bottom of Borehole at 65.5 feet	10 lbs bentonite, 20 gal water
						Groundwater estimated at 13.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-47A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUI	MBER	16004			PROJECT LOCATION Campton, NH	
(ff) 20	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-				SM		SILTY SAND WITH GRAVEL (SM), orange to brown, dense, fine to coarse grained gravel, medium to coarse grained sand, subangular <i>(continued)</i>	
 	SPT 5	100	50/4"	SM		-becomes very dense, grayish brown and orange, highly oxidized	
	SPT 6	81	39-50- 50/4"	SM		-gravel content decreases significantly	
-				ML	32.0	SANDY SILT (ML), little gravel, gray, hard, fine grained gravel, fine to coarse grained sand, subangular	-
 	SPT 7	80	39-50/4"	-			
40	SPT 8	100	50-50/4"	ML			drilled open hol
- · -				SM	<u> 41.0</u>	SILTY SAND WITH GRAVEL (SM), brownish gray, very dense, fine grained gravel, fine to coarse grained sand, subangular -cobbles and boulders	

BORING NUMBER BH-47A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUN	IBER	16004			PROJECT LOCATION Campton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 45 	SPT 9	_ 0 _	50/2"	SM SM		SILTY SAND WITH GRAVEL (SM), brownish gray, very dense, fine grained gravel, fine to coarse grained sand, subangular <i>(continued)</i>	no sample recovered
 50 	SPT 10	40	50/5"	SM			
WIND/DESKTOP/CAMP.GPJ						54.5 BEDROCK: Slightly weathered (II), dusky blueish green, medium strong (R3), SCHIST, biotite and muscovite rich, foliated	3 inch casing advanced to 56 ft NQ Double Tube
B.GPJ - 11/7/16 17:10 - C:UJSERSILGSCH	RC 1	82 (54)				-bo to 56.9 tt core loss SCHIST 6 natural discontinuities per run 1 mechanical break per run Fresh (I), strong (R4), bluish white, coarse grained, quartz and garnet rich felsic intrusive from 59 to 58.7 ft Fresh (I) to slightly weathered (II), medium strong (R3), SCHIST	coring started at 56 ft increased rotation rate 3.60 min/ft Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water
GENERAL BH / TP / WELL - GINT STD US L		<u> </u>		1	<i>₩</i>	Bottom of Borehole at 61.0 feet Groundwater estimated at 12.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-47B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

GENERAL BH / TP / WEI

65

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-47B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass

PROJ	ECT NUM	/ BER	16004			PROJECT LOCATION _ Campton, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	SPT 9	_ 0 _/	50/1"			BEDROCK: Possible contact with weathered SCHIST bedrock becoming less weathered and stronger with depth (continued)	roller bit wheel damaged and lost down hole at 44 ft hole abandoned at 44 ft, offset hole drilled 3.1 ft E no sample recovered
_50	SPT 10	<u>, 100</u>	50/2"			Highly weathered (IV) to moderately weathered (III), moderate yellowish brown and pale blue, SCHIST	
_							3 inch casing advanced to 54 ft
_55	RC 1	100 (32)				Fresh (I) to slightly weathered (II), fine grained, medium strong (R3), with strong foliation, grayish blue green and light greenish gray, medium grained garnets and mica mineralization from 54 to 56.4 ft 1 natural discontinuity per run 2 mechanical breaks per run Completely weathered (V) to highly weathered (IV), extremely weak (R0),	poor circulation 10.00 min/ft
-	RC 2	48 (42)			59.	auted zone from 56.2 to 57 ft -57 to 59.6 ft core loss <u>6</u> 2 natural discontinuities per run 0 mechanical breaks per run 7	5.88 min/ft
- U0					(++) ++++++++++++++++++++++++++++++++++	BEDROCK: Fresh (I), yellowish gray and light gray, coarse to very coarse grained, medium strong (R3), PEGMATITE, very fine grained mica, quartz, and pyrite Slightly weathered (II)	abandoned and grout into borehole from 47 to 65 ft, may cause issues
_	RC 3	100 (100)				 BEDROCK: Slightly weathered (II), medium strong (R3), SCHIST, quartz schist transition zone from 62 to 62.5 ft Fresh (I) to slightly weathered (II), grayish blue green and light greenish gray, fine grained, medium strong (R3), strong foliation, extensive pyrite mineralization from 62.5 to 64.4 ft 	form HDD contractor 5.26 min/ft

2 natural discontinuities per run

Bottom of Borehole at 65.0 feet

0 mechanical breaks per run -becomes weakly foliated below 64.4 ft

Groundwater estimated at 12.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

5.26 min/ft Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water

QUANTA SUBSURFACE Proprovering - Construction Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-48A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ		IBER	16004				PROJECT LOCATION _ Plymouth, NH	
DEPTH (ft) 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC 1 OG)	MATERIAL DESCRIPTION	REMARKS
				ML			SANDY SILT (ML), trace gravel, dark gray, hard, fine grained gravel, fine to medium grained sand, subangular <i>(continued)</i>	begin wet rotary 4 inch casing advanced to 20 ft
				SC- SM		22.0	SILTY TO CLAYEY SAND (SC-SM), trace gravel, dark gray, very dense, low to medium plasticity, fine grained gravel, fine to medium grained sand, thin clay beds	
_ 25	SPT 5	100	36-44- 50/5"	-				open hole drilling
30 	SPT 6	90	42-50/4"	SC- SM				
IND/DESKTOP/						33.0		
– USERS/LGSCHW 35				ML			up to 3 inches thick	
11/7/16 17:25 - C:\ 	SPT 7	94	33-34- 50/5"					
TD US LAB.GPJ -								
40 40	SPT 8	83	27-35-50 (85)	ML			-without sand lenses, laminated	
GENERAL BH / TI								

BORING NUMBER BH-48A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:25 - C:USERS/LGSCHWIND/DESKTOP/PLYM.GPJ

PROJECT NAME Northern Pass

			PROJECT LOCATION Plymouth, NH				
DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS		
		ML		SANDY SILT (ML), dark gray, hard, fine to medium grained sand, sand lenses up to 3 inches thick <i>(continued)</i>			
45 SPT 94	22-45- 50/4"	ML					
			47.0		hole collansed		
		SM		SILTY SAND (SM), dark gray, very dense, fine to medium grained	fluid loss		
50 SPT 100	28-39-42 (81)	CL	50.0	LEAN CLAY (CL), dark gray, hard, medium plasticity, laminated			
		SM	53.0	SILTY SAND (SM), olive brown, very dense, fine grained, laminated			
<u>55</u> SPT 89	25-30-42 (72)	_					
-		SM	57.0	SILTY SAND WITH GRAVEL (SM), dark gray, very dense, fine grained gravel, fine to medium grained sand, subangular			
60 SPT 100	27-37-50 (87)	-					
				-gravelly zone at 62 ft			
65 SPT 78	27-46-48 (94)	SM		-becomes gray, fine to coarse grained sand, with fine subangular gravel, gravelly zone at 62 ft	Backfilled with 188 lbs cement 10 lbs bentonite 30 gal water		

Bottom of Borehole at 65.5 feet Groundwater estimated at 13.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-48B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION Plymouth, NH	
(tt) (tt) 20	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	4		(47)	ML- SM		SAND AND SILT (ML-SM), little to trace gravel, yellowish gray, moist, hard, fine grained gravel, fine grained sand, angular <i>(continued)</i>	
				GP- GM		∑ POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), light greenish gray, very dense, fine grained gravel, fine grained sand, subangular	
_ 25	SPT 5	100	15-50		0		
				GP			
30	SPT 6	100	20-35-50 (85)	GM			
35	SPT 7	75	24-45- 50/4"	GP- GM		-increase of subangular gravels	casing advanced
							to 35 ft
				SM		SAND WITH GRAVEL AND SILT (SM), light olive gray, very dense, fine grained gravel, fine to medium grained sand, subangular	
40	SPT 8	100	42-50/4"				

BORING NUMBER BH-48B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004		
DEPTH (ft) (ft) (ft) RECOVERY % BLOW COUNTS (N VALUE)	SO SO SO MATERIAL DESCRIPTION	REMARKS
45 SPT 100 50	ML- SM	
		casing advance to 46.5 ft
50 SPT 78 38-50-50 (100)	SM POORLY GRADED SAND WITH SILT (SM), dark yellow, very dense, fine grained	
	53.5	
<u>55</u> SPT 100 41-50- 50/5"	ML SANDY SILT (ML), light olive gray, hard, very fine to fine grained, clay laminations	casing advance to 54 ft
	58.0 SM SILTY SAND WITH GRAVEL (SM), light olive gray, very dense, fine grained gravel, fine grained sand, angular, occasional clay lenses	
60 SPT 100 23-45- 50/4"		
- - - 13 90 50-50/4"	63.5 ML SANDY SILT (ML), light olive gray, hard, very fine to fine grained, clay laminations	Backfilled with 186 lbs cement 10 lbs bentonite 20 gal water

QUANTA SUBSURFACE Proprovering - Construction Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH-51A

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER	16004			PROJECT LOCATION Plymouth, NH	
C DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	(9)	SP- SM		POORLY GRADED SAND WITH GRAVEL (SP-SM), little silt, light brown to pale orange, loose, fine grained gravel, fine grained sand, subangular <i>(continued)</i>	
25 SPT 0	9-9-9 (18)	SM		SANDY GRAVEL WITH SILT (SM), light brown to pale orange, medium dense, fine to coarse grained gravel, fine to medium grained sand, granitic composition	4 inch casing advanced to 24 ft no sample recovered
30 SPT 50	9-7-7 (14)	SM		-becomes medium dense, fine to coarse grained gravel, fine to medium grained sand, subangular	
35 35 7 44	14-14-8 (22)	GM 000 000	33.0	SILTY GRAVEL WITH SAND (GM), yellowish gray to brownish orange, medium dense, coarse grained gravel, fine grained sand, angular	
				-37 to 41 ft encountered boulders and cobbles	
					4 inch casing advanced to 41 ft, open hole drilling to 53 ft

BORING NUMBER BH-51A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

Ρ

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:25 - C:\USERS\LGSCHWIND\DESKTOP\PLYM.GPJ

PROJECT NAME Northern Pass

PROJECT NUMBER	16004			PROJECT LOCATION _Plymouth, NH	
DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
		GM		SILTY GRAVEL WITH SAND (GM), yellowish gray to brownish orange, medium dense, coarse grained gravel, fine grained sand, angular (continued)	
45		SM		SILTY SAND WITH GRAVEL (SM), blueish gray, very dense, fine to coarse grained gravel, fine grained sand, subangular	-
SPT 73	47-50/5"				
50					
SPT 67 9	50/3"	SM		-with fine to coarse grained sand	
				-51 to 52 ft encountered boulders and cobbles	
55					7 ft of hole collapse, 3 inch casing advanced to 52 ft no sample at 55 ft due to sand flowing into casing, possible artesian conditions
SPT 100	50/2"	/ SM		-becomes dark gray	
60					3 inch casing advanced to 60 ft
		ML	·· ·· 62.0	SANDY SILT (ML), trace gravel, dark gray, hard, fine grained gravel, fine grained sand, subangular	-
65 SPT 100	50/4"		65.3		Backfilled with 282 lbs cement, 15 lbs bentonite, 30 gal water

Groundwater estimated at 9.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.

BORING NUMBER BH-51B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

ROJECT NUMBER 16004

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION Plymouth, NH	
(#) 5 DEPTH 50	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
				SM		SILTY SAND TO SILT AND SAND (SM), little gravel, olive gray, very dense, fine grained gravel, fine to medium grained sand, subangular, iron oxide staining <i>(continued)</i>	
	SPT 5	78	29-37-38 (75)	SM		-with fine to coarse grained sand, no iron oxide staining	4 inch casing advanced to 23 ft
25 30	SPT 6	78	29-39-46 (85)	SM		-with fine to medium grained sand	open hole roller bit
- CIOSERSIGSCHWINDDESKTOPPELMICPJ	SPT 7	83	50-50-50 (100)	SM		-schist fragments present	3 inch casing advanced to 33 ft
AL BH / IP / WELL - GINI SID US (AB. GPJ - 11///16.17.25)	SPT 8	80	50-50/4"	SM		-with fine to medium grained sand	3 inch casing requires 200 blows/ft
GENEF							

BORING NUMBER BH-51B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJ	ECT NUM	IBER	16004			PROJECT LOCATION Plymouth, NH	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 _ 45 	SPT 9	83	50	SM SM		SILTY SAND TO SILT AND SAND (SM), little gravel, olive gray, very dense, fine grained gravel, fine to medium grained sand, subangular, iron oxide staining <i>(continued)</i>	
	SPT 10	57	50/4"	SM			no sample recovered
 _ <u>-</u> 55 _		_50_	50/4"	SM			no sample recovered
 _ 60	SPT 6	100	50	SM		-with subangular gravel	
 65					65	5.0 Bottom of Borehole at 65.0 feet	no sample recovered due to hole collapse Backfilled with 188 lbs cement, 10 lbs bentonite, 30 gal water

CLIENT PAR Electrical Contractors

BORING NUMBER BH-52A

PAGE 2 OF 3

PROJECT NAME Northern Pass
PROJECT LOCATION Plymouth, NH

PROJECT NUMBER 16004	
TRUJECI NUMBER 10004	

	05 DEPTH (ft)	SAMDI E TVDE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
			RC 2	88 (88)				Fresh (I) to slightly weathered (II), strong (R4) to very strong (R5) -weakly foliated from 21 to 22 ft -banding at 20°-30° from 22 to 23 ft 1 natural discontinuity per run 6 mechanical breaks per run -weakly foliated from 23 to 25.2 ft	3.57 min/ft
	 		RC 3	94 (68)				Fresh (I), strong (R4) -pyritic schist below 25 ft Slightly weathered (II), strong (R4) -zone of quartz veins from 26.1 to 26.8 ft 4 natural discontinuities per run 0 mechanical breaks per run -weakly foliated pyritic schist below 27.2 ft Fresh (I), strong (R4) Slightly weathered (II), strong (R4)	6.25 min/ft
JSERS/LGSCHWIND/DESKIOP/PLYM.GPJ			RC 4	100 (100)			+x x ⁺ +x x ⁺ +x x ⁺	31.4 BEDROCK: Fresh (I), very strong (R5), PEGMATITE, pegmatite dike, spotty mica mineralization with pyrite veins 1 natural discontinuity per run 5 mechanical breaks per run 35.0	5.00 min/ft
- GINT STD US LAB.GPJ - 11///16 1/:25 - C:\U			RC 5	100 (100)				BEDROCK: Fresh (I), grayish red, fine grained, strong (R4), SCHIST, weakly foliated, with pyrite and epidote mineralization 2 natural discontinuities per run 8 mechanical breaks per run	3.03 min/ft
SENERAL BH / IP / WELL			RC 6	100			x++x x+x x+x+x x+++x	Fresh (I), strong (R4) -transition zone between schist and pegmatite from 40.6 to 41.6 ft <u>41.6</u> BEDROCK: Fresh (I), very strong (R5), PEGMATITE, massive, pegmatite with mica and pyrite mineralization 1 natural discontinuity per run	4.35 min/ft

BORING NUMBER BH-52A

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

	PROJI	ECT NUN	IBER	16004				PROJECT LOCATION Plymouth, NH	
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
	 45					×++ + + + + + + + + + + + + + + + + + +		3 mechanical breaks per run BEDROCK: Fresh (I), very strong (R5), PEGMATITE, massive, pegmatite with mica and pyrite mineralization <i>(continued)</i>	
		RC 7	93 (93)			+ × + + × + × × × × + × +	46.5	0 natural discontinuities per run 0 mechanical breaks per run	3.33 min/ft
		RC 8	100 (100)					BEDROCK: Fresh (I) to slightly weathered (II), grayish red, strong (R4) to very strong (R5), foliated, transition zone between PEGMATITE and pyritic SCHIST from 46.5 to 49.7 ft 1 natural discontinuity per run 0 mechanical breaks per run	4.00 min/ft
KTOP\PLYM.GPJ	 55	RC 9	100 (100)				49.7	BEDROCK: Fresh (I) to slightly weathered (II), grayish red, strong (R4), SCHIST, foliated, pyritic SCHIST with extensive epidote mineralization from 49.7 to 55.2 ft Fresh (I), strong (R4) 0 natural discontinuities per run 7 mechanical breaks per run	3.45 min/ft
11/7/16 17:25 - C:\USERS\LGSCHWIND\DESI		RC 10	100 (100)				56.0 56.8	Fresh (I), strong (R4) Fresh (I), strong (R4), PEGMATITE Fresh (I), grayish red, strong (R4), SCHIST, foliated 0 natural discontinuities per run 4 mechanical breaks per run -inclusions of pegmatite from 56.8 to 59.8 ft	4.35 min/ft Backfilled with 186 lbs cement, 15 lbs bentonite, 40 gal water
3ENERAL BH / TP / WELL - GINT STD US LAB.GPJ -	00				1	<u> voz. 2511</u>	100.0	Bottom of Borehole at 60.0 feet Groundwater estimated at 9.0 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	

BORING NUMBER BH-52B

PAGE 2 OF 3

CLIENT PAR Electrical Contractors

GENERAL BH / TP / WELL - GINT STD US LAB.GPJ - 11/7/16 17:25 - C:\USERS\LGSCHWIND\DESKTOP\PLYM.GPJ

PROJECT NAME Northern Pass

PROJECT NUMBER	16004			PROJECT LOCATION Plymouth, NH	
0 DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
 	(30)	SM		SILTY SAND (SM), olive gray, medium dense, fine grained <i>(continued)</i>	
	15-14-15 (29)	SM			
	50/4"	GM		SANDY GRAVEL (GM), grayish blue, very dense 29.6 to 31.6 ft core loss -grayish blue, fresh to slightly weathered, weakly foliated, medium grained	no sample recovered boulders encountered at 29.6 ft NQ Double Tube coring started at 29.6
RC 50 1 (35) _ 35				2 natural discontinuities per run 0 mechanical breaks per run -33.6 to 37.1 ft core loss	no significant water loss 1.75 min/ft
RC 100 2 (23) 				-granitic rock, minor amounts of sandy clay >20 natural discontinuities per run 0 mechanical breaks per run	1.41 min/ft roller bit to advance hole 3 inch casing
RC 72			0 0 0 0 0 0 41.7 × × × × × × × × × × × × ×	BEDROCK: -41.7 to 42.2 ft core loss Fresh (I), pale blue, fine grained, medium strong (R3), ARGILLITE, some	advanced to 41 ft

(Continued Next Page)

