

Stormwater Management Study

Northern Pass Transmission, LLC

Deerfield Substation Project No. 58466

RE-ISSUED FOR PERMITTING January 13, 2016

Stormwater Management Study

prepared for

Northern Pass Transmission, LLC

Deerfield Substation Deerfield, Rockingham County, New Hampshire 03037

Project No. 58466

RE-ISSUED FOR PERMITTING January 13, 2016

prepared by

Burns & McDonnell Engineering Company, Inc.

COPYRIGHT © 2015 BURNS & McDONNELL ENGINEERING COMPANY, INC.

INDEX AND CERTIFICATION

Northern Pass Transmission, LLC Stormwater Management Study Deerfield Substation – Project No. 58466 RE-ISSUED FOR PERMITTING – January 13, 2016

Report Index

<u>Section</u>		<u>Number</u>
<u>Number</u>	Section Title	of Pages
1.0	Project Overview	6
2.0	Hydrology and Hydraulics	8
3.0	Best Management Practices	3
4.0	Conclusion	1
Appendix A	Pre- and Post-Development Watershed Maps	
Appendix B	Hydrology Model (Pondpack)	
Appendix C	Hydraulic and Stability Calculations	
Appendix D	NH DES Worksheets	
Appendix E	Operations and Maintenance Plan	
Appendix H	Infiltration Feasibility Report	
Appendix J	Pollutant Loading Calculations	

Certification

I hereby certify, as a Professional Engineer in the State of New Hampshire, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Northern Pass Transmission, LLC or others without specific verification or adaptation by the Engineer.

Robbyn Reed, P.E. Date

Additional reference information provided by others and not certified by the above sealing Engineer.

Section Number	Section Title
Appendix F	FEMA Flood Insurance Rate Map
Appendix G	Soil Survey Reports (By Others)
Appendix H	Geotechnical Report (By Others)
Appendix I	Wetland Delineation Report (By Others)

Eversource i Burns & McDonnell

TABLE OF CONTENTS

ion and Project Summary	
ng Conditions Survey Information chnical Investigations nds, Rivers, Streams and Vernal Pools plain ving Surface Waters evelopment Site Conditions Development Site Conditions Development Site Conditions Development Site Conditions Rainfall Data Runoff Data Runoff Data water Modeling Results tion Basin Design ee Sand Filter Water Swales Spillways Drainage Collection System	
chnical Investigations nds, Rivers, Streams and Vernal Pools	
nds, Rivers, Streams and Vernal Pools	
nds, Rivers, Streams and Vernal Pools	
plain	
wing Surface Waters evelopment Site Conditions. Development Site Conditions BY AND HYDRAULICS Development Site Conditions BY AND HYDRAULICS Development Site Conditions BY AND HYDRAULICS Development Site Conditions Development Site Conditions BY AND HYDRAULICS Development Site Conditions Development Site Conditions BY AND HYDRAULICS Development Site Conditions Development Site	
evelopment Site Conditions Development Site Conditions BY AND HYDRAULICS Development Site Conditions BY AND HYDRAULICS Development Site Conditions Development Site Conditions BY AND HYDRAULICS Rainfall Data Runoff Data Runoff Data water Modeling Results tion Basin Design Design Design BY AND HYDRAULICS Rainfall Data Runoff Data Water Modeling Results See Sand Filter Water Swales Spillways Drainage Collection System	
Development Site Conditions BY AND HYDRAULICS Dedology and Design Criteria Rainfall Data Runoff Data water Modeling Results tion Basin Design be Sand Filter Water Swales Spillways Drainage Collection System	
AND HYDRAULICS Dividology and Design Criteria. Rainfall Data Runoff Data water Modeling Results tion Basin Design be Sand Filter Water Swales Spillways Drainage Collection System	2-12-12-12-32-42-52-6
A Rainfall Data Runoff Data Water Modeling Results tion Basin Design be Sand Filter Water Swales Spillways Drainage Collection System	
Rainfall Data Runoff Data water Modeling Results tion Basin Design te Sand Filter Water Swales Spillways Drainage Collection System	
Runoff Data	2-1 2-3 2-4 2-5 2-6
water Modeling Resultstion Basin Designee Sand Filter	
tion Basin Design ee Sand Filter Water Swales Spillways Drainage Collection System	2-4 2-5 2-6 2-7
tion Basin Design ee Sand Filter Water Swales Spillways Drainage Collection System	2-4 2-5 2-6 2-7
Water Swales	2-6 2-7
Spillways Drainage Collection System	2-7
Drainage Collection System	
•	2-8
Protection	2-8
AGEMENT PRACTICES	3-1
<u> </u>	
ON	4-1
	AGEMENT PRACTICES

APPENDIX F – FEMA FLOOD INSURANCE RATE MAP APPENDIX G – SOIL SURVEY REPORTS (BY OTHERS) APPENDIX H – GEOTECHNICAL REPORT (BY OTHERS) APPENDIX I – WETLAND DELINEATION REPORT (BY OTHERS) APPENDIX J – POLLUTANT LOADING CALCULATIONS

LIST OF TABLES

		<u>Page No.</u>
Table 1-1:	Soil Types	1-4
Table 2-1:	24-Hour Type III Rainfall Data	
Table 2-2:	Standard SCS Runoff Curve Numbers	2-2
Table 2-3:	Pre-Developed Model Data	2-2
Table 2-4:	Post-Developed Model Data	
Table 2-5:	Manning's Roughness Coefficients	
Table 2-6:	Outlet-1 Flows	2-4
Table 2-7:	Outlet-2 Flows	2-4
Table 2-8:	Detention Basin Storage Volume, DT-1	2-4
Table 2-9:	Detention Basin Water Surface Elevation, DT-1	2-5
Table 2-10:	Infiltration Basin Storage Volume, IF-1	2-5
Table 2-11:	Infiltration Basin Water Surface Elevation, IF-1	2-5
Table 2-12:	Sand Filter Storage Volume Below The Filter Bed	2-6
Table 2-13:	Sand Filter Storage Volume Above The Filter Bed	2-6
Table 2-14:	Sand Filter Forebay Storage Volume	2-6
Table 2-15:	Sand Filter Water Surface Elevation	2-6
Table 2-16:	Stormwater Swale Summary	2-7
Table 2-17:	Stormwater Swale Stability	2-7
Table 2-18:	Basin Spillway Summary and Stability	
Table 2-19:	Outlet Protection	2-8

LIST OF FIGURES

		Page No.
Figure 1-1:	USGS Site Location Map	1-2

LIST OF ABBREVIATIONS

Abbreviation Term/Phrase/Name

BMcD Burns & McDonnell

BMP Best Management Practice
CFS Cubic Feet per Second

E&S Erosion and Sedimentation Control

FPS Feet per Second

FT Feet

LF Linear Feet

LiDAR Light Detection and Ranging

NAD North American Datum

NAVD North American Vertical Datum

NH DES New Hampshire Department of Environmental Services

NPT Northern Pass Transmission, LLC

ORW Outstanding Resource Water

ROW Right-of-way

TMDL Total Maximum Daily Loads

TN Total Nitrogen

TP Total Phosphorus

TSS Total Suspended Solids

WQF Water Quality Flow

WQV Water Quality Volume

Eversource i Burns & McDonnell

1.0 PROJECT OVERVIEW

1.1 Location and Project Summary

Northern Pass Transmission (NPT) plans to construct Deerfield Substation (Project), a new substation expansion located on Eversource owned property off Cate Road (43.140316 latitude and –71.186953 longitude) in Deerfield, Rockingham County, New Hampshire (Site).

Refer to Figure 1-1: USGS Site Location Map.

The Site is bounded by a power line right-of-way to the northwest, the existing Deerfield Substation to the northeast, a swampy area to the southeast and wooded areas to the southwest. The Site is located within the surface watershed of Back Creek which is a tributary to Pawtuckaway Lake.

Pre-development conditions primarily consist of undeveloped woodland with areas of meadow within an adjacent electric transmission line right-of-way. Stormwater runoff in existing conditions generally sheet flows overland from west to east to the existing wetlands located on the southeast portion of the Site.

The post-development conditions of the Site include construction of a substation associated with the Northern Pass Transmission (NPT) project. The NPT project is an approximately 200-mile AC and DC transmission line route extending from the United States/Canadian border in Pittsburg, NH to Deerfield, NH. The station development consists of a gravel pad approximately 380-ft by 420-ft with a perimeter fence and access gate. A gravel access drive is also proposed. The post-development conditions will increase the peak stormwater runoff rate and as a result, stormwater attenuation systems will be implemented. Wherever possible, the pre-development drainage and grading patterns were maintained in the post-development conditions.

A hydrologic model was developed to evaluate the pre- and post-development drainage conditions on the Site for the 2-, 10-, and 50-year design frequency storm events. The results of the analysis indicate that there is no increase in peak discharge rates in post-development conditions from pre-development conditions. The analyses summary, results, and model output are located in further sections. The Project Site property area is 62.86 acres. The Project will result in approximately 8.40-acres of disturbance, all of which is on-site. The existing impervious area within the property line is 1.19 acres and the additional impervious cover as a result of the project is 1.01 acres which accounts for structure footings, structures and pads, gravel driveway and the infiltration basin. The total impervious cover of the Site is 2.20 acres. The total undisturbed cover of the Site is 45.77 acres and includes previously disturbed areas.

Eversource 1-1 Burns & McDonnell

Wheeler REAN HILL RO **PROJECT SITE** COPYRIGHT @ 2014 BURNS & McDONNELL ENGINEERING COMPANY, INC. SOURCE: NORTHWOOD, NH 2012 USGS MAP **LEGEND** PROJECT SITE THE NORTHERN PASS 2000' 4000' SCALE IN FEET project **DEERFIELD SUBSTATION** 58466 SBURNS MEDONNELL **GENERAL VICINITY MAP** NPTT6-FIG1-VMAP OFF CATE ROAD date 11/24/14 DEERFIELD, NEW HAMPSHIRE drawing designed FIGURE 1 F. PASCERI

Figure 1-1: USGS Site Location Map

Eversource 1-2 Burns & McDonnell

1.2 Existing Conditions Survey Information

An Existing Conditions Plan with topography was prepared for the Project and was used as a base throughout the analysis and design of the Site Development Plans and Stormwater Management Study. In the instance where the watershed areas extended outside the survey topography limits, State published LiDAR was obtained from the New Hampshire GRANIT Statewide GIS Clearinghouse and used to determine the watershed limits.

<u>Horizontal Datum:</u> The survey references the New Hampshire State Plane Coordinate System, NAD 83. The Site Development Plans are drawn in the same state plane coordinate system.

<u>Vertical Datum:</u> North American Vertical Datum of 1988 (NAVD88). The proposed elevations referenced within the Site Development Plans refer to the same vertical datum.

1.3 Geotechnical Investigations

A Geotechnical Engineering Report has been prepared for NPT.

 "Geotechnical Engineering Report, Deerfield Substation Project, Northern Pass Transmission Line, Deerfield, New Hampshire" by Quanta Subsurface

Furthermore, infiltration testing has been completed for the site at specified locations relevant to the Stormwater Management Study. Refer to the Infiltration Feasibility Report included in Appendix H.

The geotechnical investigation report can be found in Appendix H.

1.4 Soils

National Resource Conservation Service (NRCS) Web Soil Survey describes the soil at the Project Site as Montauk and Ridgebury sandy loams, Scituate-Newfields and Urban-land canton complexes, and Greenwood mucky peat. The soils were classified as hydrologic soil groups B, C and D.

Additionally a soil survey report has been prepared by Normandeau Environmental Consultants for the area encompassed by the proposed limits of disturbance of the substation expansion. The report is titled "Northern Pass Transmission Project, Soil Survey Report for Transition Stations, Substation Expansions, and Converter Terminal" dated February 6, 2015. Site specific excerpts from this report are found in Appendix G. The soils identified in the report are classified as Hydrologic Group A to D.

Fifteen soil types are present on and in the vicinity of the Project Site according to the US Department of Agriculture Soil Conservation Service Soil Survey for Rockingham County, New Hampshire and the

Eversource 1-3 Burns & McDonnell

Normandeau soils report. Eight of the soil units are located within the substation expansion limits of disturbance and identified on the Normandeau soils report. These soils are formed from lodgment of till overlain by windblown material. The soil units found within the soil survey limits are Montauk sandy loam (44) & (45) which is located in the southern half of the substation expansion limits of disturbance. Scituate fine sandy loam (448) and Chatfield Variant (189) are located on northern half of the limits of disturbance. Ridgebury sandy loam (656) & (926) is found near wetland areas. A small inclusion of rubble land (727) is found next to the existing substation. The soils mapped within the existing substation were identified as Urban land-Canton complex (799).

The NRCS Web Soil Survey information and site specific excerpts from the Normandeau report are located in Appendix G.

Table 1-1 below lists the soil types and hydrologic soil groups.

Table 1-1: Soil Types

Map Legend	Soil Type	Hydrologic Soil Group
44B	Montauk sandy loam, 3 to 8% slopes	C
44C	Montauk fine sandy loam, 8 to 15% slopes	С
44D	Montauk sandy loam, 15 to 25 % slopes	С
44E	Montauk sandy loam, 25 to 50% slopes	С
45C	Montauk fine sandy loam, 8 to 15% slopes, very stony	С
189B	Chatfield Varient, 3 to 8% slopes	В
189C	Chatfield Varient, 8 to 15% slopes	В
295	Greenwood mucky peat	D
447B	Scituate-Newfields complex, 3 to 8% slopes, very stony	С

Eversource 1-4 Burns & McDonnell

Map Legend	Soil Type	Hydrologic Soil Group
448B	Scituate fine sandy loam, 3 to 8% slopes,	С
448C	Scituate fine sandy loam, 8 to 15% slopes	С
656 A/P	Ridgebury sandy loam, 0 to 3% slopes	С
657B	Ridgebury very fine sandy loam, 3 to 8 % slopes, very stony	С
926A	Ridgebury very fine sandy loam, 0 to 3 % slopes, somewhat poorly drained.	С
799A	Urban land – canton complex, 0 to 3% slopes	В
799	Urban land - canton complex, 3 to 15% slopes	В

This soil series has an erosion factor K of 0.15-0.37. The erosion factor K, with values ranging from 0.02 to 0.69, signifies how susceptible a soil is to erosion. The larger the K value the more susceptible the soil is to erosion by water. The K factor for the Project site indicates that the soils are moderately susceptible to erosion by water. The susceptibility of the soils to moderate erosion will be resolved by the site stabilization with rock and native vegetation.

1.5 Wetlands, Rivers, Streams and Vernal Pools

A report entitled "Wetlands, Rivers, Streams and Vernal Pools Resource Report and Impact Analysis" by Normandeau Environmental Consultants, dated October 1, 2015, has been prepared for the NPT Project. Environmentally sensitive areas were found within the Project Site. Refer to Appendix I for a copy of this report.

1.6 Floodplain

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Map No. 33015C0095E for Rockingham County, New Hampshire, Effective Date of May 17, 2005, the Project Site is located in Zone 'X', areas determined to be outside the 0.2% annual chance floodplain and within Zone "A", special flood hazard area subject to inundation by the 1% annual chance flood, no base

Eversource 1-5 Burns & McDonnell

flood elevations determined. The area being developed for the substation expansion is outside of Zone "A" but within Zone "X". The FIRM Map is located in Appendix F.

1.7 Receiving Surface Waters

The Site is within the Back Creek Watershed which is part of the Pawtuckaway Lake Watershed. The site and onsite intermittent streams and wetlands convey their flow to an unnamed tributary of Back Creek, which is tributary to Pawtuckaway Lake and ultimately the Piscataqua River.

1.8 Pre-Development Site Conditions

The Pre-developed site conditions consist of mostly wooded hill terrain with the exception of an existing power line right of way to the northwest of the site which consists of vegetated areas which have been cleared of trees and the existing substation facility to the northeast of the site which consists of a stone pad area and drives. The project site conveys runoff from stormwater events in a southeasterly direction towards existing on site wetlands and marshy areas and ultimately Back Creek. The site drains to two watershed areas and two outlet points. The watershed maps are located in Appendix A.

1.9 Post-Development Site Conditions

Pre-developed stormwater drainage patterns are mimicked in post-developed conditions and utilize the same two aforementioned Site discharge points as pre-development. Pre- and Post-development watershed maps are located in Appendix A. The post-development peak stormwater discharge rates are the same or below pre-development rates.

No new water or septic/sanitary sewer services are required for the Project.

No proposed improvements are located within a FEMA 100-year flood plain as a result; there are no adverse impacts to properties.

* * * * *

2.0 HYDROLOGY AND HYDRAULICS

The stormwater management for the Project has been developed to minimize the downstream effects of development at the Site. The stormwater requirements set forth by the New Hampshire Department of Environmental Services Stormwater Manual Volumes 1, 2, & 3, dated December 2008 and the New Hampshire Department of Transportation Manual on Design for Highways, Revision Date April 1998 were followed to the maximum extent practical for the design of the Site Development Plans and this Report.

The development of the Site results in the need to attenuate and infiltrate stormwater onsite. Two above-ground basins and one sand filter are proposed and are discussed in further detail below. One basin will serve to attenuate flows and the other will be utilized to infiltrate collected storm water. The following is the data used in the stormwater management analysis.

2.1 Methodology and Design Criteria

2.1.1 Rainfall Data

Type III 24-hour rainfall depths for Deerfield, Rockingham County were obtained from the Northeast Regional Climate Center – http://precip.eas.cornell.edu/.

Return Frequency	24 Hour Depth (in)
(yr)	
2	2.98
10	4.48
25	5.66
50	6.76

Table 2-1: 24-Hour Type III Rainfall Data

2.1.2 Runoff Data

The stormwater runoff calculations were completed using the USDA NRCS/SCS TR-55 runoff curve number method in Bentley's PondPack v8i modeling software. Refer to Appendix B for the inputs and generated outputs. The input values that were used in the PondPack model are shown in the tables below.

Maximum sheet flow length for unpaved areas according to the NH DES Stormwater Manual is 100-ft. Below are the standard SCS runoff curve numbers used in the hydrology modeling and the predevelopment and post-development watershed cover data used in the hydrology modeling.

Table 2-2: Standard SCS Runoff Curve Numbers

Land Type	Hydrologic Soil Group	Curve Number
Woods	В	55
Woods	С	70
Woods	D	77
Meadow	В	58
Meadow	С	71
Meadow	D	78
Gravel	В	85
Gravel	С	89
Impervious (Asphalt Pavement, Water, Structures, Foundations)	-	98

Table 2-3: Pre-Developed Model Data

Subarea	Area (ac)	Curve Number	Time of Concentration (Minutes)
1	17.92	70	18.90
2	8.83	71	18.12
Total	26.75	-	-

Table 2-4: Post-Developed Model Data

Subarea	Area (ac)	Composite Curve Number	Time of Concentration (Minutes)
1A	7.96	71	17.04
1B	3.86	86	6.00
1C	0.12	63	6.00
1D	1.15	79	6.00
1E	0.15	82	6.00
1F	6.42	70	10.80
2	7.09	71	16.50
Total	26.75	-	-

The below table summarizes the Manning's roughness coefficients used in the analysis.

Table 2-5: Manning's Roughness Coefficients

Surface Description	Manning's n
Grass, Dense grasses (sheet)	0.240
Smooth Surface Gravel (sheet)	0.100
Woods, Light underbrush (sheet)	0.400
Woods, Dense underbrush (sheet)	0.800
Concrete/RCP	0.013
PVC	0.010
HDPE	0.012
Grass w/ NAG Stabilization	0.045

Riprap (D ₅₀ = 6")	0.069
Riprap ($D_{50} = 12$ ")	0.078

2.2 Stormwater Modeling Results

For the proposed Project, two basins (DT-1 and IF-1) are proposed to be constructed. DT-1 will be located north of the new substation access drive and partly within the transmission line right of way. Detention basin DT-1 will collect runoff from post-development subarea 1A and attenuate the flows to Outlet 1 to be less than the pre-development flows. Infiltration basin IF-1 will be located on the southern side of the new substation access drive and east of the new substation expansion gravel pad and will collect runoff from post-development drainage subareas 1B, 1C, 1D and 1E. Flows from Infiltration Basin IF-1 will ultimately discharge to Outlet 1. Runoff from the substation pad (Subarea 1B) will collect into a French drain which will transmit the water to a stormwater swale (Swale SW-1B) with a check dam which will divert the water quality flow into a low flow pipe. The water quality storm will be conveyed into a surface sand filter (SF-1) by the low flow pipe while all greater storm events will overtop the check dam and be conveyed by swales to the infiltration basin. The gravel access road (Subarea 1E) will be collected by a trench drain and its flow will be conveyed by a pipe to Stormwater Swale SW-1C which drains into Infiltration Basin IF-1. The turnaround area will sheet flow into stormwater swales (SW-1B and SW-1C) which ultimately drain into Infiltration Basin IF-1. Remaining meadow areas within the watershed not draining to the basins (Subarea 1F) will drain to the same discharge points as the predevelopment runoff. The basins each include a concrete outlet control structure to control the runoff rate from the basin and an emergency spillway to manage storm events larger than the 100 year storm event.

The proposed basins were analyzed to mitigate the impacts of stormwater runoff from changes in drainage patterns that would result from the construction of this project. The hydrology model was analyzed using an infiltration rate of 1.25 inches per hour for the Infiltration Basin IF-1 (based on results from field data). Both basins are designed to store and attenuate peak flows from storm events. The concrete outlet control structures will control the rate of runoff to below the pre-development runoff as shown by the modeling results. The following table summarizes flow conditions for the Project and the reduction of flow achieved by the basins.

As aforementioned, there are two Analysis Points for the Site. The tables below summarize the pre- and post-developed peak discharge runoff rates for each respective return frequency. Refer to Appendix A for the Pre-Developed and Post-Developed Watershed Maps. Modeling results and output can be found in Appendix B.

Table 2-6: Outlet-1 Flows

Return Frequency (yr)	Pre-Developed Flow (cfs)	Post-Developed Flow (cfs)
2	8.58	3.98
10	22.65	15.38
50	47.88	34.39

Table 2-7: Outlet-2 Flows

Return Frequency (yr)	Pre-Developed Flow (cfs)	Post-Developed Flow (cfs)
2	4.69	3.88
10	11.84	9.89
50	24.62	20.66

2.3 Detention Basin Design

The detention basin (DT-1) was designed and analyzed to provide long term stormwater attenuation once the Project has been constructed. The infiltration basin (IF-1) was designed and analyzed to provide long term stormwater attenuation, water quality treatment and infiltration once the Project has been constructed. The basins were designed to meet the requirements in the NH DES Stormwater Manual. The basins contain storm events up to and including the 50-year design storm with a minimum 1-ft freeboard to the basin crest elevation. The basins have been designed as to not require a State Dam permit. The tables below summarize the storage volumes and water surface elevations for each basin with respect to the design storm events.

Table 2-8: Detention Basin Storage Volume, DT-1

Elevation (feet-NAVD88)	Surface Area (ac)	Cumulative Storage Volume (Acre-ft)
379	0.000	0.000
380	0.390	0.130
381	0.428	0.539
382	0.468	0.987
383	0.510	1.476
384	0.555	2.008

Eversource 2-4 Burns & McDonnell

Table 2-9: Detention Basin Water Surface Elevation, DT-1

Return Frequency (yr)	Maximum Water Surface Elevation (ft)	
2	380.49	
10	381.58	
50	382.30	

Table 2-10: Infiltration Basin Storage Volume, IF-1

Elevation (feet-NAVD88)	Surface Area (ac)	Cumulative Storage Volume (Acre-ft)
369	0.210	0.000
370	0.240	0.225
371	0.276	0.483
372	0.318	0.780
373	0.364	1.120

Table 2-11: Infiltration Basin Water Surface Elevation, IF-1

Return Frequency (yr)	Maximum Water Surface Elevation (ft)
2	370.30
10	370.93
50	371.66

2.4 Surface Sand Filter

The Surface Sand Filter (SF-1) was designed and analyzed to provide long term stormwater water quality treatment and infiltration once the Project has been constructed. To treat the Water Quality event (1 inch rainfall event), Surface Sand Filter (SF-1) will be constructed between the substation expansion pad and detention basin DT-1. The facility will treat impervious surfaces to be located inside of the station. At this point it is expected that the total impervious areas comprised of concrete footings, pads and control building will not exceed 0.32 acres. Based on the additional impervious area, the Water Quality Volume (WQV) for this project has been calculated to be 1,768 cf with a Water Quality Flow (WQF) of 0.266 cfs.

Stormwater collected from the pad will enter Stormwater Swale SW-1B where a check dam will divert flows up to the WQ storm. The Water Quality flow will continue on to the pre-treatment sedimentation chamber of the sand filter. Greater storms will overtop the check dam and be diverted via stormwater swales to the detention basin. The pre-treatment sedimentation chamber was sized to contain 25% of the WQV. In the pre-treatment sedimentation chamber, sediment will be given time to settle out before the water continues on to the surface sand filter through a connector pipe. The surface sand filter is designed

Eversource 2-5 Burns & McDonnell

to hold up to the 10-year storm, with the spillway elevation set above the level of 75% of the WQV. The flow from the spillway structure will be conveyed by a stormwater swale into infiltration basin IF-1.

Table 2-12: Sand Filter Storage Volume Below The Filter Bed

Elevation (feet-NAVD88)	Surface Area (sf)	Cumulative Storage Volume (cf)
373.75	603	0
374.00	603	60
375.00	603	302
375.90	603	519

Assumes a 0.4 void factor for filter material

Table 2-13: Sand Filter Storage Volume Above The Filter Bed

Elevation (feet-NAVD88)	Surface Area (sf)	Cumulative Storage Volume (cf)
375.90	576	0
376.00	603	59
377.00	906	808
378.00	1265	1889

Table 2-14: Sand Filter Forebay Storage Volume

Elevation (feet-NAVD88)	Surface Area (sf)	Cumulative Storage Volume (cf)
376.00	116	0
377.00	266	127
378.00	473	452

Table 2-15: Sand Filter Water Surface Elevation

Return Frequency (yr)	Maximum Water Surface Elevation (ft)
2	378.26
10	378.45

2.5 Storm Water Swales

The stormwater swale(s) are designed for the 10-year storm event with a minimum of one foot of freeboard. In addition, all open swales are expected to convey the 100-year storm event without overtopping. The swales will be lined with an erosion control blanket with vegetation or lined with rip-rap as specified in the Site Development Plans. The following table summarizes the design criteria as well as

the proposed lining for the proposed open swales. The results show that the swales will be stable for storms up to the 10 year flow.

Swale	10 Year Max. Flow (cfs)	10 Year Velocity (ft/s)	100 Year Max. Flow (cfs)	100 Year Velocity (ft/s)	Swale Depth	Swale Bottom Width (ft)	Side Slopes (H:V ft)	Slope %
SW-1A	11.97	1.83	31.61	2.34	2.5	2	3:1	0.50 %
SW-1A-R	11.97	3.68	31.61	4.74	2.5	2	3:1	10.00%
SW-1B	12.46	3.33	24.59	4.04	2.0	4	3:1	2.80%
SW-1C	15.55	3.64	32.11	4.46	2.0	4	3:1	3.00%

Table 2-16: Stormwater Swale Summary

The table below summarizes the stormwater stabilization types. The calculations can be found in Appendix C.

Swale	Stabilization Type	10 yr Design Discharge (cfs)	Allowable Shear Stress (psf)	Calculated Shear Stress
SW-1A	NAG SC250	11.97	8**	0.37
SW-1A-R	12" Riprap	11.97	4.8*	4.74
SW-1B	NAG SC250	12.46	8**	1.1
SW-1C	NAG SC250	15.55	8**	1.31

Table 2-17: Stormwater Swale Stability

2.6 Basin Spillways

Basin spillways are designed for the 100-year storm event without overtopping the basin. The basin spillway will be lined with a riprap ($D_{50}=12$ ") lining as specified in the Site Development Plans. The following table summarizes the design criteria as well as the proposed lining for the basin spillway. The results show that the basin spillway will be stable for storms up the 100 year flow.

Basin	*Max Flow (cfs)	*Velocity (ft/s)	Spillway (weir) Width (ft)	Side Slopes (H:V ft)	Downstream Slope (%)	Stabilization Type	Allowable Shear Stress (psf)	Calc. Shear Stres s (psf)
DT-1	9.47	2.54	33	3:1	33.33	12" Riprap	4.8	2.29
IF-1	18.87	3.37	32	3:1	33.33	12" Riprap	4.8	3.53
SF-1	11.71	3.88	13	3:1	33.33	12" Riprap	4.8	4.57

Table 2-18: Basin Spillway Summary and Stability

Eversource 2-7 Burns & McDonnell

^{*}From Table 2.3 Federal Highway Administration Hydraulic Engineering Circular No. 15, Third Edition

^{**} Manufacturer's maximum permissible shear stress

^{*}Utilizing 100 year maximum flow for detention basins spillways and 10 year maximum flow for sand filter spillway.