BORING NUMBER BH-52B

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

PROJECT NAME Northern Pass

PROJECT LOCATION _ Plymouth, NH

	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	REMARKS
		3	(50)			× × × × × × × × ×		1 natural discontinuity per run 1 mechanical break per run	
						$\left \begin{array}{c} & & \\ \times & \times \end{array} \right $	44.2	Fresh (I), medium strong (R3)	changed to #10
						×+××	44.6	Fresh (I), strong (R4), PEGMATITE, felsic intrusive (quartz, biotite, plagioclase)	
	_ 45 _					x+* ×	45.0	BEDROCK: Fresh (I), gravish blue, fine to medium grained, strong (R4),	
		RC 4	100 (70)			+++++ ++×+++++ ++×+++++ ++×++++++ ++×++++++		Fresh (I), white and black, coarse grained, strong (R4), PEGMATITE, felsic intrusive (quartz, biotite, pyrite rich) 5 natural discontinuities per run 7 mechanical breaks per run	2.22 min/ft
						÷×+;	47.7		
								BEDROCK: Fresh (I), grayish blue, fine to medium grained, medium strong (R3), SCHIST, some zones of felsic intrusives, foliated	
	50	RC	98					8 natural discontinuities per run	2.78 min/ft
		5	(03)				52 2		
								Fresh (I), pale blue, fine grained, medium strong (R3), ARGILLITE, some calcite veins	
FOP\PLYM.GPJ		RC 6	100 (76)			× × × × × × × × × × × × × × × × × × ×	54.7	4 natural discontinuities per run 3 mechanical breaks per run	5.00 min/ft
D\DESK1	55							BEDROCK: Fresh (I), white and black, coarse grained, medium strong (R3), GRANITE, felsic intrusive, quartz and biotite rich Fresh (I), strong (R4)	
JSERS/LGSCHWIN			100						
- C:\U		RC 7	(100)					4 mechanical breaks per run	5.26 min/ft
- 11/7/16 17:25						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	60.0	Felsic intrusive, quartz and biotite rich	Backfilled with 186 lbs cement, 10 lbs bentonite, 20 gal water
T STD US LAB.GPJ								Bottom of Borehole at 60.0 feet Groundwater estimated at 7.5 feet below ground surface. Stable groundwater elevations are uncertain due to presence of perched water layers from clayey deposits and use of mud rotary as a drilling method.	
NERAL BH / TP / WELL - GIN									

ATTACHMENT B

Core Photograph Logs

BH-28B: 19 ft – 60.1 ft
H COTES(4'-40.1) H COTES(4'-40.1) H COTES(4'-40.1) H COTES(4'-40.1) H COTES(4'-40.1-60.1) H COTES(4'-40.1-60.1)
BH-28B: 60.1 ft – 64.8 ft
Horthern Bas ZOI-JS-#H HOZZBS(COI-GHS)

BH-52A: 17.5 ft - 55.8 ft

BH-52A: 55.8 ft - 60 ft

BH-52B: 29.6 ft – 60 ft NORTHERN PASS # 201-16-NH TRENCHLESS BORINGS BORE HOLES: 52B (29,60-55.90) 0 NORTHERN PASS # 201-16-NH TRENCHLESS BORINGS BOREHOLES: 52B (\$590-60.00), 47A (56.00-61.00)

ATTACHMENT C

Index Testing Results

ASTM C-117 & C-136

		STANDARD DESIGNATION (mm/um)	SIEVE SIZE	AMOUNT PA	<u>SSING (%)</u>	
Material Source	S14, 59'				Tested By	BRADLEY GERSCHWILER
	B43A				Date Completed	8/5/2016
Exploration	D424				Date Received	7/26/2016
Client	QUANTA SUBSI	JRFACE				148835
Project Name	VARIOUS NH - N LABORATORY T	NORTHERN PASS TRANSM	ISSION LINE -		Project Number	16-0600

19.0 mm	3/4"	100	
12.5 mm	1/2"	98	
9.5 mm	3/8"	96	
6.3 mm	1/4"	91	
4.75 mm	No. 4	88	11.5% Gravel
2.00 mm	No. 10	84	
850 um	No. 20	79	
425 um	No. 40	69	75.4% Sand
250 um	No. 60	50	
150 um	No. 100	31	
75 um	No. 200	13.1	13.1% Fines

ASTM C-117 & C-136

	STANDARD	SIEVE SIZE	AMOUNT PASSING (%)	
Material Source	S2, 9 [.]		Tested By	BRADLEY GERSCHWILER
	B43B		Date Completed	8/5/2016
Circleration	QUANTA SUBSURFACE		Date Received	7/26/2016
Client			Lab ID	14884S
Project Name			Project Number	16,0600

19.0 mm	3/4"	100	
12.5 mm	1/2"	94	
9.5 mm	3/8"	93	
6.3 mm	1/4"	90	
4.75 mm	No. 4	88	11.8% Gravel
2.00 mm	No. 10	79	
850 um	No. 20	60	
425 um	No. 40	50	80.9% Sand
250 um	No. 60	41	
150 um	No. 100	24	
75 um	No. 200	7.4	7.4% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE
Exploration	B44A
Material Source	S6, 26'

Project Number	16-0600
Lab ID	14885S
Date Received	7/26/2016
Date Completed	8/5/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING	<u>(%)</u>
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	99	
425 um	No. 40	93	63.6% Sand
250 um	No. 60	80	
150 um	No. 100	58	
75 um	No. 200	36.4	36.4% Fines

Comments:

Report of Atterberg Limits

ASTM D4318-10 - Method A

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various NH	Lab ID:	14889S
Client:	Quanta Subsurface	Date Received:	07/26/16
Material Description:	Glaciolacustrine	Date Completed:	08/11/16
Material Source:	B45A, S5, 24'	Tested By:	BLG

Liquid Limit	27
Plastic Limit	18
Plasticity Index	9

Material Retained On the No. 40 Sieve:	12%
As-received Moisture Content	23%

Comments: seams and lenses of fine sand and silt/clay

Reviewed By:

10 Centre Road, Somersworth, NH 03878-2926 • P: (603) 692.0088 • F: (603) 692.0044 • E: infosomersworth@swcole.com

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	ASSING (%)	
Material Source	\$3, 14'			Tested By	BRADLEY GERSCHWILER
	B45B			Date Completed	8/5/2016
Exploration	QUANTA SUBSURFACE			Date Received	7/26/2016
Client	LABORATORY TESTING SERVICES			Lab ID	14890S
Project Name	VARIOUS NH - NORTHERN PASS TRANSM	ISSION LINE -		Project Number	16-0600

<u>GNATION (IIIII/µIII)</u>			
19.0 mm	3/4"	100	
12.5 mm	1/2"	95	
9.5 mm	3/8"	92	
6.3 mm	1/4"	83	
4.75 mm	No. 4	75	24.5% Gravel
2.00 mm	No. 10	52	
850 um	No. 20	39	
425 um	No. 40	30	65.4% Sand
250 um	No. 60	21	
150 um	No. 100	16	
75 um	No. 200	10.1	10.1% Fines

Comments:

<u>Sheet</u>

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING	i (%)	
Material Source	\$5, 24.5		Testeo	1 By	BRADLEY GERSCHWILER
Exploration	B46A		Date 0	Completed	8/8/2016
Cilent			Date F	Received	7/26/2016
Client	LABORATORY TESTING SERVICES	SWISSION LINE -	Lab ID)	14891S
Project Name			Projec	t Number	16.0600

25.0 mm	1"	100	
19.0 mm	3/4"	95	
12.5 mm	1/2"	93	
9.5 mm	3/8"	90	
6.3 mm	1/4"	88	
4.75 mm	No. 4	88	12.4% Gravel
2.00 mm	No. 10	85	
850 um	No. 20	81	
425 um	No. 40	76	57.3% Sand
250 um	No. 60	68	
150 um	No. 100	50	
75 um	No. 200	30.3	30.3% Fines

Report of Atterberg Limits

ASTM D4318-10 - Method A

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various NH	Lab ID:	14892S
Client:	Quanta Subsurface	Date Received:	07/26/16
Material Description:	Glaciolacustrine	Date Completed:	08/11/16
Material Source:	B44B, S4, 20'	Tested By:	BLG

Liquid Limit

Plastic Limit

Plasticity Index

Non-Plastic

18

Material Retained On the No. 40 Sieve:			
As-received Moisture Content:	19%		

Comments: seams and lenses of fine sand and silt/clay

Reviewed By:

10 Centre Road, Somersworth, NH 03878-2926 • P: (603) 692.0088 • F: (603) 692.0044 • E: infosomersworth@swcole.com

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	SSING (%)	
Material Source	S4, 19.5 [°]			Tested By	BRADLEY GERSCHWILER
Exploration	8468			Date Completed	8/8/2016
Cilent	QUANTA SUBSURFACE			Date Received	7/26/2016
Client	LABORATORY TESTING SERVICES			Lab ID	14894S
Project Name	VARIOUS NH - NORTHERN PASS TRANSM	1ISSION LINE -		Project Number	16-0600

25.0 mm	1"	100	
19.0 mm	3/4"	93	
12.5 mm	1/2"	83	
9.5 mm	3/8"	76	
6.3 mm	1/4"	70	
4.75 mm	No. 4	66	34% Gravel
2.00 mm	No. 10	56	
850 um	No. 20	47	
425 um	No. 40	38	47.9% Sand
250 um	No. 60	31	
150 um	No. 100	25	
75 um	No. 200	18.1	18.1% Fines

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
Material Source	\$3, 14		Tested By	BRADLEY GERSCHWILER
	B47A		Date Completed	8/8/2016
	QUANTA SUBSURFACE		Date Received	7/26/2016
Client	LABORATORY TESTING SERVICES		Lab ID	14896S
Project Name	VARIOUS NH - NORTHERN PASS TRANS	SMISSION LINE -	Project Number	16-0600

25.0 mm	1"	100	
19.0 mm	3/4"	92	
12.5 mm	1/2"	83	
9.5 mm	3/8"	80	
6.3 mm	1/4"	76	
4.75 mm	No. 4	73	26.7% Gravel
2.00 mm	No. 10	68	
850 um	No. 20	61	
425 um	No. 40	46	65.6% Sand
250 um	No. 60	21	
150 um	No. 100	13	
75 um	No. 200	7.8	7.8% Fines

ASTM C-117 & C-136

BRADLEY GERSCHWILER

		STANDARD	SIEVE SIZE	AMOUNT PA	SSING (%)	
Material Source	S6, 29'				Tested By	BRADLEY G
Exploration	B47A				Date Completed	8/8/2016
Cheft	QUANTA SUBSUR	FACE			Date Received	7/26/2016
LABORATORY TESTING SERVICES				Lab ID	14897S	
Project Name VARIOUS NH - NORTHERN PASS TRANSM			ISSION LINE -		Project Number	16-0600

DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (//)	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	98	
4.75 mm	No. 4	97	2.7% Gravel
2.00 mm	No. 10	94	
850 um	No. 20	87	
425 um	No. 40	76	62% Sand
250 um	No. 60	63	
150 um	No. 100	51	
75 um	No. 200	35.3	35.3% Fines

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	ASSING (%)	
Material Source	S4, 19 [.]			Tested By	BRADLEY GERSCHWILER
	B47B			Date Completed	8/9/2016
Exploration	QUANTA SUBSURFACE			Date Received	7/26/2016
Client	LABORATORY TESTING SERVICES			Lab ID	14898S
Project Name	ect Name VARIOUS NH - NORTHERN PASS TRANSMISSION LINE			Project Number	16-0600

38.1 mm	1-1/2"	100	
25.0 mm	1"	88	
19.0 mm	3/4"	83	
12.5 mm	1/2"	81	
9.5 mm	3/8"	75	
6.3 mm	1/4"	72	
4.75 mm	No. 4	68	31.6% Gravel
2.00 mm	No. 10	57	
850 um	No. 20	41	
425 um	No. 40	30	57.6% Sand
250 um	No. 60	24	
150 um	No. 100	18	
75 um	No. 200	10.8	10.8% Fines

ASTM C-117 & C-136

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
QUANTA SUBSURFACE
B48A
S5, 24'

Project Number	16-0600
Lab ID	14899S
Date Received	7/26/2016
Date Completed	8/9/2016
Tested By	BRADLEY GERSCHWILER

<u>SIEVE SIZE</u>	AMOUNT PASSING	<u>(%)</u>
3/8"	100	
1/4"	100	
No. 4	99	0.7% Gravel
No. 10	96	
No. 20	90	
No. 40	80	77.3% Sand
No. 60	54	
No. 100	34	
No. 200	22.0	22% Fines
	3/8" 1/4" No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	SIEVE SIZE AMOUNT PASSING 3/8" 100 1/4" 100 No. 4 99 No. 10 96 No. 20 90 No. 40 80 No. 60 54 No. 100 34 No. 200 22.0

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE
Exploration	B48B
Material Source	S3, 14'

Project Number	16-0600
Lab ID	14901S
Date Received	7/26/2016
Date Completed	8/9/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
9.5 mm	3/8"	100	
6.3 mm	1/4"	98	
4.75 mm	No. 4	97 3.4% Grave	ł
2.00 mm	No. 10	92	
850 um	No. 20	85	
425 um	No. 40	76 48.1% Sand	ł
250 um	No. 60	68	
150 um	No. 100	60	
75 um	No. 200	48.5 48.5% Fines	S

Comments:

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	<u>SSING (%)</u>	
Material Source	S4, 19 [.]			Tested By	BRADLEY GERSCHWILER
	B51A			Date Completed	8/9/2016
Evaluration	QUANTA SUBSURFACE			Date Received	7/26/2016
Client	LABORATORY TESTING SERVICES			Lab ID	14903S
Project Name	VARIOUS NH - NORTHERN PASS TRANS	MISSION LINE -		Project Number	16-0600

19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	96	
6.3 mm	1/4"	90	
4.75 mm	No. 4	86	14.3% Gravel
2.00 mm	No. 10	69	
850 um	No. 20	36	
425 um	No. 40	18	80.5% Sand
250 um	No. 60	12	
150 um	No. 100	9	
75 um	No. 200	5.2	5.2% Fines

Comments:

<u>Sheet</u>

ASTM C-117 & C-136

Project Name	
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE
Exploration	B51B
Material Source	S3, 13'

Project Number	16-0600
Lab ID	14905S
Date Received	7/26/2016
Date Completed	8/8/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0.1% Gravel
2.00 mm	No. 10	100
850 um	No. 20	99
425 um	No. 40	92 79% Sand
250 um	No. 60	63
150 um	No. 100	38
75 um	No. 200	20.9 20.9% Fines

Comments:

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	<u>SSING (%)</u>	
Material Source	S6, 28 ⁻			Tested By	BRADLEY GERSCHWILER
	B51B			Date Completed	8/8/2016
Circleration	QUANTA SUBSURFACE			Date Received	7/26/2016
Client	LABORATORY TESTING SERVICES			Lab ID	14906S
Project Name	VARIOUS NH - NORTHERN PASS TRANS	MISSION LINE -		Project Number	16-0600

19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	97	
6.3 mm	1/4"	95	
4.75 mm	No. 4	94	6.1% Gravel
2.00 mm	No. 10	91	
850 um	No. 20	88	
425 um	No. 40	81	54.8% Sand
250 um	No. 60	72	
150 um	No. 100	59	
75 um	No. 200	39.1	39.1% Fines

Comments:

<u>Sheet</u>

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	SSING (%)	
Material Source	\$4, 24 [.]			Tested By	BRADLEY GERSCHWILER
	BH 036A			Date Completed	8/24/2016
Exploration				Date Received	8/22/2016
Client				Lab ID	14963S
Project Name	VARIOUS NH - NORTHERN PASS TRAN	SMISSION LINE -		Project Number	16-0600

12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	99	
4.75 mm	No. 4	99	1.4% Gravel
2.00 mm	No. 10	95	
850 um	No. 20	65	
425 um	No. 40	34	88% Sand
250 um	No. 60	23	
150 um	No. 100	17	
75 um	No. 200	10.6	10.6% Fines

Comments:

<u>Sheet</u>

ASTM C-117 & C-136

- , -	Tested By	BRADLET GERSCHWILER
S2. 9'	Tested Du	
BH 036C	Date Completed	8/24/2016
	Date Received	8/22/2016
LABORATORY TESTING SERVICES	Lab ID	14964S
VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -	Project Number	16-0600
	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES QUANTA SUBSURFACE BH 036C S2, 9'	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - Project Number LABORATORY TESTING SERVICES Lab ID QUANTA SUBSURFACE Date Received BH 036C Date Completed S2, 9' Tested Du

19.0 mm	3/4"	100	
12.5 mm	1/2"	98	
9.5 mm	3/8"	98	
6.3 mm	1/4"	97	
4.75 mm	No. 4	93	6.5% Gravel
2.00 mm	No. 10	85	
850 um	No. 20	74	
425 um	No. 40	63	61.6% Sand
250 um	No. 60	53	
150 um	No. 100	44	
75 um	No. 200	31.8	31.8% Fines

Comments: Moisture Content = 11.9%

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (m	SIEVE SIZE	AMOUNT PASSING (%)	
Material Source	S4, 19'		Tested By	BRADLEY GERSCHWILER
Exploration	BH 037A		Date Completed	8/24/2016
Cheft	QUANTA SUBSURFACE		Date Received	8/22/2016
Client	LABORATORY LESTING SERVI	CES	Lab ID	14965S
Project Name	VARIOUS NH - NORTHERN PAS	SS TRANSMISSION LINE -	Project Number	16-0600

150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	98	
9.5 mm	3/8"	98	
6.3 mm	1/4"	96	
4.75 mm	No. 4	95	5.3% Gravel
2.00 mm	No. 10	91	
850 um	No. 20	86	
425 um	No. 40	80	41% Sand
250 um	No. 60	73	
150 um	No. 100	66	
75 um	No. 200	53.8	53.8% Fines

Comments:

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
Material Source	59, 44		Tested By	BRADLEY GERSCHWILER
Exploration	BH 037A		Date Complete	d 8/24/2016
Suplementies			Date Received	8/22/2016
Client			Lab ID	14966S
Project Name	VARIOUS NH - NORTHERN PASS TRANS	SMISSION LINE -	Project Numbe	r 16-0600

12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	98	
4.75 mm	No. 4	97	3.2% Gravel
2.00 mm	No. 10	94	
850 um	No. 20	91	
425 um	No. 40	86	37.9% Sand
250 um	No. 60	80	
150 um	No. 100	74	
75 um	No. 200	58.9	58.9% Fines