2.7 Storm Drainage Collection System

Storm drainage collection system conduit capacity calculations were performed using Bentley FlowMaster. Underdrain capacity calculations are performed using the Manning's equation in Bentley FlowMaster.

A storm drainage pipe system is proposed on-site to collect stormwater discharges from the substation stone pad. The pipe drainage system is designed to convey design storm events up to the 10-year storm event. Calculations storm drainage system are located in Appendix C.

A series of perforated underdrains are proposed under the cable trench boxes to relieve stormwater that may enter the boxes. Additional underdrains are located along the inside of the substation fence as well as elsewhere within the substation to act as curtain drains and aid in surface drainage.

Riprap outlet protection is provided at all pipe discharge locations refer to Section 2.8 for further information.

2.8 Outlet Protection

Outlet protection is designed for the 25-year frequency design storm as required by the NH DES Stormwater Manual. Calculations for riprap apron protection are located in Appendix C.

Width at Width at Median *25-Year **Depth** culvert End of Stone 25-Year Velocity Flow (cfs) Outlet No. Length (ft) Apron (ft) (in) (ft) Size (in) (fps) Low Flow **0.204 **3.63 6 1 4 6 18 Pipe FES-1 13 18 4.5 17 6 1.79 5.57 FES-2 8 18 4 11 0.46 2.58 6 FES-3 20 60 26 20 8.77 5.91 6 25 4 FES-4 36 31 12 16.47 8.37

Table 2-19: Outlet Protection

* * * * *

^{*}Velocities are taken from FlowMaster Calculations for 25 year flows unless otherwise noted.

^{**}Based on the Water Quality Event WQF

3.0 BEST MANAGEMENT PRACTICES

The proposed Stormwater Management System contains Best Management Practices (BMPs) that will, if maintained properly, will provide treatment of Site generated stormwater runoff. The proposed BMPs are described below.

3.1 Groundwater Recharge Volume & Water Quality Volume

Runoff from impervious areas of the site will be treated by a surface sand filter. The Water Quality Volume (WQV) to be treated from these areas is 1,768 cubic feet. The Ground Water Recharge Volume (GRV) to be provided from these areas is 116 cubic feet. The surface sand filter was designed to meet to meet the requirements in the NH DES Stormwater Manual. The Sand Filter was designed with a sediment forebay which will provide a minimum of 25% of the WQV, and a filter bed that will contain a minimum of 75% of the WQV. The sediment forebay is sized to contain 452 cubic feet which is greater than 25% of the WQV. The filter bed was sized to contain 1,889 cubic feet of storage and includes the storage above the filter but below the invert of the outlet structure, and the filter media voids. This volume is greater than 75% of the WQV. Groundwater recharge is being provided by the Infiltration Basin which will store and infiltrate runoff collected. The Infiltration Basin has a volume of 9,796 cubic feet below the lowest outlet at the outlet control structure. This volume is larger than both the WQV and the GRV. All runoff stored in the infiltration basin below the low flow orifice will recharge the underlying soils. The NH DES BMP worksheets and supporting calculations are located in Appendix D.

3.2 Temporary Erosion Controls

During construction of the proposed station, the Contractor will be responsible for installation, implementation, and maintenance of temporary erosion and sedimentation control measures, that if implemented and maintained properly, will help to prevent off-site tracking and conveyance of waterborne loss of sediment and debris. The specific measures proposed are located in the Site Development Plans, which are under separate cover.

Temporary erosion and sedimentation controls shall not be removed until construction is complete and site stabilization is achieved.

3.3 Permanent Erosion Controls

Upon completion of construction, the Site shall be stabilized by one or more of the following measures in accordance with the Site Development Plans (under separate cover):

Eversource 3-1 Burns & McDonnell

3.3.1 Crushed Rock

Crushed rock will be installed on the station pad area and access roads. Additional rock may be required during final stabilization as a result of the original crushed rock application being disturbed during construction.

3.3.2 Seeding

Any disturbed area not proposed as an impervious or gravel surface will be restored to natural meadow vegetation over 4" of topsoil. Planting and mulching of permanent seed will occur as soon as practical after final grading, placement of topsoil, and soil preparation has been completed. Seeding should occur during the growing season.

3.3.3 Stormwater Swale Lining

Stormwater swales will be lined with a permanent erosion control blanket, vegetated or lined with Riprap to help prevent erosion.

3.3.4 Outlet Protection

Pipe outlets implement riprap outlet protection to help prevent scouring and erosion.

3.3.5 Flood Protection Analysis

Flood protection has been implemented for the detention basin as follows:

- Swales have been designed to convey the 10-year, 24-hour storm event with minimum 1.0 ft of freeboard;
- Swales have been designed to convey the 100-year, 24-hour storm event;
- Basins will detain the 2-year through 100-year, 24-hour storm event;
- An emergency spillway will be used to convey storm events larger than the 100-year storm, 24-hour event.

3.4 Antidegredation

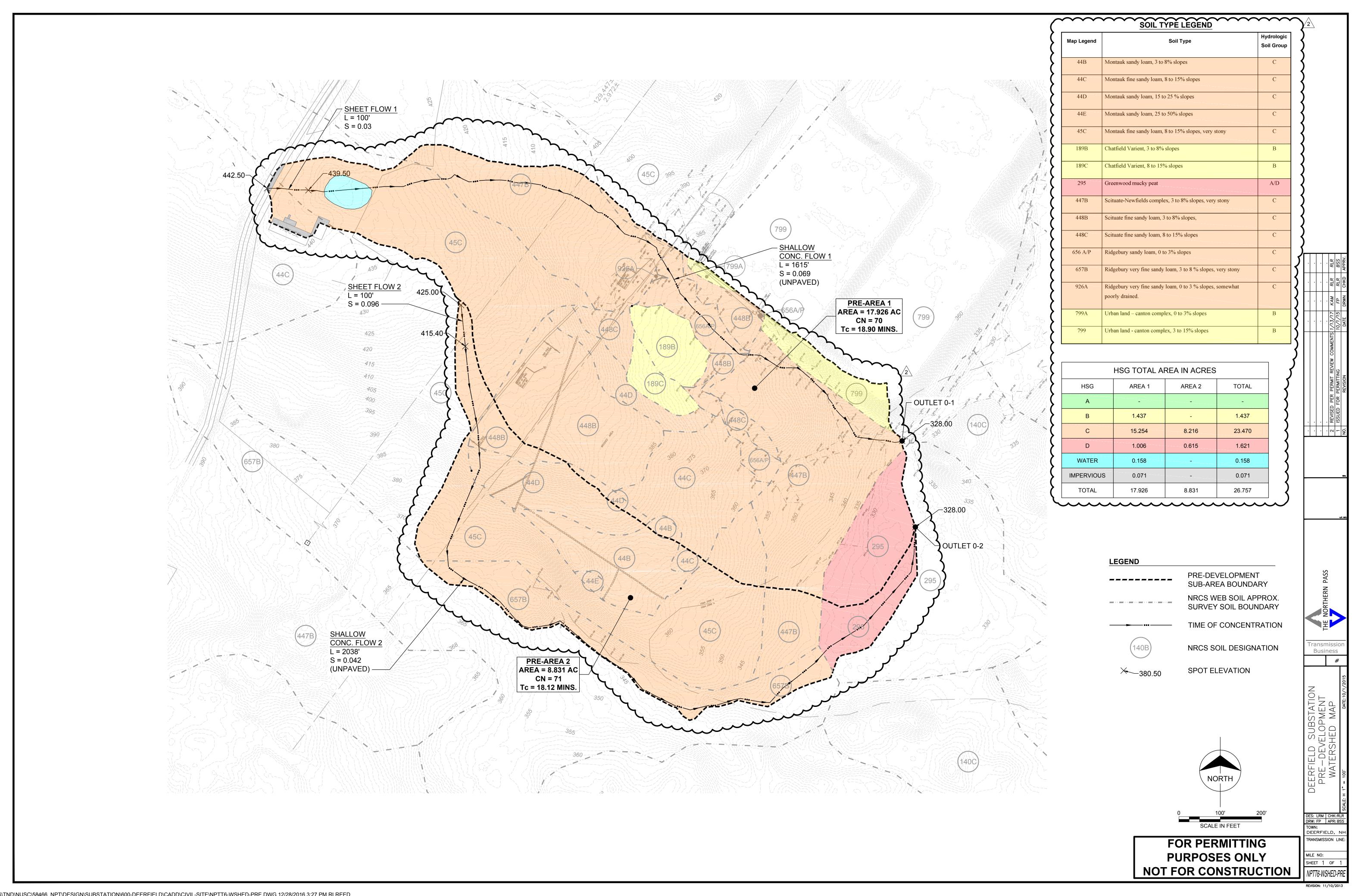
There is no greater than 10% effective impervious cover (EIC) and no less than 65% undisturbed cover within the property boundary of the Site, therefore the Site satisfies the NHDES 1065 Rule. Refer to the Site Cover Plan located in Appendix A.

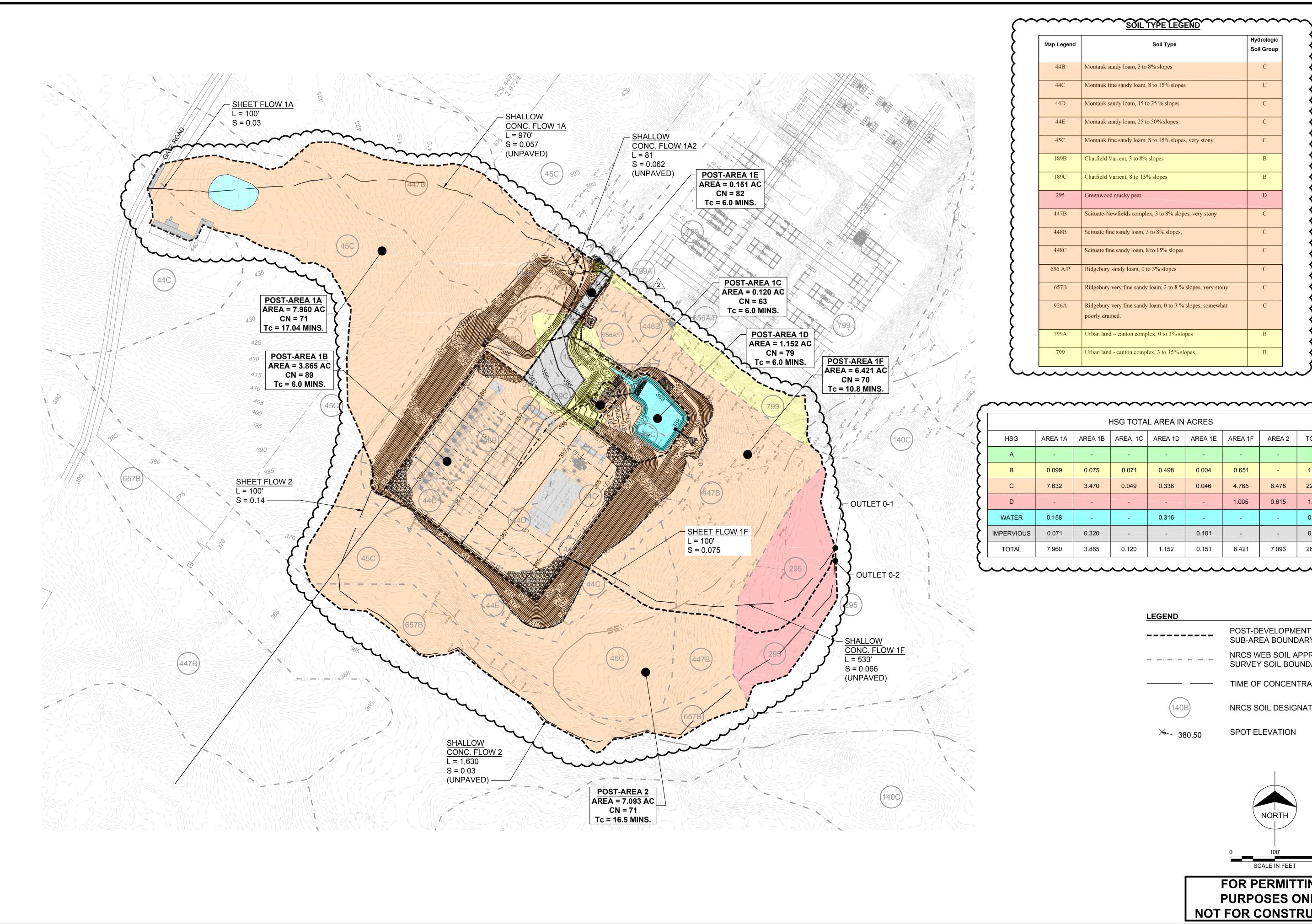
The Site stormwater runoff discharges to an impaired receiving water according to EPA 2008 Waterbody Report for Back Creek. As a result, pollutant loading calculations were performed using the NH DES standard Simple Method worksheet to demonstrate that there is no increase in Total Suspended Solids (TSS), Total Phosphorus (TP), and Total Nitrogen (TN) resulting from the Project. The pollutant loading calculations and other supporting information are located in Appendix J.

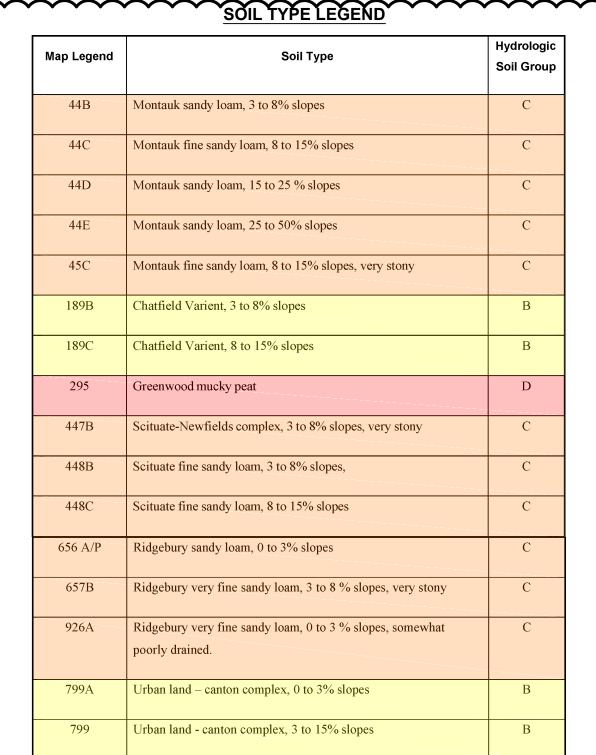
The Simple Method generates pollutant loads based on the pre- and post- drainage areas indicated on the Watershed Maps located in Appendix A. The proposed BMPs are designed to remove a percentage of the pollutants. Sub-watershed Post-Areas 1B, 1C, 1D and 1E are considered disconnected impervious area because they drain through a vegetated swale to a treatment BMP designed in accordance with AOT regulations. The disconnected impervious credit and the treatment BMPs provides water quality and limits post-development pollutant levels to less than the pre-development condition.

The Site lies within the NE Regional Mercury Total Maximum Daily Load (TMDL) according to EPA 2008 Waterbody Report for Back Creek. The Project is not anticipated to produce mercury byproducts, thus restrictions from the NE Regional Mercury TMDL are not applicable.

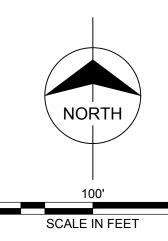
* * * * *


4.0 CONCLUSION


In order to mitigate the impacts of stormwater runoff caused by the addition of the substation, several BMPs were implemented. Those BMPs include the addition of vegetated swales, a sand filter and basins. The basins will also reduce the post-developed peak discharge rates below that of the pre-developed flows for the 2-year through the 50-year storm events. The basins utilize one outlet control structure and emergency spillway. The outlet control structure will control up to and including the 50-year storm event. The storm events larger than the 50-year storm event will discharge through the emergency spillway. The on-site BMPs have been designed in accordance with the New Hampshire Department of Environmental Services Stormwater Manual Volumes 1, 2, & 3.


* * * * *

Eversource 4-1 Burns & McDonnell

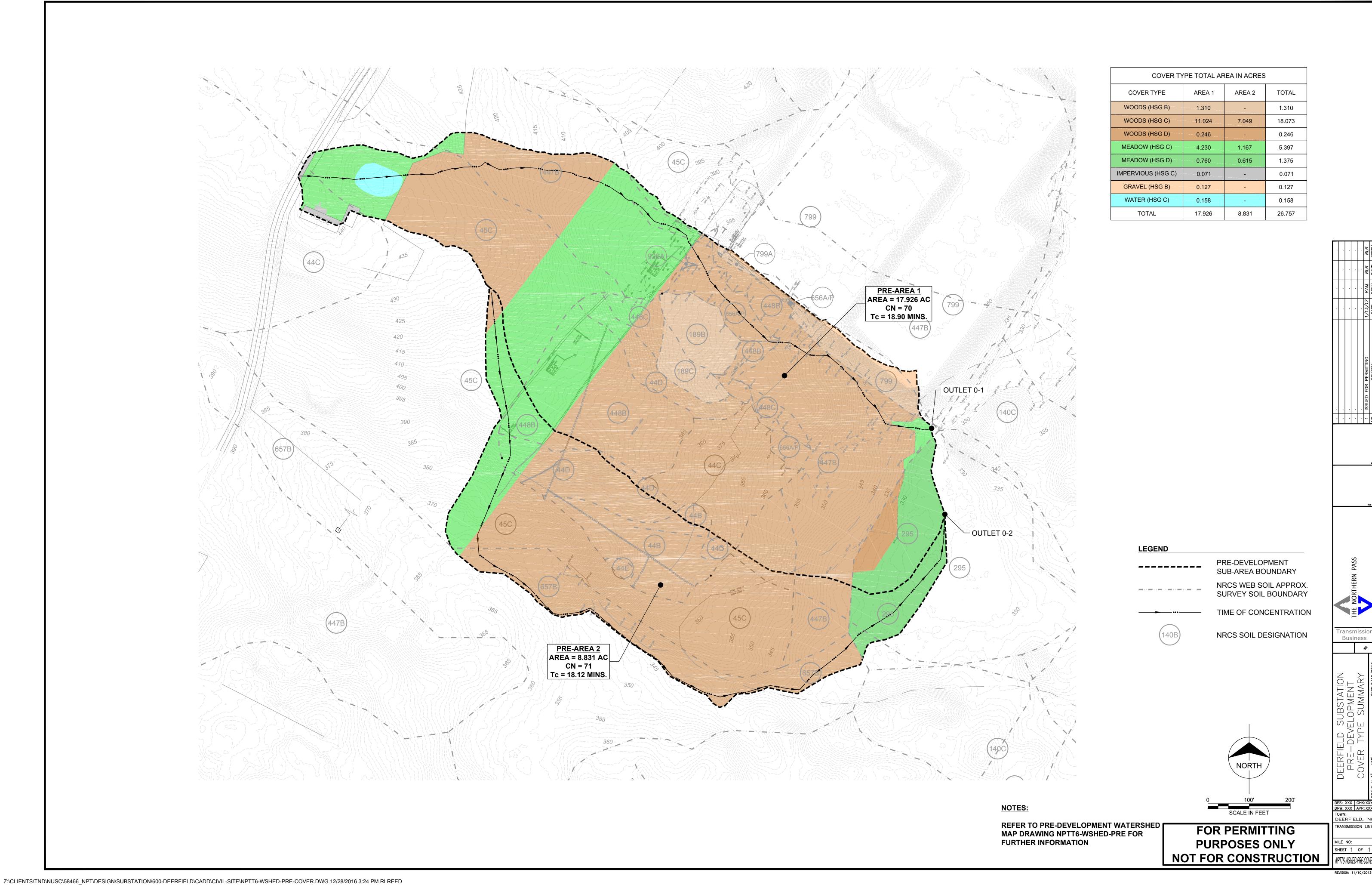


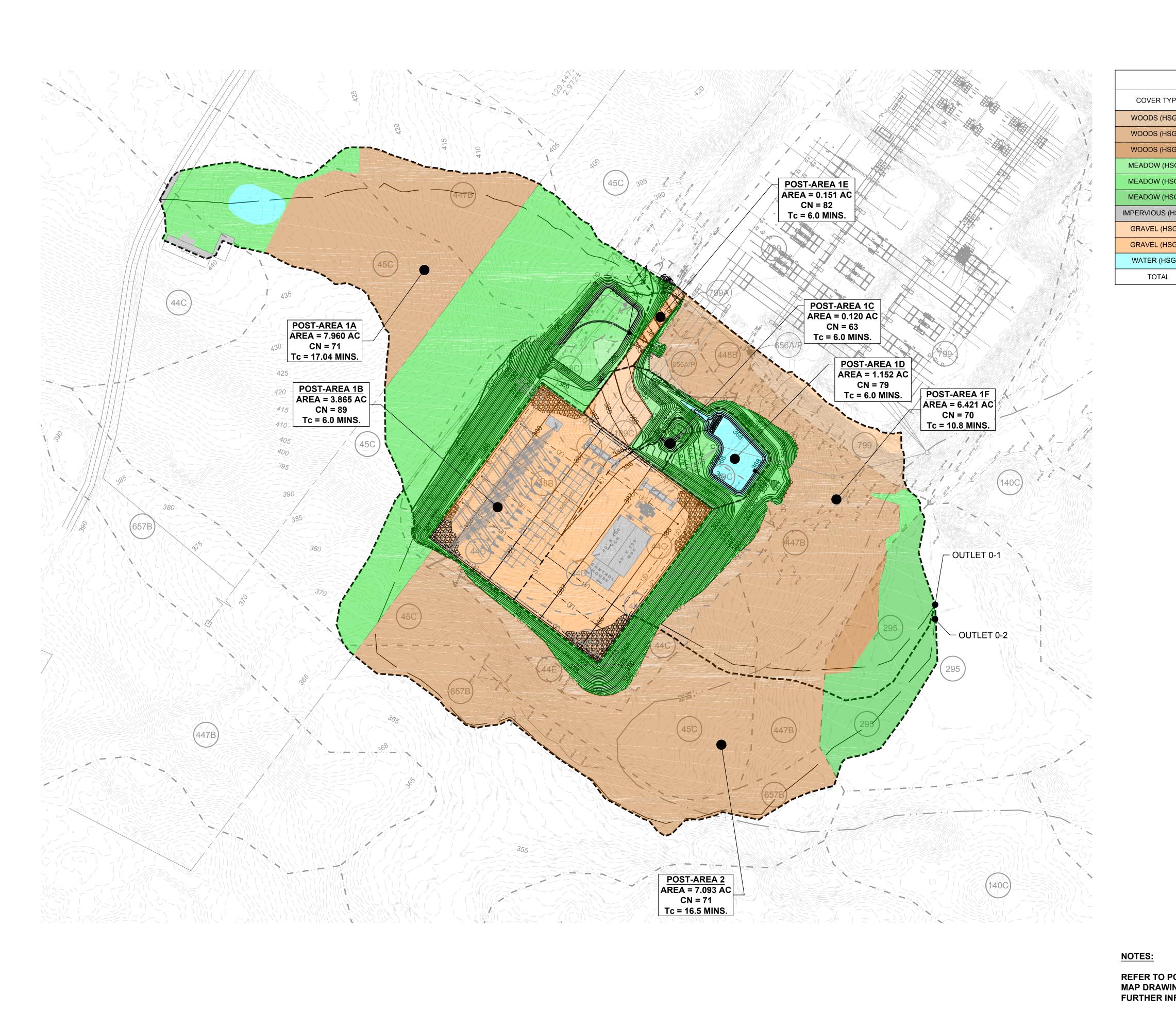
		I	HSG TOTA	L AREA IN	ACRES			
HSG	AREA 1A	AREA 1B	AREA 1C	AREA 1D	AREA 1E	AREA 1F	AREA 2	TOTAL
Α	-	-	<u>-</u>	<u>-</u>		-	-	-
В	0.099	0.075	0.071	0.498	0.004	0.651	-	1.398
С	7.632	3.470	0.049	0.338	0.046	4.765	6.478	22.778
D	-	-	<u>-</u>		-	1.005	0.615	1.620
WATER	0.158	-	<u>-</u>	0.316		-	-	0.474
IMPERVIOUS	0.071	0.320	<u>-</u>		0.101	-	-	0.492
TOTAL	7.960	3.865	0.120	1.152	0.151	6.421	7.093	26.762

POST-DEVELOPMENT SUB-AREA BOUNDARY NRCS WEB SOIL APPROX. SURVEY SOIL BOUNDARY TIME OF CONCENTRATION

NRCS SOIL DESIGNATION

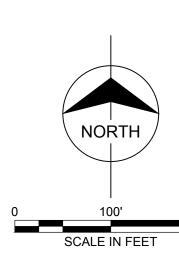
SPOT ELEVATION


FOR PERMITTING PURPOSES ONLY NOT FOR CONSTRUCTION


DEERFI POST WAT

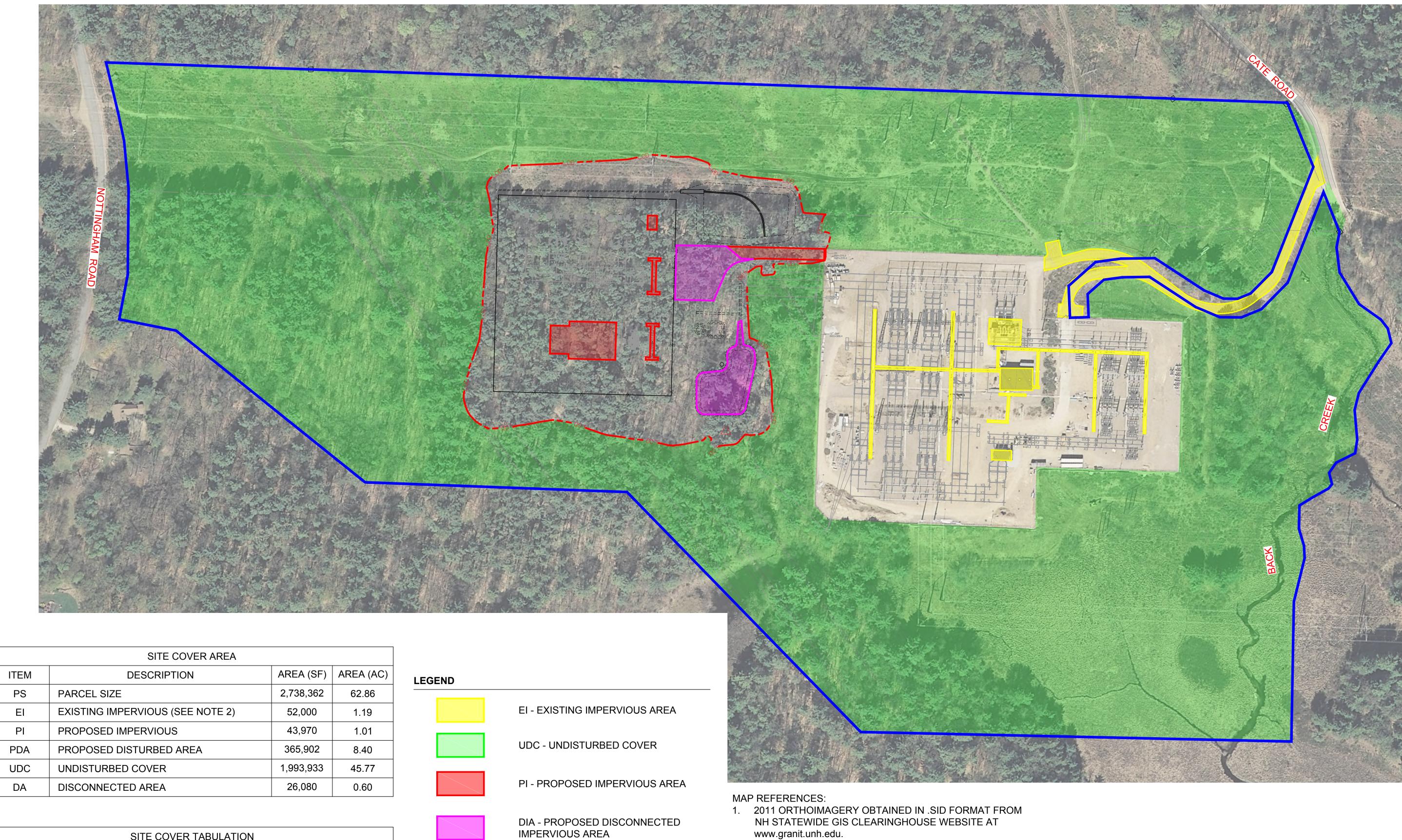
DES: LRM CHK:RLF
DRW: FP APR: BS:

TOWN: DEERFIELD, N TRANSMISSION LINI


MILE NO: SHEET 1 OF 1

COVER TYPE TOTAL AREA IN ACRES										
COVER TYPE	AREA 1A	AREA 1B	AREA 1C	AREA 1D	AREA 1E	AREA 1F	AREA 2	TOTAL		
WOODS (HSG B)	-				<u>-</u>	0.476	-	0.476		
WOODS (HSG C)	2.778	<u>-</u>	<u>-</u>	<u>-</u>		3.720	5.401	11.90		
WOODS (HSG D)	-				-	0.246	-	0.246		
MEADOW (HSG B)	0.099	0.004	0.071	0.230	0.004	0.042	-	0.450		
MEADOW (HSG C)	4.852	0.079	0.049	- 0.327	0.046	1.045	1.077	7.475		
MEADOW (HSG D)	-	-		<u>-</u>	1	0.759	0.615	1.374		
IMPERVIOUS (HSG C)	0.071	0.320	-	<u>-</u>	-	-	-	0.391		
GRAVEL (HSG B)	-	0.071	-	0.268	0.040	0.133	-	0.512		
GRAVEL (HSG C)	0.002	3.391	-	0.011	0.061	-	-	3.465		
WATER (HSG C)	0.158	-	-	0.316		-	-	0.474		
TOTAL	7.960	3.865	0.120	1.152	0.151	6.421	7.093	26.762		

LEGEND POST-DEVELOPMENT SUB-AREA BOUNDARY -----NRCS WEB SOIL APPROX. SURVEY SOIL BOUNDARY TIME OF CONCENTRATION NRCS SOIL DESIGNATION

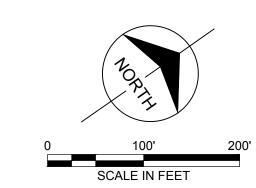

REFER TO POST-DEVELOPMENT WATERSHED MAP DRAWING NPTT6-WSHED-POST FOR FURTHER INFORMATION

FOR PERMITTING **PURPOSES ONLY** NOT FOR CONSTRUCTION

TOWN: DEERFIELD, N

TRANSMISSION LINI

MILE NO: SHEET 1 OF 1



	SITE COVER TABULATION		
ITEM	DESCRIPTION	FORMULA	TOTAL
TIC	TOTAL IMPERVIOUS COVER (ACRES)	EI + PI	2.20 AC
EIC	EFFECTIVE IMPERVIOUS COVER (ACRES)	TIC - DA	1.60 AC
EIC %	EIC PERCENTAGE	EIC / PS	2.6%
UDC %	UDC PERCENTAGE	UDC / PS	72.8%

PI - PROPOSED IMPERVIOUS AI
DIA - PROPOSED DISCONNECT IMPERVIOUS AREA
EXISTING PARCEL LINE

PROPOSED LIMIT OF DISTURBANCE LINE (LOD)

- TILES USED: 1110002300 & 1110002350
- 2. AREA FOR EXISTING SUBSTATION ASSUMES 52,000 SQUARE FEET OF EXISTING IMPERVIOUS AREA FOR STRUCTURE FOOTINGS, ROADWAYS, STRUCTURES AND PADS.

FOR PERMITTING **PURPOSES ONLY**

NOT FOR CONSTRUCTION

DEERFIELD SUBSTATION SITE COVER PLAN

TOWN: DEERFIELD, N TRANSMISSION LINE

MILE NO: SHEET 1 OF 1

NPTT6-SCP

ΕI

PΙ

DA

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New Hampshire

Location

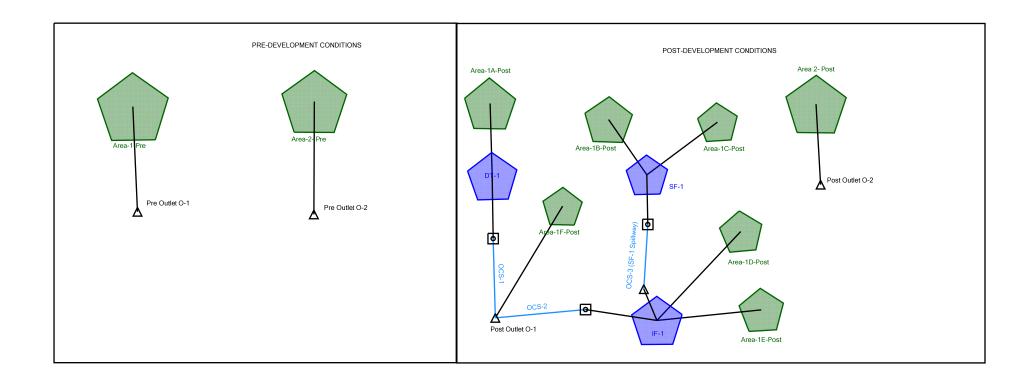
Longitude71.187 degrees WestLatitude43.141 degrees NorthElevationUnknown/Unavailable

Date/Time Tue, 30 Dec 2014 13:37:37 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.49	0.65	0.81	1.02	1yr	0.70	0.98	1.19	1.51	1.94	2.49	2.72	1yr	2.21	2.62	3.04	3.74	4.31	1yr
2yr	0.32	0.49	0.61	0.80	1.01	1.28	2yr	0.87	1.16	1.48	1.87	2.36	2.98	3.32	2yr	2.64	3.20	3.70	4.40	5.02	2yr
5yr	0.37	0.58	0.73	0.97	1.24	1.59	5yr	1.07	1.45	1.85	2.35	2.97	3.76	4.24	5yr	3.33	4.08	4.69	5.55	6.27	5yr
10yr	0.41	0.65	0.82	1.12	1.46	1.88	10yr	1.26	1.71	2.20	2.80	3.55	4.48	5.10	10yr	3.97	4.91	5.62	6.60	7.42	10yr
25yr	0.49	0.77	0.98	1.35	1.80	2.34	25yr	1.55	2.13	2.76	3.53	4.48	5.66	6.52	25yr	5.01	6.27	7.15	8.33	9.28	25yr
50yr	0.55	0.88	1.12	1.57	2.11	2.78	50yr	1.82	2.52	3.28	4.21	5.35	6.76	7.85	50yr	5.98	7.55	8.58	9.93	10.99	50yr
100yr	0.61	0.99	1.28	1.82	2.48	3.30	100yr	2.14	2.98	3.91	5.03	6.39	8.07	9.46	100yr	7.14	9.10	10.29	11.85	13.03	100yr
200yr	0.70	1.14	1.48	2.12	2.92	3.91	200yr	2.52	3.52	4.64	5.99	7.63	9.64	11.40	200yr	8.53	10.97	12.35	14.14	15.45	200yr
500yr	0.83	1.36	1.78	2.58	3.62	4.89	500yr	3.13	4.41	5.84	7.56	9.65	12.20	14.61	500yr	10.80	14.04	15.74	17.89	19.38	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.57	0.70	0.89	1yr	0.61	0.87	0.99	1.29	1.54	2.01	2.48	1yr	1.78	2.39	2.79	3.40	3.81	1yr
2yr	0.31	0.48	0.59	0.80	0.99	1.17	2yr	0.85	1.15	1.34	1.78	2.28	2.88	3.18	2yr	2.55	3.06	3.56	4.27	4.87	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.59	2.08	2.68	3.40	3.79	5yr	3.01	3.64	4.21	5.20	5.69	5yr
10yr	0.39	0.60	0.74	1.03	1.34	1.59	10yr	1.15	1.56	1.79	2.36	3.02	3.84	4.30	10yr	3.40	4.14	4.78	6.00	6.39	10yr
25yr	0.45	0.68	0.85	1.21	1.59	1.89	25yr	1.37	1.85	2.10	2.74	3.54	4.47	5.07	25yr	3.95	4.87	5.66	7.27	8.10	25yr
50yr	0.50	0.76	0.94	1.35	1.82	2.16	50yr	1.57	2.11	2.37	3.08	3.98	5.00	5.70	50yr	4.42	5.48	6.40	8.39	9.30	50yr
100yr	0.56	0.84	1.06	1.53	2.09	2.47	100yr	1.81	2.42	2.68	3.46	4.48	5.59	6.41	100yr	4.95	6.17	7.27	9.70	10.65	100yr
200yr	0.62	0.94	1.19	1.72	2.40	2.82	200yr	2.07	2.75	3.02	3.87	5.04	6.21	8.56	200yr	5.49	8.23	8.24	11.22	12.21	200yr
500yr	0.73	1.09	1.40	2.04	2.89	3.37	500yr	2.50	3.29	3.55	4.51	5.91	7.10	10.36	500yr	6.28	9.96	9.72	13.62	14.60	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.44	0.54	0.72	0.89	1.07	1yr	0.77	1.05	1.23	1.66	2.10	2.72	3.11	1yr	2.41	3.00	3.41	4.00	4.74	1yr
2yr	0.33	0.51	0.62	0.84	1.04	1.25	2yr	0.90	1.22	1.44	1.89	2.42	3.15	3.50	2yr	2.79	3.37	3.89	4.56	5.21	2yr
5yr	0.40	0.62	0.77	1.05	1.34	1.58	5yr	1.15	1.55	1.83	2.39	3.06	4.13	4.74	5yr	3.66	4.56	5.20	5.90	6.88	5yr
10yr	0.47	0.73	0.90	1.26	1.63	1.92	10yr	1.41	1.88	2.20	2.89	3.67	5.13	5.98	10yr	4.54	5.75	6.52	7.22	8.52	10yr
25yr	0.59	0.90	1.12	1.60	2.10	2.49	25yr	1.81	2.44	2.84	3.70	4.67	6.84	8.19	25yr	6.05	7.87	8.78	9.44	10.48	25yr
50yr	0.69	1.05	1.31	1.89	2.54	3.03	50yr	2.19	2.96	3.43	4.46	5.61	8.51	10.40	50yr	7.53	10.00	11.01	11.57	12.75	50yr
100yr	0.82	1.24	1.56	2.25	3.09	3.68	100yr	2.66	3.60	4.16	5.39	6.76	10.60	13.22	100yr	9.38	12.72	13.81	14.18	15.55	100yr
200yr	0.97	1.46	1.85	2.68	3.74	4.48	200yr	3.22	4.38	5.05	6.52	8.13	13.25	14.67	200yr	11.73	14.11	17.34	17.39	18.97	200yr
500yr	1.22	1.81	2.33	3.39	4.81	5.81	500yr	4.15	5.68	6.51	8.41	10.40	17.80	19.68	500yr	15.76	18.93	23.41	22.81	24.71	500yr

Scenario: Rockingham Co 2-year

Project Summary		
Title	NPT Deerfield Substation Expansion Stormwater Model	
Engineer	R. Reed	
Company	Burns & McDonnell	
Date	12/28/2016	
	•	

Notes

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Area-1-Pre	Rockingham Co 2- year	2	1.045	12.250	8.58
Area-1-Pre	Rockingham Co 10- year	10	2.469	12.250	22.65
Area-1-Pre	Rockingham Co 50- year	50	5.091	12.250	47.88
Area-1-Pre	Rockingham Co 100- year	100	6.737	12.250	63.35
Area-2- Pre	Rockingham Co 2- year	2	0.549	12.250	4.69
Area-2- Pre	Rockingham Co 10- year	10	1.270	12.250	11.84
Area-2- Pre	Rockingham Co 50- year	50	2.583	12.200	24.62
Area-2- Pre	Rockingham Co 100- year	100	3.404	12.200	32.54
Area-1A-Post	Rockingham Co 2- year	2	0.495	12.250	4.33
Area-1A-Post	Rockingham Co 10- year	10	1.145	12.200	10.90
Area-1A-Post	Rockingham Co 50- year	50	2.329	12.200	22.83
Area-1A-Post	Rockingham Co 100- year	100	3.069	12.200	30.13
Area-1C-Post	Rockingham Co 2- year	2	0.004	12.150	0.04
Area-1C-Post	Rockingham Co 10- year	10	0.012	12.100	0.13
Area-1C-Post	Rockingham Co 50- year	50	0.027	12.100	0.33
Area-1C-Post	Rockingham Co 100- year	100	0.037	12.100	0.46
Area-1D-Post	Rockingham Co 2- year	2	0.113	12.100	1.36
Area-1D-Post	Rockingham Co 10- year	10	0.226	12.100	2.77
Area-1D-Post	Rockingham Co 50- year	50	0.419	12.100	5.06
Area-1D-Post	Rockingham Co 100- year	100	0.535	12.100	6.39
Area-1B-Post	Rockingham Co 2- year	2	0.605	12.100	7.33
Area-1B-Post	Rockingham Co 10- year	10	1.054	12.100	12.46
Area-1B-Post	Rockingham Co 50- year	50	1.762	12.100	20.19
Area-1B-Post	Rockingham Co 100- year	100	2.174	12.100	24.59
Area-1F-Post	Rockingham Co 2- year	2	0.375	12.150	3.68
Area-1F-Post	Rockingham Co 10- year	10	0.886	12.150	9.69
Area-1F-Post	Rockingham Co 50- year	50	1.827	12.150	20.45
Area-1F-Post	Rockingham Co 100- year	100	2.417	12.150	27.04

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Area 2- Post	Rockingham Co 2- year	2	0.441	12.250	3.88
Area 2- Post	Rockingham Co 10- year	10	1.020	12.200	9.89
Area 2- Post	Rockingham Co 50- year	50	2.076	12.200	20.66
Area 2- Post	Rockingham Co 100- year	100	2.735	12.200	27.24
Area-1E-Post	Rockingham Co 2- year	2	0.017	12.100	0.21
Area-1E-Post	Rockingham Co 10- year	10	0.033	12.100	0.40
Area-1E-Post	Rockingham Co 50- year	50	0.059	12.100	0.70
Area-1E-Post	Rockingham Co 100- year	100	0.074	12.100	0.88

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Pre Outlet O-1	Rockingham Co 2- year	2	1.045	12.250	8.58
Pre Outlet O-1	Rockingham Co 10- year	10	2.469	12.250	22.65
Pre Outlet O-1	Rockingham Co 50- year	50	5.091	12.250	47.88
Pre Outlet O-1	Rockingham Co 100- year	100	6.737	12.250	63.35
Pre Outlet O-2	Rockingham Co 2- year	2	0.549	12.250	4.69
Pre Outlet O-2	Rockingham Co 10- year	10	1.270	12.250	11.84
Pre Outlet O-2	Rockingham Co 50- year	50	2.583	12.200	24.62
Pre Outlet O-2	Rockingham Co 100- year	100	3.404	12.200	32.54
Post Outlet O-2	Rockingham Co 2- year	2	0.441	12.250	3.88
Post Outlet O-2	Rockingham Co 10- year	10	1.020	12.200	9.89
Post Outlet O-2	Rockingham Co 50- year	50	2.076	12.200	20.66
Post Outlet O-2	Rockingham Co 100- year	100	2.735	12.200	27.24
Post Outlet O-1	Rockingham Co 2- year	2	0.774	12.250	3.98
Post Outlet O-1	Rockingham Co 10- year	10	1.988	12.200	15.38
Post Outlet O-1	Rockingham Co 50- year	50	4.959	12.150	34.39
Post Outlet O-1	Rockingham Co 100- year	100	6.805	12.150	44.30

Pond Summary

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
IF-1 (IN)	Rockingham Co 2-year	2	0.660	12.100	8.77	(N/A)	(N/A)
IF-1 (OUT)	Rockingham Co 2-year	2	0.213	12.550	1.61	370.30	0.299
IF-1 (IN)	Rockingham Co 10-year	10	1.243	12.100	15.55	(N/A)	(N/A)
IF-1 (OUT)	Rockingham Co 10-year	10	0.716	12.350	6.84	370.93	0.464
IF-1 (IN)	Rockingham Co 50-year	50	2.181	12.100	26.05	(N/A)	(N/A)
IF-1 (OUT)	Rockingham Co 50-year	50	1.583	12.250	14.81	371.66	0.673
IF-1 (IN)	Rockingham Co 100-year	100	2.733	12.100	32.11	(N/A)	(N/A)
IF-1 (OUT)	Rockingham Co 100-year	100	2.112	12.250	18.87	372.01	0.783
SF-1 (IN)	Rockingham Co 2-year	2	0.610	12.100	7.37	(N/A)	(N/A)
SF-1 (OUT)	Rockingham Co 2-year	2	0.530	12.100	7.20	378.26	0.066
SF-1 (IN)	Rockingham Co 10-year	10	1.066	12.100	12.59	(N/A)	(N/A)
SF-1 (OUT)	Rockingham Co 10-year	10	0.984	12.100	12.38	378.45	0.075
SF-1 (IN)	Rockingham Co 50-year	50	1.789	12.100	20.52	(N/A)	(N/A)
SF-1 (OUT)	Rockingham Co 50-year	50	1.703	12.100	20.29	378.63	0.083
SF-1 (IN)	Rockingham Co 100-year	100	2.211	12.100	25.05	(N/A)	(N/A)
SF-1 (OUT)	Rockingham Co 100-year	100	2.124	12.100	24.84	378.72	0.088
DT-1 (IN)	Rockingham Co 2-year	2	0.495	12.250	4.33	(N/A)	(N/A)
DT-1 (OUT)	Rockingham Co 2-year	2	0.185	19.100	0.19	380.49	0.324
DT-1 (IN)	Rockingham Co 10-year	10	1.145	12.200	10.90	(N/A)	(N/A)
DT-1 (OUT)	Rockingham Co 10-year	10	0.386	16.550	0.60	381.58	0.794
DT-1 (IN)	Rockingham Co 50-year	50	2.329	12.200	22.83	(N/A)	(N/A)
DT-1 (OUT)	Rockingham Co 50-year	50	1.549	12.850	4.76	382.30	1.130
DT-1 (IN)	Rockingham Co 100-year	100	3.069	12.200	30.13	(N/A)	(N/A)
DT-1 (OUT)	Rockingham Co 100-year	100	2.277	12.700	9.47	382.81	1.381

Subsection: Time-Depth Curve Return Event: 100 years Label: Rockingham Co - NH Storm Event: 100-yr

Time-Depth Curve: 100-yr	
Label	100-yr
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	100 years

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.1	0.1	0.1
1.000	0.1	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.2
2.000	0.2	0.2	0.2	0.2	0.2
2.500	0.2	0.2	0.2	0.2	0.2
3.000	0.2	0.3	0.3	0.3	0.3
3.500	0.3	0.3	0.3	0.3	0.3
4.000	0.3	0.4	0.4	0.4	0.4
4.500	0.4	0.4	0.4	0.4	0.4
5.000	0.5	0.5	0.5	0.5	0.5
5.500	0.5	0.5	0.5	0.6	0.6
6.000	0.6	0.6	0.6	0.6	0.6
6.500	0.7	0.7	0.7	0.7	0.7
7.000	0.7	0.7	0.8	8.0	0.8
7.500	0.8	0.8	0.9	0.9	0.9
8.000	0.9	0.9	1.0	1.0	1.0
8.500	1.0	1.1	1.1	1.1	1.1
9.000	1.2	1.2	1.2	1.3	1.3
9.500	1.3	1.4	1.4	1.4	1.5
10.000	1.5	1.6	1.6	1.7	1.7
10.500	1.7	1.8	1.8	1.9	2.0
11.000	2.0	2.1	2.2	2.2	2.3
11.500	2.4	2.5	2.7	3.0	3.4
12.000	4.0	4.7	5.1	5.3	5.5
12.500	5.7	5.8	5.8	5.9	6.0
13.000	6.1	6.1	6.2	6.2	6.3
13.500	6.3	6.4	6.4	6.5	6.5
14.000	6.5	6.6	6.6	6.7	6.7
14.500	6.7	6.8	6.8	6.8	6.9
15.000	6.9	6.9	7.0	7.0	7.0
15.500	7.0	7.1	7.1	7.1	7.1
16.000	7.2	7.2	7.2	7.2	7.2
16.500	7.2	7.3	7.3	7.3	7.3
17.000	7.3	7.4	7.4	7.4	7.4
17.500	7.4	7.4	7.4	7.5	7.5
18.000	7.5	7.5	7.5	7.5	7.5
18.500	7.6	7.6	7.6	7.6	7.6
19.000	7.6	7.6	7.6	7.6	7.7
19.500	7.7	7.7	7.7	7.7	7.7
20.000	7.7	7.7	7.7	7.8	7.8
20.500	7.8	7.8	7.8	7.8	7.8
21.000	7.8	7.8	7.8	7.9	7.9
21.500	7.9	7.9	7.9	7.9	7.9

Subsection: Time-Depth Curve Return Event: 100 years Label: Rockingham Co - NH Storm Event: 100-yr

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
22.000	7.9	7.9	7.9	7.9	7.9
22.500	8.0	8.0	8.0	8.0	8.0
23.000	8.0	8.0	8.0	8.0	8.0
23.500	8.0	8.0	8.0	8.1	8.1
24.000	8.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 10 years Label: Rockingham Co - NH Storm Event: 10-yr

Time-Depth Curve: 10-yr	
Label	10-yr
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	10 years

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.2	0.2
3.500	0.2	0.2	0.1	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.4
6.500	0.4	0.4	0.4	0.4	0.4
7.000	0.4	0.4	0.4	0.4	0.4
7.500	0.4	0.5	0.4	0.4	0.5
8.000	0.5	0.5	0.5	0.5	0.6
8.500	0.6	0.6	0.6	0.6	0.6
9.000	0.7	0.7	0.7	0.7	0.7
9.500	0.7	0.7	0.7	0.7	0.7
10.000	0.7	0.8	0.8	0.8	0.8
10.500	1.0	1.0	1.0	1.1	
11.000	1.0	1.0	1.0	1.1	1.1 1.3
11.500	1.3	1.4	1.5	1.7	1.9
12.000	2.2	2.6	2.8	3.0	3.1
12.500	3.1	3.2	3.2	3.3	3.3
13.000	3.4	3.4	3.4	3.5	3.5
13.500	3.5	3.5	3.4	3.6	3.6
14.000	3.6	3.7	3.7	3.7	3.7
14.500	3.7	3.8	3.8	3.8	3.8
15.000	3.8	3.8	3.9	3.9	3.9
15.500	3.9	3.9	3.9	3.9	4.0
16.000	4.0	4.0	4.0	4.0	4.0
16.500	4.0	4.0	4.0	4.0	4.1
17.000	4.1	4.1	4.1	4.1	4.1
17.500	4.1	4.1	4.1	4.1	4.1
18.000	4.1	4.1	4.1	4.1	4.2
18.500	4.2	4.2	4.2	4.2	4.2
19.000	4.2	4.2	4.2	4.2	4.2
19.500	4.2	4.2	4.2	4.2	4.3
20.000	4.3	4.3	4.3	4.3	4.3
20.500	4.3	4.3	4.3	4.3	4.3
21.000	4.3	4.3	4.3	4.3	4.4
21.500	4.4	4.4	4.4	4.4	4.4

Subsection: Time-Depth Curve Return Event: 10 years Label: Rockingham Co - NH Storm Event: 10-yr

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
22.000	4.4	4.4	4.4	4.4	4.4
22.500	4.4	4.4	4.4	4.4	4.4
23.000	4.4	4.4	4.4	4.5	4.5
23.500	4.5	4.5	4.5	4.5	4.5
24.000	4.5	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 2 years Label: Rockingham Co - NH Storm Event: 2-yr

Time-Depth Curve: 2-yr			
Label	2-yr		
Start Time	0.000 hours		
Increment	0.100 hours		
End Time	24.000 hours		
Return Event	2 years		

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.0	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.1	0.1
4.500	0.1	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.2
6.500	0.2	0.2	0.3	0.3	0.3
7.000	0.3	0.3	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.3
8.000	0.3	0.3	0.4	0.4	0.4
8.500	0.4	0.4	0.4	0.4	0.4
9.000	0.4	0.4	0.5	0.5	0.5
9.500	0.5	0.5	0.5	0.5	0.5
10.000	0.6	0.6	0.6	0.6	0.6
10.500	0.6	0.7	0.7	0.7	0.7
11.000	0.7	0.8	0.8	0.8	0.9
11.500	0.9	0.9	1.0	1.1	1.2
12.000	1.5	1.7	1.9	2.0	2.0
12.500	2.1	2.1	2.2	2.2	2.2
13.000	2.2	2.3	2.3	2.3	2.3
13.500	2.3	2.4	2.4	2.4	2.4
14.000	2.4	2.4	2.4	2.5	2.5
14.500	2.5	2.5	2.5	2.5	2.5
15.000	2.5	2.6	2.6	2.6	2.6
15.500	2.6	2.6	2.6	2.6	2.6
16.000	2.6	2.6	2.7	2.7	2.7
16.500	2.7	2.7	2.7	2.7	2.7
17.000	2.7	2.7	2.7	2.7	2.7
17.500	2.7	2.7	2.8	2.8	2.8
18.000	2.8	2.8	2.8	2.8	2.8
18.500	2.8	2.8	2.8	2.8	2.8
19.000	2.8	2.8	2.8	2.8	2.8
19.500	2.8	2.8	2.8	2.8	2.8
20.000	2.9	2.9	2.9	2.9	2.9
20.500	2.9	2.9	2.9	2.9	2.9
21.000	2.9	2.9	2.9	2.9	2.9
21.500	2.9	2.9	2.9	2.9	2.9

Subsection: Time-Depth Curve Return Event: 2 years Label: Rockingham Co - NH Storm Event: 2-yr

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
22.000	2.9	2.9	2.9	2.9	2.9
22.500	2.9	2.9	2.9	2.9	3.0
23.000	3.0	3.0	3.0	3.0	3.0
23.500	3.0	3.0	3.0	3.0	3.0
24.000	3.0	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50 years Label: Rockingham Co - NH Storm Event: 50-yr

Time-Depth Curve: 50-yr	
Label	50-yr
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	50 years

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.2	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2 0.3	0.3	0.3	0.3	0.3
4.000		0.3	0.3	0.3	0.3
4.500	0.3	0.3	0.4	0.4	0.4
5.000	0.4	0.4	0.4	0.4	0.4
5.500	0.4	0.4	0.5	0.5	0.5
6.000	0.5	0.5	0.5	0.5	0.5
6.500	0.5	0.6	0.6	0.6	0.6
7.000	0.6	0.6	0.6	0.7	0.7
7.500	0.7	0.7	0.7	0.7	0.8
8.000	0.8	0.8	0.8	0.8	0.8
8.500	0.9	0.9	0.9	0.9	1.0
9.000	1.0	1.0	1.0	1.1	1.1
9.500	1.1	1.2	1.2	1.2	1.2
10.000	1.3	1.3	1.3	1.4	1.4
10.500	1.5	1.5	1.5	1.6	1.6
11.000	1.7	1.7	1.8	1.9	1.9
11.500	2.0	2.1	2.3	2.5	2.8
12.000	3.4	3.9	4.2	4.5	4.6
12.500	4.7	4.8	4.9	5.0	5.0
13.000	5.1	5.1	5.2	5.2	5.3
13.500	5.3	5.3	5.4	5.4	5.4
14.000	5.5	5.5	5.5	5.6	5.6
14.500	5.6	5.7	5.7	5.7	5.7
15.000	5.8	5.8	5.8	5.8	5.9
15.500	5.9	5.9	5.9	6.0	6.0
16.000	6.0	6.0	6.0	6.0	6.1
16.500	6.1	6.1	6.1	6.1	6.1
17.000	6.1	6.2	6.2	6.2	6.2
17.500	6.2	6.2	6.2	6.3	6.3
18.000	6.3	6.3	6.3	6.3	6.3
18.500	6.3	6.3	6.3	6.4	6.4
19.000	6.4	6.4	6.4	6.4	6.4
19.500	6.4	6.4	6.4	6.5	6.5
20.000	6.5	6.5	6.5	6.5	6.5
20.500	6.5	6.5	6.5	6.5	6.5
21.000	6.6	6.6	6.6	6.6	6.6
21.500	6.6	6.6	6.6	6.6	6.6

Subsection: Time-Depth Curve Return Event: 50 years Label: Rockingham Co - NH Storm Event: 50-yr

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
22.000	6.6	6.6	6.6	6.7	6.7
22.500	6.7	6.7	6.7	6.7	6.7
23.000	6.7	6.7	6.7	6.7	6.7
23.500	6.7	6.7	6.7	6.7	6.8
24.000	6.8	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time of Concentration Calculations

Label: Area 2- Post

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.240
Slope	0.140 ft/ft
2 Year 24 Hour Depth	3.0 in
Average Velocity	0.25 ft/s
Segment Time of Concentration	0.113 hours