Comments: Moisture Content = 11.6%

<u>Sheet</u>

ASTM C-117 & C-136

STANDARD		INT PASSING (%)	
29'		Tested By	BRADLEY GERSCHWILER
040A		Date Completed	8/24/2016
		Date Received	8/22/2016
BORATORY TESTING SERVICES		Lab ID	14967S
RIOUS NH - NORTHERN PASS TRA	NSMISSION LINE -	Project Number	16-0600
F	RIOUS NH - NORTHERN PASS TRA 30RATORY TESTING SERVICES ANTA SUBSURFACE	RIOUS NH - NORTHERN PASS TRANSMISSION LINE - 30RATORY TESTING SERVICES ANTA SUBSURFACE	RIOUS NH - NORTHERN PASS TRANSMISSION LINE - Project Number BORATORY TESTING SERVICES Lab ID ANTA SUBSURFACE Date Received

19.0 mm	3/4"	100	
12.5 mm	1/2"	98	
9.5 mm	3/8"	96	
6.3 mm	1/4"	93	
4.75 mm	No. 4	91	9.1% Gravel
2.00 mm	No. 10	76	
850 um	No. 20	48	
425 um	No. 40	28	85.1% Sand
250 um	No. 60	19	
150 um	No. 100	11	
75 um	No. 200	5.8	5.8% Fines

Comments:

<u>Sheet</u>

ASTM C-117 & C-136

BRADLEY GERSCHWILER

		STANDARD		SSING (%)	
Material Source	S7, 34'			Tested By	BRADLEY G
Exploration	BH 040B			Date Completed	8/26/2016
	QUANTA SUBSURI	FACE		Date Received	8/22/2016
Oliant	LABORATORY TESTING SERVICES		Lab ID	14968S	
Project Name	VARIOUS NH - NORTHERN PASS TRANSM	ISSION LINE -	Project Number	16-0600	

DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING	(%)
9.5 mm	3/8"	100	
6.3 mm	1/4"	94	
4.75 mm	No. 4	91	9.1% Gravel
2.00 mm	No. 10	77	
850 um	No. 20	53	
425 um	No. 40	29	84.9% Sand
250 um	No. 60	16	
150 um	No. 100	10	
75 um	No. 200	6.0	6% Fines

Comments:

Report of Gradation

ASTM C-117 & C-136

BRADLEY GERSCHWILER

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	<u> SSING (%)</u>	
Material Source	S4, 19'			Tested By	BRADLEY G
Exploration	BH 041A			Date Completed	8/26/2016
Client	QUANTA SUBSURFACE			Date Received	8/22/2016
	LABORATORY TESTING SERVICES	ISIMISSION LINE -		Lab ID	14969S
Project Name				Project Number	16-0600

6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	39.2% Sand
250 um	No. 60	99	
150 um	No. 100	95	
75 um	No. 200	60.8	60.8% Fines

Comments: Moisture Content = 28.2%

ASTM C-117 & C-136

	STANDARD		
Material Source	S8, 39 [.]		Testeo
Material Course			Date C
Exploration	BH 042A		Duici
Client	QUANTA SUBSURFACE		Date F
	LABORATORY TESTING SERVICES		Lab ID
Project Name	VARIOUS NH - NORTHERN PASS TRAI	NSMISSION LINE -	Projec

Project Number	16-0600
Lab ID	14971S
Date Received	8/22/2016
Date Completed	8/26/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0% Gravel
2.00 mm	No. 10	100
850 um	No. 20	100
425 um	No. 40	94 89.5% Sand
250 um	No. 60	56
150 um	No. 100	24
75 um	No. 200	10.5 10.5% Fines

Comments:

ASTM C-117 & C-136

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
Material Source	S1, 4 ⁻		Tested By	BRADLEY GERSCHWILER
Exploration	BH 042B		Date Completed	8/26/2016
			Date Received	8/22/2016
Client	LABORATORY TESTING SERVICES		Lab ID	14972S
Project Name	VARIOUS NH - NORTHERN PASS TRANSM	ISSION LINE -	Project Number	16-0600

25.0 mm	1"	100	
19.0 mm	3/4"	91	
12.5 mm	1/2"	87	
9.5 mm	3/8"	80	
6.3 mm	1/4"	74	
4.75 mm	No. 4	70	30.3% Gravel
2.00 mm	No. 10	60	
850 um	No. 20	43	
425 um	No. 40	27	60.8% Sand
250 um	No. 60	18	
150 um	No. 100	13	
75 um	No. 200	8.9	8.9% Fines

ASTM C-117 & C-136

BRADLEY GERSCHWILER

	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PA	SSING (%)	
Material Source	S4, 19'			Tested By	BRADLEY G
Exploration	BH 052B			Date Completed	8/26/2016
				Date Received	8/22/2016
Project Name	VARIOUS NH - NORTHERN PASS TRAN LABORATORY TESTING SERVICES	SMISSION LINE -		Project Number Lab ID	16-0600 14973S

9.5 mm	3/8"	100	
6.3 mm	1/4"	96	
4.75 mm	No. 4	92	7.9% Gravel
2.00 mm	No. 10	91	
850 um	No. 20	90	
425 um	No. 40	88	62.6% Sand
250 um	No. 60	76	
150 um	No. 100	52	
75 um	No. 200	29.5	29.5% Fines

Comments: Moisture Content = 16.6%

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	QUANTA SUBSURFACE

Material Source B14A, S6, 29'

Project Number	16-0600
Lab ID	15012S
Date Received	9/6/2016
Date Completed	9/8/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
38.1 mm	1-1/2"	100	
25.0 mm	1"	88	
12.5 mm	1/2"	87	
9.5 mm	3/8"	86	
6.3 mm	1/4"	82	
4.75 mm	No. 4	80	19.8% Gravel
2.00 mm	No. 10	75	
850 um	No. 20	66	
425 um	No. 40	48	64.6% Sand
250 um	No. 60	33	
150 um	No. 100	24	
75 um	No. 200	15.5	15.5% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	QUANTA SUBSURFACE

Material Source B14B, S7, 34'

P	roject Number	16-0600
La	ab ID	15013S
D	ate Received	9/6/2016
D	ate Completed	9/8/2016
Te	ested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	97	91.2% Sand
250 um	No. 60	68	
150 um	No. 100	27	
75 um	No. 200	8.8	8.8% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE
Client	

Material Source B15A, S6, 29'

Project Number	16-0600
Lab ID	15014S
Date Received	9/6/2016
Date Completed	9/8/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	64.4% Sand
250 um	No. 60	100	
150 um	No. 100	89	
75 um	No. 200	35.6	35.6% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15015S
Date Received	9/6/2016
Date Completed	9/8/2016
Tested By	BRADLEY GERSCHWILER

Material Source B16A, S5, 24.5'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	85.4% Sand
250 um	No. 60	93	
150 um	No. 100	54	
75 um	No. 200	14.6	14.6% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B16A, S9, 44.5'

Project Number	16-0600
Lab ID	15016S
Date Received	9/6/2016
Date Completed	9/8/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0.4% Gravel
850 um	No. 20	100	
425 um	No. 40	99	90.9% Sand
250 um	No. 60	87	
150 um	No. 100	36	
75 um	No. 200	8.7	8.7% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B16B, S5, 24'

Project Number	16-0600
Lab ID	15017S
Date Received	9/6/2016
Date Completed	9/8/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0% Gravel
2.00 mm	No. 10	100
850 um	No. 20	100
425 um	No. 40	100 41.5% Sand
250 um	No. 60	99
150 um	No. 100	93
75 um	No. 200	58.5 58.5% Fines

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	QUANTA SUBSURFACE

Material Source	B18A,	S8,	39.5'
-----------------	-------	-----	-------

Project Number	16-0600
Lab ID	15018S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
25.0 mm	1"	100	
19.0 mm	3/4"	91	
12.5 mm	1/2"	86	
9.5 mm	3/8"	78	
6.3 mm	1/4"	70	
4.75 mm	No. 4	66	34.4% Gravel
2.00 mm	No. 10	56	
850 um	No. 20	46	
425 um	No. 40	37	52.7% Sand
250 um	No. 60	29	
150 um	No. 100	22	
75 um	No. 200	12.9	12.9% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B19A, S4, 19'

Project Number	16-0600
Lab ID	15019S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
19.0 mm	3/4"	100	
12.5 mm	1/2"	96	
6.3 mm	1/4"	96	
4.75 mm	No. 4	96	3.6% Gravel
2.00 mm	No. 10	96	
850 um	No. 20	96	
425 um	No. 40	91	87.2% Sand
250 um	No. 60	66	
150 um	No. 100	29	
75 um	No. 200	9.2	9.2% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	QUANTA SUBSURFACE

Material Source B19B, S5, 25'

Project Number	16-0600
Lab ID	15020S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
19.0 mm	3/4"	100	
12.5 mm	1/2"	96	
6.3 mm	1/4"	94	
4.75 mm	No. 4	93	7.4% Gravel
2.00 mm	No. 10	83	
850 um	No. 20	60	
425 um	No. 40	37	83.4% Sand
250 um	No. 60	21	
150 um	No. 100	14	
75 um	No. 200	9.2	9.2% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	QUANTA SUBSURFACE

Material Source B21A, S6, 29'

Project Number	16-0600
Lab ID	15021S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	98	
6.3 mm	1/4"	95	
4.75 mm	No. 4	94	6% Gravel
2.00 mm	No. 10	85	
850 um	No. 20	60	
425 um	No. 40	35	87.5% Sand
250 um	No. 60	20	
150 um	No. 100	12	
75 um	No. 200	6.5	6.5% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B21A, S12, 59'

Project Number	16-0600
Lab ID	15022S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	99	
425 um	No. 40	98	44.9% Sand
250 um	No. 60	92	
150 um	No. 100	79	
75 um	No. 200	55.1	55.1% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B21B, S7, 34'

Project I	Number	16-0600
Lab ID		15023S
Date Re	ceived	9/6/2016
Date Co	mpleted	9/10/2016
Tested I	Зу	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	99	77.2% Sand
250 um	No. 60	97	
150 um	No. 100	79	
75 um	No. 200	22.8	22.8% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B22A, S5, 24'

Project Number	16-0600
Lab ID	15024S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
9.5 mm	3/8"	100	
6.3 mm	1/4"	99	
4.75 mm	No. 4	98	2.4% Gravel
2.00 mm	No. 10	97	
850 um	No. 20	96	
425 um	No. 40	92	78.1% Sand
250 um	No. 60	67	
150 um	No. 100	36	
75 um	No. 200	19.5	19.5% Fines

Comments: Moisture Content = 30%

<u>Sheet</u>

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Project Number16-0600Lab ID15025SDate Received9/6/2016Date Completed9/10/2016Tested ByBRADLEY GERSCHWILER

Material Source B22B, S9, 44'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%	<u>ற</u>
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	2.8% Sand
250 um	No. 60	100	
150 um	No. 100	100	
75 um	No. 200	97.2	97.2% Fines

Comments:

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	OUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15026S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

Material Source B22C, S6, 39.5'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	L
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0.1% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	32.9% Sand
250 um	No. 60	99	
150 um	No. 100	97	
75 um	No. 200	67.0	67% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B23A, S9, 44'

Project Number	16-0600
Lab ID	15027S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
12.5 mm	1/2"	100	
9.5 mm	3/8"	100	
6.3 mm	1/4"	96	
4.75 mm	No. 4	94	6.1% Gravel
2.00 mm	No. 10	84	
850 um	No. 20	73	
425 um	No. 40	64	72.6% Sand
250 um	No. 60	52	
150 um	No. 100	38	
75 um	No. 200	21.3	21.3% Fines

Comments:

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	OUANTA SUBSURFACE

Material Source B24A, S10, 49'

Project Number	16-0600
Lab ID	15028S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
19.0 mm	3/4"	100	
12.5 mm	1/2"	78	
9.5 mm	3/8"	73	
6.3 mm	1/4"	66	
4.75 mm	No. 4	61	39% Gravel
2.00 mm	No. 10	50	
850 um	No. 20	40	
425 um	No. 40	32	49.1% Sand
250 um	No. 60	25	
150 um	No. 100	18	
75 um	No. 200	12.0	12% Fines

Comments:

<u>Sheet</u>

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	OUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15029S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

Material Source B24B, S4, 19.5'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100 0% Gra	avel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	98 80.3%	Sand
250 um	No. 60	78	
150 um	No. 100	46	
75 um	No. 200	19.7 19.7%	Fines

Comments:

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	OUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15030S
Date Received	9/6/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

Material Source B25A, S8, 39.5'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100 0% Gravel	
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100 10.3% Sand	I
250 um	No. 60	100	
150 um	No. 100	99	
75 um	No. 200	89.7 89.7% Fines	3

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	QUANTA SUBSURFACE

Material Source B27A, S7, 34'

Project Number	16-0600
Lab ID	15031S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
25.0 mm	1"	100	
19.0 mm	3/4"	84	
12.5 mm	1/2"	74	
9.5 mm	3/8"	69	
6.3 mm	1/4"	61	
4.75 mm	No. 4	57	42.5% Gravel
2.00 mm	No. 10	48	
850 um	No. 20	40	
425 um	No. 40	32	44.5% Sand
250 um	No. 60	26	
150 um	No. 100	20	
75 um	No. 200	12.9	12.9% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source	B27B,	S5,	24.5'
-----------------	-------	-----	-------

Project Number	16-0600
Lab ID	15032S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
25.0 mm	1"	100	
19.0 mm	3/4"	95	
12.5 mm	1/2"	91	
9.5 mm	3/8"	87	
6.3 mm	1/4"	83	
4.75 mm	No. 4	78	22.4% Gravel
2.00 mm	No. 10	53	
850 um	No. 20	36	
425 um	No. 40	26	66.4% Sand
250 um	No. 60	20	
150 um	No. 100	16	
75 um	No. 200	11.3	11.3% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Project Number	16-0600
Lab ID	15033S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

Material Source B27B, S11, 54.5'

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
25.0 mm	1"	100	
19.0 mm	3/4"	97	
12.5 mm	1/2"	92	
9.5 mm	3/8"	89	
6.3 mm	1/4"	86	
4.75 mm	No. 4	85	15.1% Gravel
2.00 mm	No. 10	79	
850 um	No. 20	69	
425 um	No. 40	55	67.8% Sand
250 um	No. 60	39	
150 um	No. 100	27	
75 um	No. 200	17.1	17.1% Fines

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B31B, S2, 9.5'

Project Number	16-0600
Lab ID	15034S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	L
25.0 mm	1"	100	
19.0 mm	3/4"	78	
12.5 mm	1/2"	68	
9.5 mm	3/8"	64	
6.3 mm	1/4"	55	
4.75 mm	No. 4	51	48.5% Gravel
2.00 mm	No. 10	40	
850 um	No. 20	32	
425 um	No. 40	28	38.1% Sand
250 um	No. 60	25	
150 um	No. 100	21	
75 um	No. 200	13.4	13.4% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B33A, S3, 14'

Project Number	16-0600
Lab ID	15035S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
9.5 mm	3/8"	100	
6.3 mm	1/4"	98	
4.75 mm	No. 4	98	2.3% Gravel
2.00 mm	No. 10	94	
850 um	No. 20	87	
425 um	No. 40	76	86% Sand
250 um	No. 60	58	
150 um	No. 100	35	
75 um	No. 200	11.6	11.6% Fines

Comments:

<u>Sheet</u>

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B34B, S3

Project Number	16-0600
Lab ID	15036S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
00.4	4.4/01	400	
38.1 mm	1-1/2**	100	
25.0 mm	1"	83	
12.5 mm	1/2"	74	
9.5 mm	3/8"	71	
6.3 mm	1/4"	67	
4.75 mm	No. 4	64	35.8% Gravel
2.00 mm	No. 10	58	
850 um	No. 20	49	
425 um	No. 40	40	49.7% Sand
250 um	No. 60	31	
150 um	No. 100	24	
75 um	No. 200	14.5	14.5% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B35B, S2, 9'

Project Number	16-0600
Lab ID	15037S
Date Received	9/6/2016
Date Completed	9/12/2016
Tested By	BRADLEY GERSCHWILER

19.0 mm 3/4" 100 12.5 mm 1/2" 97 9.5 mm 3/8" 94 6.3 mm 1/4" 89 4.75 mm No. 4 84 15.7% Gravel 2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6 15.6% Fines	<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
19.0 mm 3/4" 100 12.5 mm 1/2" 97 9.5 mm 3/8" 94 6.3 mm 1/4" 89 4.75 mm No. 4 84 15.7% Gravel 2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um 150 um No. 100 30 75 um				
12.5 mm 1/2" 97 9.5 mm 3/8" 94 6.3 mm 1/4" 89 4.75 mm No. 4 84 15.7% Gravel 2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	19.0 mm	3/4"	100	
9.5 mm 3/8" 94 6.3 mm 1/4" 89 4.75 mm No. 4 84 15.7% Gravel 2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	12.5 mm	1/2"	97	
6.3 mm 1/4" 89 4.75 mm No. 4 84 15.7% Gravel 2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	9.5 mm	3/8"	94	
4.75 mm No. 4 84 15.7% Gravel 2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	6.3 mm	1/4"	89	
2.00 mm No. 10 74 850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines 15.6% Fines	4.75 mm	No. 4	84	15.7% Gravel
850 um No. 20 61 425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	2.00 mm	No. 10	74	
425 um No. 40 49 68.7% Sand 250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	850 um	No. 20	61	
250 um No. 60 40 150 um No. 100 30 75 um No. 200 15.6% Fines	425 um	No. 40	49	68.7% Sand
150 umNo. 1003075 umNo. 20015.615.6% Fines	250 um	No. 60	40	
75 um No. 200 15.6 15.6% Fines	150 um	No. 100	30	
	75 um	No. 200	15.6	15.6% Fines

Comments:

ASTM C-117 & C-136

	STANDARD DESIGNATION (mm/um)	SIEVE SIZE	AMOUNT PASS	SING (%)	
Material Source	\$3, 14		Τe	ested By	BRADLEY GERSCHWILER
	B15A		Da	ate Completed	9/12/2016
Circleration			Da	ate Received	9/7/2016
Client	LABORATORY TESTING SERVICES		La	ab ID	15040S
Project Name	VARIOUS NH - NORTHERN PASS TRANS	MISSION LINE -	Pr	oject Number	16-0600

38.1 mm	1-1/2"	100	
25.0 mm	1"	75	
12.5 mm	1/2"	70	
9.5 mm	3/8"	69	
6.3 mm	1/4"	62	
4.75 mm	No. 4	60	40.5% Gravel
2.00 mm	No. 10	51	
850 um	No. 20	39	
425 um	No. 40	27	50.7% Sand
250 um	No. 60	19	
150 um	No. 100	14	
75 um	No. 200	8.8	8.8% Fines