Segment #2: TR-55 Shallow Concentrated Flow		
Hydraulic Length	1,630.00 ft	
Is Paved?	False	
Slope	0.030 ft/ft	
Average Velocity	2.79 ft/s	
Segment Time of Concentration	0.162 hours	

Time of Concentration (Composite)	
Time of Concentration (Composite)	0.275 hours

Return Event: 2 years

Storm Event: 2-yr

Subsection: Time of Concentration Calculations Return Event: 2 years

Label: Area 2- Post Storm Event: 2-yr

==== SCS Channel Flow

R = Qa / Wp

Tc = V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: SI = Slope, TI/TITc = Time of concentration, hours

Lf= Flow length, feet

Subsection: Time of Concentration Calculations

Return Event: 2 years Label: Area-1A-Post Storm Event: 2-yr

Time of Concentration Results

time of Concentration Results	
Segment #1: TR-55 Sheet Flo	W
Hydraulic Length	100.00 ft
Manning's n	0.240
Slope	0.030 ft/ft
2 Year 24 Hour Depth	3.0 in
Average Velocity	0.13 ft/s
Segment Time of Concentration	0.209 hours
Segment #2: TR-55 Shallow C	oncentrated Flow
Hydraulic Length	970.00 ft
Is Paved?	False
Slope	0.057 ft/ft
Average Velocity	3.85 ft/s
Segment Time of Concentration	0.070 hours
Segment #3: TR-55 Shallow C	oncentrated Flow
Hydraulic Length	81.00 ft
Is Paved?	False
Slope	0.062 ft/ft
Average Velocity	4.02 ft/s
Segment Time of Concentration	0.006 hours
Time of Concentration (Compo	site)
Time of Concentration (Composite)	0.284 hours

(Composite)

Subsection: Time of Concentration Calculations Return Event: 2 years

Storm Event: 2-yr Label: Area-1A-Post

==== SCS Channel Flow

R = Qa / Wp

 $V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$ Tc =

> (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet

> Wp= Wetted perimeter, feet

V= Velocity, ft/sec Where:

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: Tc= Time of concentration, hours

Lf= Flow length, feet

Subsection: Time of Concentration Calculations

Return Event: 2 years Label: Area-1F-Post Storm Event: 2-yr

Time of Concentration Results

Time or concentration results			
Segment #1: TR-55 Sheet Flow			
Hydraulic Length	100.00 ft		
Manning's n	0.240		
Slope	0.075 ft/ft		
2 Year 24 Hour Depth	3.0 in		
Average Velocity	0.19 ft/s		
Segment Time of Concentration	0.145 hours		
Segment #2: TR-55 Shallow Concentrated Flow			
Hydraulic Length	533.00 ft		
Is Paved?	False		
Slope	0.066 ft/ft		
Average Velocity	4.15 ft/s		
Segment Time of Concentration	0.036 hours		
	`		
Time of Concentration (Composit	e)		
Time of Concentration (Composite)	0.180 hours		

Subsection: Time of Concentration Calculations Return Event: 2 years

Label: Area-1F-Post Storm Event: 2-yr

==== SCS Channel Flow

R = Qa / Wp

 $V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$ Tc =

> (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet

V= Velocity, ft/sec Where:

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: Tc= Time of concentration, hours

Lf= Flow length, feet

Subsection: Time of Concentration Calculations

Return Event: 2 years Label: Area-1-Pre Storm Event: 2-yr

Time of Concentration Results

Time of Concentration Results	
Segment #1: TR-55 Sheet Flo	ow
Hydraulic Length	100.00 ft
Manning's n	0.240
Slope	0.030 ft/ft
2 Year 24 Hour Depth	3.0 in
Average Velocity	0.13 ft/s
Segment Time of Concentration	0.210 hours
Segment #2: TR-55 Shallow (Concentrated Flow
Hydraulic Length	1,615.00 ft
Is Paved?	False
Slope	0.069 ft/ft
Average Velocity	4.24 ft/s

Time of Concentration	(Composite)

Segment Time of

Concentration

	(/
Time of Concentration (Composite)	0.315 hours

0.106 hours

Subsection: Time of Concentration Calculations Return Event: 2 years Storm Event: 2-yr Label: Area-1-Pre

==== SCS Channel Flow

R = Qa / Wp

 $V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$ Tc =

> (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet

> Wp= Wetted perimeter, feet

V= Velocity, ft/sec Where: Sf= Slope, ft/ft

n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: Tc= Time of concentration, hours

Lf= Flow length, feet

Subsection: Time of Concentration Calculations

Label: Area-2- Pre

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.240
Slope	0.096 ft/ft
2 Year 24 Hour Depth	3.0 in
Average Velocity	0.21 ft/s
Segment Time of Concentration	0.131 hours

Segment #2: TR-55 Shallow Concentrated Flow						
Hydraulic Length	2,038.00 ft					
Is Paved?	False					
Slope	0.042 ft/ft					
Average Velocity	3.31 ft/s					
Segment Time of Concentration	0.171 hours					

Time of Concentration (Composite)					
Time of Concentration (Composite)	0.302 hours				

Return Event: 2 years

Storm Event: 2-yr

Subsection: Time of Concentration Calculations Return Event: 2 years

Label: Area-2- Pre Storm Event: 2-yr

==== SCS Channel Flow

R = Qa / Wp

 $Tc = V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: SI = Slope, TI/TITc = Time of concentration, hours

Lf= Flow length, feet

Label: Area 2- Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	5.401	0.0	0.0	70.000
Meadow - cont. grass (non grazed) Soil C	71.000	1.077	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.615	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	7.093	(N/A)	(N/A)	70.845

Label: Area-1A-Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	2.778	0.0	0.0	70.000
Meadow - cont. grass (non grazed) Soil B	58.000	0.099	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	4.852	0.0	0.0	71.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.071	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-of- way) - Soil C	89.000	0.002	0.0	0.0	89.000
Water/Pond Soil C	98.000	0.158	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	7.960	(N/A)	(N/A)	71.271

Label: Area-1B-Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil B	58.000	0.004	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.079	0.0	0.0	71.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.320	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-ofway) - Soil B	85.000	0.071	0.0	0.0	85.000
Impervious Areas - Gravel (w/ right-of- way) - Soil C	89.000	3.391	0.0	0.0	89.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	3.865	(N/A)	(N/A)	89.272

Label: Area-1C-Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil B	58.000	0.071	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.049	0.0	0.0	71.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.120	(N/A)	(N/A)	63.308

Label: Area-1D-Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil B	58.000	0.230	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.327	0.0	0.0	71.000
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.268	0.0	0.0	85.000
Impervious Areas - Gravel (w/ right-of- way) - Soil C	89.000	0.011	0.0	0.0	89.000
Water/Pond	98.000	0.316	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.152	(N/A)	(N/A)	79.240

Label: Area-1E-Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil B	58.000	0.004	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.046	0.0	0.0	71.000
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.040	0.0	0.0	85.000
Impervious Areas - Gravel (w/ right-of- way) - Soil C	89.000	0.061	0.0	0.0	89.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.151	(N/A)	(N/A)	81.636

Label: Area-1F-Post Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil B	55.000	0.476	0.0	0.0	55.000
Woods - good - Soil C	70.000	3.720	0.0	0.0	70.000
Woods - good - Soil D	77.000	0.246	0.0	0.0	77.000
Meadow - cont. grass (non grazed) Soil B	58.000	0.042	0.0	0.0	58.000
Meadow - cont. grass (non grazed) Soil C	71.000	1.045	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.759	0.0	0.0	78.000
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.133	0.0	0.0	85.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	6.421	(N/A)	(N/A)	70.497

Label: Area-1-Pre Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil B	55.000	1.310	0.0	0.0	55.000
Woods - good - Soil C	70.000	11.024	0.0	0.0	70.000
Woods - good - Soil D	77.000	0.246	0.0	0.0	77.000
Meadow - cont. grass (non grazed) Soil C	71.000	4.230	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.760	0.0	0.0	78.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.071	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-of- way) - Soil B	85.000	0.127	0.0	0.0	85.000
Water/Pond	98.000	0.158	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	17.926	(N/A)	(N/A)	70.039

Label: Area-2- Pre Storm Event: 2-yr

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	7.049	0.0	0.0	70.000
Meadow - cont. grass (non grazed) Soil C	71.000	1.167	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.615	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	8.831	(N/A)	(N/A)	70.689

Label: Area 2- Post

Storm Event	2-yr	
Return Event	2	years
Duration	24.000	hours
Depth	3.0	in
Time of Concentration	0.275	hours
(Composite)	7.002	
Area (User Defined)	7.093	acres
Computational Time		
Increment	0.037	hours
Time to Peak (Computed)	12.238	hours
Flow (Peak, Computed)	3.91	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak	12.250	hours
Interpolated Output)		
Flow (Peak Interpolated Output)	3.88	ft³/s
Catpaty		
Drainage Area		
SCS CN (Composite)	71.000	
Area (User Defined)	7.093	acres
Maximum Retention (Pervious)	4.1	in
Maximum Retention (Pervious, 20 percent)	0.8	in
0 1: 5 "		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	0.7	in
Runoff Volume (Pervious)	0.443	ac-ft
Hydrograph Volume (Area under h	-lydrograph c	urve)
Volume	0.441	
volume	0.441	ac-ii
SCS Unit Hydrograph Parameters	1	
Time of Concentration (Composite)	0.275	hours
Computational Time Increment	0.037	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	29.24	ft³/s
Unit peak time, Tp	0.183	hours
Unit receding limb, Tr	0.733	hours
Total unit time, Tb	0.916	hours

Return Event: 2 years

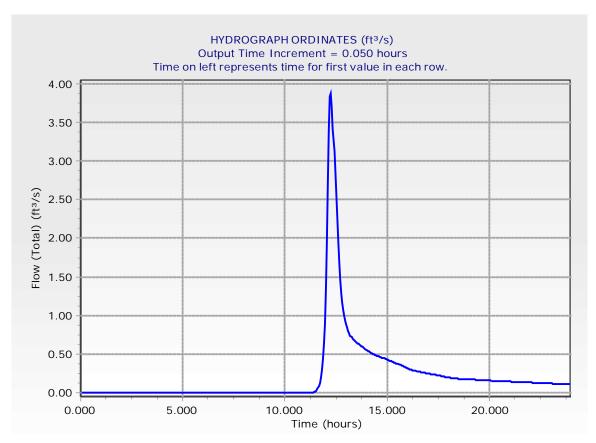
Storm Event: 2-yr

Return Event: 2 years Label: Area 2- Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.275 hours
Area (User Defined)	7.093 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft³/s)
11.350	0.00	0.00	0.01	0.02	0.03
11.600	0.05	0.08	0.13	0.20	0.30
11.850	0.44	0.62	0.89	1.33	1.96
12.100	2.71	3.40	3.84	3.88	3.70
12.350	3.42	3.13	2.83	2.53	2.23
12.600	1.93	1.67	1.45	1.28	1.16
12.850	1.07	1.00	0.94	0.89	0.84
13.100	0.80	0.77	0.74	0.72	0.70
13.350	0.69	0.67	0.66	0.65	0.64
13.600	0.63	0.62	0.61	0.60	0.59
13.850	0.58	0.57	0.56	0.55	0.54
14.100	0.53	0.52	0.51	0.51	0.50
14.350	0.49	0.49	0.48	0.48	0.47
14.600	0.47	0.46	0.46	0.45	0.45
14.850	0.44	0.44	0.43	0.43	0.42
15.100	0.42	0.41	0.41	0.40	0.40
15.350	0.39	0.38	0.38	0.37	0.37
15.600	0.36	0.36	0.35	0.34	0.34
15.850	0.33	0.33	0.32	0.32	0.31
16.100	0.30	0.30	0.29	0.29	0.29
16.350	0.28	0.28	0.28	0.28	0.27
16.600	0.27	0.27	0.27	0.26	0.26
16.850	0.26	0.26	0.25	0.25	0.25
17.100	0.24	0.24	0.24	0.24	0.23
17.350	0.23	0.23	0.23	0.22	0.22
17.600	0.22	0.22	0.21	0.21	0.21
17.850	0.20	0.20	0.20	0.20	0.19
18.100	0.19	0.19	0.19	0.19	0.18
18.350	0.18	0.18	0.18	0.18	0.18
18.600	0.18	0.18	0.18	0.18	0.18
18.850	0.18	0.17	0.17	0.17	0.17
19.100	0.17	0.17	0.17	0.17	0.17
19.350	0.17	0.17	0.17	0.17	0.16
19.600	0.16	0.16	0.16	0.16	0.16
19.850	0.16	0.16	0.16	0.16	0.16
20.100	0.16	0.15	0.15	0.15	0.15
20.350	0.15	0.15	0.15	0.15	0.15
20.600 20.850	0.15 0.15	0.15 0.15	0.15 0.14	0.15 0.14	0.15 0.14
21.100		0.15	0.14	0.14	0.14
21.350	0.14 0.14	0.14	0.14	0.14	0.14
21.600	0.14	0.14	0.14	0.14	0.14
21.850		0.14			0.13
21.000	0.13	0.13	0.13	U.13	0.13

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area 2- Post

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.100	0.13	0.13	0.13	0.13	0.13
22.350	0.13	0.13	0.13	0.13	0.13
22.600	0.12	0.12	0.12	0.12	0.12
22.850	0.12	0.12	0.12	0.12	0.12
23.100	0.12	0.12	0.12	0.12	0.12
23.350	0.11	0.11	0.11	0.11	0.11
23.600	0.11	0.11	0.11	0.11	0.11
23.850	0.11	0.11	0.11	0.11	(N/A)

Return Event: 2 years Label: Area 2- Post Storm Event: 2-yr

Label: Area 2- Post

Return Event: 10 years Storm Event: 10-yr

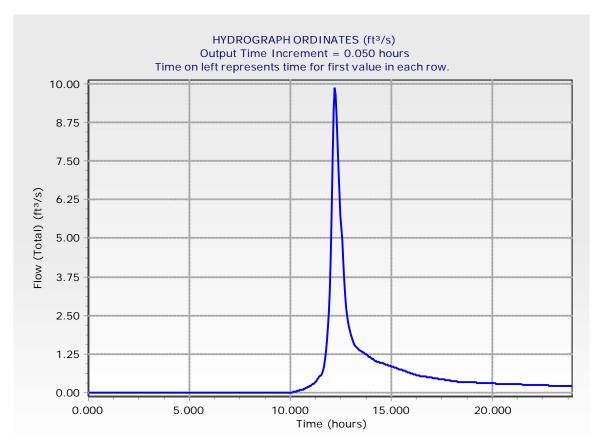
Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.275 hours
Area (User Defined)	7.093 acres
Computational Time	0.037 hours
Time to Peak (Computed)	12.201 hours
Flow (Peak, Computed)	9.90 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.200 hours
Flow (Peak Interpolated Output)	9.89 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	7.093 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention	0.8 in
(Pervious, 20 percent)	0.0 111
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.7 in
Runoff Volume (Pervious)	1.024 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	1.020 ac-ft
SCS Unit Hydrograph Parameter	'S
Time of Concentration (Composite)	0.275 hours
Computational Time Increment	0.037 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	29.24 ft ³ /s
Unit peak time, Tp	0.183 hours
Unit receding limb, Tr	0.733 hours
Total unit time, Tb	0.916 hours

Return Event: 10 years Label: Area 2- Post Storm Event: 10-yr

10-yr
10 years
24.000 hours
4.5 in
0.275 hours
7.093 acres

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.950	0.00	0.00	0.01	0.01	0.02
10.200	0.02	0.03	0.04	0.05	0.06
10.450	0.07	0.08	0.10	0.11	0.12
10.700	0.14	0.15	0.16	0.18	0.20
10.950	0.21	0.23	0.25	0.27	0.29
11.200	0.32	0.35	0.39	0.43	0.47
11.450	0.51	0.56	0.63	0.72	0.85
11.700	1.05	1.32	1.67	2.11	2.62
11.950	3.34	4.47	6.02	7.73	9.16
12.200	9.89	9.67	8.98	8.09	7.25
12.450	6.46	5.70	4.95	4.25	3.63
12.700	3.14	2.76	2.48	2.28	2.11
12.950	1.98	1.87	1.77	1.68	1.60
13.200	1.54	1.49	1.45	1.42	1.39
13.450	1.36	1.34	1.32	1.30	1.27
13.700	1.25	1.23	1.21	1.19	1.16
13.950	1.14	1.12	1.10	1.08	1.06
14.200	1.04	1.02	1.01	1.00	0.98
14.450	0.97	0.96	0.95	0.94	0.93
14.700	0.92	0.91	0.90	0.89	0.87
14.950	0.86	0.85	0.84	0.83	0.82
15.200	0.81	0.80	0.78	0.77	0.76
15.450	0.75	0.74	0.73	0.72	0.70
15.700	0.69	0.68	0.67	0.66	0.64
15.950	0.63	0.62	0.61	0.60	0.59
16.200	0.58	0.57	0.56	0.56	0.55
16.450	0.54	0.54	0.53	0.53	0.52
16.700	0.52	0.51	0.51	0.50	0.50
16.950	0.49	0.49	0.48	0.48	0.47
17.200	0.47	0.46	0.46	0.45	0.45
17.450	0.44	0.43	0.43	0.42	0.42
17.700 17.950	0.41 0.39	0.41 0.38	0.40 0.38	0.40 0.37	0.39 0.37
18.200	0.36	0.36	0.36	0.35	0.35
18.450	0.35	0.35	0.35	0.35	0.34
18.700	0.33	0.34	0.34	0.34	0.34
18.950	0.34	0.34	0.34	0.34	0.33
19.200	0.33	0.33	0.33	0.32	0.33
19.450	0.33	0.33	0.32	0.32	0.32
19.700	0.32	0.31	0.32	0.31	0.30
19.950	0.30	0.30	0.30	0.30	0.30
20.200	0.30	0.29	0.29	0.29	0.29
20.450	0.29	0.29	0.29	0.29	0.28

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 10 years

Label: Area 2- Post

Storm Event: 10-yr

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.700	0.28	0.28	0.28	0.28	0.28
20.950	0.28	0.28	0.28	0.27	0.27
21.200	0.27	0.27	0.27	0.27	0.27
21.450	0.27	0.26	0.26	0.26	0.26
21.700	0.26	0.26	0.26	0.26	0.25
21.950	0.25	0.25	0.25	0.25	0.25
22.200	0.25	0.25	0.24	0.24	0.24
22.450	0.24	0.24	0.24	0.24	0.24
22.700	0.23	0.23	0.23	0.23	0.23
22.950	0.23	0.23	0.23	0.22	0.22
23.200	0.22	0.22	0.22	0.22	0.22
23.450	0.22	0.22	0.21	0.21	0.21
23.700	0.21	0.21	0.21	0.21	0.20
23.950	0.20	0.20	(N/A)	(N/A)	(N/A)

Return Event: 10 years Label: Area 2- Post Storm Event: 10-yr

Label: Area 2- Post

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.275 hours
Area (User Defined)	7.093 acres
Computational Time Increment	0.037 hours
Time to Peak (Computed)	12.201 hours
Flow (Peak, Computed)	20.68 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.200 hours
Flow (Peak Interpolated Output)	20.66 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	7.093 acres
Maximum Retention	
(Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.5 in
Runoff Volume (Pervious)	2.082 ac-ft
· · · · · · · · · · · · · · · · · · ·	
Hydrograph Volume (Area under I	Hydrograph curve)
Volume	2.076 ac-ft
SCS Unit Hydrograph Parameters	3
Time of Concentration (Composite)	0.275 hours
Computational Time Increment	0.037 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	29.24 ft ³ /s
Unit peak time, Tp	0.183 hours
Unit receding limb, Tr	0.733 hours
Total unit time, Tb	0.916 hours

Return Event: 50 years

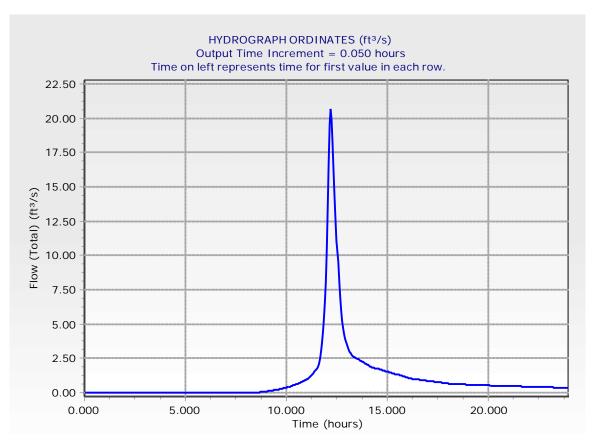
Storm Event: 50-yr

Return Event: 50 years Label: Area 2- Post Storm Event: 50-yr

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.275 hours
Area (User Defined)	7.093 acres

	ne on lett rep				
Time	Flow	Flow	Flow	Flow	Flow (ft³/s)
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	
8.350	0.00	0.00	0.01	0.01	0.02
8.600	0.02	0.03	0.04	0.04	0.05
8.850	0.06	0.07	0.08	0.09	0.10
9.100	0.11	0.13	0.14	0.15	0.16
9.350	0.18	0.19	0.20	0.22	0.23
9.600	0.25	0.26	0.28	0.29	0.31
9.850	0.32	0.34	0.36	0.38	0.39
10.100	0.41	0.43	0.46	0.48	0.50
10.350	0.53	0.56	0.59	0.61	0.65
10.600	0.68	0.71	0.74	0.78	0.81
10.850	0.85	0.88	0.92	0.96	1.00
11.100	1.05	1.10	1.17	1.24	1.33
11.350	1.43	1.53	1.64	1.76	1.91
11.600	2.12	2.45	2.94	3.61	4.43
11.850	5.42	6.56	8.09	10.44	13.57
12.100	16.91	19.53	20.66	19.87	18.19
12.350	16.18	14.34	12.66	11.07	9.55
12.600	8.15	6.93	5.96	5.21	4.68
12.850	4.28	3.96	3.70	3.48	3.28
13.100	3.11	2.97	2.85	2.75	2.68
13.350	2.61	2.56	2.51	2.47	2.42
13.600	2.38	2.34	2.29	2.25	2.21
13.850	2.17	2.13	2.08	2.04	2.00
14.100	1.96	1.92	1.89	1.86	1.83
14.350	1.81	1.78	1.76	1.74	1.72
14.600	1.70	1.68	1.66	1.64	1.62
14.850	1.60	1.58	1.56	1.53	1.51
15.100	1.49	1.47	1.45	1.43	1.41
15.350	1.39	1.37	1.34	1.32	1.30
15.600	1.28	1.26	1.24	1.22	1.19
15.850	1.17	1.15	1.13	1.11	1.09
16.100	1.07	1.05	1.03	1.02	1.00
16.350	0.99	0.98	0.97	0.96	0.95
16.600	0.94	0.93	0.92	0.91	0.90
16.850	0.89	0.88	0.88	0.87	0.86
17.100	0.85	0.84	0.83	0.82	0.81
17.350	0.80	0.79	0.78	0.77	0.76
17.600	0.75	0.74	0.73	0.72	0.71
17.850	0.70	0.69	0.68	0.67	0.66
18.100	0.66	0.65	0.64	0.63	0.63
18.350	0.63	0.62	0.62	0.62	0.61
18.600	0.61	0.61	0.60	0.60	0.60
18.850	0.60	0.59	0.59	0.59	0.58

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 50 years

Label: Area 2- Post

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)
19.100	0.58	0.58	0.58	0.57	0.57
19.350	0.57	0.56	0.56	0.56	0.56
19.600	0.55	0.55	0.55	0.54	0.54
19.850	0.54	0.54	0.53	0.53	0.53
20.100	0.52	0.52	0.52	0.52	0.52
20.350	0.51	0.51	0.51	0.51	0.50
20.600	0.50	0.50	0.50	0.49	0.49
20.850	0.49	0.49	0.49	0.48	0.48
21.100	0.48	0.48	0.48	0.47	0.47
21.350	0.47	0.47	0.46	0.46	0.46
21.600	0.46	0.46	0.45	0.45	0.45
21.850	0.45	0.45	0.44	0.44	0.44
22.100	0.44	0.43	0.43	0.43	0.43
22.350	0.43	0.42	0.42	0.42	0.42
22.600	0.41	0.41	0.41	0.41	0.41
22.850	0.40	0.40	0.40	0.40	0.39
23.100	0.39	0.39	0.39	0.39	0.38
23.350	0.38	0.38	0.38	0.38	0.37
23.600	0.37	0.37	0.37	0.36	0.36
23.850	0.36	0.36	0.35	0.35	(N/A)

Return Event: 50 years Label: Area 2- Post Storm Event: 50-yr

Label: Area 2- Post

Storm Event 100-yr Return Event 100 years Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) Area (User Defined) 7.093 acres Computational Time Increment 0.037 hours Flow (Peak, Computed) 12.201 hours Flow (Peak, Computed) 27.26 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 13.200 hours Flow (Peak Interpolated Output) 14.1 in Computed Increment 15.200 hours Flow (Peak Interpolated Output) 15.200 hours Flow (Peak Interpolated Output) 15.200 hours Flow (Peak Interpolated Output) 16.200 hours Flow (Peak Interpolated Output) 17.000 Flow (Peak Interpolated Output) 17.000 Flow (Peak Interpolated Output) 17.000 Flow (Pervious) 17.000 Flow (Peak Interpolated Output) 17.000 Flow (Peak Interpolated Interpolated Output) 17.000 Flow (Peak Interpolated Interpol		
Duration 24,000 hours Depth 8.1 in Time of Concentration (Composite) 7.093 acres Computational Time 0.037 hours Increment 1.2201 hours Flow (Peak, Computed) 12.201 hours Flow (Peak, Computed) 27.26 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 13.200 hours Flow (Peak Interpolated Output) 14.1 in Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 7.093 acres Maximum Retention (Pervious) 4.1 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 4.6 in Runoff Volume (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.275 hours (Composite) 0.275 hours (Computational Time 0.037 hours Increment 0.037 hours Increment 0.037 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	Storm Event	100-yr
Depth 8.1 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Peak Interpolated Out	Return Event	100 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Pervious) T	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	Depth	8.1 in
Computational Time Increment		0.275 hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Computed Increment Time to Peak (Computed) Flow (Peak, Computed) Coutput Increment Coutput Increment Coutput Increment Coutput) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Coutput Coutp	•	
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Unit peak, qp Unit receding limb, Tr O.050 hours 12.200 hours 12	Area (User Defined)	7.093 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Unit peak, qp Unit receding limb, Tr O.050 hours 12.200 hours 12		
Time to Peak (Computed) Flow (Peak, Computed) 27.26 ft³/s Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Prainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Volume (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Runoft Nolums Volume (Peak Interpolated Volume (Pervious) Volume Vo		0.037 hours
Flow (Peak, Computed) Output Increment Output Increment Output Normann Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Quartic Area under Hydrograph curve) Volume Quar		12.201 hours
Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.6 in Runoff Volume (Pervious) Volume 2.743 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	` ' '	
Interpolated Output) Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.6 in Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.24 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.733 hours	•	0.050 hours
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.24 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.733 hours	'	12 200 haves
Output) Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 7.093 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.275 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	Interpolated Output)	12.200 nours
Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 7.093 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.275 hours (Composite) 0.037 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours		27.24 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.733 hours	Output)	
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.733 hours	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.8 in 4.6 in 2.743 ac-ft 4.6 in 2.743 ac-ft 0.743 ac-ft 4.6 in 2.743 ac-ft 4.743 ac-ft 4.744 ac-ft 4.754 ac-ft 4.755 ac-ft 4.755 ac-ft 4.755 ac-ft 4.755 ac-ft 5.755 ac-ft 4.755 ac-ft 5.755 ac-ft 6.775 ac-ft 6.775 ac-ft 7.775 ac-ft 7.77		71 000
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.8 in 4.6 in 2.743 ac-ft 4.6 in 2.743 ac-ft 4.6 in 2.743 ac-ft 4.7 4.6 in 2.743 ac-ft 4.7 4.8 in 4.8 in 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.	, , ,	
Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.8 in 4.6 in 2.743 ac-ft 4.6 in 2.743 ac-ft 4.6 in 2.743 ac-ft 4.7 0.275 hours 0.275 hours 0.275 hours 1.670 1.6	,	7.093 dues
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor November Alexander Volume 0.275 hours 0.275 hours 0.37 hours 1.670 1.6		4.1 in
Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.743 ac-ft 4.6 in 4.6 in 4.6 in 4.6 in 4.6 in 4.7 4.6 in 4.6 in 4.7 4.6 in 4.6 in 4.7 4.8 in 4.9 4.7 4.9 4.7 4.9 4.7 4.7 4.7	Maximum Retention	0.8 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 4.6 in 4.6 in 4.6 in 4.6 in 4.7 in 4.6 in 4.7 in 4.8 in 4.8 in 4.9 in 4.9 in 4.7 in 4.7 in 4.8 in	(Pervious, 20 percent)	0.0 111
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 4.6 in 4.6 in 4.6 in 4.6 in 4.7 in 4.6 in 4.7 in 4.8 in 4.8 in 4.9 in 4.9 in 4.7 in 4.7 in 4.8 in	Cumulative Runoff	
Runoff Volume (Pervious) Runoff Volume (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.743 ac-ft 0.275 hours 0.275 hours 0.37 hours 1.670		
Runoff Volume (Pervious) 2.743 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Unit peak, qp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.743 ac-ft 0.275 hours 0.275 hours 0.37 hours 1.670		4.6 in
Hydrograph Volume (Area under Hydrograph curve) Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.275 hours Computational Time 1 0.037 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	,	2.743 ac-ft
Volume 2.735 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.275 hours Computational Time 1 0.037 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours		
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.275 hours 0.37 hours 483.432 483.432 483.432 483.432 0.749 0.749 0.749 0.749 0.749 0.749 0.733 hours	Hydrograph Volume (Area under Hy	ydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Position 0.275 hours 0.037 hours 483.432 483.432 1670 1.670	Volume	2.735 ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Position 0.275 hours 0.037 hours 483.432 483.432 1670 1.670	CCC Hait I hadro week Downston	
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit notation 0.275 hours 483.432 483.432 18670 187900 18790 18790 18790 18790 18790 18790 18790 18790 187	5C5 Unit Hydrograph Parameters	
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit State of the state of th		0.275 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Value 483.432 483.432 1.670 0.749 1.670 0.183 hours 0.183 hours		0.037 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.24 ft³/s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	, , ,	483.432
Unit peak, qp 29.24 ft ³ /s Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	K Factor	0.749
Unit peak time, Tp 0.183 hours Unit receding limb, Tr 0.733 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 0.733 hours	Unit peak, qp	29.24 ft ³ /s
	Unit peak time, Tp	0.183 hours
Total unit time, Tb 0.916 hours	Unit receding limb, Tr	0.733 hours
	Total unit time, Tb	0.916 hours

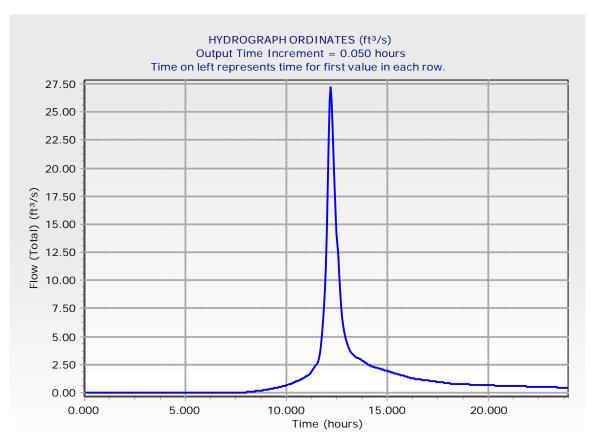
Return Event: 100 years Storm Event: 100-yr

Return Event: 100 years Label: Area 2- Post Storm Event: 100-yr

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.275 hours
Area (User Defined)	7.093 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
7.600	0.00	0.00	0.01	0.01	0.02
7.850	0.02	0.03	0.03	0.04	0.05
8.100	0.06	0.06	0.07	0.08	0.09
8.350	0.10	0.11	0.12	0.13	0.14
8.600	0.15	0.17	0.18	0.19	0.21
8.850	0.22	0.23	0.25	0.26	0.28
9.100	0.30	0.31	0.33	0.35	0.37
9.350	0.39	0.40	0.42	0.44	0.46
9.600	0.48	0.51	0.53	0.55	0.57
9.850	0.59	0.62	0.64	0.67	0.69
10.100	0.72	0.74	0.77	0.81	0.84
10.350	0.88	0.92	0.96	1.00	1.04
10.600	1.08	1.13	1.17	1.22	1.27
10.850	1.31	1.36	1.41	1.47	1.52
11.100	1.58	1.66	1.75	1.85	1.97
11.350	2.11	2.25	2.40	2.56	2.76
11.600	3.06	3.51	4.19	5.11	6.23
11.850	7.57	9.09	11.12	14.20	18.30
12.100	22.61	25.92	27.24	26.07	23.75
12.350	21.05	18.60	16.36	14.26	12.28
12.600	10.46	8.89	7.63	6.66	5.97
12.850	5.45	5.04	4.71	4.43	4.18
13.100	3.96	3.77	3.61	3.49	3.39
13.350	3.32	3.25	3.18	3.12	3.07
13.600	3.01	2.96	2.90	2.85	2.79
13.850	2.74	2.69	2.63	2.58	2.52
14.100	2.47	2.42	2.38	2.34	2.31
14.350	2.28	2.25	2.22	2.20	2.17
14.600	2.14	2.12	2.09	2.06	2.04
14.850	2.01	1.98	1.96	1.93	1.90
15.100	1.88	1.85	1.82	1.80	1.77
15.350	1.74	1.72	1.69	1.66	1.64
15.600	1.61	1.58	1.55	1.53	1.50
15.850	1.47	1.45	1.42	1.39	1.36
16.100	1.34	1.31	1.29	1.27	1.26
16.350	1.24	1.23	1.22	1.20	1.19
16.600	1.18	1.17	1.16	1.14	1.13
16.850	1.12	1.11	1.10	1.08	1.07
17.100	1.06	1.05	1.04	1.02	1.01
17.350	1.00	0.99	0.98	0.96	0.95
17.600	0.94	0.93	0.92	0.90	0.89
17.850	0.88	0.87	0.86	0.84	0.83
18.100	0.82	0.81	0.80	0.79	0.79

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 100 years

Label: Area 2- Post

Storm Event: 100-yr

	• • • • • • • • • • • • • • • • • • • •	ne on left rep	or escrits time	c ioi ilist vai	ac iii cacii i c	,
	Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
I	18.350	0.78	0.78	0.77	0.77	0.77
	18.600	0.76	0.76	0.76	0.75	0.75
	18.850	0.75	0.74	0.74	0.73	0.73
	19.100	0.73	0.72	0.72	0.72	0.71
	19.350	0.71	0.71	0.70	0.70	0.70
	19.600	0.69	0.69	0.68	0.68	0.68
	19.850	0.67	0.67	0.67	0.66	0.66
	20.100	0.66	0.65	0.65	0.65	0.64
	20.350	0.64	0.64	0.63	0.63	0.63
	20.600	0.63	0.62	0.62	0.62	0.61
	20.850	0.61	0.61	0.61	0.60	0.60
	21.100	0.60	0.60	0.59	0.59	0.59
	21.350	0.59	0.58	0.58	0.58	0.57
	21.600	0.57	0.57	0.57	0.56	0.56
	21.850	0.56	0.56	0.55	0.55	0.55
	22.100	0.54	0.54	0.54	0.54	0.53
	22.350	0.53	0.53	0.52	0.52	0.52
	22.600	0.52	0.51	0.51	0.51	0.51
	22.850	0.50	0.50	0.50	0.49	0.49
	23.100	0.49	0.49	0.48	0.48	0.48
	23.350	0.47	0.47	0.47	0.47	0.46
	23.600	0.46	0.46	0.46	0.45	0.45
	23.850	0.45	0.44	0.44	0.44	(N/A)

Return Event: 100 years Label: Area 2- Post Storm Event: 100-yr

Label: Area-1A-Post

Storm Event	2-yr	
Return Event	2 years	
Duration	24.000 hours	
Depth	3.0 in	
Time of Concentration (Composite)	0.284 hours	
Area (User Defined)	7.960 acres	
Computational Time Increment	0.038 hours	
Time to Peak (Computed)	12.249 hours	
Flow (Peak, Computed)	4.33 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	12.250 hours	
Flow (Peak Interpolated	4.33 ft ³ /s	
Output)	1.00 11 73	
Drainage Area		
SCS CN (Composite)	71.000	
Area (User Defined)	7.960 acres	
Maximum Retention (Pervious)	4.1 in	
Maximum Retention	0.01	
(Pervious, 20 percent)	0.8 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	0.7 in	
Runoff Volume (Pervious)	0.497 ac-ft	
Hydrograph Volume (Area under H	ydrograph curve)	
, , , ,	, , ,	
Volume	0.495 ac-ft	
Volume	0.495 ac-ft	
Volume SCS Unit Hydrograph Parameters	0.495 ac-ft	
	0.495 ac-ft 0.284 hours	
SCS Unit Hydrograph Parameters Time of Concentration		
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	0.284 hours	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment	0.284 hours 0.038 hours	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.284 hours 0.038 hours 483.432	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.284 hours 0.038 hours 483.432 0.749	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.284 hours 0.038 hours 483.432 0.749 1.670	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.284 hours 0.038 hours 483.432 0.749 1.670 31.71 ft ³ /s	

Return Event: 2 years

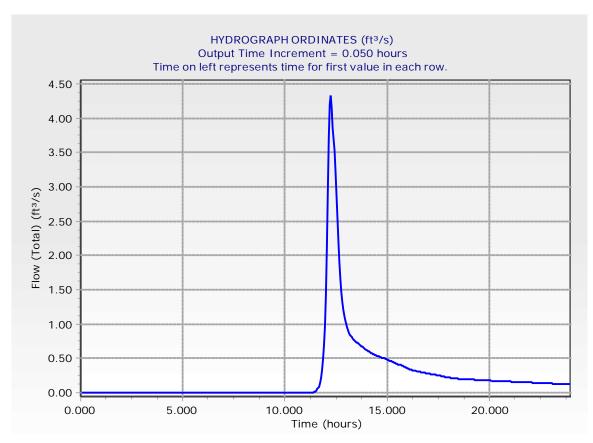
Storm Event: 2-yr

Return Event: 2 years Label: Area-1A-Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.284 hours
Area (User Defined)	7.960 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.350	0.00	0.00	0.01	0.02	0.03
11.600	0.05	0.09	0.14	0.22	0.33
11.850	0.48	0.67	0.96	1.44	2.12
12.100	2.94	3.71	4.21	4.33	4.15
12.350	3.86	3.54	3.22	2.89	2.55
12.600	2.21	1.91	1.66	1.47	1.33
12.850	1.22	1.14	1.07	1.01	0.96
13.100	0.91	0.87	0.84	0.81	0.79
13.350	0.77	0.76	0.75	0.73	0.72
13.600	0.71	0.70	0.69	0.68	0.67
13.850	0.66	0.64	0.63	0.62	0.61
14.100	0.60	0.59	0.58	0.57	0.56
14.350	0.56	0.55	0.54	0.54	0.53
14.600	0.53	0.52	0.52	0.51	0.50
14.850	0.50	0.49	0.49	0.48	0.48
15.100	0.47	0.46	0.46	0.45	0.44
15.350	0.44	0.43	0.43	0.42	0.41
15.600	0.41	0.40	0.39	0.39	0.38
15.850	0.37	0.37	0.36	0.35	0.35
16.100	0.34	0.34	0.33	0.33	0.32
16.350	0.32	0.32	0.31	0.31	0.31
16.600	0.30	0.30	0.30	0.30	0.29
16.850	0.29	0.29	0.28	0.28	0.28
17.100	0.28	0.27	0.27	0.27	0.26
17.350	0.26	0.26	0.25	0.25	0.25
17.600	0.25	0.24	0.24	0.24	0.23
17.850	0.23	0.23	0.22	0.22	0.22
18.100	0.22	0.21	0.21	0.21	0.21
18.350	0.21	0.20	0.20	0.20	0.20
18.600	0.20	0.20	0.20	0.20	0.20
18.850	0.20	0.20	0.19	0.19	0.19
19.100	0.19	0.19	0.19	0.19	0.19
19.350	0.19	0.19	0.19	0.19	0.18
19.600	0.18	0.18	0.18	0.18	0.18
19.850	0.18	0.18	0.18	0.18	0.18
20.100	0.17	0.17	0.17	0.17	0.17
20.350	0.17	0.17	0.17	0.17	0.17
20.600	0.17	0.17	0.17	0.17	0.16
20.850	0.16	0.16	0.16	0.16	0.16
21.100 21.350	0.16	0.16	0.16	0.16	0.16 0.15
21.350	0.16 0.15	0.16 0.15	0.16 0.15	0.16 0.15	0.15
21.800		0.15	0.15		0.15
21.850	0.15	0.15	0.15	0.15	U. 15

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1A-Post

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.100	0.15	0.15	0.15	0.14	0.14
22.350	0.14	0.14	0.14	0.14	0.14
22.600	0.14	0.14	0.14	0.14	0.14
22.850	0.14	0.14	0.13	0.13	0.13
23.100	0.13	0.13	0.13	0.13	0.13
23.350	0.13	0.13	0.13	0.13	0.13
23.600	0.13	0.12	0.12	0.12	0.12
23.850	0.12	0.12	0.12	0.12	(N/A)

Return Event: 2 years Label: Area-1A-Post Storm Event: 2-yr

Label: Area-1A-Post

Storm Event	10-yr	_
Return Event	10 years	
Duration	24.000 hours	
Depth	4.5 in	
Time of Concentration	0.284 hours	
(Composite)	7.040 0000	
Area (User Defined)	7.960 acres	
Computational Time		
Increment	0.038 hours	
Time to Peak (Computed)	12.211 hours	
Flow (Peak, Computed)	11.01 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak	12.200 hours	
Interpolated Output)		
Flow (Peak Interpolated Output)	10.90 ft ³ /s	
		_
Drainage Area		
SCS CN (Composite)	71.000	
Area (User Defined)	7.960 acres	
Maximum Retention (Pervious)	4.1 in	
Maximum Retention (Pervious, 20 percent)	0.8 in	
Cumulative Runoff		_
Cumulative Runoff Depth (Pervious)	1.7 in	
Runoff Volume (Pervious)	1.149 ac-ft	
		_
Hydrograph Volume (Area under Hy	ydrograph curve)	
Malaura a		
Volume	1.145 ac-ft	
	1.145 ac-ft	
SCS Unit Hydrograph Parameters		
	1.145 ac-ft 0.284 hours	
SCS Unit Hydrograph Parameters Time of Concentration		
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time	0.284 hours	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	0.284 hours 0.038 hours	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.284 hours 0.038 hours 483.432	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.284 hours 0.038 hours 483.432 0.749	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.284 hours 0.038 hours 483.432 0.749 1.670	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.284 hours 0.038 hours 483.432 0.749 1.670 31.71 ft ³ /s	

Return Event: 10 years

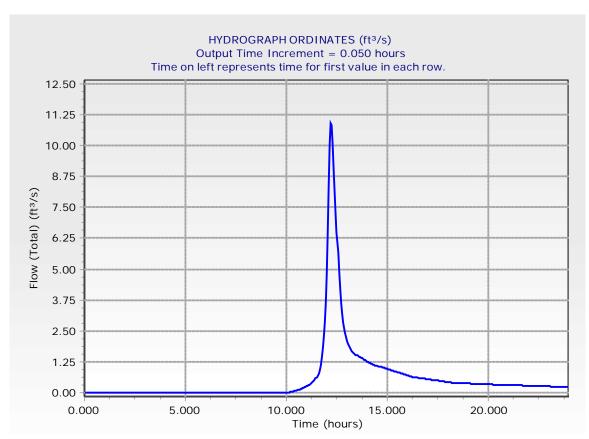
Storm Event: 10-yr

Return Event: 10 years Label: Area-1A-Post Storm Event: 10-yr

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.284 hours
Area (User Defined)	7.960 acres

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.950	0.00	0.00	0.01	0.01	0.02
10.200	0.02	0.03	0.04	0.05	0.07
10.450	0.08	0.09	0.10	0.12	0.13
10.700	0.15	0.17	0.18	0.20	0.22
10.950	0.24	0.26	0.28	0.30	0.33
11.200	0.35	0.39	0.43	0.47	0.52
11.450	0.57	0.63	0.70	0.79	0.93
11.700	1.15	1.44	1.83	2.30	2.87
11.950	3.65	4.87	6.54	8.43	10.03
12.200	10.90	10.83	10.11	9.17	8.24
12.450	7.37	6.52	5.67	4.89	4.19
12.700	3.61	3.18	2.85	2.61	2.41
12.950	2.26	2.12	2.00	1.90	1.81
13.200	1.74	1.68	1.64	1.60	1.57
13.450	1.54	1.51	1.48	1.46	1.43
13.700	1.41	1.38	1.36	1.34	1.31
13.950	1.29	1.26	1.24	1.21	1.19
14.200	1.17	1.15	1.13	1.12	1.11
14.450	1.09	1.08	1.07	1.06	1.04
14.700	1.03	1.02	1.01	1.00	0.98
14.950	0.97	0.96	0.95	0.93	0.92
15.200	0.91	0.90	0.88	0.87	0.86
15.450	0.84	0.83	0.82	0.80	0.79
15.700	0.78	0.76	0.75	0.74	0.72
15.950	0.71	0.70	0.68	0.67	0.66
16.200	0.65	0.64	0.63	0.63	0.62
16.450	0.61	0.61	0.60	0.59	0.59
16.700	0.58	0.58	0.57	0.57	0.56
16.950	0.55	0.55	0.54	0.54	0.53
17.200	0.52	0.52	0.51	0.51	0.50
17.450	0.49	0.49	0.48	0.48	0.47
17.700	0.46	0.46	0.45	0.45	0.44
17.950	0.43	0.43	0.42	0.42	0.41
18.200	0.41	0.40	0.40	0.40	0.40
18.450	0.39	0.39	0.39	0.39	0.39
18.700	0.38	0.38	0.38	0.38	0.38
18.950	0.38	0.37	0.37	0.37	0.37
19.200	0.37	0.37	0.36	0.36	0.36
19.450	0.36	0.36	0.35	0.35	0.35
19.700	0.35	0.35	0.35	0.34	0.34
19.950	0.34	0.34	0.34	0.34	0.33
20.200	0.33	0.33	0.33	0.33	0.33
20.450	0.32	0.32	0.32	0.32	0.32

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 10 years

Label: Area-1A-Post

Storm Event: 10-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.700	0.32	0.32	0.32	0.31	0.31
20.950	0.31	0.31	0.31	0.31	0.31
21.200	0.30	0.30	0.30	0.30	0.30
21.450	0.30	0.30	0.29	0.29	0.29
21.700	0.29	0.29	0.29	0.29	0.29
21.950	0.28	0.28	0.28	0.28	0.28
22.200	0.28	0.28	0.27	0.27	0.27
22.450	0.27	0.27	0.27	0.27	0.27
22.700	0.26	0.26	0.26	0.26	0.26
22.950	0.26	0.26	0.25	0.25	0.25
23.200	0.25	0.25	0.25	0.25	0.24
23.450	0.24	0.24	0.24	0.24	0.24
23.700	0.24	0.23	0.23	0.23	0.23
23.950	0.23	0.23	(N/A)	(N/A)	(N/A)

Return Event: 10 years Label: Area-1A-Post Storm Event: 10-yr

Label: Area-1A-Post

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.284 hours
Area (User Defined)	7.960 acres
Computational Time Increment	0.038 hours
Time to Peak (Computed)	12.211 hours
Flow (Peak, Computed)	22.97 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.200 hours
Interpolated Output)	.2.200 110410
Flow (Peak Interpolated Output)	22.83 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	7.960 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.5 in
Runoff Volume (Pervious)	2.336 ac-ft
Lludro graph Valuma (Aragunda	ar Undragraph ourse)
Hydrograph Volume (Area unde	,
Volume	2.329 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.284 hours
Computational Time Increment	0.038 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	31.71 ft ³ /s
Unit peak time, Tp	0.190 hours
Unit receding limb, Tr	0.758 hours
Total unit time, Tb	0.948 hours

Return Event: 50 years

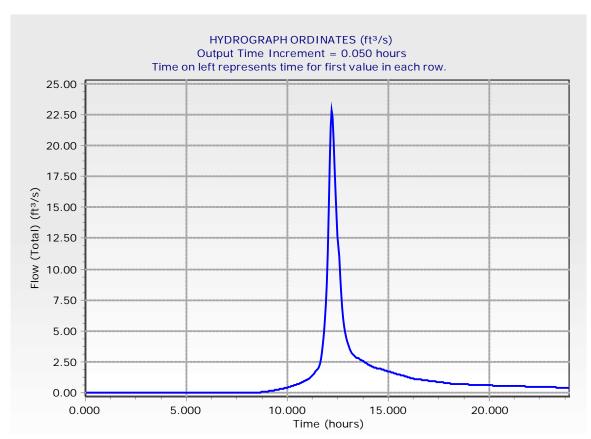
Storm Event: 50-yr

Return Event: 50 years Label: Area-1A-Post Storm Event: 50-yr

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.284 hours
Area (User Defined)	7.960 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.350	0.00	0.00	0.01	0.01	0.02
8.600	0.02	0.03	0.04	0.05	0.06
8.850	0.07	0.08	0.09	0.10	0.11
9.100	0.13	0.14	0.15	0.17	0.18
9.350	0.19	0.21	0.22	0.24	0.26
9.600	0.27	0.29	0.31	0.32	0.34
9.850	0.36	0.38	0.40	0.42	0.44
10.100	0.46	0.48	0.51	0.53	0.56
10.350	0.59	0.62	0.65	0.68	0.72
10.600	0.75	0.79	0.83	0.86	0.90
10.850	0.94	0.98	1.03	1.07	1.12
11.100	1.17	1.23	1.30	1.38	1.48
11.350	1.59	1.70	1.83	1.96	2.12
11.600	2.35	2.71	3.23	3.95	4.86
11.850	5.95	7.20	8.87	11.39	14.79
12.100	18.49	21.46	22.83	22.30	20.53
12.350	18.38	16.32	14.47	12.69	10.96
12.600	9.38	8.00	6.86	6.01	5.38
12.850	4.90	4.52	4.22	3.95	3.73
13.100	3.53	3.36	3.22	3.11	3.02
13.350	2.95	2.88	2.83	2.78	2.73
13.600	2.68	2.63	2.58	2.53	2.49
13.850	2.44	2.39	2.34	2.30	2.25
14.100	2.20	2.16	2.12	2.09	2.06
14.350	2.03	2.01	1.98	1.96	1.93
14.600	1.91	1.89	1.87	1.84	1.82
14.850	1.80	1.77	1.75	1.73	1.70
15.100	1.68	1.66	1.63	1.61	1.58
15.350	1.56	1.54	1.51	1.49	1.46
15.600	1.44	1.42	1.39	1.37	1.34
15.850	1.32	1.30	1.27	1.25	1.22
16.100	1.20	1.18	1.16	1.14	1.13
16.350	1.12	1.10	1.09	1.08	1.07
16.600	1.06	1.05	1.04	1.03	1.02
16.850	1.00	0.99	0.98	0.97	0.96
17.100	0.95	0.94	0.93	0.92	0.91
17.350	0.90	0.89	0.88	0.87	0.86
17.600	0.84	0.83	0.82	0.81	0.80
17.850	0.79	0.78	0.77	0.76	0.75
18.100	0.74	0.73	0.72	0.71	0.71
18.350	0.70	0.70	0.70	0.69	0.69
18.600	0.69	0.68	0.68	0.68	0.67
18.850	0.67	0.67	0.66	0.66	0.66

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 50 years

Label: Area-1A-Post

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)
19.100	0.65	0.65	0.65	0.64	0.64
19.350	0.64	0.63	0.63	0.63	0.62
19.600	0.62	0.62	0.62	0.61	0.61
19.850	0.61	0.60	0.60	0.60	0.59
20.100	0.59	0.59	0.58	0.58	0.58
20.350	0.58	0.57	0.57	0.57	0.57
20.600	0.56	0.56	0.56	0.56	0.55
20.850	0.55	0.55	0.55	0.54	0.54
21.100	0.54	0.54	0.53	0.53	0.53
21.350	0.53	0.52	0.52	0.52	0.52
21.600	0.51	0.51	0.51	0.51	0.50
21.850	0.50	0.50	0.50	0.50	0.49
22.100	0.49	0.49	0.49	0.48	0.48
22.350	0.48	0.47	0.47	0.47	0.47
22.600	0.47	0.46	0.46	0.46	0.46
22.850	0.45	0.45	0.45	0.45	0.44
23.100	0.44	0.44	0.44	0.43	0.43
23.350	0.43	0.43	0.42	0.42	0.42
23.600	0.42	0.41	0.41	0.41	0.41
23.850	0.40	0.40	0.40	0.39	(N/A)

Return Event: 50 years Storm Event: 50-yr Label: Area-1A-Post

Label: Area-1A-Post

Storm Event 100-yr Return Event 100 years Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) Area (User Defined) 7.960 acres Computational Time Increment 0.038 hours Time to Peak (Computed) 12.211 hours Flow (Peak, Computed) 30.27 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 30.13 ft³/s Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 7.960 acres Maximum Retention (Pervious) 4.1 in (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.284 hours (Composite) 0.38 hours Increment 0.038 hours		
Return Event Duration Duration Depth Duration Depth R.1 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Interpolated Output) Flow (Peak Interpolated Output) Trime to Peined) Trime to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Trime to Flow (Peak Interpolated Output) Trime (Peak Interpolated Output) Trime (Peak Interpolated Output) Trime (Pervious) Trime (Pervious) Trime (Pervious) Trime (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Trime of Concentration (Pervious) Trime of Concentration (Composite) Trime of	Storm Event	100-yr
Depth 8.1 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.758 hours	Return Event	
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Pervious) Tow (Peak Interpolated Output) Tow (Pervious, 20 percent) Cumulative Runoff Cu	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Computed) Time to Flow (Peak Interpolated Output) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Trainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp O.190 hours Unit receding limb, Tr O.758 hours	Depth	8.1 in
Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Pervious) Flow (Peak Interpolated Output) Flow (Pervious) Flow (Peak Interpolated Output) Flow (Pervious) Flow (Peak Interpolated Output) Flow (Peak Interpol		0.284 hours
Increment Time to Peak (Computed) Time to Peak (Computed) Time to Peak, Computed) Time to Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Time to Composite) Time of Composite) Time of Concentration (Composite) Time of Concentration (Composite) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.758 hours	•	7.960 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Time to Peak, Computed) Time to Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Time to Composite) Time of Composite) Time of Concentration (Composite) Time of Concentration (Composite) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.758 hours		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-749 Receding/Rising, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours	•	0.038 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.6 in Runoff Volume (Pervious) Volume 3.078 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-749 Receding/Rising, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.758 hours	Time to Peak (Computed)	12.211 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.6 in Hydrograph Volume (Area under Hydrograph curve) Volume SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.758 hours 1000 1000 1000 1100 1100 1100 1100	Flow (Peak, Computed)	30.27 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.6 in Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.758 hours	Output Increment	0.050 hours
Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 7.960 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours	•	12.200 hours
Output) Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 7.960 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.284 hours (Composite) Computational Time Increment 0.038 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours		30 13 ft3/c
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Area (User Defined) Anaximum Retention (Pervious) Assimum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Authorize Runoff Volume (Pervious) Authorize Runoff Volume (Area under Hydrograph curve) Volume Authorize Runoff Depth (Pervious) Authorize Runoff Authoriz	Output)	30.13 11 73
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Congulational, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.758 hours	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Congulational, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.758 hours	SCS CN (Composite)	71.000
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.8 in 0.8 in 0.8 in 0.8 in 0.8 in	•	7.960 acres
Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.8 in 4.6 in 4.6 in 3.078 ac-ft 4.6 in 3.078 ac-ft 0.284 hours 0.284 hours 0.284 hours 0.784 hours 1.670 1		4.1 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 3.078 ac-ft 4.6 in 4.7 in 4.6 in 4.8 in 4.8 in 4.9 in 4.7 in 4.8 in 4.	Maximum Retention	0.8 in
Runoff Volume (Pervious) Runoff Volume (Pervious) 3.078 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.758 hours	Cumulative Runoff	
Hydrograph Volume (Area under Hydrograph curve) Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.284 hours Computational Time 10.038 hours Increment Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours		4.6 in
Volume 3.069 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 3.069 ac-ft 0.284 hours 0.038 hours 1.670 483.432 483.432 483.432 483.432 5.749 1.670	Runoff Volume (Pervious)	3.078 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr O.284 hours 0.038 hours 1.670 483.432 483.432 483.432 483.432 0.749 0.749 0.749 0.758 hours	Hydrograph Volume (Area under	Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Possible 10.284 hours 0.038 hours 483.432 483.432 483.432 483.432 483.432 0.749 0.749 0.749 0.758 hours	Volume	3.069 ac-ft
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr U.0.284 hours 0.038 hours 483.432 1.670 1.670 1.670 1.670 1.670 1.670 1.71 ft³/s 1.71 ft³/s 1.71 ft³/s 1.71 ft³/s	SCS Unit Hydrograph Parameters	S
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit shape 483.432 483.432 1670 1.670 1.670 0.190 hours 0.190 hours		0.284 hours
Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 31.71 ft³/s Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours	•	0.038 hours
Receding/Rising, Tr/Tp Unit peak, qp 31.71 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.758 hours		483.432
Unit peak, qp 31.71 ft ³ /s Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours	K Factor	0.749
Unit peak time, Tp 0.190 hours Unit receding limb, Tr 0.758 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 0.758 hours	Unit peak, qp	31.71 ft ³ /s
3	Unit peak time, Tp	0.190 hours
Total unit time, Tb 0.948 hours	Unit receding limb, Tr	0.758 hours
	Total unit time, Tb	0.948 hours