ASTM C-117 & C-136

Material Source	S5, 25'	Test
Exploration	B18B	Date
Client	QUANTA SUBSURFACE	Date
Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES	Proj Lab

Project Number	16-0600
Lab ID	15042S
Date Received	9/7/2016
Date Completed	9/10/2016
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0% Gravel
2.00 mm	No. 10	100
850 um	No. 20	100
425 um	No. 40	99 45.7% Sand
250 um	No. 60	89
150 um	No. 100	75
75 um	No. 200	54.3 54.3% Fines

Comments:

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
Client	CHANTA SUBSURFACE
Onoric	

Material Source B11A, S9, 44'

Project Number	16-0600
Lab ID	15049S
Date Received	9/12/2016
Date Completed	9/15/2016
Tested By	ANTONIO SANTIAGO

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	1
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	99	
4.75 mm	No. 4	99	0.6% Gravel
2.00 mm	No. 10	99	
850 um	No. 20	98	
425 um	No. 40	96	32.9% Sand
250 um	No. 60	92	
150 um	No. 100	83	
75 um	No. 200	66.5	66.5% Fines

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B11B, S4, 19'

Project Number	16-0600
Lab ID	15050S
Date Received	9/12/2016
Date Completed	9/15/2016
Tested By	ANTONIO SANTIAGO

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	90	
12.5 mm	1/2"	88	
9.5 mm	3/8"	87	
6.3 mm	1/4"	84	
4.75 mm	No. 4	81	18.9% Gravel
2.00 mm	No. 10	74	
850 um	No. 20	65	
425 um	No. 40	58	54.6% Sand
250 um	No. 60	49	
150 um	No. 100	38	
75 um	No. 200	26.5	26.5% Fines

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B13A, S6, 34'

Project Number	16-0600
Lab ID	15051S
Date Received	9/12/2016
Date Completed	9/15/2016
Tested By	ANTONIO SANTIAGO

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
150	C !!	400	
150 mm	0	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	100	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	29.2% Sand
250 um	No. 60	99	
150 um	No. 100	91	
75 um	No. 200	70.8	70.8% Fines

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B17A, S7, 34'

Project Number	16-0600
Lab ID	15052S
Date Received	9/12/2016
Date Completed	9/15/2016
Tested By	ANTONIO SANTIAGO

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	l
150 mm	6"	100	
100 mm	۰ ۸۳	100	
75 mm	4	100	
75 1111	3	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	90	
12.5 mm	1/2"	90	
9.5 mm	3/8"	88	
6.3 mm	1/4"	85	
4.75 mm	No. 4	82	17.8% Gravel
2.00 mm	No. 10	76	
850 um	No. 20	67	
425 um	No. 40	59	54% Sand
250 um	No. 60	50	
150 um	No. 100	41	
75 um	No. 200	28.2	28.2% Fines

Report of Atterberg Limits

ASTM D4318-10 - Method A

Project Name:	Northern Pass Transmission Line	Project Number:	16-0600
Project Location:	Various NH	Lab ID:	15053S
Client:	Quanta Subsurface	Date Received:	09/12/16
Material Description:	Glaciolacustrine	Date Completed:	09/20/16
Material Source:	B17A, S8, 39'	Tested By:	BLG

Liquid Limit

Plastic Limit

Plasticity Index

Non-Plastic

16

Material Retained On the No. 40 Sieve:	48%
As-received Moisture Content	10%

Comments:

Reviewed By:

10 Centre Road, Somersworth, NH 03878-2926 • P: (603) 692.0088 • F: (603) 692.0044 • E: infosomersworth@swcole.com

ASTM C-117 & C-136

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE - LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B17B, S2, 9'

Project Number	16-0600
Lab ID	15054S
Date Received	9/12/2016
Date Completed	9/15/2016
Tested By	ANTONIO SANTIAGO

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	87	
19.0 mm	3/4"	87	
12.5 mm	1/2"	83	
9.5 mm	3/8"	78	
6.3 mm	1/4"	70	
4.75 mm	No. 4	66	34.4% Gravel
2.00 mm	No. 10	54	
850 um	No. 20	44	
425 um	No. 40	36	49.1% Sand
250 um	No. 60	30	
150 um	No. 100	24	
75 um	No. 200	16.5	16.5% Fines

Project Name	VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -
	LABORATORY TESTING SERVICES
Client	QUANTA SUBSURFACE

Material Source B25B, S5, 24'

Project Number	16-0600
Lab ID	15055S
Date Received	9/12/2016
Date Completed	9/15/2016
Tested By	ANTONIO SANTIAGO

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	100	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	100	
425 um	No. 40	100	81.1% Sand
250 um	No. 60	98	
150 um	No. 100	74	
75 um	No. 200	18.9	18.9% Fines

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Transmittal

TO:

Balin Strickler

Quanta Subsurface

4308 N Barker Rd.

Spokane Valley, WA 99027

ΠΑΤΕ· 	/1/2016
DATE: 9	/1/2010

GTX NO: 305223

RE: Northern Pass Trenchless

COPIES	DATE	DESCRIPTION
	9/1/2016	August 2016 Laboratory Test Report

REMARKS:

SIGNED: an Jonathan Campbell, Assistant Laboratory Manager CC: APPROVED BY: de Ma Mark Dobday, P.G., Laborator Manager

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

September 1, 2016

Balin Strickler Quanta Subsurface 4308 N Barker Rd. Spokane Valley, WA 99027

RE: Northern Pass Trenchless, Lincoln, NH (GTX-305223)

Dear Balin Strickler:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received eight samples from you on 8/19/2016. These samples were labeled as follows:

Boring Number	Sample Number	Depth
BH36B	R1	31 ft
BH36C	R2	38 ft
BH41B	R2	52 ft
BH42B	R3	21 ft
BH43B	R1	51 ft
BH47B	R1	55 ft
BH52A	R2	22 ft
BH52B	R4	46 ft

GTX performed the following tests on these samples:

8 ASTM D7012 Method C- Uniaxial Compressive Strength of Rock

8 ASTM D7625 -CERCHAR Abrasivity Index (CAI)

A copy of your test request is attached.

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

on Tam

Jonathan Campbell Assistant Laboratory Manager

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Geotechnical Test Report

9/1/2016

GTX-305223

Northern Pass Trenchless

Lincoln, NH

Client Project No.: 201-16-NH

Prepared for:

Quanta Subsurface

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth, ft	Bulk Density, pcf	Compressive Strength, psi	Failure Type	In conformance with ASTM D4543	Note(s)
BH36B	R1	29.94-30.31	164	6878	1	Yes	
BH36C	R2	37.50-37.87	171	9127	2	Yes	
BH41B	R2	52.45-52.82	167	9565	3	Yes	
BH42B	R3	21.10-21.47	173	28861	1	Yes	
BH43B	R1	51	163	16420	1	Yes	
BH47B	R1	55	164	5386	2	Yes	
BH52A	R2	22.40-22.77	177	13721	1	Yes	
BH52B	R4	46.10-46.47	166	8502	1	Yes	

Notes: Density determined on core samples by measuring dimensions and mass and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

Client:	Quanta Subsurface	Test Date:	8/23/2016	
Project Name:	Northern Pass Trenchless	Tested By:	daa/rlc	
Project Location:	Lincoln, NH	Checked By:	jsc	
GTX #:	305223			
Boring ID:	BH36B			
Sample ID:	R1			
Depth:	29.94-30.31 ft			
Visual Description:	See photographs			

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pr	
	1 n: 4.28		2 4.28		Aver	age					
Specimen Length, in:					4.28			Maximum		ap between s	
Specimen Diameter, in:	1.	98	1.	98	1.98					I	
Specimen Mass, g:	569.5										
Bulk Density, lb/ft ³	16	54	Minimum Dian	neter Tolerenc	e Met?	YES					
Length to Diameter Ratio:	2.2		Length to Diameter Ratio Tolerance Met?		YES						
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)									
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00	
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00	
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00	

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism m	easurements al	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00030	1.980	0.00015	0.009	YES
END 2					
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.02	0 in.		
		Straightness Tolera	ance Met?	YES	
	0.375	0.500	0.625	0.750	0.875
	0.00000	0.00000	0.0000	0.00000	0.00000
	0.00020	0.00020	.00020	0.00030	0.00030
	Difference betw	veen max and min rea	adinas, in:	0.00000	0.00000
	0° =	0.00020	90° =	0.00030	
	0.375	0.500	0.625	0 750	0.875
	0,00000	0,00000	00000	0,00000	0.00010
	0.00020	0.00020	00030	0.00030	0.00030
	Difference betw	veen max and min rea	adinas, in:	0.00000	0.00000
	0° =	0.0002	90° =	0.0004	
	Maximum diffe	rence must be < 0.00	120 in.	Difference = $+$	0.00020
		Flatness Tolera	ance Met?	VES	0.00020
				120	
	DIAMETER 1				
	5.14				
	End 1:	Clana of Doct Fit Lin	2	0.00011	
		Angle of Best Fit Line	3	0.00011	
		Angle of best fit Lin	5.	0.00030	
	End 2:				
		Slope of Best Fit Line	9	0.00007	
		Angle of Best Fit Line	э:	0.00401	
	Maximum Angu	alar Difference:		0.00229	
		Parallelism Tolera	ance Met?	YES	
		Spherically Seated			
	DIAMETER 2				
	5.14				
	End 1:	Clana of Doct Fit Lin		0.00010	
		Angle of Best Fit Line	3	0.00019	
50 0.375 0.500 0.625 0.750 0.875 000 0.00000 0.00000 0.00000 0.00000 0.00000 010 0.00020 0.00020 0.00030 0.00030 0.00030 Difference between max and min readings, in: 0° = 0.00020 0.00030 0.00030 0.00030 50 0.375 0.500 0.625 0.750 0.875 000 0.00020 0.00000 0.00000 0.00030 0.00030 0010 0.00020 0.00020 0.00030 0.00030 0.00030 0010 0.00020 0.00020 0.00030 0.00030 0.00030 0010 0.00020 0.00020 0.00030 0.00030 0.00030 001000 0.00020 0.00020 0.00030 0.00030 0.00030 0010000 0.00020 0.00020 0.00030 0.00030 0.00030 010000 0.00020 0.00020 0.00020 No0030 0.00020 010000 Flatness Tolerance Met? YES YES Spherically Seated YES					
	End 2:				
		Slope of Best Fit Line	Э	0.00026	
		Angle of Best Fit Line	9:	0.01490	
	Maximum Angu	Ilar Difference:		0.00401	
				0.00401	
		Darallolism Tolor	DOO Moto	VES	
		Spherically Seated	ince wet?	TE3	
No Difference between max and min readings, in: 0* = 0.00020 90* = 0.00030 50 0.375 0.500 0.625 0.750 0.875 500 0.00000 0.00000 0.00000 0.00000 0.00000 500 0.00020 0.00030 0.00030 0.00030 0.00030 500 0.00020 0.00020 0.00030 0.00030 0.00030 501 Difference between max and min readings, in: 0* = 0.0002 90* = 0.0004 Maximum difference must be < 0.0020 in.					

Maximum angle of departure must be $\leq 0.25^{\circ}$

Perpendicularity Tolerance Met?

YES

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH36B
Sample ID:	R1
Depth, ft:	29.94-30.31

Client:	Quanta Subsurface	Test Date: 8/22/2016	
Project Name:	Northern Pass Trenchless	Tested By: daa/rlc	
Project Location:	Lincoln, NH	Checked By: jsc	
GTX #:	305223		
Boring ID:	BH36C		
Sample ID:	R2		
Depth:	37.50-37.87 ft		
Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY								DEVIATION FR	OM STRAIGHT	NESS (Pr	
	1 4.40 1.97		2 4.40 1.97		Average 4.40 1.97						
Specimen Length, in:									Maximum gap between s		
Specimen Diameter, in:										ľ	
Specimen Mass, g:	603	3.06									
Bulk Density, lb/ft ³	171 2.2		Minimum Diameter Tolerence Met? Length to Diameter Ratio Tolerance Met?		e Met?	YES					
Length to Diameter Ratio:					YES						
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)									
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00	
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00	
Diameter 2, in (rotated 90°)	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00	
4											

PERPENDICULARITY (Proced	lure P1) (Calculated from End Flatness	and Parallelism m	easurements al	bove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00010	1.970	0.00005	0.003	YES
Diameter 2, in (rotated 90°)	0.00020	1.970	0.00010	0.006	YES
END 2					
Diameter 1, in	0.00020	1.970	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00020	1.970	0.00010	0.006	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.	020 in.					
		Straightness Tole	erance Met?	YES				
50	0.375	0.500	0.625	0.750	0.875			
000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010			
020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020			
	Difference between max and min readings, in:							
	0° =	0.00010	90° =	0.00020				
50	0.375	0.500	0.625	0.750	0.875			
000	0,0000	0,0000	0.00000	-0.00010	-0.00010			
000	-0.00010	-0.00010	-0.00020	-0.00020	-0.00020			
	Difference betv	0.00020						
	0° =	0.0002	90° =	0.0002				
	Maximum diffe	rence must be < 0.	0020 in.	Difference = $+$	0.00010			
		Flatness Tole	erance Met?	YES				
3								
	DIAMETER 1							
	End 1.							
		Slope of Best Fit L	ine	0.00001				
		Angle of Best Fit L	ine:	0.00057				
	End 2:			0.0000/				
		Slope of Best Fit L	ine	-0.00006				
		Angle of best fit L	ine.	-0.00344				
	Maximum Angu	ular Difference:		0.00401				
		Danallaliana Tala		VEC				
		Spherically Seated	YES					
		Spherically Seated	I					
_								
9								
	DIAMETER 2							
	End 1.							
		Slope of Best Fit I	ine	-0.00015				
		Angle of Best Fit L	ine:	-0.00859				
		-						
	End 2:							
		Slope of Best Fit L	ine	-0.00008				
		Angle of Best Fit L	Ine:	-0.00458				
	Maximum Angu	ular Difference:		0.00401				
			•• • •					
		Parallelism Tole	erance Met?	YES				
		Spherically Sealed	I					

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

YES

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH36C
Sample ID:	R2
Depth, ft:	37.50-37.87

Client	Quanta Subsurfaça	Tast Data: 8/22/2016
Client:	Quanta Subsurface	Test Date: 8/22/2016
Project Name:	Northern Pass Trenchless	Tested By: daa/rlc
Project Location:	Lincoln, NH	Checked By: jsc
GTX #:	305223	
Boring ID:	BH41B	
Sample ID:	R2	
Depth:	52.45-52.82 ft	
Visual Description:	See photographs	

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pr
	1		2		Average					
Specimen Length, in:	4.3	33	4.34		4.3	34			Maximum gap b	between s
Specimen Diameter, in:	1.98		1.	98	1.9	98			0.1	
Specimen Mass, g:	587	.12								
Bulk Density, lb/ft ³	16	57	Minimum Dian	neter Tolerenc	e Met?	YES				
Length to Diameter Ratio:	2.	2	Length to Diar	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALLE	LISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	-0.00010	-0.00
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	-0.00010	-0.00

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism m	easurements al	bove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00010	1.980	0.00005	0.003	YES
END 2					
Diameter 1, in	0.00010	1.980	0.00005	0.003	YES
Diameter 2, in (rotated 90°)	0.00020	1.980	0.00010	0.006	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.02	?0 in.		
		Straightness Tolera	ance Met?	YES	
50	0.375	0.500	0.625	0.750	0.875
0010	-0.00020	-0.00020 -0	0.00020	-0.00020	-0.00020
000	0.00000	-0.00010 -(0.00010	-0.00010	-0.00010
	Difference betw	veen max and min rea	adings, in:		
	0° =	0.00020	90° =	0.00010	
50	0.275	0 500	0.625	0.750	0.975
000	0.375	0.500	0.025	0.750	0.075
000	0.00000	0.00000 0	0.00000	0.00000	-0.00010
010	-0.00010	-0.00010 -0	olings in	-0.00020	-0.00020
			auniys, in.	0.0002	
	U =	0.0001	90 =	0.0002	0.00010
	waximum dirie		20 m.	Difference = $\frac{1}{2}$	<u>F</u> 0.00010
		Flatness Tolera	ance wet?	YES	
7					
′	DIAMETER 1				
	End 1:				
		Slope of Best Fit Line	е	-0.00007	
		Angle of Best Fit Lin	e:	-0.00401	
	End 2				
		Slope of Best Fit Line	e	-0.00002	
		Angle of Best Fit Lin	e:	-0.00115	
		0			
	Maximum Angu	lar Difference:		0.00286	
		Darallalism Tolor	anaa Mata	VEC	
		Spherically Seated	ance wet?	TES	
		Spherically Seated			
_					
1					
	DIAMETER 2				
	End 1:		_	0.00001	
		Angle of Best Fit Lin	e o	0.00001	
		Angle of Dest Int Lin	с.	0.00037	
	End 2:				
		Slope of Best Fit Line	е	-0.00005	
		Angle of Best Fit Lin	e:	-0.00286	
	Maximum Angu	lar Difference:		0.00344	
		Parallelism Tolera	ance Met?	YES	
		Spherically Seated		-	
		-			

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH41B
Sample ID:	R2
Depth, ft:	52.45-52.82

Client:	Quanta Subsurface	Test Date: 8/22/2016
Project Name:	Northern Pass Trenchless	Tested By: daa/rlc
Project Location:	Lincoln, NH	Checked By: jsc
GTX #:	305223	
Boring ID:	BH42B	
Sample ID:	R3	
Depth:	21.10-21.47 ft	
Visual Description:	See photographs	

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pr	
	-	1		2	Ave	rage					
Specimen Length, in:	ecimen Length, in: 4.35 ecimen Diameter, in: 1.97		4.	4.35		4.35			Maximum gap b	mum gap between	
Specimen Diameter, in:			1.	97	1.	97			0.		
Specimen Mass, g:	604	1.71									
Bulk Density, lb/ft ³	17	73	Minimum Diar	neter Tolerenc	e Met?	YES					
Length to Diameter Ratio:	2	.2	Length to Dia	meter Ratio To	lerance Met?	YES					
END FLATNESS AND PARALL	ELISM (Proced	dure FP1)									
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00010	0.00	
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00	
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00	