Return Event: 100 years

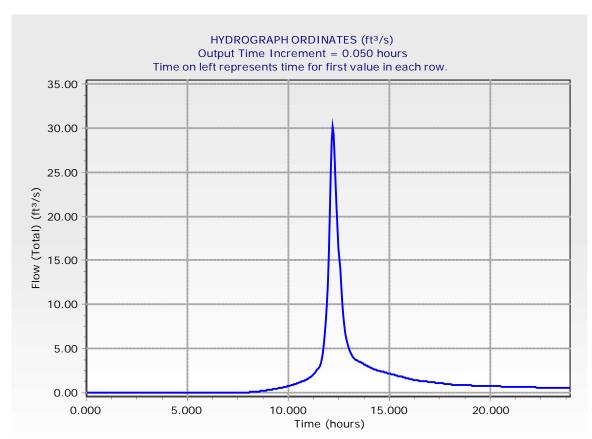
Storm Event: 100-yr

Return Event: 100 years Label: Area-1A-Post Storm Event: 100-yr

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.284 hours
Area (User Defined)	7.960 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
7.600	0.00	0.00	0.01	0.01	0.02
7.850	0.02	0.03	0.04	0.04	0.05
8.100	0.06	0.07	0.08	0.09	0.10
8.350	0.11	0.12	0.13	0.14	0.16
8.600	0.17	0.18	0.20	0.21	0.23
8.850	0.24	0.26	0.28	0.29	0.31
9.100	0.33	0.35	0.37	0.39	0.41
9.350	0.43	0.45	0.47	0.49	0.52
9.600	0.54	0.56	0.59	0.61	0.64
9.850	0.66	0.69	0.72	0.74	0.77
10.100	0.80	0.83	0.86	0.90	0.94
10.350	0.98	1.02	1.07	1.11	1.16
10.600	1.21	1.26	1.31	1.36	1.41
10.850	1.47	1.52	1.58	1.64	1.70
11.100	1.77	1.85	1.95	2.06	2.20
11.350	2.34	2.50	2.67	2.85	3.07
11.600	3.39	3.88	4.61	5.60	6.84
11.850	8.31	9.98	12.19	15.51	19.95
12.100	24.74	28.50	30.13	29.28	26.83
12.350	23.93	21.17	18.71	16.37	14.11
12.600	12.05	10.26	8.79	7.69	6.87
12.850	6.24	5.76	5.37	5.03	4.74
13.100	4.49	4.27	4.09	3.95	3.83
13.350	3.74	3.66	3.58	3.52	3.45
13.600	3.39	3.33	3.27	3.21	3.14
13.850	3.08	3.02	2.96	2.90	2.84
14.100	2.78	2.73	2.68	2.64	2.60
14.350	2.56	2.53	2.50	2.47	2.44
14.600	2.41	2.38	2.35	2.32	2.29
14.850	2.26	2.23	2.20	2.17	2.14
15.100	2.11	2.08	2.05	2.02	1.99
15.350	1.96	1.93	1.90	1.87	1.84
15.600	1.81	1.78	1.75	1.72	1.69
15.850	1.66	1.63	1.60	1.56	1.53
16.100	1.51	1.48	1.46	1.43	1.42
16.350	1.40	1.38	1.37	1.35	1.34
16.600	1.33	1.31	1.30	1.29	1.27
16.850	1.26	1.25	1.23	1.22	1.21
17.100	1.19	1.18	1.17	1.15	1.14
17.350	1.12	1.11	1.10	1.08	1.07
17.600	1.06	1.04	1.03	1.02 0.95	1.00 0.94
17.850	0.99	0.98	0.96		
18.100	0.92	0.91	0.90	0.89	0.89

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 100 years

Label: Area-1A-Post

Storm Event: 100-yr

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
18.350	0.88	0.87	0.87	0.87	0.86
18.600	0.86	0.85	0.85	0.85	0.84
18.850	0.84	0.83	0.83	0.82	0.82
19.100	0.82	0.81	0.81	0.80	0.80
19.350	0.80	0.79	0.79	0.78	0.78
19.600	0.78	0.77	0.77	0.76	0.76
19.850	0.76	0.75	0.75	0.74	0.74
20.100	0.74	0.73	0.73	0.73	0.72
20.350	0.72	0.72	0.71	0.71	0.71
20.600	0.70	0.70	0.70	0.69	0.69
20.850	0.69	0.68	0.68	0.68	0.68
21.100	0.67	0.67	0.67	0.66	0.66
21.350	0.66	0.65	0.65	0.65	0.64
21.600	0.64	0.64	0.64	0.63	0.63
21.850	0.63	0.62	0.62	0.62	0.61
22.100	0.61	0.61	0.61	0.60	0.60
22.350	0.60	0.59	0.59	0.59	0.58
22.600	0.58	0.58	0.57	0.57	0.57
22.850	0.56	0.56	0.56	0.56	0.55
23.100	0.55	0.55	0.54	0.54	0.54
23.350	0.53	0.53	0.53	0.53	0.52
23.600	0.52	0.52	0.51	0.51	0.51
23.850	0.50	0.50	0.50	0.49	(N/A)

Return Event: 100 years Storm Event: 100-yr Label: Area-1A-Post

Label: Area-1B-Post

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	7.36 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.100 hours
Interpolated Output)	121100 110410
Flow (Peak Interpolated Output)	7.33 ft ³ /s
Drainers Area	
Drainage Area	
SCS CN (Composite)	89.000
Area (User Defined)	3.865 acres
Maximum Retention (Pervious)	1.2 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.9 in
Runoff Volume (Pervious)	0.606 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	0.605 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	43.79 ft ³ /s
Unit peak time, Tp	0.067 hours
Unit receding limb, Tr	0.267 hours
Total unit time, Tb	0.333 hours

Return Event: 2 years

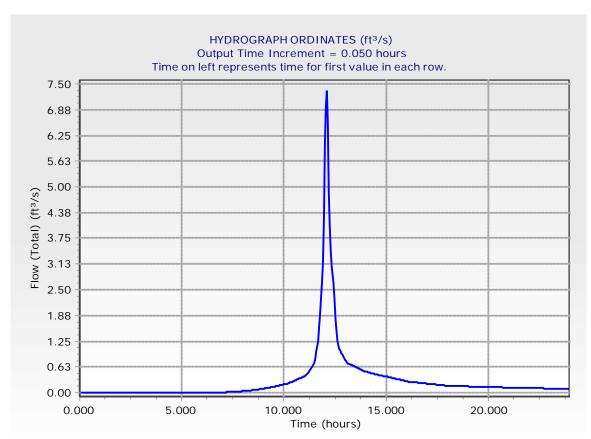
Storm Event: 2-yr

Return Event: 2 years Label: Area-1B-Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
6.700	0.00	0.00	0.00	0.00	0.00
6.950	0.01	0.01	0.01	0.01	0.01
7.200	0.01	0.01	0.01	0.02	0.02
7.450	0.02	0.02	0.02	0.02	0.03
7.700	0.03	0.03	0.03	0.03	0.03
7.950	0.04	0.04	0.04	0.04	0.04
8.200	0.05	0.05	0.05	0.06	0.06
8.450	0.06	0.06	0.07	0.07	0.07
8.700	0.08	0.08	0.08	0.09	0.09
8.950	0.10	0.10	0.10	0.11	0.11
9.200	0.12	0.12	0.13	0.13	0.14
9.450	0.14	0.15	0.15	0.16	0.16
9.700	0.17	0.17	0.18	0.18	0.19
9.950	0.19	0.20	0.21	0.21	0.22
10.200	0.23	0.24	0.25	0.26	0.27
10.450	0.28	0.29	0.30	0.31	0.32
10.700	0.33	0.34	0.35	0.36	0.37
10.950	0.39	0.40	0.41	0.44	0.46
11.200	0.50	0.53	0.57	0.60	0.64
11.450	0.68	0.72	0.83	1.00	1.24
11.700	1.58	1.90	2.30	2.67	3.12
11.950	4.23	6.08	6.93	7.33	6.59
12.200	4.89	4.06	3.49	3.09	2.64
12.450	2.26	1.81	1.53	1.25	1.13
12.700	1.06	1.02	0.97	0.93	0.88
12.950	0.84	0.79	0.76	0.73	0.71
13.200	0.70	0.69	0.67	0.66	0.65
13.450	0.64	0.63	0.62	0.61	0.59
13.700	0.58	0.57	0.56	0.55	0.54
13.950	0.52	0.51	0.50	0.49	0.49
14.200	0.48	0.48	0.47	0.46	0.46
14.450	0.45	0.45	0.44	0.44	0.43
14.700	0.42	0.42	0.41	0.41	0.40
14.950	0.40	0.39	0.39	0.38	0.37
15.200	0.37	0.36	0.36	0.35	0.35
15.450	0.34	0.33	0.33	0.32	0.32
15.700	0.31	0.31	0.30	0.29	0.29
15.950	0.28	0.28	0.27	0.27	0.26
16.200	0.26	0.26	0.26	0.25	0.25
16.450	0.25	0.25	0.24	0.24	0.24
16.700	0.24	0.23	0.23	0.23	0.23
16.950	0.22	0.22	0.22	0.22	0.21
17.200	0.21	0.21	0.21	0.20	0.20

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1B-Post

Storm Event: 2-yr

Time of fert represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
17.450	0.20	0.20	0.19	0.19	0.19
17.700	0.19	0.18	0.18	0.18	0.18
17.950	0.17	0.17	0.17	0.17	0.16
18.200	0.16	0.16	0.16	0.16	0.16
18.450	0.16	0.16	0.16	0.16	0.16
18.700	0.16	0.16	0.15	0.15	0.15
18.950	0.15	0.15	0.15	0.15	0.15
19.200	0.15	0.15	0.15	0.15	0.15
19.450	0.15	0.14	0.14	0.14	0.14
19.700	0.14	0.14	0.14	0.14	0.14
19.950	0.14	0.14	0.14	0.13	0.13
20.200	0.13	0.13	0.13	0.13	0.13
20.450	0.13	0.13	0.13	0.13	0.13
20.700	0.13	0.13	0.13	0.13	0.13
20.950	0.13	0.13	0.12	0.12	0.12
21.200	0.12	0.12	0.12	0.12	0.12
21.450	0.12	0.12	0.12	0.12	0.12
21.700	0.12	0.12	0.12	0.12	0.11
21.950	0.11	0.11	0.11	0.11	0.11
22.200	0.11	0.11	0.11	0.11	0.11
22.450	0.11	0.11	0.11	0.11	0.11
22.700	0.11	0.10	0.10	0.10	0.10
22.950	0.10	0.10	0.10	0.10	0.10
23.200	0.10	0.10	0.10	0.10	0.10
23.450	0.10	0.10	0.10	0.09	0.09
23.700	0.09	0.09	0.09	0.09	0.09
23.950	0.09	0.09	(N/A)	(N/A)	(N/A)

Return Event: 2 years Label: Area-1B-Post Storm Event: 2-yr

Label: Area-1B-Post

St	
Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	12.48 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.100 hours
Flow (Peak Interpolated Output)	12.46 ft ³ /s
Drainage Area	
SCS CN (Composite)	89.000
Area (User Defined)	3.865 acres
Maximum Retention (Pervious)	1.2 in
Maximum Retention	0.2 in
(Pervious, 20 percent)	
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.3 in
Runoff Volume (Pervious)	1.055 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	1.054 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	43.79 ft ³ /s
Unit peak time, Tp	0.067 hours
11 0 P P T T	0.047.1

Return Event: 10 years

Storm Event: 10-yr

0.267 hours

0.333 hours

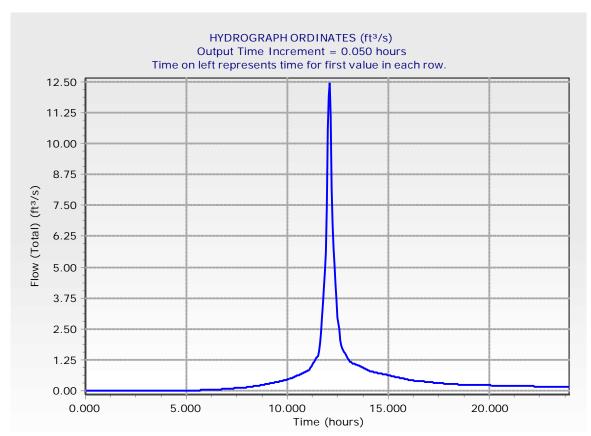
Unit receding limb, Tr Total unit time, Tb

Return Event: 10 years Label: Area-1B-Post Storm Event: 10-yr

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.000	0.00	0.00	0.00	0.00	0.01
5.250	0.01	0.01	0.01	0.01	0.01
5.500	0.01	0.02	0.02	0.02	0.02
5.750	0.02	0.02	0.02	0.03	0.03
6.000	0.03	0.03	0.03	0.03	0.04
6.250	0.04	0.04	0.04	0.04	0.05
6.500	0.05	0.05	0.05	0.06	0.06
6.750	0.06	0.06	0.07	0.07	0.07
7.000	0.07	0.08	0.08	0.08	0.09
7.250	0.09	0.09	0.09	0.10	0.10
7.500	0.10	0.11	0.11	0.11	0.12
7.750	0.12	0.12	0.13	0.13	0.14
8.000	0.14	0.14	0.15	0.15	0.16
8.250	0.17	0.17	0.18	0.18	0.19
8.500	0.20	0.20	0.21	0.22	0.23
8.750	0.23	0.24	0.25	0.26	0.26
9.000	0.27	0.28	0.29	0.30	0.30
9.250	0.31	0.32	0.33	0.34	0.35
9.500	0.36	0.37	0.37	0.38	0.39
9.750	0.40	0.41	0.42	0.43	0.44
10.000	0.45	0.46	0.48	0.49	0.51
10.250	0.52	0.54	0.56	0.58	0.59
10.500	0.61	0.63	0.65	0.67	0.69
10.750	0.71	0.73	0.74	0.76	0.78
11.000	0.81	0.83	0.88	0.92	0.99
11.250	1.05	1.11	1.17	1.25	1.31
11.500	1.38	1.58	1.90	2.33	2.95
11.750	3.52	4.21	4.83	5.59	7.49
12.000	10.59	11.92	12.46	11.08	8.16
12.250	6.74	5.77	5.09	4.34	3.71
12.500	2.96	2.49	2.04	1.85	1.73
12.750	1.65	1.57	1.51	1.43	1.36
13.000	1.28	1.23	1.18	1.15	1.13
13.250	1.11	1.09	1.07	1.05	1.03
13.500	1.01	1.00	0.98	0.96	0.94
13.750	0.92	0.90	0.88	0.86	0.84
14.000	0.82	0.81	0.79	0.78	0.77
14.250	0.76	0.75	0.75	0.74	0.73
14.500	0.72	0.71	0.70	0.69	0.68
14.750	0.67	0.66	0.65	0.64	0.64
15.000	0.63	0.62	0.61	0.60	0.59
15.250	0.58	0.57	0.56	0.55	0.54
15.500	0.53	0.52	0.51	0.51	0.50

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 10 years

Label: Area-1B-Post

Storm Event: 10-yr

time on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.750	0.49	0.48	0.47	0.46	0.45
16.000	0.44	0.43	0.43	0.42	0.42
16.250	0.41	0.41	0.40	0.40	0.40
16.500	0.39	0.39	0.38	0.38	0.38
16.750	0.37	0.37	0.36	0.36	0.36
17.000	0.35	0.35	0.34	0.34	0.33
17.250	0.33	0.33	0.32	0.32	0.31
17.500	0.31	0.31	0.30	0.30	0.29
17.750	0.29	0.29	0.28	0.28	0.27
18.000	0.27	0.27	0.26	0.26	0.26
18.250	0.26	0.26	0.26	0.26	0.25
18.500	0.25	0.25	0.25	0.25	0.25
18.750	0.25	0.25	0.24	0.24	0.24
19.000	0.24	0.24	0.24	0.24	0.24
19.250	0.23	0.23	0.23	0.23	0.23
19.500	0.23	0.23	0.23	0.23	0.22
19.750	0.22	0.22	0.22	0.22	0.22
20.000	0.22	0.22	0.21	0.21	0.21
20.250	0.21	0.21	0.21	0.21	0.21
20.500	0.21	0.21	0.21	0.20	0.20
20.750	0.20	0.20	0.20	0.20	0.20
21.000	0.20	0.20	0.20	0.19	0.19
21.250	0.19	0.19	0.19	0.19	0.19
21.500	0.19	0.19	0.19	0.19	0.18
21.750	0.18	0.18	0.18	0.18	0.18
22.000	0.18	0.18	0.18	0.18	0.18
22.250	0.17	0.17	0.17	0.17	0.17
22.500	0.17	0.17	0.17	0.17	0.17
22.750	0.17	0.16	0.16	0.16	0.16
23.000	0.16	0.16	0.16	0.16	0.16
23.250	0.16	0.15	0.15	0.15	0.15
23.500	0.15	0.15	0.15	0.15	0.15
23.750	0.15	0.15	0.15	0.14	0.14
24.000	0.14	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 10 years Label: Area-1B-Post Storm Event: 10-yr

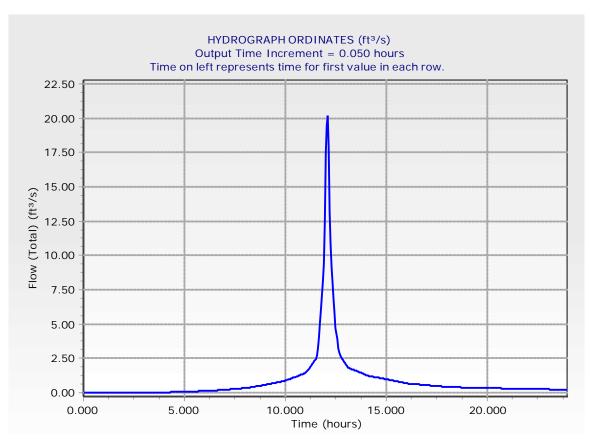
Label: Area-1B-Post

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	20.22 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.100 hours
Interpolated Output)	12.100 110013
Flow (Peak Interpolated Output)	20.19 ft ³ /s
Drainage Area	
SCS CN (Composite)	89.000
Area (User Defined)	3.865 acres
Maximum Retention (Pervious)	1.2 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	5.5 in
Runoff Volume (Pervious)	1.763 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	1.762 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	43.79 ft ³ /s
Unit peak time, Tp	0.067 hours
Unit receding limb, Tr	0.267 hours
Total unit time, Tb	0.333 hours

Return Event: 50 years

Storm Event: 50-yr

Return Event: 50 years Label: Area-1B-Post Storm Event: 50-yr


Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
3.550	0.00	0.00	0.00	0.01	0.01
3.800	0.01	0.01	0.01	0.02	0.02
4.050	0.02	0.02	0.03	0.03	0.03
4.300	0.03	0.04	0.04	0.04	0.04
4.550	0.05	0.05	0.05	0.05	0.06
4.800	0.06	0.06	0.06	0.07	0.07
5.050	0.07	0.07	0.08	0.08	0.08
5.300	0.08	0.09	0.09	0.09	0.09
5.550	0.10	0.10	0.10	0.11	0.11
5.800	0.11	0.11	0.12	0.12	0.12
6.050	0.12	0.13	0.13	0.14	0.14
6.300	0.15	0.15	0.15	0.16	0.16
6.550	0.17	0.17	0.18	0.18	0.19
6.800	0.19	0.20	0.20	0.21	0.21
7.050	0.22	0.23	0.23	0.24	0.24
7.300	0.25	0.25	0.26	0.27	0.27
7.550	0.28	0.28	0.29	0.30	0.30
7.800	0.31	0.32	0.32	0.33	0.34
8.050	0.34	0.35	0.36	0.37	0.39
8.300	0.40	0.41	0.42	0.43	0.45
8.550	0.46	0.47	0.48	0.50	0.51
8.800	0.52	0.54	0.55	0.56	0.58
9.050	0.59	0.61	0.62	0.64	0.65
9.300	0.67	0.68	0.69	0.71	0.73
9.550	0.74	0.76	0.77	0.79	0.80
9.800	0.82	0.83	0.85	0.87	0.88
10.050	0.90	0.92	0.95	0.98	1.00
10.300	1.03	1.06	1.09	1.12	1.15
10.550	1.18	1.21	1.24	1.27	1.30
10.800	1.34	1.37	1.40	1.43	1.46
11.050	1.51	1.58	1.66	1.77	1.87
11.300	1.99	2.09	2.20	2.31	2.43
11.550	2.76	3.31	4.04	5.09	6.03
11.800	7.17	8.17	9.39	12.46	17.47
12.050	19.48	20.19	17.85	13.09	10.76
12.300	9.19	8.09	6.88	5.88	4.69
12.550	3.94	3.23	2.92	2.73	2.61
12.800	2.48	2.38	2.25	2.15	2.02
13.050	1.94	1.85	1.81	1.77	1.74
13.300	1.71	1.68	1.65	1.62	1.59
13.550	1.56	1.53	1.50	1.47	1.44
13.800	1.41	1.38	1.35	1.32	1.29
14.050	1.27	1.24	1.23	1.21	1.20

Return Event: 50 years Label: Area-1B-Post Storm Event: 50-yr

			·		
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
14.300	1.18	1.17	1.15	1.14	1.12
14.550	1.11	1.09	1.08	1.06	1.05
14.800	1.04	1.02	1.01	0.99	0.98
15.050	0.96	0.95	0.93	0.92	0.91
15.300	0.89	0.88	0.86	0.85	0.83
15.550	0.82	0.80	0.79	0.77	0.76
15.800	0.74	0.73	0.71	0.70	0.69
16.050	0.68	0.66	0.66	0.65	0.64
16.300	0.64	0.63	0.62	0.62	0.61
16.550	0.60	0.60	0.59	0.59	0.58
16.800	0.57	0.57	0.56	0.55	0.55
17.050	0.54	0.53	0.53	0.52	0.51
17.300	0.51	0.50	0.49	0.49	0.48
17.550	0.48	0.47	0.46	0.46	0.45
17.800	0.44	0.44	0.43	0.43	0.42
18.050	0.41	0.41	0.41	0.41	0.40
18.300	0.40	0.40	0.40	0.40	0.39
18.550	0.39	0.39	0.39	0.39	0.38
18.800	0.38	0.38	0.38	0.38	0.37
19.050	0.37	0.37	0.37	0.37	0.37
19.300	0.36	0.36	0.36	0.36	0.35
19.550	0.35	0.35	0.35	0.35	0.35
19.800	0.34	0.34	0.34	0.34	0.34
20.050	0.33	0.33	0.33	0.33	0.33
20.300	0.33	0.33	0.32	0.32	0.32
20.550	0.32	0.32	0.32	0.31	0.31
20.800	0.31	0.31	0.31	0.31	0.31
21.050	0.31	0.30	0.30	0.30	0.30
21.300	0.30	0.30	0.30	0.29	0.29
21.550	0.29	0.29	0.29	0.29	0.29
21.800	0.28	0.28	0.28	0.28	0.28
22.050	0.28	0.28	0.27	0.27	0.27
22.300	0.27	0.27	0.27	0.27	0.26
22.550	0.26	0.26	0.26	0.26	0.26
22.800	0.25	0.25	0.25	0.25	0.25
23.050	0.25	0.25	0.24	0.24	0.24
23.300	0.24	0.24	0.24	0.24	0.23
23.550	0.23	0.23	0.23	0.23	0.23
23.800	0.23	0.22	0.22	0.22	0.22

Return Event: 50 years Storm Event: 50-yr Label: Area-1B-Post

Label: Area-1B-Post

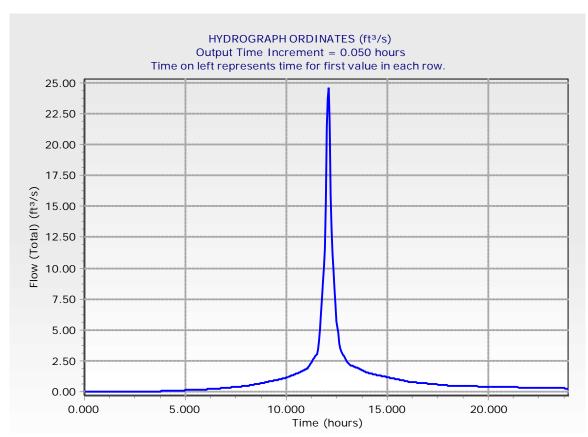
Storm Event 100-yr Return Event 100 years Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) Area (User Defined) 3.865 acres Computational Time Increment 0.013 hours Flow (Peak, Computed) 12.107 hours Flow (Peak, Computed) 24.62 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.100 hours Flow (Peak Interpolated Output) 24.59 ft³/s Drainage Area SCS CN (Composite) 89.000 Area (User Defined) 3.865 acres Maximum Retention (Pervious) 1.2 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.100 hours Composite) 0.100 hours Computational Time 1.100 hours Increment 0.101 hours Linit Hydrograph Shape 483.432 Factor 483.432 Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours Total unit time, Tb 0.333 hours			
Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) 3.865 acres Computational Time Increment 0.013 hours Flow (Peak, Computed) 12.107 hours Flow (Peak, Computed) 24.62 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.100 hours Flow (Pervious) 12.100 hours Maximum Retention (Pervious, 20 percent) 12.2 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 12.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Increment 0.013 hours Increment 0.013 hours Increment 0.014 hours Increment 0.015 hours Increment 0.016 hours Increment 0.017 hours Increment 0.018 hours Increment 0.019 hours In	Storm Event	100-yr	
Depth 8.1 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Interpolated Output) Flow (Peak Interpolated Interpolated Output) Flow (Peak Interpol	Return Event	100 years	
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Pervious) Tow (Pervious) Tow (Pervious) Tow (Peak Interpolated Output) Tow (Pervious, 20 percent) Tow (Peak Interpolated Output) Tow (Peak Interpolated Output) Tow (Peak Interpolated Peak Interpolated	Duration	24.000 hours	
Composite) Area (User Defined) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Composite) SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.267 hours	Depth	8.1 in	
Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flo		0.100 hours	
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Unit peak, qp Unit receding limb, Tr O.050 hours 1.2 in 89.000 3.865 acres 89.000 1.2 in 6.8 in 6.	·	3.865 acres	
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Unit peak, qp Unit receding limb, Tr O.050 hours 1.2 in 89.000 3.865 acres 89.000 1.2 in 6.8 in 6.			
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Prainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) As in Runoff Volume (Pervious) Cumulative Runoff Cumulative Run	•	0.013 hours	
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Prainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Acs Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.267 hours	Time to Peak (Computed)	12.107 hours	
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) As a in Cumulative Runoff Depth (Pervious) Runoff Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Flow (Peak, Computed)	24.62 ft ³ /s	
Interpolated Output) Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr Unit receding limb, Tr Use 24.59 ft³/s 89.000 89.0	Output Increment	0.050 hours	
Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) 89.000 Area (User Defined) 3.865 acres Maximum Retention (Pervious) 1.2 in Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	•	12.100 hours	
Output) Drainage Area SCS CN (Composite) 89.000 Area (User Defined) 3.865 acres Maximum Retention (Pervious) 1.2 in Maximum Retention (Pervious, 20 percent) 0.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		0.4.50.50.4	
SCS CN (Composite) Area (User Defined) Area (User Defined) Assimum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Assimum Retention (Pervious) Cumulative Runoff Depth (Pervious) Assimum Runoff Pervious Assimum Runoff Runoff Runoff Runoff Assimum Runoff Runoff Run		24.59 ft ³ /s	
SCS CN (Composite) Area (User Defined) Area (User Defined) Asimum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.267 hours	Drainage Area		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Cumulative Runoff Depth (Pervious) Area under Hydrograph curve) Volume 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Congulational, Tr/Tp Unit peak, qp 43.79 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.267 hours		89,000	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Cumulative Runoff Depth (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 43.79 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.267 hours	·		
Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.267 hours	Maximum Retention		
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.88 in 6.8 in	Maximum Retention	0.2 in	
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.88 in 6.8 in	0 1 5		
Runoff Volume (Pervious) Runoff Volume (Pervious) 2.176 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.88 in 0.88 in 2.176 ac-ft 0.100 hours 0.100 hours 483.432 483.432 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak time, Tp 0.067 hours Unit receding limb, Tr	Cumulative Runoff		
Hydrograph Volume (Area under Hydrograph curve) Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time 1 0.013 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		6.8 in	
Volume 2.174 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 2.174 ac-ft 0.100 hours 4.300 hours 0.013 hours 483.432 483.432 483.432 483.432 483.432 Concentration (Composite) 483.432 483.432 483.432 Concentration (Composite) 483.432 Concentration (Composite) 483.432 Concentration (Concentration (Concent	Runoff Volume (Pervious)	2.176 ac-ft	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.100 hours 0.100 hours 483.432 1.670 483.432 483.432 483.432 483.432 0.749	Hydrograph Volume (Area under F	lydrograph curve)	
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Pool of the second	Volume	2.174 ac-ft	
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Pool of the second			
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit only 100 hours 0.100 hours 483.432 483.432 483.432 483.432 50.749 60	SCS Unit Hydrograph Parameters		
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit out 13 nours 483.432 483.432 1670 1.670 1.670 1.670 0.067 hours 0.067 hours		0.100 hours	
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr C.267 hours	•	0.013 hours	
K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		483.432	
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 43.79 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		0.749	
Unit peak, qp 43.79 ft ³ /s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		1.670	
Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		43.79 ft ³ /s	
G	. "	0.067 hours	
Total unit time, Tb 0.333 hours	Unit receding limb, Tr	0.267 hours	
	Total unit time, Tb	0.333 hours	