PERPENDICULARITY (Proced	ure P1)	(Calculated from End Flatness	and Parallelism m	easurements ab	oove)	
END 1	Difference	Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in		0.00020	1.970	0.00010	0.006	YES
Diameter 2, in (rotated 90°)		0.00010	1.970	0.00005	0.003	YES
END 2						
Diameter 1, in		0.00020	1.970	0.00010	0.006	YES
Diameter 2, in (rotated 90°)		0.00000	1.970	0.00000	0.000	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	erence must be < 0.0	120 m.		
	Straightness Tole	rance Met?	YES	
0.375	0.500	0.625	0.750	0.875
0.00010	0.00010	0.00010	0.00010	0.00010
0.00000	0.00000	0.00000	-0.00010	-0.00010
Difference bet	ween max and min re	eadings, in:		
0° =	= 0.00020	90° =	0.00010	
0.375	0.500	0.625	0.750	0.875
0.00000	-0.00010	-0.00010	-0.00010	-0.00010
0.00000	0.00000	0.00000	0.00000	0.00000
Difference bet	ween max and min r	eadings, in:		
0° =	0.0002	90° =	0	
Maximum diff	erence must be < 0.0	020 in.	Difference = $+$	0.00010
	Flatness Tole	rance Met?	YES	
DIAMETER 1				
End 1				
End I	: Slope of Best Fit Li	ne	0.00016	
	Angle of Best Fit Li	ne [.]	0.00010	
			0.00717	
End 2	2:			
	Slope of Best Fit Li	ne	0.00009	
	Angle of Best Fit Li	ne:	0.00516	
Maximum And	ular Difforonco:		0.00401	
	juial Difference.		0.00401	
	Parallelism Tole	rance Met?	YES	
	Spherically Seated			
DIAMETER 2				
End 1	: Class of Doot Fit Li		0.00004	
	Slope of Best Fit Li	ne no:	-0.00004	
	Angle of best fit Li	ne.	-0.00229	
End 2				
End 2	Slope of Best Fit Li	ne	0.00000	
End 2	:: Slope of Best Fit Li Angle of Best Fit Li	ne ne:	0.00000 0.00000	
End 2	Slope of Best Fit Li Angle of Best Fit Li	ne ne:	0.00000 0.00000	
End 2 Maximum Ang	Slope of Best Fit Li Angle of Best Fit Li gular Difference:	ne ne:	0.00000 0.00000 0.00229	
End 2 Maximum Ang	:: Slope of Best Fit Li Angle of Best Fit Li gular Difference:	ne ne:	0.00000 0.00000 0.00229	
End 2 Maximum Ang	:: Slope of Best Fit Li Angle of Best Fit Li gular Difference: Parallelism Tole	ne ne: rance Met?	0.00000 0.00000 0.00229 YES	

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH42B
Sample ID:	R3
Depth, ft:	21.10-21.47

Client:	Quanta Subsurface	Test Date: 8/23/2016
Project Name:	Northern Pass Trenchless	Tested By: daa/rlc
Project Location:	Lincoln, NH	Checked By: jsc
GTX #:	305223	
Boring ID:	BH43B	
Sample ID:	R1	
Depth:	51 ft	
Visual Description:	See photographs	

BULK DENSITY								DEVIATION FR	OM STRAIGHT	IESS (Pr
	-	1	:	2	Ave	rage				
Specimen Length, in:	4.	32	4.	32	4.3	32			Maximum gap I	between s
Specimen Diameter, in:	1.	97	1.	98	1.9	98				1
Specimen Mass, g:	569	9.19								
Bulk Density, lb/ft ³	16	53	Minimum Diar	neter Tolerenc	e Met?	YES				
Length to Diameter Ratio:	2	.2	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	-0.00010	-0.00020	-0.00020	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00
Diameter 2, in (rotated 90°)	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00
Diameter 2, in (rotated 90°)	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatne	ss and Parallelism m	easurements al	bove)		
END 1	Difference, Maximum and Minimum (in	.) Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	
Diameter 1, in	0.00020	1.975	0.00010	0.006	YES	
Diameter 2, in (rotated 90°)	0.00020	1.975	0.00010	0.006	YES	
END 2						
Diameter 1, in	0.00010	1.975	0.00005	0.003	YES	
Diameter 2, in (rotated 90°)	0.00040	1.975	0.00020	0.012	YES	

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.02 Straightness Toler	20 in. ance Met?	VES	
		Straightness roler	ance met:	TL3	
50	0.375	0.500	0.625	0.750	0.875
000	0.00000	0.00000 0	0.00000	0.00000	0.00000
000	-0.00020	-0.00020 -	0.00020	-0.00020	-0.00020
	Difference betw	veen max and min rea	adinas, in:		
	0° =	0.00020	90° =	0.00020	
50	0.075	0 500	0 (05	0 750	0.075
50	0.375	0.500	0.625	0.750	0.875
000	0.00000	0.00000 ().00000	0.00000	0.00000
0010	-0.00010	-0.00010 -	0.00010	-0.00020	-0.00030
	Difference betw	veen max and min rea	adings, in:		
	0° =	0.0001	90° =	0.0004	
	Maximum diffe	rence must be < 0.00)20 in.	Difference = $+$	_0.00020
		Flatness Toler	ance Met?	YES	
וי	DIAMETED 1				
	DIAWLIER				
	End 1:				
		Slope of Best Fit Lin	е	0.00013	
		Angle of Best Fit Lin	e:	0.00745	
	End 2:				
		Slope of Best Fit Lin	е	0.00008	
		Angle of Best Fit Lin	e:	0.00458	
	Maximum Angu	Ilar Difference		0.00286	
	in a stringe	and Difference.		0.00200	
		Parallelism Toler	ance Met?	YES	
		Spherically Seated			
-					
5					
	DIAWETER 2				
	End 1:				
		Slope of Best Fit Lin	е	-0.00010	
		Angle of Best Fit Lin	e:	-0.00573	
	End 2:				
		Slope of Best Fit Lin	е	-0.00017	
		Angle of Best Fit Lin	e:	-0.00974	
	Maximum Ang	lar Difforance		0.00401	
				0.00401	
		Parallelism Toler	ance Met?	YES	
		Spherically Seated			

Maximum angle of departure must be $\leq 0.25^{\circ}$

Perpendicularity Tolerance Met?

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH43B
Sample ID:	R1
Depth, ft:	51

Client:	Quanta Subsurface	Test Date: 8/23/2016
Project Name:	Northern Pass Trenchless	Tested By: daa/rlc
Project Location:	Lincoln, NH	Checked By: jsc
GTX #:	305223	
Boring ID:	BH47B	
Sample ID:	R1	
Depth:	55 ft	
Visual Description:	See photographs	

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pr
	-	1		2	Ave	rage				
Specimen Length, in:	4.	35	4.	35	4.	35			Maximum gap b	between s
Specimen Diameter, in:	1.	97	1.	97	1.	97				l:
Specimen Mass, g:	572	2.52								
Bulk Density, lb/ft ³	16	54	Minimum Diar	neter Tolerenc	e Met?	YES				
Length to Diameter Ratio:	2	.2	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00010	0.00
Diameter 2, in (rotated 90°)	-0.00030	-0.00030	-0.00030	-0.00030	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	-0.00020	-0.00010	-0.00010	-0.00010	-0.00020	-0.00020	-0.00020	0.00000	0.00000	-0.00
Diameter 2, in (rotated 90°)	-0.00030	-0.00030	-0.00030	-0.00030	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00

PERPENDICULARITY (Proced	dure P1) (Calculated from End Flatness	and Parallelism m	easurements al	bove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00030	1.970	0.00015	0.009	YES
Diameter 2, in (rotated 90°)	0.00030	1.970	0.00015	0.009	YES
END 2					
Diameter 1, in	0.00020	1.970	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00030	1.970	0.00015	0.009	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.	020 in.		
		Straightness Tol	erance Met?	YES	
50	0 375	0.500	0.625	0 750	0.875
010	-0.00020	-0.00020	-0.0020	-0.00020	-0.00020
000	0.00000	0.00000	0.00000	-0.00010	-0.00010
000	Difference betw	veen max and min	readings in	0.00010	0.00010
	0° =	0.00030	90° =	0.00030	
50	0.075	0.500	0 (05	0.750	0.075
50	0.375	0.500	0.625	0.750	0.875
	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020
000	0.00000	0.00000	0.00000	0.00000	0.00000
	Difference betw	veen max and min	readings, in:		
	0° =	0.0002	90° =	0.0003	
	Maximum diffe	rence must be < 0.	0020 in.	Difference = \pm	0.00015
		Flatness Tol	erance Met?	YES	
5					
`	DIAMETER 1				
	End 1:				
		Slope of Best Fit L	ine	-0.00009	
		Angle of Best Fit I	ine:	-0.00516	
	End 2:		·	0.00000	
		Slope of Best Fit L	ine	-0.00003	
		Angle of best Fit I	line.	-0.00172	
	Maximum Angu	lar Difference:		0.00344	
	5				
		Parallelism Tol	erance Met?	YES	
		Spherically Seated	b		
1					
1	DIAMETER 2				
	End 1:				
		Slope of Best Fit L	ine	0.00019	
		Angle of Best Fit I	line:	0.01089	
	End 2:	Slope of Deet Fit I	Inc	0.00000	
		Angle of Best Fit I	ine:	0.00022	
		Angle of Dest Int	line.	0.01201	
	Maximum Angu	lar Difference:		0.00172	
		Parallelism Tol	erance Met?	YES	
		Spherically Seated	d		

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH47
Sample ID:	R1
Depth, ft:	55

Client:	Quanta Subsurface	Test Date:	8/22/2016
Project Name:	Northern Pass Trenchless	Tested By:	daa
Project Location:	Lincoln, NH	Checked By:	jsc
GTX #:	305223		
Boring ID:	BH52A		
Sample ID:	R2		
Depth:	22.40-22.77 ft		
Visual Description:	See photographs		

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	NESS (Pr
	-	1		2	Ave	rage				
Specimen Length, in:	4.	30	4.	30	4.	30			Maximum gap b	between s
Specimen Diameter, in:	1.	97	1.	97	1.	97				I
Specimen Mass, g:	608	3.94								
Bulk Density, lb/ft ³	17	77	Minimum Diar	neter Tolerenc	e Met?	YES				
Length to Diameter Ratio:	2	.2	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	dure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	-0.00030	-0.00030	-0.00030	-0.00030	-0.00030	-0.00010	-0.00010	0.00000	0.00000	0.00
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00

PERPENDICULARITY (Proced	lure P1) (Calculated from End Flatness	and Parallelism m	easurements al	bove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00030	1.970	0.00015	0.009	YES
Diameter 2, in (rotated 90°)	0.00010	1.970	0.00005	0.003	YES
END 2					
Diameter 1, in	0.00010	1.970	0.00005	0.003	YES
Diameter 2, in (rotated 90°)	0.00010	1.970	0.00005	0.003	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.0	20 in.		
		Straightness Tole	rance Met?	YES	
50	0.375	0.500	0.625	0.750	0.875
000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010
000	0.00000	0.00000	0.00000	-0.00010	-0.00010
	Difference betw	veen max and min re	adings, in:		
	0° =	0.00030	90° =	0.00010	
50	0 375	0.500	0.625	0 750	0.875
000	0,0000	0,0000	0.00000	0,00000	0,00000
010	0.00010	0.00000	0.00000	0.00000	0.00000
010	Difference betw	veen max and min re	adings, in:	0.00000	0.00000
	0° =	0.0001	90° =	0.0001	
	Maximum diffe	rence must be < 0.0	020 in	Difference = $+$	0.00015
		Flatness Tole	rance Met?	YES	_ 0.00010
3					
	DIAMETER 1				
	End 1				
	Eliu I.	Slope of Best Fit Liv	he	0.00015	
		Angle of Best Fit Li	ne:	0.00859	
		9			
	End 2:				
		Slope of Best Fit Lin	ne	0.00008	
		Angle of Best Fit Li	ne:	0.00458	
	Maximum Angu	ılar Difference [.]		0 00401	
	in a start start ge			0100101	
		Parallelism Tole	rance Met?	YES	
		Spherically Seated			
2					
	DIAMETER 2				
	End 1:			0.00004	
		Slope of Best Fit Li	ne ne:	0.00004	
		Angle of Dest Int Li	ie.	0.00229	
	End 2:				
		Slope of Best Fit Lir	ne	0.00002	
		Angle of Best Fit Li	ne:	0.00115	
	N			0.00115	
		alar Difference:		0.00115	
		Parallelism Tole	rance Met?	YES	
		Spherically Seated			

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH52A
Sample ID:	R2
Depth, ft:	22.40-22.77

Client:	Quanta Subsurface	Test Date:	8/23/2016	
Project Name:	Northern Pass Trenchless	Tested By:	daa/rlc	
Project Location:	Lincoln, NH	Checked By:	jsc	
GTX #:	305223			
Boring ID:	BH52B			
Sample ID:	R4			
Depth:	46.10-46.47 ft			
Visual Description:	See photographs			

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pr	
	-	1		2	Ave	rage					
Specimen Length, in:	4.30		4.30		4.30			Maximum gap		between s	
Specimen Diameter, in: 1.98		1.	98	1.	98				I		
Specimen Mass, g:	577.36										
Bulk Density, lb/ft ³	16	56	Minimum Diar	neter Tolerenc	e Met?	YES					
Length to Diameter Ratio:	2.2		Length to Diameter Ratio Tolerance Met?		YES						
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)									
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00010	0.00	
Diameter 2, in (rotated 90°)	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.2	
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00	
Diameter 2, in (rotated 90°)	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00	

PERPENDICULARITY (Proced	lure P1) (Calculated from End Flatness	and Parallelism m	easurements ab	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00020	1.980	0.00010	0.006	YES
END 2					
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES
Diameter 2, in (rotated 90°)	0.00030	1.980	0.00015	0.009	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.02	20 in.	VEC	
		Straightness Toler	ance Met?	YES	
50	0.375	0.500	0.625	0.750	0.875
010	0.00010	0.00010	0.00010	0.00000	0.00000
010	-0.00010	-0.00010 -	0.00010	-0.00010	-0.00010
	Difference betv	veen max and min re	adings, in:		
	0° =	0.00020	90° =	0.00020	
50	0 375	0.500	0.625	0.750	0.875
000	0,0000	0.00000 -	0.00010	-0.00010	-0.00010
0000	-0.00000	-0.00020 -	0.00070	-0.00010	-0.00010
010	Difference betv	veen max and min re	adinas in:	0.00020	0.00020
	0° =		90° =	0.0003	
	Maximum diffe	rence must he < 0.00	70 =	Difference = $+$	0.00015
		Flatness Toler	ance Met?	VFS	0.00013
				123	
4					
	DIAMETER 1				
	End 1:	Clana of Doot Fit Lin	-	C 00007	
		Angle of Best Fit Lin	e A	0.00007	
		Angle of best fit Lin	le.	0.00401	
	End 2:				
		Slope of Best Fit Lin	е	0.00011	
		Angle of Best Fit Lin	ie:	0.00630	
	Maximum Angu	alar Difference:		0.00229	
		Parallelism Toler	ance Met?	YES	
		Spherically Seated			
		1 5			
_					
7					
	DIAMETER 2				
	End 1				
		Slope of Best Fit Lin	e	-0.00010	
		Angle of Best Fit Lin	ie:	-0.00573	
		0			
	End 2:				
		Slope of Best Fit Lin	е	-0.00017	
		Angle of Best Fit Lin	ie:	-0.00974	
		Ilar Difference		0.00401	
				0.00401	
		Parallelism Toler	ance Met?	YES	
		Spherically Seated			
	1				

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/23/2016
Tested By:	daa
Checked By:	mpd
Boring ID:	BH52B
Sample ID:	R4
Depth, ft:	46.10-46.47

Client:	Quanta Subsurface			
Project Name:	Northern Pass Trenchless			
Project Location:	Lincoln, NH			
GTX #:	305223			
Test Date:	8/24/2016			
Tested By:	rlc			
Checked By:	mpd			

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH36B	R1	29.83-29.93	1	3.1	3.4	3.25	
			2	4.6	4.2	4.40	
			3	2.8	3.0	2.90	
			4	3.9	3.8	3.85	
			5	4.5	4.3	4.40	
			Average CAIs				
				Average CAI *		4.20	
CERCHAR Abrasiveness Index Classification					lassification	Extreme Abrasive	eness

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface			
Project Name:	Northern Pass Trenchless			
Project Location:	Lincoln, NH			
GTX #:	305223			
Test Date:	8/24/2016			
Tested By:	rlc			
Checked By:	mpd			

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH36C	R2	37.39-37.49	1	3.8	4.0	3.90	
			2	3.2	3.8	3.50	
			3	4.4	3.9	4.15	
			4	3.8	3.7	3.75	
			5	3.2	3.9	3.55	
				Average CAIs		3.77	
			Average CAI *			4.21	
CERCHAR Abrasiveness Index Classification					lassification	Extreme Abrasive	eness

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Stylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface			
Project Name:	Northern Pass Trenchless			
Project Location:	Lincoln, NH			
GTX #:	305223			
Test Date:	8/24/2016			
Tested By:	rlc			
Checked By:	mpd			

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH41B	R2	52.83-52.93	1	4.8	4.1	4.45	
			2	5.0	4.8	4.90	
			3	4.3	4.0	4.15	
			4	4.2	4.4	4.30	
			5	3.9	4.8	4.35	
				Average CAIs		4.43	
				Average CAI *		4.87	
			CERCHAR A	brasiveness Index (Classification	Extreme Abrasive	eness

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	rlc
Checked By:	mpd

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH42B	R3	20.99-21.09	1	2.2	2.1	2.15	
			2	4.0	4.2	4.10	
			3	2.4	2.3	2.35	
			4	1.8	2.0	1.90	
			5	2.2	2.5	2.35	
				Average CAIs		2.57	
				Average CAI *		3.02	
			CERCHAR A	brasiveness Index C	lassification	High Abrasivenes	55

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Stylus 1-3: Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	rlc
Checked By:	mpd

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH43B	R1	51	1	4.3	4.5	4.40	
			2	4.1	3.8	3.95	
			3	4.8	4.7	4.75	
			4	4.4	4.6	4.50	
			5	4.7	4.5	4.60	
				Average CAIs		4.44	
				Average CAI *		4.88	
			CERCHAR A	brasiveness Index C	lassification	Extreme Abrasive	eness

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Stylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	rlc
Checked By:	mpd

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH47B	R1	55	1	3.5	3.1	3.30	
			2	4.8	4.5	4.65	
			3	5.0	4.9	4.95	
			4	3.3	3.5	3.42	
			5	4.5	5.5	5.00	
				Average CAIs		4.26	
				Average CAI *		4.70	
			CERCHAR A	brasiveness Index C	lassification	Extreme Abrasive	eness

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Stylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	rlc
Checked By:	mpd