Return Event: 100 years

Storm Event: 100-yr

Label: Area-1B-Post Storm Event: 100-yr

Return Event: 100 years


Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	3.865 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
3.050	0.00	0.00	0.00	0.01	0.01
3.300	0.01	0.02	0.02	0.02	0.02
3.550	0.03	0.03	0.03	0.04	0.04
3.800	0.04	0.04	0.05	0.05	0.05
4.050	0.06	0.06	0.06	0.07	0.07
4.300	0.07	0.08	0.08	0.08	0.09
4.550	0.09	0.09	0.09	0.10	0.10
4.800	0.10	0.11	0.11	0.11	0.12
5.050	0.12	0.12	0.13	0.13	0.13
5.300	0.14	0.14	0.14	0.15	0.15
5.550	0.15	0.16	0.16	0.17	0.17
5.800	0.17	0.18	0.18	0.18	0.19
6.050	0.19	0.19	0.20	0.20	0.21
6.300	0.22	0.22	0.23	0.23	0.24
6.550	0.25	0.25	0.26	0.27	0.27
6.800	0.28	0.29	0.29	0.30	0.31
7.050	0.31	0.32	0.33	0.34	0.34
7.300	0.35	0.36	0.37	0.37	0.38
7.550	0.39	0.40	0.40	0.41	0.42
7.800	0.43	0.44	0.45	0.45	0.46
8.050	0.47	0.48	0.50	0.51	0.52
8.300	0.54	0.55	0.57	0.59	0.60
8.550	0.62	0.63	0.65	0.67	0.68
8.800	0.70	0.72	0.73	0.75	0.77
9.050	0.78	0.80	0.82	0.84	0.86
9.300	0.87	0.89	0.91	0.93	0.95
9.550	0.97	0.98	1.00	1.02	1.04
9.800	1.06	1.08	1.10	1.12	1.14
10.050	1.16	1.19	1.22	1.25	1.29
10.300	1.33	1.36	1.40	1.43	1.47
10.550	1.50	1.54	1.58	1.62	1.65
10.800	1.69	1.73	1.77	1.81	1.85
11.050	1.91	1.99	2.09	2.23	2.35
11.300	2.49	2.61	2.76	2.88	3.04
11.550	3.45	4.12	5.03	6.32	7.47
11.800	8.86	10.07	11.56	15.29	21.39
12.050	23.78	24.59	21.70	15.90	13.05
12.300	11.14	9.79	8.33	7.11	5.67
12.550	4.76	3.90	3.52	3.30	3.15
12.800	3.00	2.87	2.72	2.59	2.44
13.050	2.34	2.24	2.18	2.14	2.10
13.300	2.06	2.03	1.99	1.96	1.92
13.550	1.89	1.85	1.81	1.77	1.74

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years Label: Area-1B-Post Storm Event: 100-yr

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
13.800	1.70	1.67	1.63	1.60	1.56
14.050	1.53	1.50	1.48	1.46	1.44
14.300	1.42	1.41	1.39	1.37	1.35
14.550	1.34	1.32	1.30	1.28	1.27
14.800	1.25	1.23	1.21	1.20	1.18
15.050	1.16	1.14	1.13	1.11	1.09
15.300	1.07	1.06	1.04	1.02	1.00
15.550	0.99	0.97	0.95	0.93	0.92
15.800	0.90	0.88	0.86	0.84	0.83
16.050	0.81	0.80	0.79	0.78	0.77
16.300	0.77	0.76	0.75	0.74	0.74
16.550	0.73	0.72	0.71	0.70	0.70
16.800	0.69	0.68	0.67	0.67	0.66
17.050	0.65	0.64	0.64	0.63	0.62
17.300	0.61	0.61	0.60	0.59	0.58
17.550	0.57	0.56	0.56	0.55	0.54
17.800	0.53	0.53	0.52	0.51	0.50
18.050	0.50	0.49	0.49	0.49	0.49
18.300	0.48	0.48	0.48	0.48	0.47
18.550	0.47	0.47	0.47	0.46	0.46
18.800	0.46	0.46	0.45	0.45	0.45
19.050	0.45	0.45	0.44	0.44	0.44
19.300	0.44	0.43	0.43	0.43	0.43
19.550 19.800	0.42 0.41	0.42	0.42	0.42 0.41	0.42 0.40
20.050	0.40	0.41 0.40	0.41 0.40	0.40	0.40
20.300	0.40	0.40	0.40	0.40	0.40
20.550	0.39	0.39	0.39	0.39	0.39
20.800	0.38	0.37	0.37	0.37	0.37
21.050	0.37	0.37	0.36	0.36	0.36
21.300	0.36	0.36	0.36	0.35	0.35
21.550	0.35	0.35	0.35	0.34	0.34
21.800	0.34	0.34	0.34	0.34	0.33
22.050	0.33	0.33	0.33	0.33	0.33
22.300	0.32	0.32	0.32	0.32	0.32
22.550	0.32	0.31	0.31	0.31	0.31
22.800	0.31	0.30	0.30	0.30	0.30
23.050	0.30	0.29	0.29	0.29	0.29
23.300	0.29	0.29	0.29	0.29	0.28
23.550	0.28	0.28	0.28	0.28	0.27
23.800	0.27	0.27	0.27	0.27	0.27

Return Event: 100 years Storm Event: 100-yr Label: Area-1B-Post

Label: Area-1C-Post

Storm Event 2-yr Return Event 2 years Duration 24.000 hours Depth 3.0 in Time of Concentration (Composite) Area (User Defined) 0.100 hours Computational Time Increment 0.013 hours Time to Peak (Computed) 12.133 hours Flow (Peak, Computed) 0.04 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Pervious) 63.000 Frainage Area 12.150 hours Flow (Pervious) 1.2 in Cumulative Defined) 0.120 acres Flow (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 0.4 in Flow (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 0.4 in Flow (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 0.4 in Flow (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 0.4 in Flow (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 0.4 in Flow (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 1.2 in Cumulative Runoff Output (Pervious, 20 percent) 1.2 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration 0.4 in Flow of Concentration		
Duration 24.000 hours Depth 3.0 in Time of Concentration (Composite) Area (User Defined) 0.120 acres Computational Time Increment 0.013 hours Flow (Peak, Computed) 12.133 hours Flow (Peak, Computed) 0.04 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Composite) 0.101 hours Increment 0.013 hours Increment 0.013 hours Increment 0.013 hours Increment 0.014 ft³/s Unit Hydrograph Shape 483.432 Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Storm Event	2-yr
Depth 3.0 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Interpol	Return Event	2 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Tow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Nove the Associated States of the States of t	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Ou	Depth	3.0 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output Volume Output Out		0.100 hours
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Output Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Vunit peak, qp Unit receding limb, Tr Output 12.133 hours 12.133 hours 12.150 hours 1	Area (User Defined)	0.120 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Output Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Vunit peak, qp Unit receding limb, Tr Output 12.133 hours 12.133 hours 12.150 hours 1		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output Output	•	0.013 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.267 hours	Time to Peak (Computed)	12.133 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Flow (Peak, Computed)	0.04 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.267 hours	Output Increment	0.050 hours
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	•	12 150 hours
Output) Drainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Computational Time Increment 0.013 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		12.100 110013
Drainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Unit Hydrograph Shape Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		0.04 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) O.120 acres Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor C O.749 Receding/Rising, Tr/Tp Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Output)	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Conceding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.120 acres 5.9 in 0.120 acres 0.4 in 0.4 in 0.04 in 0.004 ac-ft O.004 ac-ft O.004 ac-ft O.004 ac-ft O.100 hours O.100 hours O.101 hours O.103 hours O.104 hours O.105 hours O.1067 hours O.1067 hours O.1067 hours	Drainage Area	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 1.36 ft³/s Unit peak time, Tp Unit receding limb, Tr O.267 hours	SCS CN (Composite)	63.000
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.267 hours	Area (User Defined)	0.120 acres
Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit Pervious) O.4 in O.4 in		5.9 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.004 ac-ft O.007 hours		1.2 in
(Pervious) Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.004 ac-ft O.100 hours 0.100 hours 0.483.432 483.432 483.432 Increment Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr	Cumulative Runoff	
Runoff Volume (Pervious) O.004 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.004 ac-ft O.004 ac-ft O.004 ac-ft O.004 ac-ft O.004 ac-ft O.006 hours	•	0.4 in
Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.004 ac-ft O.100 hours 0.100 hours 483.432 483.432 Increment Unit peak diff on the second of the second	· · ·	0.004 ac-ft
Volume O.004 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.004 ac-ft O.100 hours 0.100 hours 483.432 483.432 Increment Unit peak diff on the second of the second	Lhadra aran b Malansa (Aran arandar	I leadaca ann an h-airmea
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.100 hours 0.100 hours 483.432 1.36 hours 1.36 ft³/s 0.067 hours		,
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.100 hours 0.013 hours 483.432 1.670 1.670 1.670 1.36 ft³/s Unit peak time, Tp 0.067 hours	Volume	0.004 ac-ft
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit one of the control of the cont	SCS Unit Hydrograph Parameters	<u> </u>
Computational Time Increment 0.013 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		0.100 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr C.267 hours	Computational Time	0.013 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	, , , , , , , , , , , , , , , , , , ,	483.432
Unit peak, qp 1.36 ft ³ /s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	K Factor	0.749
Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 0.267 hours	Unit peak, qp	1.36 ft ³ /s
<u> </u>	Unit peak time, Tp	0.067 hours
Total unit time, Tb 0.333 hours	Unit receding limb, Tr	0.267 hours
	Total unit time, Tb	0.333 hours

Return Event: 2 years

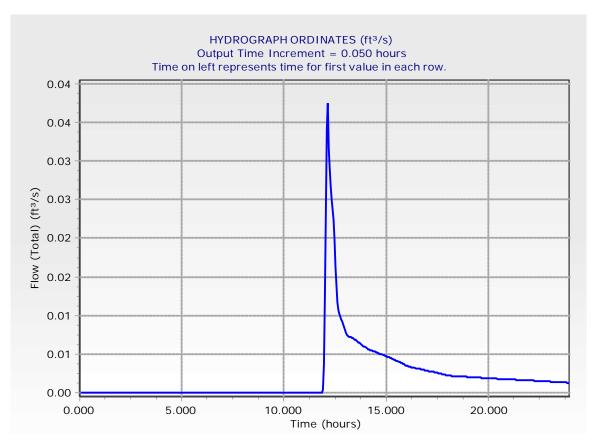
Storm Event: 2-yr

Return Event: 2 years Label: Area-1C-Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.120 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.900	0.00	0.00	0.01	0.02	0.03
12.150	0.04	0.03	0.03	0.03	0.03
12.400	0.02	0.02	0.02	0.01	0.01
12.650	0.01	0.01	0.01	0.01	0.01
12.900	0.01	0.01	0.01	0.01	0.01
13.150	0.01	0.01	0.01	0.01	0.01
13.400	0.01	0.01	0.01	0.01	0.01
13.650	0.01	0.01	0.01	0.01	0.01
13.900	0.01	0.01	0.01	0.01	0.01
14.150	0.01	0.01	0.01	0.01	0.01
14.400	0.01	0.01	0.01	0.01	0.01
14.650	0.01	0.01	0.00	0.00	0.00
14.900	0.00	0.00	0.00	0.00	0.00
15.150	0.00	0.00	0.00	0.00	0.00
15.400	0.00	0.00	0.00	0.00	0.00
15.650	0.00	0.00	0.00	0.00	0.00
15.900	0.00	0.00	0.00	0.00	0.00
16.150	0.00	0.00	0.00	0.00	0.00
16.400	0.00	0.00	0.00	0.00	0.00
16.650	0.00	0.00	0.00	0.00	0.00
16.900	0.00	0.00	0.00	0.00	0.00
17.150	0.00	0.00	0.00	0.00	0.00
17.400	0.00	0.00	0.00	0.00	0.00
17.650	0.00	0.00	0.00	0.00	0.00
17.900	0.00	0.00	0.00	0.00	0.00
18.150	0.00	0.00	0.00	0.00	0.00
18.400	0.00	0.00	0.00	0.00	0.00
18.650	0.00	0.00	0.00	0.00	0.00
18.900	0.00	0.00	0.00	0.00	0.00
19.150	0.00	0.00	0.00	0.00	0.00
19.400	0.00	0.00	0.00	0.00	0.00
19.650	0.00	0.00	0.00	0.00	0.00
19.900	0.00	0.00	0.00	0.00	0.00
20.150	0.00	0.00	0.00	0.00	0.00
20.400	0.00	0.00	0.00	0.00	0.00
20.650	0.00	0.00	0.00	0.00	0.00
20.900	0.00	0.00	0.00	0.00	0.00
21.150	0.00	0.00	0.00	0.00	0.00
21.400	0.00	0.00	0.00	0.00	0.00
21.650	0.00	0.00	0.00	0.00	0.00
21.900	0.00	0.00	0.00	0.00	0.00
22.150	0.00	0.00	0.00	0.00	0.00
22.400	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1C-Post

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
22.650	0.00	0.00	0.00	0.00	0.00
22.900	0.00	0.00	0.00	0.00	0.00
23.150	0.00	0.00	0.00	0.00	0.00
23.400	0.00	0.00	0.00	0.00	0.00
23.650	0.00	0.00	0.00	0.00	0.00
23.900	0.00	0.00	0.00	(N/A)	(N/A)

Return Event: 2 years Label: Area-1C-Post Storm Event: 2-yr

Label: Area-1C-Post

SI	
Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.120 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.120 hours
Flow (Peak, Computed)	0.14 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.100 hours
Flow (Peak Interpolated Output)	0.13 ft ³ /s
Drainage Area	
SCS CN (Composite)	63.000
Area (User Defined)	0.120 acres
Maximum Retention (Pervious)	5.9 in
Maximum Retention (Pervious, 20 percent)	1.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.2 in
Runoff Volume (Pervious)	0.012 ac-ft
Hydrograph Volume (Area under	r Hydrograph curve)
Volume	0.012 ac-ft
SCS Unit Hydrograph Paramete	rs
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours

Unit Hydrograph Shape

Receding/Rising, Tr/Tp

Factor

K Factor

Unit peak, qp

Unit peak time, Tp

Total unit time, Tb

Unit receding limb, Tr

Return Event: 10 years

Storm Event: 10-yr

483.432

0.749

1.670

1.36 ft³/s

0.067 hours

0.267 hours

0.333 hours

Return Event: 10 years Label: Area-1C-Post Storm Event: 10-yr

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.120 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.350	0.00	0.00	0.00	0.00	0.00
11.600	0.00	0.01	0.01	0.01	0.02
11.850	0.03	0.04	0.06	0.09	0.12
12.100	0.13	0.13	0.10	0.09	0.08
12.350	0.07	0.06	0.05	0.04	0.04
12.600	0.03	0.03	0.03	0.03	0.02
12.850	0.02	0.02	0.02	0.02	0.02
13.100	0.02	0.02	0.02	0.02	0.02
13.350	0.02	0.02	0.02	0.02	0.02
13.600	0.02	0.02	0.02	0.02	0.01
13.850	0.01	0.01	0.01	0.01	0.01
14.100	0.01	0.01	0.01	0.01	0.01
14.350	0.01	0.01	0.01	0.01	0.01
14.600	0.01	0.01	0.01	0.01	0.01
14.850	0.01	0.01	0.01	0.01	0.01
15.100	0.01	0.01	0.01	0.01	0.01
15.350	0.01	0.01	0.01	0.01	0.01
15.600	0.01	0.01	0.01	0.01	0.01
15.850	0.01	0.01	0.01	0.01	0.01
16.100	0.01	0.01	0.01	0.01	0.01
16.350	0.01	0.01	0.01	0.01	0.01
16.600	0.01	0.01	0.01	0.01	0.01
16.850	0.01	0.01	0.01	0.01	0.01
17.100	0.01	0.01	0.01	0.01	0.01
17.350	0.01	0.01	0.01	0.01	0.01
17.600	0.01	0.01	0.01	0.01	0.01
17.850	0.01	0.01	0.01	0.00	0.00
18.100	0.00	0.00	0.00	0.00	0.00
18.350	0.00	0.00	0.00	0.00	0.00
18.600	0.00	0.00	0.00	0.00	0.00
18.850	0.00	0.00	0.00	0.00	0.00
19.100	0.00	0.00	0.00	0.00	0.00
19.350	0.00	0.00	0.00	0.00	0.00
19.600	0.00	0.00	0.00	0.00	0.00
19.850	0.00	0.00	0.00	0.00	0.00
20.100	0.00	0.00	0.00	0.00	0.00
20.350	0.00	0.00	0.00	0.00	0.00
20.600	0.00	0.00	0.00	0.00	0.00
20.850	0.00	0.00	0.00	0.00	0.00
21.100 21.350	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
21.600	0.00 0.00	0.00	0.00	0.00	0.00 0.00
			0.00		0.00
21.850	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 10 years

Label: Area-1C-Post

Storm Event: 10-yr

	-				
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.100	0.00	0.00	0.00	0.00	0.00
22.350	0.00	0.00	0.00	0.00	0.00
22.600	0.00	0.00	0.00	0.00	0.00
22.850	0.00	0.00	0.00	0.00	0.00
23.100	0.00	0.00	0.00	0.00	0.00
23.350	0.00	0.00	0.00	0.00	0.00
23.600	0.00	0.00	0.00	0.00	0.00
23.850	0.00	0.00	0.00	0.00	(N/A)

Return Event: 10 years Label: Area-1C-Post Storm Event: 10-yr

Label: Area-1C-Post

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.120 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.120 hours
Flow (Peak, Computed)	0.33 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.100 hours
Interpolated Output)	12.100 1104.10
Flow (Peak Interpolated Output)	0.33 ft ³ /s
Drainage Area	
SCS CN (Composite)	63.000
Area (User Defined)	0.120 acres
Maximum Retention (Pervious)	5.9 in
Maximum Retention (Pervious, 20 percent)	1.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.7 in
Runoff Volume (Pervious)	0.027 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	0.027 ac-ft
SCS Unit Hydrograph Parameter	s
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	1.36 ft ³ /s
Unit peak time, Tp	0.067 hours
Unit receding limb, Tr	0.267 hours
Total unit time, Tb	0.333 hours

Return Event: 50 years

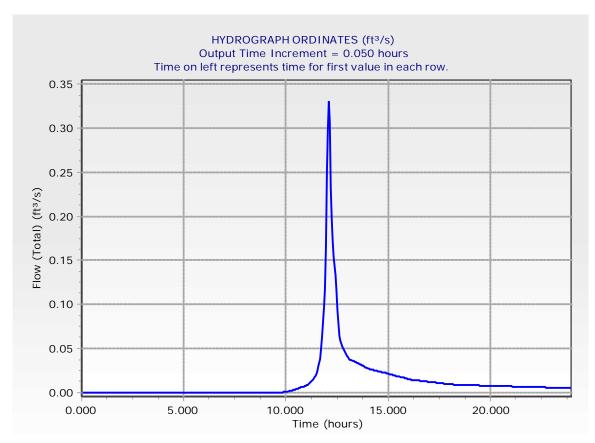
Storm Event: 50-yr

Return Event: 50 years Label: Area-1C-Post Storm Event: 50-yr

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.120 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.000	0.00	0.00	0.00	0.00	0.00
10.250	0.00	0.00	0.00	0.00	0.00
10.500	0.00	0.00	0.00	0.01	0.01
10.750	0.01	0.01	0.01	0.01	0.01
11.000	0.01	0.01	0.01	0.01	0.01
11.250	0.01	0.01	0.02	0.02	0.02
11.500	0.02	0.02	0.03	0.04	0.05
11.750	0.06	0.08	0.10	0.12	0.17
12.000	0.25	0.30	0.33	0.31	0.23
12.250	0.20	0.17	0.15	0.13	0.11
12.500	0.09	0.08	0.06	0.06	0.06
12.750	0.05	0.05	0.05	0.05	0.04
13.000	0.04	0.04	0.04	0.04	0.04
13.250	0.04	0.04	0.04	0.03	0.03
13.500	0.03	0.03	0.03	0.03	0.03
13.750	0.03	0.03	0.03	0.03	0.03
14.000	0.03	0.03	0.03	0.03	0.03
14.250	0.03	0.03	0.03	0.02	0.02
14.500	0.02	0.02	0.02	0.02	0.02
14.750	0.02	0.02	0.02	0.02	0.02
15.000	0.02	0.02	0.02	0.02	0.02
15.250	0.02	0.02	0.02	0.02	0.02
15.500	0.02	0.02	0.02	0.02	0.02
15.750	0.02	0.02	0.02	0.02	0.02
16.000	0.02	0.02	0.01	0.01	0.01
16.250	0.01	0.01	0.01	0.01	0.01
16.500	0.01	0.01	0.01	0.01	0.01
16.750	0.01	0.01	0.01	0.01	0.01
17.000	0.01	0.01	0.01	0.01	0.01
17.250	0.01	0.01	0.01	0.01	0.01
17.500	0.01	0.01	0.01	0.01	0.01
17.750	0.01	0.01	0.01	0.01	0.01
18.000	0.01	0.01	0.01	0.01	0.01
18.250	0.01	0.01	0.01	0.01	0.01
18.500	0.01	0.01	0.01	0.01	0.01
18.750	0.01	0.01	0.01	0.01	0.01
19.000	0.01	0.01	0.01	0.01	0.01
19.250	0.01	0.01	0.01	0.01	0.01
19.500	0.01	0.01	0.01	0.01	0.01
19.750	0.01	0.01	0.01	0.01	0.01
20.000	0.01	0.01	0.01	0.01	0.01
20.250	0.01	0.01	0.01	0.01	0.01
20.500	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 50 years

Label: Area-1C-Post

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.750	0.01	0.01	0.01	0.01	0.01
21.000	0.01	0.01	0.01	0.01	0.01
21.250	0.01	0.01	0.01	0.01	0.01
21.500	0.01	0.01	0.01	0.01	0.01
21.750	0.01	0.01	0.01	0.01	0.01
22.000	0.01	0.01	0.01	0.01	0.01
22.250	0.01	0.01	0.01	0.01	0.01
22.500	0.01	0.01	0.01	0.01	0.01
22.750	0.01	0.01	0.01	0.01	0.01
23.000	0.01	0.01	0.01	0.01	0.01
23.250	0.01	0.01	0.01	0.01	0.01
23.500	0.01	0.01	0.01	0.01	0.01
23.750	0.01	0.01	0.01	0.01	0.01
24.000	0.01	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 50 years Storm Event: 50-yr Label: Area-1C-Post

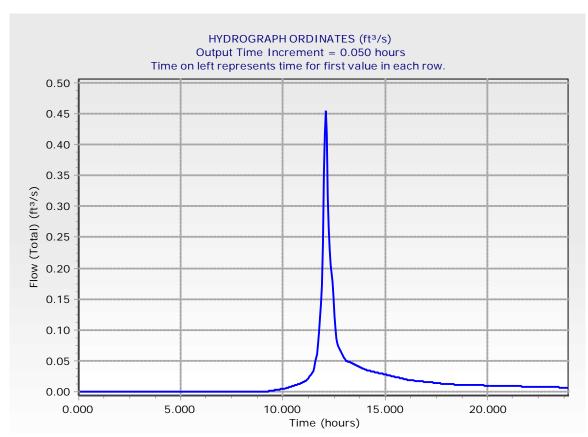
Label: Area-1C-Post

Storm Event 100-yr Return Event 100 years Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) Area (User Defined) 0.100 hours Computational Time Increment 0.013 hours Time to Peak (Computed) 12.120 hours Flow (Peak, Computed) 0.46 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Trainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Opth (Pervious) 0.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.100 hours (Composite) 0.100 hours (Composite) 0.101 hours (Computational Time 0.013 hours Increment 0.013 hours Increment 0.014 hours (Composite) 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours Total unit time, Tb 0.333 hours			
Duration 24,000 hours Depth 8.1 in Time of Concentration (Composite) 0.100 hours Area (User Defined) 0.120 acres Computational Time Increment 0.013 hours Time to Peak (Computed) 12.120 hours Flow (Peak, Computed) 0.46 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.100 hours Flow (Pervious) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Composite) 0.101 hours Increment 0.013 hours Increment 0.013 hours Increment 0.013 hours Increment 0.014 hours Increment 0.015 hours Increment 0.016 hours Increment 0.01749 Receding/Rising, Tr/Tp 1.670 Init peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Storm Event	100-yr	
Depth 8.1 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Asximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff SCS Unit Hydrograph Parameters Time of Concentration (Composite) Area (User Defined) O.120 acres Maximum Retention (Pervious) Area (User Defined) O.120 acres Maximum Retention (Pervious) Area (User Defined) O.120 acres Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Run	Return Event	100	years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Interpolated Interpolated Output) Flow (Peak Interpolated Interpolated Output) Flow (Peak Interpolated O	Duration	24.000	hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Output Ou	Depth	8.1	in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Pervious) Flow (Pervious) Flow (Pervious Output) Flow (Peak Interpolated Output) Flow (Peak Inte		0.100	hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Ou505 hours 12.120 hours 12	•		
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Prainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.050 hours 12.100 hours	Area (User Defined)	0.120	acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor C Unit receding limb, Tr C Uno.050 hours 1.2 in 12.100 hours 12.100 ho	Commutational Times		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output Increment Output Increment Output) Output Output) Increment Output) Increment Output) Increment Output) Increment Output) Increment Output) Output) Increment Output) Increment Output) Increment Output) Increment Output) Increment Output Outp	•	0.013	hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.267 hours	Time to Peak (Computed)	12.120	hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Flow (Peak, Computed)	0.46	ft³/s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.400 O.46 ft³/s 63.000 0.120 acres 63.000 0.037 ac-ft 60.010 acres 60.037 ac-ft 60.037 ac-ft	Output Increment	0.050	hours
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.7 in (Pervious) Runoff Volume (Pervious) 0.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Time to Flow (Peak	12 100	hours
Drainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.7 in Runoff Volume (Pervious) 0.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Computational Time Increment 0.013 hours Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Interpolated Output)	12.100	110ul 3
Drainage Area SCS CN (Composite) 63.000 Area (User Defined) 0.120 acres Maximum Retention (Pervious) 5.9 in Maximum Retention (Pervious, 20 percent) 1.2 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.7 in (Pervious) Runoff Volume (Pervious) 0.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	The state of the s	0.46	ft³/s
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.120 ncres 0.120 ncres 0.120 ncres 0.120 ncres 1.20 ncr	Output)		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.2 in 1.2 in 0.100 hours 0.037 ac-ft 0.013 hours 483.432 483.432 483.432 483.432 483.432 593.433	Drainage Area		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor C Note Hydrograph Parameters A83.432 K Factor K Factor C Note Hydrograph Parameters A83.432 K Factor C Note Hydrograph Parameters A83.4	SCS CN (Composite)	63.000	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Sequence 1.2 in	· · · ·	0.120	acres
Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.267 hours	Maximum Retention		
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.0267 hours	(Pervious)	5.9	111
Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.267 hours		1.2	in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.037 ac-ft O.037 ac-ft O.037 ac-ft O.037 ac-ft O.049 D.100 hours O.013 hours 1.670 1.670 1.36 ft³/s Unit peak time, Tp O.067 hours Unit receding limb, Tr	(Pervious, 20 percent)		
Runoff Volume (Pervious) Runoff Volume (Pervious) O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.037 ac-ft O.037 ac-ft O.100 hours 0.100 hours 0.749 1.670 1.670 Unit peak, qp 1.36 ft³/s Unit receding limb, Tr O.267 hours	Cumulative Runoff		
Runoff Volume (Pervious) Runoff Volume (Pervious) O.037 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.037 ac-ft 0.007 hours 0.100 hours 0.100 hours 0.749 1.670 1.670 Unit peak, qp 1.36 ft³/s Unit receding limb, Tr 0.267 hours	Cumulative Runoff Depth	2.7	i.e.
Hydrograph Volume (Area under Hydrograph curve) Volume 0.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Unit Hydrograph Shape 483.432 Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	(Pervious)	3.7	ın
Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.037 ac-ft 0.100 hours 0.401 hours 0.749 483.432 1.670 1.670 Unit peak time, Tp 0.067 hours Unit receding limb, Tr	Runoff Volume (Pervious)	0.037	ac-ft
Volume O.037 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.037 ac-ft 0.100 hours 0.401 hours 0.749 483.432 1.670 1.670 Unit peak time, Tp 0.067 hours Unit receding limb, Tr	Hydrograph Volume (Area under Hy	vdrograph c	urve)
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.100 hours 0.100 hours 483.432 163.432 1670 1670 1.670 1.36 ft³/s 1.36 ft³/s 1.36 ft³/s 1.36 ft³/s 1.36 ft³/s			•
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.100 hours 0.100 hours 483.432 1.36 hours 1.36 ft ³ /s 0.067 hours	volume	0.037	ac-11
Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit one of the control of the contr	SCS Unit Hydrograph Parameters		
Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit composite 0.013 hours 483.432 1.670 1.670 0.749 1.670 0.067 hours	Time of Concentration	0.100	h
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Polit	(Composite)	0.100	hours
Factor K Factor 0.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.267 hours	•	0.013	hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Unit Hydrograph Shape	102 122	
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 1.36 ft³/s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Factor	403.432	
Unit peak, qp 1.36 ft ³ /s Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours		0.749	
Unit peak time, Tp 0.067 hours Unit receding limb, Tr 0.267 hours	Receding/Rising, Tr/Tp	1.670	
Unit receding limb, Tr 0.267 hours	. "		
5			
Total unit time, Tb 0.333 hours	9		
	Total unit time, Tb	0.333	hours