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH52A	R2	22.29-22.39	1	3.8	4.0	3.90	
			2	3.1	3.1	3.10	
			3	2.7	2.3	2.50	
			4	2.6	2.9	2.75	
			5	4.2	4.1	4.15	
				Average CAIs		3.28	
				Average CAI *		3.73	
			CERCHAR A	brasiveness Index (Classification	High Abrasivenes	SS

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	8/24/2016
Tested By:	rlc
Checked By:	mpd

Boring ID	Sample ID	Depth (ft)	Stylus No.	Reading 1	Reading 2	Average	Comments
BH52B	R4	45.85-45.95	1	3.4	3.2	3.30	
			2	3.0	3.2	3.10	
			3	4.4	3.9	4.15	
			4	3.2	3.6	3.40	
			5	3.9	4.5	4.20	
				Average CAIs		3.63	
				Average CAI *		4.07	
			CERCHAR A	brasiveness Index (Classification	Extreme Abrasive	eness

Notes:Test Surface:Saw CutMoisture Condition:As ReceivedApparatus Type:Original CERCHARStylus Hardness:Rockwell Hardness 54/56 HRCStylus Displacement Relative to Rock Fabric:Stylus Displacement Relative to Rock Fabric:Styli 1-3:Normal; Styli 4-5: Parallel* CAI = (0.99 x CAI_S) + 0.48CAIs = CERCHAR index for smooth (saw cut) surfaceCAI = CERCHAR index for natural surface

ROCK CHAIN OF CUSTODY & TEST REQUEST

Matters (S) All sets (S) and (S		Commany, Ounation	CLIEN					INV	OICE (con	nplete if c	different from C	lient)		Π	125 No Acton,	gog Pai	rk 20		
Contract Early District Contract Early	Operating and the second operating and the secon	Company: Quanta	Subsurface			õ	npany:							1	800.43	T 1062 T	Oll Free		
Construction Dimensional Construction Dimension Construction <thdimensional Constructi</thdimensional 	Constrained rest rest rest rest rest rest rest rest	Address: 4308 N B.	arker Rd			Add	fress:							T	978 63	5 0266 F	ax		
Franktistender Central Central Central Central Franktistender Palleget Name Name Name Name Name Project Name Name Name Name Name Name Name Project Contract Name	Construction Construction<	Contact: Balin Strick	Unaire vairey, VVA 33UZI	Phone: 509-892-9409		50	tact	-d			Dhona.			T					
PROLECT PROLECT Provesion Consisting contractions Provesion Provesion Consisting contractions Provesion Provesion Consisting contractions Provesion Provesion Consisting contractions Provesion Provesion Consisting contraction Provesion Provesion Consisting contraction Provesion Provesion Provesion Provesion	Product Product <t< td=""><td>E-mail: bstrickler@c</td><td>uantasubsurface.com</td><td>Cell: 928-830-4662</td><td></td><td>임교</td><td>hail:</td><td></td><td></td><td></td><td>Cell:</td><td></td><td></td><td>T</td><td>2358 Pe</td><td>erimeler</td><td>r Park Driv Valu</td><td>e, Suite</td><td></td></t<>	E-mail: bstrickler@c	uantasubsurface.com	Cell: 928-830-4662		임교	hail:				Cell:			T	2358 Pe	erimeler	r Park Driv Valu	e, Suite	
Project Hame: Workshort Client Hame: Workshort Client Hame: Workshort Client Project Hame: Workshort Client Hame: H	Project Manie (untern fess) Project Control Client Project Project Control Client Project Project Control Client Project Project Control Client Project Project Control Client Project Control Project Control					PROJEC	H							ľ	770.64	5 6575 1	14C		
City Selection City Selection City Selection City Selection On-site Contract Exercise Order #:	Construction Construction<	Project Name: Noi	them Pass Trenchless			Client	Project #:	201-16-NH			Purchase Orde	、世の		1	770 64	5 6570 F	XD		
Construction Construction<	Construction Construction<	Project Location:	Lincoln			GTX S	ales Orde	「井.			Requested Tur	maround:				all a share to be			
Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal	Sec.01 S <td>On-site Contact:</td> <td>Sean Kearney</td> <td></td> <td></td> <td>E-mail</td> <td>skearney</td> <td>Cruxsub.co</td> <td>F</td> <td></td> <td>Phone: 617-549.</td> <td>-6390</td> <td></td> <td></td> <td>6.www</td> <td>corestin</td> <td>Ig.com</td> <td></td> <td></td>	On-site Contact:	Sean Kearney			E-mail	skearney	Cruxsub.co	F		Phone: 617-549.	-6390			6.www	corestin	Ig.com		
No. No. <td>Core Run H Manual H Sample BH30B Depth Core H Manual H Manual H<td></td><td>ROCK</td><td></td><td>626) * Abrasivity ARC</td><td>*(70820 MT2A) 16</td><td>alle Strength 936) dull in Triaxial</td><td>no 1728) duli in Uniaxial oo</td><td>112D) (122D)</td><td>aiayisnA ol</td><td>xebri vtsv ,leixA ,leixA ,leixA</td><td>649) () ()</td><td>ellaneT (nailisari (7885 D MT2)</td><td>313) 10100 t</td><td>sest ammer and frois</td><td>noisseigm (AS10</td><td>(Compression</td><td>ļ</td><td></td></td>	Core Run H Manual H Sample BH30B Depth Core H Manual H Manual H <td></td> <td>ROCK</td> <td></td> <td>626) * Abrasivity ARC</td> <td>*(70820 MT2A) 16</td> <td>alle Strength 936) dull in Triaxial</td> <td>no 1728) duli in Uniaxial oo</td> <td>112D) (122D)</td> <td>aiayisnA ol</td> <td>xebri vtsv ,leixA ,leixA ,leixA</td> <td>649) () ()</td> <td>ellaneT (nailisari (7885 D MT2)</td> <td>313) 10100 t</td> <td>sest ammer and frois</td> <td>noisseigm (AS10</td> <td>(Compression</td> <td>ļ</td> <td></td>		ROCK		626) * Abrasivity ARC	*(70820 MT2A) 16	alle Strength 936) dull in Triaxial	no 1728) duli in Uniaxial oo	112D) (122D)	aiayisnA ol	xebri vtsv ,leixA ,leixA ,leixA	649) () ()	ellaneT (nailisari (7885 D MT2)	313) 10100 t	sest ammer and frois	noisseigm (AS10	(Compression	ļ	
R1 BH3B 4-31' X	R1 BH3B +:31' X	Core Run #	Sample ID	Depth	ЯАНЭЯЭЭ 7 D MT2A) НОА/ЭЯНЗЗ	Direct She	Direct Terric S C MTRA) Elestic Moo	Compression (ASTM D 7 (ASTM D 7 (ASTM D 7 (ASTM D 7) (ASTM D 7) (A	or a MT2A) AgieW JinU	Petrograph Petrograph	Point Load 6 D MTCA) 6 Jertemsi 7 Jertemsi 2018/qmu 2 Jertemsi	ned fond thiwebneH) sud stake Dura stake Dura	8) gritting A) rugnan2	aH Jbimdə2 92 O MT2A)	Total Hardr H shimds) FridA redeT	ISIXBIT T O MTSA)	benîlnoonU DT CI MTSA)	Other:	
R2 BH36 +-38' X M	R2 BH4IB + + + + R2 BH4IB +	R1	BH36B	+/- 31'	×			-		6	•						X		
R2 BH4B +-52 x m m x m x<	R2 BH4IB ++.52' X X Y Y R3 BH42B +:.21' X X X X X R1 BH43B +:.21' X X X X X X R1 BH43B +:.21' X X X X X X R1 BH43B +:.51' X X X X X X X R1 BH43B +:.55' X X X X X X X X R2 BH53A +:.46' X	R2	BH36C	+/- 38'	×												X		
R3 BH2B +1-2i' X Image: Constraint of the state of the st	R3 BH42B +t-2t' x t-2t' x	R2	BH41B	+1-52	×												X	Taty o	1
R1 BH3B +i-51' X I I X I	R1 BH43B +-51' x	R3	BH42B	+/- 21'	×												X	8/19/1	20
R1 BH3B +i-55' X Image: Constraint of the second of	R1 BH47B +-55 x i i i R2 BH52A +-22' x i i i i R4 BH52B +-22' x i i i i R4 BH52B +-146' x i i i i i i R4 BH52B +-146' x i	R	BH43B	+/-51'	×												×		
R2 BH5A +-22' X	R2 BH52A +-22' X N N R4 BH52B +-46' X N N N R4 BH52B +-46' X N N N N N H BH52B +-46' X N N N N N H H H H H H H N	R	BH47B	+/- 55'	×	-											X		
R4 BH3B ++ 46' X I I	R4 BH52B -H-46' X N N Image: Imag	R2	BH52A	+/- 22'	×		_										X	-	
	*Specify Test Conditions (Undisturbed or Remolded, Density and Moisture, Test Normal Loads, Test Confining Stresses, etc.):	R4	BH52B	+/- 46'	×												X		
	*Specify Test Conditions (Undisturbed or Remolded, Density and Moisture, Test Normal Loads, Test Confining Stresses, etc.):						+	-											
	*Specify Test Conditions (Undisturbed or Remolded, Density and Moisture, Test Normal Loads, Test Confining Stresses, etc.):							-				-	-				T		
AUTHORIZE BY SIGNING AND DATING:		SIGNATURE:		PR	INT NAM	E: Brian.	I. Olson			1	DATE:		ī		Incoming S Adverse co	sample In nditions:	spection P	rformed	
AUTHORIZE BY SIGNING AND DATING: For GTX Use Only Incoming Sample Inspection Performed Adverse conditions: Adverse conditions:	SIGNATURE: DATE: DATE: DATE: Adverse conditions: Adverse conditions:	Relinquished Relinquished	By: T. Vernon By:	12	DATE: TIME: DATE:			Rec	eived By		R	R	Mr			ATE: ME: ATE:	291	31/10	
AUTHORIZE BY SIGNING AND DATING: For GTX Use Only AUTHORIZE BY SIGNING AND DATING: For GTX Use Only SIGNATURE: PRINT NAME: Brian J. Olson DATE: Adverse conditions: Adverse conditions: Relinquished By: T. Use Only Relinquished By: DATE: Relinquished By: DATE: Relinquished By: DATE:	BIGNATURE: PRINT NAME: Bran J. Olson DaTE: Incoming Sample Inspection Performed Relinquished By: Adverse conditions: Adverse conditions: Adverse conditions: Relinquished By: The DaTE: DaTE: DaTE: DaTE: DaTE: Relinquished By: The: DaTE: Received By: DaTE: DaTE: Relinquished By: DaTE: DaTE: Received By: DaTE: DaTE:				TIME:			-							F	MF.			

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

А	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	$\mathbf{S}_{\mathbf{r}}$	Post cyclic undrained shear strength
В	pore pressure parameter for $\Delta \sigma_3$	Т	temperature
CAI	CERCHAR Abrasiveness Index	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
CSR	cyclic stress ratio	ua	pore gas pressure
C _c	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	ue	excess pore water pressure
C_u	coefficient of uniformity, D_{60}/D_{10}	u, u _w	pore water pressure
Cc	compression index for one dimensional consolidation	v "	total volume
Cα	coefficient of secondary compression	Va	volume of gas
cv	coefficient of consolidation	V	volume of solids
с	cohesion intercept for total stresses	V.	shear wave velocity
c'	cohesion intercept for effective stresses	V.	volume of voids
D	diameter of specimen	v	volume of water
D	damping ratio	V V	initial volume
D_{10}	diameter at which 10% of soil is finer	¥ o V	velocity
D15	diameter at which 15% of soil is finer	v W7	total weight
D 30	diameter at which 30% of soil is finer	W W	weight of solids
D 50	diameter at which 50% of soil is finer	W s	weight of water
D 60	diameter at which 60% of soil is finer	vv _w	weight of water
D 85	diameter at which 85% of soil is finer	w	water content at consolidation
deo	displacement for 50% consolidation	W c	final water content
doo	displacement for 90% consolidation	Wf	linal water content
d 100	displacement for 100% consolidation	w ₁	nquia innit
F	Young's modulus	Wn	natural water content
e	void ratio	Wp	
e	void ratio	w _s	
e.	initial void ratio	w _o , w _i	initial water content
G	shear modulus	α	slope of q_f versus p_f
G	specific gravity of soil particles	α	slope of q_f versus p_f
Us И	height of specimen	γ_t	total unit weight
H _n	Rebound Hardness number	γd	dry unit weight
i	gradient	γs	unit weight of solids
I La	Uncorrected point load strength	γ_{w}	unit weight of water
IS	Size corrected point load strength index	3	strain
1 S(50)	Modified Tabar Abragian	ϵ_{vol}	volume strain
	Total hardness	ϵ_h, ϵ_v	horizontal strain, vertical strain
NT V	lateral stragg ratio for one dimensional strain	μ	Poisson's ratio, also viscosity
κ ₀	rateral stress ratio for one dimensional strain	σ	normal stress
K I I	Liquidity Index	σ'	effective normal stress
	Liquidity index	σ_{c}, σ'_{c}	consolidation stress in isotropic stress system
mv	coefficient of volume change	σ_h, σ'_h	horizontal normal stress
n	porosity	σ_v, σ'_v	vertical normal stress
PI	plasticity index	σ'_{vc}	Effective vertical consolidation stress
P _c	preconsolidation pressure	σ_1	major principal stress
p	$(\sigma_1 + \sigma_3)/2$, $(\sigma_v + \sigma_h)/2$	σ_2	intermediate principal stress
p′	$(\sigma_1 + \sigma_3)/2, (\sigma_v + \sigma_h)/2$	σ3	minor principal stress
p'c	p' at consolidation	τ	shear stress
Q	quantity of flow	φ	friction angle based on total stresses
q	$(\sigma_1, \sigma_3)/2$	φ'	friction angle based on effective stresses
$q_{\rm f}$	q at failure	φ'r	residual friction angle
q_o, q_i	initial q	ϕ_{ult}	φ for ultimate strength
qc	q at consolidation		-

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Transmittal

TO:

Balin Strickler

Quanta Subsurface

4308 N Barker Rd.

Spokane Valley, WA 99027

DATE: 9	/15/2016
DAIL J	1 1 3 / 2 0 1 0

GTX NO: 305223

RE: Northern Pass Trenchless

COPIES	DATE	DESCRIPTION
	9/15/2016	September 2016 Laboratory Test Report

REMARKS:

	SIGNED: Jon Tam
CC:	Jonathan Campbell, Assistant Laboratory Manager
	APPROVED BY: Mark Dobday, P.G., Laboratory Medager

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

September 15, 2016

Balin Strickler Quanta Subsurface 4308 N Barker Rd. Spokane Valley, WA 99027

RE: Northern Pass Trenchless, Lincoln, NH (GTX-305223)

Dear Balin Strickler:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received 16 samples from you on 9/2/2016. These samples were labeled as follows:

Boring Number	Sample Number	Depth
BH-18A	R2	55 ft
BH-19A	R1	43 ft
BH-28A	R3	28.4-29.35 ft
BH-28B	R4	29.1-29.6 ft
BH-29A	R2	13-14 ft
BH-29B	R5	32-33 ft
BH-30A	R3	24 ft
BH-31A	R9	42 ft
BH-31B	R3	48 ft
BH-32A	R2	17 ft
BH-32B	R9	49.8-50.8 ft
BH-33B	R2	27 ft
BH-34A	R2	34 ft
BH-34B	R2	26 ft
BH-35A	R2	23.4-24.5 ft
BH-35B	R9	48 ft

GTX performed the following tests on these samples:

16 ASTM D7012 Method C- Uniaxial Compressive Strength of Rock16 ASTM D7625 -CERCHAR Abrasivity Index (CAI)

A copy of your test request is attached.

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

Tam

Jonathan Campbell Assistant Laboratory Manager

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Geotechnical Test Report

9/15/2016

GTX-305223

Northern Pass Trenchless

Lincoln, NH

Client Project No.: 201-16-NH

Prepared for:

Quanta Subsurface

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth, ft	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
BH-18A	R2	55.17-55.54	170	9798	1	No	2,*
BH-19A	R1	43.30-43.67	169	9758	3	Yes	
BH-28A	R3	28.60-28.97	186	20237	1	Yes	
BH-28B	R4	29.22-29.57	159	23615	1	No	4,*
BH-29A	R2	13.13-13.50	169	11929	1	No	2,*
BH-29B	R5	32.20-32.57	169	9699	1	No	2,*
BH-30A	R3	24.20-24.57	176	10541	1	Yes	
BH-31A	R9	42.50-42.87	166	14047	1	Yes	5,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth, ft	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
BH-31B	R3	48.20-48.57	162	10322	1	Yes	5,*
BH-32A	R2	17	170	10818	1	Yes	
BH-32B	R9	49.96-50.33	165	23754	1	Yes	
BH-33B	R2	27.50-27.87	169	14422	1	Yes	
BH-34A	R2	34	165	18792	1	Yes	
BH-34B	R2	26.40-26.77	170	12315	3	Yes	
BH-35A	R2	24.05-24.42	171	5792	2	Yes	
BH-35B	R9	46.80-47.17	166	6981	2	No	3,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Client:	Quanta Subsurface	Test Date:	9/7/2016
Project Name:	Northern Pass Trenchless	Tested By:	daa
Project Location:	Lincoln, NH	Checked By:	jsc
GTX #:	305223		
Boring ID:	BH-18A		
Sample ID:	R2		
Depth:	55.17-55.54 ft		
Visual Description:	See photographs		
	Client: Project Name: Project Location: GTX #: Boring ID: Sample ID: Depth: Visual Description:	Client: Quanta Subsurface Project Name: Northern Pass Trenchless Project Location: Lincoln, NH GTX #: 305223 Boring ID: BH-18A Sample ID: R2 Depth: 55.17-55.54 ft Visual Description: See photographs	Client: Quanta Subsurface Test Date: Project Name: Northern Pass Trenchless Tested By: Project Location: Lincoln, NH Checked By: GTX #: 305223 Boring ID: Boring ID: BH-18A Sample ID: Sample ID: R2 Pepth: Depth: 55.17-55.54 ft ft

ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00040	1.990	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES			

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-18A
Sample ID:	R2
Depth, ft:	55.17-55.54

r: daa
By: jsc
B

DERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES			

Client:	Quanta Subsurface				
Project Name:	Northern Pass Trenchless				
Project Location:	Lincoln, NH				
GTX #:	305223				
Test Date:	9/8/2016				
Tested By:	daa				
Checked By:	jsc				
Boring ID:	BH-19A				
Sample ID:	R1				
Depth, ft:	43.30-43.67				

Client: Quanta Subsurface Test Date: 9/6/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-28A Sample ID: R3 Depth: 28.60-28.97 ft Visual Description: See photographs

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00030	1.980	0.00015	0.009	YES			
Diameter 2, in (rotated 90°)	0.00020	1.980	0.00010	0.006	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00030	1.980	0.00015	0.009	YES			
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES			

Client:	Quanta Subsurface				
Project Name:	Northern Pass Trenchless				
Project Location:	Lincoln, NH				
GTX #:	305223				
Test Date:	9/8/2016				
Tested By:	daa				
Checked By:	jsc				
Boring ID:	BH-28A				
Sample ID:	R3				
Depth, ft:	28.60-28.97				

Client:	Quanta Subsurface	Test Date:	9/7/2016
Project Name:	Northern Pass Trenchless	Tested By:	daa
Project Location:	Lincoln, NH	Checked By:	jsc
GTX #:	305223		
Boring ID:	BH-28B		
Sample ID:	R4		
Depth:	29.22-29.57 ft		
Visual Description:	See photographs		

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00030	1.850	0.00016	0.009	YES		
Diameter 2, in (rotated 90°)	0.00040	1.850	0.00022	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00020	1.850	0.00011	0.006	YES		
Diameter 2, in (rotated 90°)	0.00030	1.850	0.00016	0.009	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-28B
Sample ID:	R4
Depth, ft:	29.22-29.57

Client:	Quanta Subsurface	Test Date:	9/7/2016	
Project Name:	Northern Pass Trenchless	Tested By:	daa	
Project Location:	Lincoln, NH	Checked By:	jsc	
GTX #:	305223			
Boring ID:	BH-29A			
Sample ID:	R2			
Depth:	13.13-13.50 ft			
Visual Description:	See photographs			

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00040	1.990	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-29A
Sample ID:	R2
Depth, ft:	13.13-13.50

Client: Quanta Subsurface Test Date: 9/6/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-29B Sample ID: R5 Depth: 32.20-32.57 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00030	1.985	0.00015	0.009	YES		
Diameter 2, in (rotated 90°)	0.00010	1.985	0.00005	0.003	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00040	1.985	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00020	1.985	0.00010	0.006	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-29B
Sample ID:	R5
Depth, ft:	32.20-32.57

Client: Quanta Subsurface Test Date: 9/7/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-30A Sample ID: R3 Depth: 24.20-24.57 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism me	easurements al	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00040	1.975	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00040	1.975	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00050	1.975	0.00025	0.015	YES		
Diameter 2, in (rotated 90°)	0.00030	1.975	0.00015	0.009	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-30A
Sample ID:	R3
Depth, ft:	24.20-24.57

Client: Quanta Subsurface Test Date: 9/7/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-31A Sample ID: R9 Depth: 42.50-42.87 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism me	easurements a	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES		
Diameter 2, in (rotated 90°)	0.00020	1.990	0.00010	0.006	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00020	1.990	0.00010	0.006	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-31A
Sample ID:	R9
Depth, ft:	42.50-42.87

Client: Quanta Subsurface Test Date: 9/6/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-31B Sample ID: R3 Depth: 48.20-48.57 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism m	easurements a	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES		
Diameter 2, in (rotated 90°)	0.00040	1.990	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00040	1.990	0.00020	0.012	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-31B
Sample ID:	R3
Depth, ft:	48.20-48.57

Client:	Quanta Subsurface	Test Date:	9/12/2016
Project Name:	Northern Pass Trenchless	Tested By:	rlc
Project Location:	Lincoln, NH	Checked By:	jsc
GTX #:	305223		
Boring ID:	BH-32A		
Sample ID:	R2		
Depth:	17 ft		
Visual Description:	See photographs		

PERPENDICULARITY (Procedur	PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°		
Diameter 1, in	0.00000	2.000	0.00000	0.000	YES			
Diameter 2, in (rotated 90°)	0.00010	2.000	0.00005	0.003	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00010	2.000	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00020	2.000	0.00010	0.006	YES			

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/13/2016
Tested By:	rlc
Checked By:	jsc
Boring ID:	BH-32A
Sample ID:	R2
Depth, ft:	17

After break

Client: Quanta Subsurface Test Date: 9/6/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-32B Sample ID: R9 Depth: 49.96-50.33 ft Visual Description: See photographs

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00030	1.980	0.00015	0.009	YES		
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00040	1.980	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-32B
Sample ID:	R9
Depth, ft:	49.96-50.33

Client: Quanta Subsurface Test Date: 9/7/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-33B Sample ID: R2 Depth: 27.50-27.87 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°		
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00000	1.990	0.00000	0.000	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES			
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES			

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-33B
Sample ID:	R2
Depth, ft:	27.50-27.87

Client:	Quanta Subsurface	Test Date:	9/7/2016
Project Name:	Northern Pass Trenchless	Tested By:	daa
Project Location:	Lincoln, NH	Checked By:	jsc
GTX #:	305223		
Boring ID:	BH-34A		
Sample ID:	R2		
Depth:	34 ft		
Visual Description:	See photographs		

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00020	1.980	0.00010	0.006	YES	Perpendicularity Tolerance Met?	/ES
END 2							
Diameter 1, in	0.00020	1.980	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00020	1.980	0.00010	0.006	YES		

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-34A
Sample ID:	R2
Depth, ft:	34

Client: Quanta Subsurface Test Date: 9/6/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-34B Sample ID: R2 Depth: 26.40-26.77 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	RPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°		
Diameter 1, in	0.00020	1.975	0.00010	0.006	YES			
Diameter 2, in (rotated 90°)	0.00030	1.975	0.00015	0.009	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00020	1.975	0.00010	0.006	YES			
Diameter 2, in (rotated 90°)	0.00020	1.975	0.00010	0.006	YES			

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-34B
Sample ID:	R2
Depth, ft:	26.40-26.77

Client: Quanta Subsurface Test Date: 9/6/2016 Project Name: Northern Pass Trenchless Tested By: daa Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-35A Sample ID: R2 Depth: 24.05-24.42 ft Visual Description: See photographs

PERPENDICULARITY (Procedur	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)									
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00010	1.970	0.00005	0.003	YES					
Diameter 2, in (rotated 90°)	0.00020	1.970	0.00010	0.006	YES	Perpendicularity Tolerance Met?	YES			
END 2										
Diameter 1, in	0.00030	1.970	0.00015	0.009	YES					
Diameter 2, in (rotated 90°)	0.00030	1.970	0.00015	0.009	YES					

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/8/2016
Tested By:	daa
Checked By:	jsc
Boring ID:	BH-35A
Sample ID:	R2
Depth, ft:	24.05-24.42

Client: Quanta Subsurface Test Date: 9/12/2016 Project Name: Northern Pass Trenchless Tested By: rlc Project Location: Lincoln, NH Checked By: jsc GTX #: 305223 Boring ID: BH-35B Sample ID: R9 Depth: 46.80-47.17 ft Visual Description: See photographs

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°		
Diameter 1, in	0.00070	1.990	0.00035	0.020	YES			
Diameter 2, in (rotated 90°)	0.00080	1.990	0.00040	0.023	YES	Perpendicularity Tolerance Met?	YES	
END 2								
Diameter 1, in	0.00050	1.990	0.00025	0.014	YES			
Diameter 2, in (rotated 90°)	0.00060	1.990	0.00030	0.017	YES			

Client:	Quanta Subsurface
Project Name:	Northern Pass Trenchless
Project Location:	Lincoln, NH
GTX #:	305223
Test Date:	9/13/2016
Tested By:	rlc
Checked By:	jsc
Boring ID:	BH-35B
Sample ID:	R9
Depth, ft:	46.80-47.17

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-18A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	R2	Test Date:	09/13/16	Checked By:	jsc
Depth :	55 ft	Test Id:	389451		
Test Comm	ient:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments	
BH-18A	R2	55.06-55.16 ft.	1	3.7	4.2	3.95		
			2	3.3	3.8	3.55		
			3	3.4	3.9	3.65		
			4	3.6	4.1	3.85		
			5	2.3	2.8	2.55		
			Average CAIs 3.51					
			Average CAI * 3.95					
			CERCHAR Abra	asiveness Index Cla	ssification Hi	gh abrasiveness		

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-19A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	R1	Test Date:	09/13/16	Checked By:	jsc
Depth :	43 ft	Test Id:	389452		
Test Comm	ient:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments	
BH-19A	R1	43.19-43.29 ft.	1	2.3	2.6	2.45		
			2	3.4	3.9	3.65		
			3	3.3	3.8	3.55		
			4	3.3	3.8	3.55		
			5	3.7	4.2	3.95		
			Average CAIs 3.43					
				Average CAI *	3.88			
CERCHAR Abrasiveness Index Classification High abrasiveness								

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-28A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R3	Test Date:	09/13/16	Checked By:	jsc
Depth :	28.4-29.35 ft	Test Id:	389453		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments		
BH-28A	R3	28.49-28.59 ft.	1	2.6	3.1	2.85			
			2	2.1	2.6	2.35			
			3	2.2	2.7	2.45			
			4	3.4	3.9	3.65			
			5	2.3	2.8	2.55			
			Average CAIs 2.77						
			Average CAI * 3.22						
CERCHAR Abrasiveness Index Classification High abrasiveness									

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-28B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R4	Test Date:	09/13/16	Checked By:	jsc
Depth :	29.1-29.6 ft	Test Id:	389454		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments	
BH-28B	R4	29.11-29.21 ft.	1	3.0	3.5	3.25		
			2	3.1	3.6	3.35		
			3	3.3	3.8	3.55		
			4	2.7	3.2	2.95		
			5	3.7	4.2	3.95		
			Average CAIs 3.41					
			Average CAI * 3.86					
CERCHAR Abrasiveness Index Classification High abrasiveness								

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-29A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R2	Test Date:	09/13/16	Checked By:	jsc
Depth :	13-14 ft	Test Id:	389439		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-29A	R2	13.51-13.61 ft.	1	4.1	4.6	4.35	
			2	2.5	3.0	2.75	
			3	3.3	3.8	3.55	
			4	3.8	4.3	4.05	
			5	4.2	4.7	4.45	
				Average CAIs	3.83		
				Average CAI *	4.27		
CERCHAR Abrasiveness Index Classification Extreme abrasiveness							

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-29B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R5	Test Date:	09/13/16	Checked By:	jsc
Depth :	32-33 ft	Test Id:	389440		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-29B	R5	32.09-32.19 ft.	1	3.2	3.7	3.45	
			2	2.9	3.4	3.15	
			3	2.5	3.0	2.75	
			4	3.5	3.9	3.70	
			5	3.1	3.6	3.35	
				Average CAIs	3.28		
				Average CAI *	3.73		
			CERCHAR Abra	asiveness Index Cla	assification Hig	h abrasiveness	

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-30A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R3	Test Date:	09/13/16	Checked By:	jsc
Depth :	24 ft	Test Id:	389441		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-30A	R3	24.09-24.19 ft.	1	4.0	4.5	4.25	
			2	3.5	4.0	3.75	
			3	1.9	2.4	2.15	
			4	2.4	2.9	2.65	
			5	1.7	2.2	1.95	
				Average CAIs	2.95		
				Average CAI *	3.40		
			CERCHAR Abra	asiveness Index Cla	assification Hig	h abrasiveness	

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-31A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	R9	Test Date:	09/13/16	Checked By:	jsc
Depth :	42 ft	Test Id:	389442		
Test Comm	ient:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	2 Average	Comments
BH-31A	R9	42.39-42.49 ft.	1	4.3	4.8	4.55	
			2	2.9	3.4	3.15	
			3	4.1	4.6	4.35	
			4	2.6	3.1	2.85	
			5	3.8	4.3	4.05	
				Average CAIs	3.79		
				Average CAI *	4.23		
CERCHAR Abrasiveness Index Classification Extreme abrasiveness							

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-31B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	R3	Test Date:	09/13/16	Checked By:	jsc
Depth :	48 ft	Test Id:	389443		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-31B	R3	48.09-48.19 ft.	1	3.2	3.7	3.45	
			2	2.8	3.3	3.05	
			3	2.2	2.7	2.45	
			4	3.6	4.1	3.85	
			5	3.3	3.8	3.55	
				Average CAIs	3.27		
				Average CAI *	3.72		
CERCHAR Abrasiveness Index Classification High abrasiveness							

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-32A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R2	Test Date:	09/13/16	Checked By:	jsc
Depth :	17 ft	Test Id:	389444		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-32A	R2	17 ft.	1	2.2	2.7	2.45	
			2	2.8	3.3	3.05	
			3	2.5	3.0	2.75	
			4	3.4	3.9	3.65	
			5	3.2	3.7	3.45	
				Average CAIs	3.07		
				Average CAI *	3.52		
CERCHAR Abrasiveness Index Classification High abrasiveness							

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-32B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R9	Test Date:	09/13/16	Checked By:	jsc
Depth :	49.8-50.8 ft	Test Id:	389445		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-32B	R9	49.85-49.95 ft.	1	4.0	4.5	4.25	
			2	3.7	4.2	3.95	
			3	3.1	3.6	3.35	
			4	3.6	4.1	3.85	
			5	3.9	4.4	4.15	
				Average CAIs	3.91		
				Average CAI *	4.35		
		ssification Extra	eme abrasiveness				

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-33B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R2	Test Date:	09/13/16	Checked By:	jsc
Depth :	27 ft	Test Id:	389446		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-33B	R2	27.88-27.98 ft.	1	3.6	4.1	3.85	
			2	2.2	2.7	2.45	
			3	2.9	3.4	3.15	
			4	3.0	3.5	3.25	
			5	2.8	3.3	3.05	
				Average CAIs		3.15	
				Average CAI *		3.60	
			CERCHAR Abra	asiveness Index Cla	assification High	abrasiveness	

Notes

Γ	Client:	Quanta Subsurface				
	Project:	Northern Pass Trenchless				
	Location:	Lincoln, NH			Project No:	GTX-305223
	Boring ID:	BH-34A	Sample Type:	cylinder	Tested By:	daa
	Sample ID:	R2	Test Date:	09/13/16	Checked By:	jsc
	Depth :	34 ft	Test Id:	389447		
Γ	Test Comm	ent: Visual				
	Description	: Sample				
	Comment:					

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-34A	R2	34 ft.	1	3.5	4.0	3.75	
			2	3.3	3.7	3.50	
			3	3.5	4.0	3.75	
			4	3.3	3.8	3.55	
			5	2.7	3.2	2.95	
				Average CAIs		3.5	
				Average CAI *		3.95	
			CERCHAR Abra	asiveness Index Cla	assification Hig	h abrasiveness	-

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-34B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	R2	Test Date:	09/13/16	Checked By:	jsc
Depth :	26 ft	Test Id:	389448		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading	2 Average	Comments
BH-34B	R2	26.29-26.39 ft.	1	3.4	3.9	3.65	
			2	4.4	4.9	4.65	
			3	3.0	3.5	3.25	
			4	3.7	4.2	3.95	
			5	3.8	4.3	4.05	
				Average CAIs		3.91	
				Average CAI *		4.35	
		·	CERCHAR Abr	asiveness Index Cla	assification I	Extreme abrasiveness	

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-35A	Sample Type:	cylinder	Tested By:	daa
Sample ID:	R2	Test Date:	09/13/16	Checked By:	jsc
Depth :	23.4-24.5 ft	Test Id:	389449		
Test Comm	ient:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-35A	R2	23.94-24.04 ft.	1	2.4	2.9	2.65	
			2	2.4	2.7	2.55	
			3	2.6	3.1	2.85	
			4	3.8	4.3	4.05	
			5	3.3	3.8	3.55	
				Average CAIs		3.13	
				Average CAI *		3.58	
			CERCHAR Abra	asiveness Index Cla	assification H	igh abrasiveness	

Notes

Client:	Quanta Subsurface				
Project:	Northern Pass Trenchless				
Location:	Lincoln, NH			Project No:	GTX-305223
Boring ID:	BH-35B	Sample Type:	cylinder	Tested By:	daa
Sample ID:	: R9	Test Date:	09/13/16	Checked By:	jsc
Depth :	48 ft	Test Id:	389450		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
BH-35B	R9	47.18-47.28 ft.	1	3.3	3.8	3.55	
			2	4.3	4.8	4.55	
			3	3.1	3.6	3.35	
			4	3.2	3.7	3.45	-
			5	3.6	4.1	3.85	
				Average CAIs		3.75	
				Average CAI *		4.19	
			CERCHAR Abra	asiveness Index Cla	assification Extr	eme abrasiveness	

Notes

eoTesting PRESS	CHAIN	OF CUSI	OUY		GeoTesting Express, Inc. 125 Nagog Park Acton, MA 01720
			Sales Order No GTX No.:		800-434-1062 10ll Free 07 978-635-0424 Phone 978-635-0266 Fax
any Name: Quanta Subsur	face			Analysis	
ss: 4308 N. Berker Rd. Spokene Valley, WA 990	27 1. Soil	Container Type 1. Bucket		///	///
ot: Zach Wright/Balin Str : Zwright@guartaSubsurface	itk/פר 2. Geosynthetic לא 3. Rock	2. Bag 3. Jar	/	//	///
Mumber: Sea - 701 - 7777	4. Concrete 5. Other	4. Tube 5. Roll	1×1	/ /	/ /
it Name: Northern Pass		00	2000	//	
t Location: NEW HUMDShire Sample Container San	npling Sample	2	1980	/	
Identification Size Type Dat	e Time Type	×××			© 17-14
H-296 (R5)		X			@ 32'-33'
- ZOA (R3)		XX			िर्भ
F-31A (R9)		XX			C 42'
- 316 (R3)		XX			@ 48'
1-32A(R2)		XX			@ 17,
t-328(29)		XX			@ 55 49.8-50.8'
(-336(R2))	11	$\times \times $			e 27'
H - 34A (R2)	λ	XX			(たて-72, 輝)
uished BY: Lewrey	Date: 9/2/10 Time: 11 のつ	Received By:	fler	Date: 9/2//C Time: //.u.3	Turn-Around Time Requested:
uished By:	Date: Time:	Received By:		Date: Time:	No. of Business Days:
uished By:	Date: Time:	Received By:		Date: Time:	Special Instructions:

EXPRESS					800-434-1062 Toll Free 2 of
			Sales Order No GTX No.:		978-635-0424 Phone 978-635-0266 Fax
Company Name:				Analysis	
Address:	Sample Type	Container	Type		111
Contact: e-mail: Phone Number:	2. Geosynthetic 3. Rock 4. Concrete	1. Bucket 2. Bag 3. Jar 4. Tube	- And		
Fax Number: Project Name:	5. Other	5. Roll	5 53	//	//
Project Number: Project Location:		- -	100 PCC	///	
Sample Container San Identification Size Type Date	pling Sample P Time Type		121	/	Comments
BH-34B (R2)	Rock	X	×		@26'
BH-35A(R2)	2	×	X		@ 23.4-54.5
BH-35B(R9)		X	X		e 48'
BH-18A (R2)		×	X		055'
BH-19A (RI)		X	X		e 43'
BH-284(R3)		×	X		@ 284 - 29.35'
BH - 288(R4)		×	X		@ 29.1-29.6'
Relinquished BY:	Date: 9(2)16	Received	By:	Date: 9/2/1/	Turn-Around Time Requested:
Relinquished By:	Date: [100 Time:	Received	By:	Date: /'4) Time:	No. of Business Days:
Relinquished By:	Date: Time:	Received	By:	Date: Time	Special Instructions:
CHIDDED V/A.					Т

CHAIN OF CUSTODY

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

А	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	$\mathbf{S}_{\mathbf{r}}$	Post cyclic undrained shear strength
В	pore pressure parameter for $\Delta \sigma_3$	Т	temperature
CAI	CERCHAR Abrasiveness Index	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
CSR	cyclic stress ratio	ua	pore gas pressure
C _c	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	ue	excess pore water pressure
C_u	coefficient of uniformity, D_{60}/D_{10}	u, u _w	pore water pressure
Cc	compression index for one dimensional consolidation	v "	total volume
Cα	coefficient of secondary compression	Va	volume of gas
cv	coefficient of consolidation	V	volume of solids
с	cohesion intercept for total stresses	V.	shear wave velocity
c'	cohesion intercept for effective stresses	V.	volume of voids
D	diameter of specimen	v	volume of water
D	damping ratio	V V	initial volume
D_{10}	diameter at which 10% of soil is finer	¥ o V	velocity
D15	diameter at which 15% of soil is finer	v W7	total weight
D 30	diameter at which 30% of soil is finer	W W	weight of solids
D 50	diameter at which 50% of soil is finer	W s	weight of water
D 60	diameter at which 60% of soil is finer	vv _w	weight of water
D 85	diameter at which 85% of soil is finer	w	water content at consolidation
deo	displacement for 50% consolidation	W c	final water content
doo	displacement for 90% consolidation	Wf	linal water content
d 100	displacement for 100% consolidation	w ₁	nquia innit
F	Young's modulus	Wn	natural water content
e	void ratio	Wp	
e	void ratio	w _s	
e.	initial void ratio	w _o , w _i	initial water content
G	shear modulus	α	slope of q_f versus p_f
G	specific gravity of soil particles	α	slope of q_f versus p_f
Us И	height of specimen	γ_t	total unit weight
H _n	Rebound Hardness number	γd	dry unit weight
i	gradient	γs	unit weight of solids
I La	Uncorrected point load strength	γ_{w}	unit weight of water
IS	Size corrected point load strength index	3	strain
1 S(50)	Modified Tabar Abragian	ϵ_{vol}	volume strain
	Total hardness	ϵ_h, ϵ_v	horizontal strain, vertical strain
NT V	lateral stragg ratio for one dimensional strain	μ	Poisson's ratio, also viscosity
κ ₀	rateral stress ratio for one dimensional strain	σ	normal stress
K I I	Liquidity Index	σ'	effective normal stress
	Liquidity index	σ_{c}, σ'_{c}	consolidation stress in isotropic stress system
mv	coefficient of volume change	σ_h, σ'_h	horizontal normal stress
n	porosity	σ_v, σ'_v	vertical normal stress
PI	plasticity index	σ'_{vc}	Effective vertical consolidation stress
P _c	preconsolidation pressure	σ_1	major principal stress
p	$(\sigma_1 + \sigma_3)/2$, $(\sigma_v + \sigma_h)/2$	σ_2	intermediate principal stress
p′	$(\sigma_1 + \sigma_3)/2, (\sigma_v + \sigma_h)/2$	σ3	minor principal stress
p'c	p' at consolidation	τ	shear stress
Q	quantity of flow	φ	friction angle based on total stresses
q	$(\sigma_1, \sigma_3) / 2$	φ'	friction angle based on effective stresses
$q_{\rm f}$	q at failure	φ'r	residual friction angle
q_o, q_i	initial q	ϕ_{ult}	φ for ultimate strength
qc	q at consolidation		-

ATTACHMENT D

Thermal Resistivity Test Results

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

October 11, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Rock Core Samples Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on thirtynine (39) rock-core samples received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'asis'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition with results tabulated below. The tests were conducted in accordance with the IEEE standard 442. Due to the low moisture content (surface moisture of less than 1%), it was not possible to draw the thermal dryout graphs.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-10A @ 28.3'	Rock Core	44	60	<1	167
BH-10B @ 27.5'	Rock Core	40	67	<1	163
BH-18B @ 55.5'	Rock Core	38	66	<1	165
BH-19A @ 41.2'	Rock Core	42	63	<1	160
BH-20A @ 17'	Rock Core	36	69	<1	164
BH-20A @ 35.8'	Rock Core	35	66	<1	166
BH-28A @ 39.7'	Rock Core	38	66	<1	157
BH-28B @ 21.8'	Rock Core	30	62	<1	157
BH-28B @ 41'	Rock Core	32	71	<1	155

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description (Quanta)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
		As-rcvd	Dry	(%)	(lb/ft ³)
BH-29A @ 18'	Rock Core	37	73	<1	162
BH-29B @ 20'	Rock Core	39	69	<1	163
BH-29A @ 35'	Rock Core	44	70	<1	165
BH-29B @ 36'	Rock Core	40	63	<1	163
BH-30A @ 23'	Rock Core	32	60	<1	168
BH-30A @ 50'	Rock Core	36	59	<1	165
BH-31A @ 19'	Rock Core	39	61	<1	158
BH-31A @ 54'	Rock Core	46	65	<1	165
BH-31B @ 52.7'	Rock Core	35	66	<1	162
BH-32A @ 36'	Rock Core	41	62	<1	166
BH-32A @ 63'	Rock Core	45	69	<1	168
BH-32B @ 26'	Rock Core	38	65	<1	164
BH-32B @ 63.7'	Rock Core	50	72	<1	162
BH-33A @ 51'	Rock Core	44	70	<1	158
BH-33B @ 26.6	Rock Core	40	75	<1	160
BH-33B @ 51'	Rock Core	39	65	<1	155
BH-34A @ 33'	Rock Core	49	67	<1	154
BH-34A @ 47'	Rock Core	51	70	<1	158
BH-34B @ 47'	Rock Core	38	73	<1	165
BH-35A @ 55'	Rock Core	35	66	<1	160
BH-35B @ 56'	Rock Core	37	71	<1	159
BH-36C @ 40.6'	Rock Core	41	68	<1	159
BH-36B @ 54'	Rock Core	37	74	<1	163
BH-41A @ 42'	Rock Core	39	68	<1	158
BH-42B @ 17'	Rock Core	42	63	<1	164
BH-42B @ 34.4'	Rock Core	46	61	<1	165

Sample ID	Description (Quanta)	Thermal F (°C-c	Resistivity m/W)	Moisture Content	Dry Density
		As-rcvd	Dry	(%)	(lb/ft ³)
BH-52A @ 22.8'	Rock Core	38	70	<1	159
BH-52A @ 38.5'	Rock Core	40	67	<1	162
BH-52B @ 49.5'	Rock Core	44	74	<1	160
BH-120 @ 11.2'	Rock Core	49	69	<1	160

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

20

Nimesh Patel

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

October 17, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Native Soil Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on twentytwo (22) undisturbed tube samples of native soil sample received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'as-received'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curves are presented in **Figures 1 to 4**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
-	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-52B @ 24'	SM	58	177	19	99
BH-51B @ 33'	SM/GM	48	118	13	126
BH-51B @ 18'	SM/GM	55	134	11	120
BH-51A @ 29'	PT	86	643	69	57
BH-51A @ 14'	SW	42	109	11	125
BH-48B @ 64'	ML	65	177	12	125
BH-48B @ 29'	GM	54	168	16	118

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
•	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-48A @ 64'	SM	61	152	9	125
BH-48A @ 24'	SC	54	145	10	129
BH-47B @ 29.5'	GM	60	174	8	117
BH-47B @ 14'	GW	41	109	10	132
BH-47A @ 24'	SM/GM	48	153	17	113
BH-47A @ 9'	SM/GM	55	160	7	114
BH-46B @ 14.5	ML	81	270	32	93
BH-46A 54'	SM	60	180	15	110
BH-46A @ 14.5'	SM	68	192	11	108
BH-45B @ 54'	CL	58	142	11	118
BH-45B @ 4'	GW	44	129	8	126
BH-45A @ 59'	SM	64	181	12	109
BH-45A @ 29'	СН	49	206	21	110
BH-44B @ 54'	СН	62	166	20	114
BH-44B @ 24'	СН	65	182	18	111

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

THERMAL DRYOUT CURVES 300 **Native Soil** BH-48B @ 64' BH-48B @ 29' 250 BH-48A @ 64' BH- 48A @ 24' 200 THERMAL RESISTIVITY (°C-cm/W) BH-47B @ 29.5' BH-47B @ 14' 150 100 50 0 0 5 10 15 20 25 30 MOISTURE CONTENT (% DRY WEIGHT)

> Quanta Subsurface Thermal Analysis of Native Soil Northern Pass Trenchless Investigation

October 2016

THERMAL DRYOUT CURVES 300 Native Soil BH-47A @ 24' 250 BH-47A @ 9' BH-46B @ 14.5' BH-46A @ 54' 200 THERMAL RESISTIVITY (°C-cm/W) BH-46A @ 14.5' 150 100 50 0 0 5 10 15 20 25 30 MOISTURE CONTENT (% DRY WEIGHT)

THERMAL DRYOUT CURVES

Quanta Subsurface Thermal Analysis of Native Soil Northern Pass Trenchless Investigation

October 2016

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

October 18, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Native Soil Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on twentythree (23) undisturbed tube samples of native soil received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'as-received'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curves are presented in **Figures 1 to 4**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-44A @ 55'	GM	58	151	10	131
BH-44A @ 24'	СН	51	139	15	119
BH-43B @ 29'	SP	60	198	17	108
BH-43B @ 9'	SW	55	183	5	111
BH-43A @ 35'	SP	55	355	26	101
BH-43A @ 10'	SM	69	214	8	100
BH-42A @ 34'	CL	77	278	21	102
BH-42A @ 9'	GW	48	170	12	109

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
•	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-41B @ 40'	SW	64	364	21	104
BH-41B @ 20'	SM	55	204	25	90
BH-41A @ 23.5'	ML	72	239	25	97
BH-40B @ 19'	SW	57	302	19	110
BH-40B @ 10'	SW	187	265	2	124
BH-40A @ 24'	SP	59	213	15	110
BH-40A @ 10'	SW	213	494	7	112
BH-39A @ 35'	SP	64	198	12	115
BH-39A @ 15'	SM	54	142	12	117
BH-37B @ 29'	CL	65	188	10	114
BH37B @ 9'	SC	50	137	9	129
BH-37A @ 29'	SW	61	167	10	111
BH-37A @ 14'	SM	83	248	16	113
BH-36C @ 19'	SM	50	142	21	123
BH-36B @ 14'	SW	54	198	26	97

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

October 2016

October 2016

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

October 21, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Native Soil Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on twentytwo (22) undisturbed tube samples of native soil received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'as-received'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curves are presented in **Figures 1 to 4**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
-	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-36A @ 54'	ML	54	308	15	119
BH-36A @ 29'	SP	43	158	11	118
BH-35B @ 4'	SM	54	140	8	118
BH-35A @ 9'	SM	51	149	12	119
BH-34B @ 9'	SW	42	214	22	120
BH-33A @ 30'	GW	46	108	12	133
BH-31B @ 24'	SP	40	151	21	117
BH-28A @ 9'	SM	48	137	12	129

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
	(Qualita)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-27B @ 39'	SP	62	189	16	117
BH-27B @ 19'	SM	50	138	13	122
BH-27A @ 39'	SW	53	227	10	127
BH-27A @ 19'	GM	42	98	10	130
BH-26B @ 35'	SM	56	224	23	103
BH-26B @ 15'	SC	55	189	21	109
BH-26A @ 34'	SP	41	245	29	96
BH-26A @ 14'	GW	46	94	7	135
BH-25B @ 34'	ML	58	313	27	97
BH-25B @ 19'	SW	49	210	11	136
BH-25A @ 34'	ML	63	292	26	98
BH-24B @ 29'	SP	48	217	24	100
BH-24B @ 14'	SP	44	184	23	106
BH-24A @ 44'	SW	51	167	22	106

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

October 2016

October 2016

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

October 24, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Native Soil Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on twentyfour (24) undisturbed tube samples of native soil received at our laboratory.

<u>Thermal Resistivity Tests</u>: For thermal dryout characterization the samples were tested 'as-received'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curves are presented in **Figures 1 to 5**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-23B @ 19'	SM	49	180	12	112
BH-23B @ 4'	SM	54	167	8	115
BH-23A @ 10'	SM	46	141	12	124
BH-22C @ 45'	GM	37	115	17	117
BH-22C @ 20'	SC	45	206	27	96
BH-22B @ 39'	CL	54	169	23	92
BH-22B @ 24'	SM	46	229	21	98

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
•	(Quanta)	As-rcvd	Dry	(%)	(lb/ft ³)
BH-22A @ 44'	SM	48	152	14	124
BH-22A @ 29'	SC	61	247	20	91
BH-21B @ 39'	SC	55	192	22	107
BH-21B @ 14'	GM	43	128	8	132
BH-21A @ 39'	SP	38	250	23	101
BH-21A @ 24'	SW	45	182	10	129
BH-20B @ 39'	SM	45	168	16	119
BH-20B @ 24'	ML	57	231	20	108
BH-19C @ 40'	SP	39	212	21	110
BH-19C @ 19'	CL	51	129	15	119
BH-19B @ 30'	SM	44	249	23	90
BH-19A @ 15'	SM	41	209	24	100
BH-18B @ 39'	SM	48	191	20	112
BH-18A @ 34.5'	SM/SG	52	184	19	110
BH-18A @ 25.5"	GM	38	113	10	132
BH-17B @ 39'	SW	39	177	15	117
BH-17B @ 24'	SM	42	145	10	133

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

2

Nimesh Patel

Quanta Subsurface Thermal Analysis of Native Soil Northern Pass Trenchless Investigation

October 2016

THERMAL DRYOUT CURVES

Quanta Subsurface Thermal Analysis of Native Soil Northern Pass Trenchless Investigation

October 2016

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

October 26, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Native Soil Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on twentynine (29) undisturbed tube samples of native soil received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'as-received'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curves are presented in **Figures 1 to 5**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description (Quanta)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
		As-rcvd	Dry	(%)	(lb/ft ³)
BH-46B @ 56' - 56.4'	SM	46	274	19	106
BH-25 @ 9.5' - 11'	SM	48	151	11	121
BH-17A @ 45.5'	BOULDER	52	119	9	132
BH-17A @ 15.5'	SP	65	193	13	123
BH-16B @ 39'	ML	64	270	25	104
BH-16B @ 29'	ML	68	288	24	100
BH-16A @ 40.5'	SC-SM	48	366	25	101
BH-16A @ 15'	CL	78	231	18	109

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description (Quanta)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
		As-rcvd	Dry	(%)	(lb/ft ³)
BH-15B @ 34'	SP	56	258	24	104
BH-15B @ 4'	SW	58	377	22	98
BH-15A @ 34'	SW	52	318	26	102
BH-14B @ 24'	SP	50	196	20	109
BH-14B @ 14'	GW	48	115	10	130
BH-14A @ 24'	GW	54	133	8	123
BH-14A @ 19'	SP	58	205	20	108
BH-13B @ 35.5'	SP	40	161	30	114
BH-13B @ 15'	GW	38	149	28	111
BH-13A @ 39.5'	SM	56	325	24	104
BH-13A @ 20'	SM	55	341	27	100
BH-12B @ 35'	ML	61	325	35	96
BH-12B @ 15'	SW	107	386	7	93
BH-12A @ 35'	SP	51	244	23	106
BH-12A @ 20'	ML	56	331	23	102
BH-11B @ 24'	SM	47	157	11	122
BH-11B @ 9'	SC	58	167	15	123
BH-11A @ 29'	ML	59	142	12	117
BH-11A @14'	SM	42	120	8	136
BH-10B @ 10'	SM	46	131	11	133
BH-10A @ 15'	SW	65	212	7	126

<u>**Comments:**</u> The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

2Babl

Nimesh Patel

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

November 3, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 Attn: Zach Wright

Re: Thermal Analysis of Native Soil Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on two (2) undisturbed tube samples of native soil received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'as-received'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curves are presented in **Figure 1**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description (Quanta)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
		As-rcvd	Dry	(%)	(lb/ft ³)
BH-24A @ 14'	SM	68	336	23	101
BH-19B @ 14'	SM	74	274	6	109

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

THERMAL DRYOUT CURVES

Quanta Subsurface

Thermal Analysis of Native Soil Northern Pass Trenchless Investigation

November 2016

4370 Contractors Common Livermore, CA 94551 Tel: 925-999-9232 Fax: 925-999-8837 info@geothermusa.com

November 9, 2016

Quanta Subsurface 4308 N. Barker Road Spokane Valley, WA 99027 <u>Attn: Zach Wright</u>

Re: Thermal Analysis of Native Soil & Rock Core Samples Northern Pass Trenchless Investigation - New Hampshire (Project No. 201-16-NH)

The following is the report of thermal dryout characterization tests conducted on one (1) undisturbed tube sample of native soil and one (1) rock core sample received at our laboratory.

Thermal Resistivity Tests: For thermal dryout characterization the samples were tested 'asreceived'. A series of thermal resistivity measurements were made in stages with moisture content ranging from the 'as-received' to the totally dry condition. The tests were conducted in accordance with the IEEE standard 442. The results are tabulated below and the thermal dryout curve for the native soil is presented in **Figure 1.** Due to the low moisture content (surface moisture of less than 1%) for the rock core, it was not possible to draw the thermal dryout graph.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description (Quanta)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
		As-rcvd	Dry	(%)	(lb/ft ³)
BH-23B @ 45' – 45.9'	Rock Core	44	63	<1	173
BH-15A @ 4' – 5.5'	SM	53	270	19	110

<u>Comments</u>: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

THERMAL DRYOUT CURVES

Quanta Subsurface

Thermal Analysis of Native Soil Northern Pass Trenchless Investigation

November 2016