Return Event: 100 years

Storm Event: 100-yr

Return Event: 100 years Label: Area-1C-Post Storm Event: 100-yr


Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.120 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.300	0.00	0.00	0.00	0.00	0.00
9.550	0.00	0.00	0.00	0.00	0.00
9.800	0.00	0.00	0.00	0.00	0.00
10.050	0.01	0.01	0.01	0.01	0.01
10.300	0.01	0.01	0.01	0.01	0.01
10.550	0.01	0.01	0.01	0.01	0.01
10.800	0.01	0.01	0.01	0.01	0.02
11.050	0.02	0.02	0.02	0.02	0.02
11.300	0.02	0.03	0.03	0.03	0.03
11.550	0.04	0.05	0.06	0.08	0.10
11.800	0.12	0.14	0.17	0.24	0.36
12.050	0.42	0.46	0.42	0.31	0.26
12.300	0.23	0.21	0.18	0.15	0.12
12.550	0.10	0.09	0.08	0.07	0.07
12.800	0.07	0.06	0.06	0.06	0.05
13.050	0.05	0.05	0.05	0.05	0.05
13.300	0.05	0.05	0.05	0.04	0.04
13.550	0.04	0.04	0.04	0.04	0.04
13.800	0.04	0.04	0.04	0.04	0.04
14.050	0.04	0.03	0.03	0.03	0.03
14.300	0.03	0.03	0.03	0.03	0.03
14.550	0.03	0.03	0.03	0.03	0.03
14.800	0.03	0.03	0.03	0.03	0.03
15.050	0.03	0.03	0.03	0.03	0.03
15.300	0.03	0.03	0.02	0.02	0.02
15.550	0.02	0.02	0.02	0.02	0.02
15.800	0.02	0.02	0.02	0.02	0.02
16.050	0.02	0.02	0.02	0.02	0.02
16.300	0.02	0.02	0.02	0.02	0.02
16.550	0.02	0.02	0.02	0.02	0.02
16.800	0.02	0.02	0.02	0.02	0.02
17.050	0.02	0.02	0.02	0.02	0.02
17.300	0.01	0.01	0.01	0.01	0.01
17.550	0.01	0.01	0.01	0.01	0.01
17.800	0.01	0.01	0.01	0.01	0.01
18.050	0.01	0.01	0.01	0.01	0.01
18.300	0.01	0.01	0.01	0.01	0.01
18.550	0.01	0.01	0.01	0.01	0.01
18.800	0.01	0.01	0.01	0.01	0.01
19.050	0.01	0.01	0.01	0.01	0.01
19.300	0.01	0.01	0.01	0.01	0.01
19.550	0.01	0.01	0.01	0.01	0.01
19.800	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years Label: Area-1C-Post Storm Event: 100-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.050	0.01	0.01	0.01	0.01	0.01
20.300	0.01	0.01	0.01	0.01	0.01
20.550	0.01	0.01	0.01	0.01	0.01
20.800	0.01	0.01	0.01	0.01	0.01
21.050	0.01	0.01	0.01	0.01	0.01
21.300	0.01	0.01	0.01	0.01	0.01
21.550	0.01	0.01	0.01	0.01	0.01
21.800	0.01	0.01	0.01	0.01	0.01
22.050	0.01	0.01	0.01	0.01	0.01
22.300	0.01	0.01	0.01	0.01	0.01
22.550	0.01	0.01	0.01	0.01	0.01
22.800	0.01	0.01	0.01	0.01	0.01
23.050	0.01	0.01	0.01	0.01	0.01
23.300	0.01	0.01	0.01	0.01	0.01
23.550	0.01	0.01	0.01	0.01	0.01
23.800	0.01	0.01	0.01	0.01	0.01

Return Event: 100 years Storm Event: 100-yr Label: Area-1C-Post

Label: Area-1D-Post

Storm Event	2-yr	_
Return Event	2 years	
Duration	24.000 hours	
Depth	3.0 in	
Time of Concentration (Composite)	0.100 hours	
Area (User Defined)	1.152 acres	
		_
Computational Time Increment	0.013 hours	
Time to Peak (Computed)	12.120 hours	
Flow (Peak, Computed)	1.38 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	12.100 hours	
Flow (Peak Interpolated	1.36 ft ³ /s	
Output)	1.30 11 73	
Drainage Area		_
SCS CN (Composite)	79.000	_
Area (User Defined)	1.152 acres	
Maximum Retention (Pervious)	2.7 in	
Maximum Retention (Pervious, 20 percent)	0.5 in	
Cumulative Runoff		_
Cumulative Runoff Depth		-
(Pervious)	1.2 in	
Runoff Volume (Pervious)	0.113 ac-ft	
Hydrograph Volume (Area under	Hydrograph curve)	_
Volume	0.113 ac-ft	
SCS Unit Hydrograph Parameters	 S	_
Time of Concentration		_
(Composite)	0.100 hours	
Computational Time Increment	0.013 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	13.05 ft ³ /s	
Unit peak time, Tp	0.067 hours	
	0.267 hours	
Unit receding limb, Tr	0.207 Hours	

Return Event: 2 years

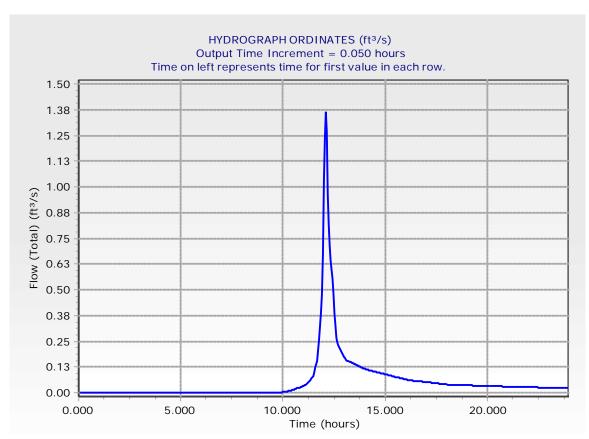
Storm Event: 2-yr

Return Event: 2 years Label: Area-1D-Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	1.152 acres

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.900	0.00	0.00	0.00	0.00	0.00
10.150	0.01	0.01	0.01	0.01	0.01
10.400	0.01	0.01	0.01	0.02	0.02
10.650	0.02	0.02	0.02	0.02	0.03
10.900	0.03	0.03	0.03	0.04	0.04
11.150	0.04	0.05	0.05	0.06	0.06
11.400	0.07	0.07	0.08	0.10	0.12
11.650	0.15	0.20	0.26	0.32	0.39
11.900	0.48	0.68	1.03	1.23	1.36
12.150	1.27	0.96	0.82	0.71	0.64
12.400	0.55	0.48	0.38	0.33	0.27
12.650	0.24	0.23	0.22	0.21	0.20
12.900	0.19	0.18	0.17	0.17	0.16
13.150	0.16	0.15	0.15	0.15	0.15
13.400	0.14	0.14	0.14	0.14	0.14
13.650	0.13	0.13	0.13	0.13	0.12
13.900	0.12	0.12	0.12	0.11	0.11
14.150	0.11	0.11	0.11	0.11	0.11
14.400	0.10	0.10	0.10	0.10	0.10
14.650	0.10	0.10	0.10	0.09	0.09
14.900	0.09	0.09	0.09	0.09	0.09
15.150	0.09	0.08	0.08	0.08	0.08
15.400	0.08	0.08	0.08	0.08	0.07
15.650	0.07	0.07	0.07	0.07	0.07
15.900	0.07	0.07	0.06	0.06	0.06
16.150	0.06	0.06	0.06	0.06	0.06
16.400	0.06	0.06	0.06	0.06	0.06
16.650	0.06	0.06	0.05	0.05	0.05
16.900	0.05	0.05	0.05	0.05	0.05
17.150	0.05	0.05	0.05	0.05	0.05
17.400	0.05	0.05	0.05	0.05	0.04
17.650	0.04	0.04	0.04	0.04	0.04
17.900	0.04	0.04	0.04	0.04	0.04
18.150	0.04	0.04	0.04	0.04	0.04
18.400	0.04	0.04	0.04	0.04	0.04
18.650	0.04	0.04	0.04	0.04	0.04
18.900	0.04	0.04	0.04	0.04	0.04
19.150	0.04	0.04	0.04	0.03	0.03
19.400	0.03	0.03	0.03	0.03	0.03
19.650	0.03	0.03	0.03	0.03	0.03 0.03
19.900	0.03 0.03	0.03 0.03	0.03 0.03	0.03 0.03	0.03
20.150 20.400	0.03	0.03	0.03	0.03	0.03
20.400	J 0.03	0.03	0.03	0.03	0.03

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1D-Post

Storm Event: 2-yr

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.650	0.03	0.03	0.03	0.03	0.03
20.900	0.03	0.03	0.03	0.03	0.03
21.150	0.03	0.03	0.03	0.03	0.03
21.400	0.03	0.03	0.03	0.03	0.03
21.650	0.03	0.03	0.03	0.03	0.03
21.900	0.03	0.03	0.03	0.03	0.03
22.150	0.03	0.03	0.03	0.03	0.03
22.400	0.03	0.03	0.03	0.03	0.03
22.650	0.03	0.03	0.03	0.02	0.02
22.900	0.02	0.02	0.02	0.02	0.02
23.150	0.02	0.02	0.02	0.02	0.02
23.400	0.02	0.02	0.02	0.02	0.02
23.650	0.02	0.02	0.02	0.02	0.02
23.900	0.02	0.02	0.02	(N/A)	(N/A)

Return Event: 2 years Label: Area-1D-Post Storm Event: 2-yr

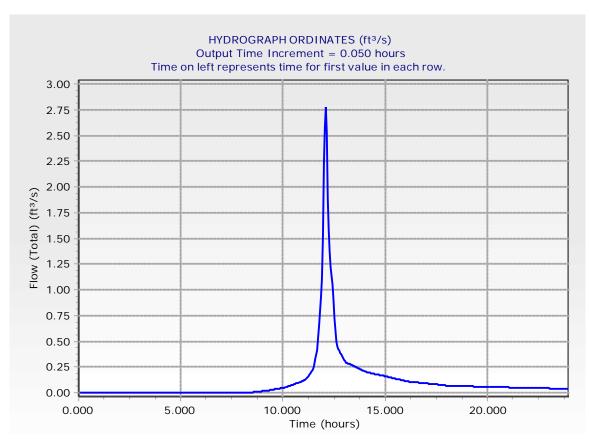
Label: Area-1D-Post

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	1.152 acres
Commutational Time	
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	2.79 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.100 hours
Flow (Peak Interpolated Output)	2.77 ft ³ /s
Drainage Area	
SCS CN (Composite)	79.000
Area (User Defined)	1.152 acres
Maximum Retention (Pervious)	2.7 in
Maximum Retention (Pervious, 20 percent)	0.5 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.4 in
Runoff Volume (Pervious)	0.227 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	0.226 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	13.05 ft ³ /s
- · ·	13.05 ft ³ /s 0.067 hours
Unit peak, qp	

Return Event: 10 years

Storm Event: 10-yr

Return Event: 10 years Label: Area-1D-Post Storm Event: 10-yr


10-yr
10 years
24.000 hours
4.5 in
0.100 hours
1.152 acres

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.300	0.00	0.00	0.00	0.00	0.00
8.550	0.00	0.01	0.01	0.01	0.01
8.800	0.01	0.01	0.01	0.01	0.01
9.050	0.02	0.02	0.02	0.02	0.02
9.300	0.02	0.02	0.03	0.03	0.03
9.550	0.03	0.03	0.03	0.04	0.04
9.800	0.04	0.04	0.04	0.05	0.05
10.050	0.05	0.05	0.06	0.06	0.06
10.300	0.06	0.07	0.07	0.07	0.08
10.550	0.08	0.09	0.09	0.09	0.10
10.800	0.10	0.10	0.11	0.11	0.12
11.050	0.12	0.13	0.14	0.15	0.16
11.300	0.18	0.19	0.20	0.22	0.23
11.550	0.27	0.33	0.41	0.53	0.64
11.800	0.79	0.93	1.10	1.52	2.22
12.050	2.58	2.77	2.52	1.89	1.58
12.300	1.37	1.21	1.04	0.90	0.72
12.550	0.61	0.50	0.45	0.42	0.41
12.800	0.39	0.37	0.35	0.34	0.32
13.050	0.31	0.29	0.29	0.28	0.28
13.300	0.27	0.27	0.26	0.26	0.25
13.550	0.25	0.24	0.24	0.24	0.23
13.800	0.23	0.22	0.22	0.21	0.21
14.050	0.20	0.20	0.20	0.20	0.19
14.300	0.19	0.19	0.19	0.18	0.18
14.550	0.18	0.18	0.18	0.17	0.17
14.800	0.17	0.17	0.16	0.16	0.16
15.050	0.16	0.16	0.15	0.15	0.15
15.300	0.15	0.14	0.14	0.14	0.14
15.550	0.13	0.13	0.13	0.13	0.13
15.800	0.12	0.12	0.12	0.12	0.11
16.050	0.11	0.11	0.11	0.11	0.11
16.300	0.11	0.10	0.10	0.10	0.10
16.550	0.10	0.10	0.10	0.10	0.10
16.800	0.09	0.09	0.09	0.09	0.09
17.050	0.09	0.09	0.09	0.09	0.09
17.300	0.08	0.08	0.08	0.08	0.08
17.550	0.08	0.08	0.08	0.08	0.08
17.800	0.07	0.07	0.07	0.07	0.07
18.050	0.07	0.07	0.07	0.07	0.07
18.300 18.550	0.07 0.07	0.07 0.07	0.07	0.07 0.06	0.07 0.06
18.800	0.07	0.07	0.06 0.06	0.06	0.06
18.800	J 0.06	0.06	0.06	0.06	0.06

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years Label: Area-1D-Post Storm Event: 10-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.050	0.06	0.06	0.06	0.06	0.06
19.300	0.06	0.06	0.06	0.06	0.06
19.550	0.06	0.06	0.06	0.06	0.06
19.800	0.06	0.06	0.06	0.06	0.06
20.050	0.06	0.06	0.06	0.06	0.06
20.300	0.05	0.05	0.05	0.05	0.05
20.550	0.05	0.05	0.05	0.05	0.05
20.800	0.05	0.05	0.05	0.05	0.05
21.050	0.05	0.05	0.05	0.05	0.05
21.300	0.05	0.05	0.05	0.05	0.05
21.550	0.05	0.05	0.05	0.05	0.05
21.800	0.05	0.05	0.05	0.05	0.05
22.050	0.05	0.05	0.05	0.05	0.05
22.300	0.05	0.05	0.05	0.04	0.04
22.550	0.04	0.04	0.04	0.04	0.04
22.800	0.04	0.04	0.04	0.04	0.04
23.050	0.04	0.04	0.04	0.04	0.04
23.300	0.04	0.04	0.04	0.04	0.04
23.550	0.04	0.04	0.04	0.04	0.04
23.800	0.04	0.04	0.04	0.04	0.04

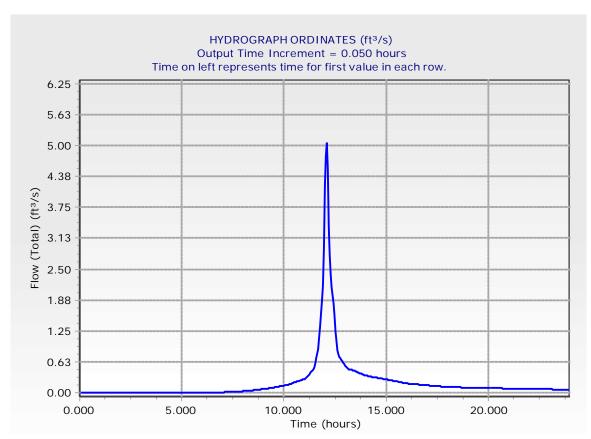
Return Event: 10 years Label: Area-1D-Post Storm Event: 10-yr

Label: Area-1D-Post

Storm Event	50-yr	
Return Event	50 years	
Duration	24.000 hours	
Depth	6.8 in	
Time of Concentration (Composite)	0.100 hours	
Area (User Defined)	1.152 acres	
Computational Time Increment	0.013 hours	
Time to Peak (Computed)	12.107 hours	
Flow (Peak, Computed)	5.07 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	12.100 hours	
Flow (Peak Interpolated Output)	5.06 ft ³ /s	
Drainage Area		
SCS CN (Composite)	79.000	
Area (User Defined)	1.152 acres	
Maximum Retention (Pervious)	2.7 in	
Maximum Retention (Pervious, 20 percent)	0.5 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	4.4 in	
Runoff Volume (Pervious)	0.419 ac-ft	
Hydrograph Volume (Area under H	Hydrograph curve)	
Volume	0.419 ac-ft	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	0.100 hours	
Computational Time Increment	0.013 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	13.05 ft ³ /s	
Unit peak time, Tp	0.067 hours	
Unit receding limb, Tr	0.267 hours	
Total unit time, Tb	0.333 hours	

Return Event: 50 years Storm Event: 50-yr

Return Event: 50 years Label: Area-1D-Post Storm Event: 50-yr


Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	1.152 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
6.500	0.00	0.00	0.00	0.00	0.00
6.750	0.00	0.00	0.01	0.01	0.01
7.000	0.01	0.01	0.01	0.01	0.01
7.250	0.01	0.01	0.01	0.02	0.02
7.500	0.02	0.02	0.02	0.02	0.02
7.750	0.02	0.03	0.03	0.03	0.03
8.000	0.03	0.03	0.03	0.03	0.04
8.250	0.04	0.04	0.04	0.04	0.05
8.500	0.05	0.05	0.05	0.06	0.06
8.750	0.06	0.06	0.07	0.07	0.07
9.000	0.08	0.08	0.08	0.08	0.09
9.250	0.09	0.09	0.10	0.10	0.10
9.500	0.11	0.11	0.11	0.12	0.12
9.750	0.12	0.13	0.13	0.14	0.14
10.000	0.14	0.15	0.15	0.16	0.17
10.250	0.17	0.18	0.18	0.19	0.20
10.500	0.21	0.21	0.22	0.23	0.23
10.750	0.24	0.25	0.26	0.27	0.27
11.000	0.28	0.29	0.31	0.33	0.35
11.250	0.37	0.40	0.42	0.45	0.48
11.500	0.51	0.58	0.70	0.87	1.11
11.750	1.33	1.60	1.86	2.17	2.94
12.000	4.21	4.79	5.06	4.53	3.36
12.250	2.79	2.40	2.12	1.81	1.55
12.500	1.24	1.05	0.86	0.78	0.73
12.750	0.70	0.66	0.64	0.60	0.58
13.000	0.54	0.52	0.50	0.49	0.48
13.250	0.47	0.46	0.45	0.45	0.44
13.500	0.43	0.42	0.41	0.41	0.40
13.750	0.39	0.38	0.37	0.37	0.36
14.000	0.35	0.34	0.34	0.33	0.33
14.250	0.33	0.32	0.32	0.31	0.31
14.500	0.31	0.30	0.30	0.29	0.29
14.750	0.29	0.28	0.28	0.27	0.27
15.000	0.27	0.26	0.26	0.26	0.25
15.250	0.25	0.24	0.24	0.24	0.23
15.500	0.23	0.22	0.22	0.22	0.21
15.750	0.21	0.20	0.20	0.20	0.19
16.000	0.19	0.19	0.18	0.18	0.18
16.250	0.18 0.17	0.17 0.17	0.17	0.17	0.17
16.500 16.750	0.17	0.17	0.16 0.16	0.16 0.15	0.16 0.15
17.000		0.16	0.16	0.15	0.15
17.000	0.15	0.15	0.15	U. 15	0.14

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years Label: Area-1D-Post Storm Event: 50-yr

	Time of fert represents time for mist value in each row.					
Time	Flow	Flow	Flow	Flow	Flow	
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	
17.250	0.14	0.14	0.14	0.14	0.13	
17.500	0.13	0.13	0.13	0.13	0.13	
17.750	0.12	0.12	0.12	0.12	0.12	
18.000	0.12	0.11	0.11	0.11	0.11	
18.250	0.11	0.11	0.11	0.11	0.11	
18.500	0.11	0.11	0.11	0.11	0.11	
18.750	0.11	0.11	0.11	0.10	0.10	
19.000	0.10	0.10	0.10	0.10	0.10	
19.250	0.10	0.10	0.10	0.10	0.10	
19.500	0.10	0.10	0.10	0.10	0.10	
19.750	0.10	0.10	0.09	0.09	0.09	
20.000	0.09	0.09	0.09	0.09	0.09	
20.250	0.09	0.09	0.09	0.09	0.09	
20.500	0.09	0.09	0.09	0.09	0.09	
20.750	0.09	0.09	0.09	0.09	0.09	
21.000	0.09	0.09	0.08	0.08	0.08	
21.250	0.08	0.08	0.08	0.08	0.08	
21.500	0.08	0.08	0.08	0.08	0.08	
21.750	0.08	0.08	0.08	0.08	0.08	
22.000	0.08	0.08	0.08	0.08	0.08	
22.250	0.08	0.07	0.07	0.07	0.07	
22.500	0.07	0.07	0.07	0.07	0.07	
22.750	0.07	0.07	0.07	0.07	0.07	
23.000	0.07	0.07	0.07	0.07	0.07	
23.250	0.07	0.07	0.07	0.07	0.07	
23.500	0.07	0.06	0.06	0.06	0.06	
23.750	0.06	0.06	0.06	0.06	0.06	
24.000	0.06	(N/A)	(N/A)	(N/A)	(N/A)	

Return Event: 50 years Storm Event: 50-yr Label: Area-1D-Post

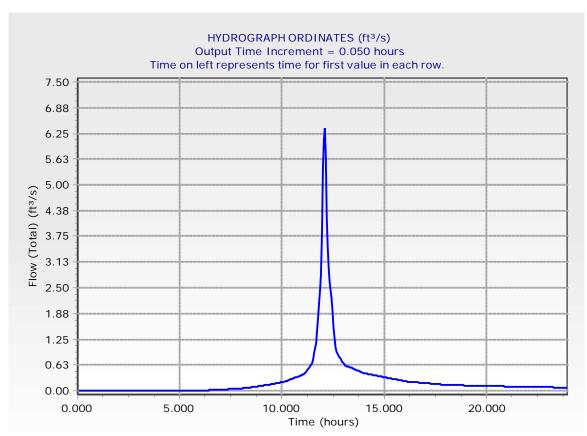
Label: Area-1D-Post

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	1.152 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	6.41 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.100 hours
Interpolated Output)	12.100 110013
Flow (Peak Interpolated Output)	6.39 ft ³ /s
Outputy	
Drainage Area	
SCS CN (Composite)	79.000
Area (User Defined)	1.152 acres
Maximum Retention (Pervious)	2.7 in
Maximum Retention (Pervious, 20 percent)	0.5 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	5.6 in
Runoff Volume (Pervious)	0.535 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	0.535 ac-ft
SCS Unit Hydrograph Parameter	ers
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	13.05 ft ³ /s
Unit peak time, Tp	0.067 hours
Unit receding limb, Tr	0.267 hours
Total unit time, Tb	0.333 hours

Return Event: 100 years

Storm Event: 100-yr

Return Event: 100 years Label: Area-1D-Post Storm Event: 100-yr


Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	1.152 acres

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.750	0.00	0.00	0.00	0.00	0.00
6.000	0.00	0.01	0.01	0.01	0.01
6.250	0.01	0.01	0.01	0.01	0.01
6.500	0.01	0.01	0.01	0.02	0.02
6.750	0.02	0.02	0.02	0.02	0.02
7.000	0.02	0.03	0.03	0.03	0.03
7.250	0.03	0.03	0.03	0.04	0.04
7.500	0.04	0.04	0.04	0.04	0.05
7.750	0.05	0.05	0.05	0.05	0.05
8.000	0.06	0.06	0.06	0.06	0.06
8.250	0.07	0.07	0.07	0.08	0.08
8.500	0.08	0.09	0.09	0.09	0.10
8.750	0.10	0.10	0.11	0.11	0.11
9.000	0.12	0.12	0.13	0.13	0.13
9.250	0.14	0.14	0.15	0.15	0.16
9.500	0.16	0.16	0.17	0.17	0.18
9.750	0.18	0.19	0.19	0.20	0.20
10.000	0.21	0.21	0.22	0.23	0.24
10.250	0.24	0.25	0.26	0.27	0.28
10.500	0.29	0.30	0.31	0.32	0.33
10.750	0.34	0.35	0.36	0.37	0.38
11.000	0.39	0.40	0.42	0.45	0.48
11.250	0.51	0.54	0.57	0.61	0.64
11.500	0.68	0.77	0.93	1.15	1.46
11.750	1.75	2.10	2.42	2.81	3.78
12.000	5.38	6.08	6.39	5.71	4.22
12.250	3.49	2.99	2.64	2.25	1.93
12.500	1.54	1.30	1.06	0.96	0.90
12.750	0.86	0.82	0.79	0.75	0.71
13.000	0.67	0.64	0.62	0.60	0.59
13.250	0.58	0.57	0.56	0.55	0.54
13.500	0.53	0.52	0.51	0.50	0.49
13.750	0.48	0.47	0.46	0.45	0.44
14.000	0.43	0.42	0.42	0.41	0.40
14.250	0.40	0.40	0.39	0.39	0.38
14.500	0.38	0.37	0.37	0.36	0.36
14.750	0.35	0.35	0.34	0.34	0.33
15.000	0.33	0.32	0.32	0.31	0.31
15.250	0.30	0.30	0.29	0.29	0.29
15.500	0.28	0.28	0.27	0.27	0.26
15.750	0.26	0.25	0.25	0.24	0.24
16.000	0.23	0.23	0.22	0.22	0.22
16.250	0.22	0.21	0.21	0.21	0.21

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years Label: Area-1D-Post Storm Event: 100-yr

time on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
16.500		0.20	0.20	0.20	0.20
16.750		0.19	0.19	0.19	0.19
17.000		0.18	0.18	0.18	0.18
17.250	0.17	0.17	0.17	0.17	0.17
17.500		0.16	0.16	0.16	0.15
17.750		0.15	0.15	0.15	0.14
18.000	0.14	0.14	0.14	0.14	0.14
18.250	0.14	0.14	0.14	0.13	0.13
18.500		0.13	0.13	0.13	0.13
18.750	0.13	0.13	0.13	0.13	0.13
19.000	0.13	0.13	0.13	0.12	0.12
19.250	0.12	0.12	0.12	0.12	0.12
19.500		0.12	0.12	0.12	0.12
19.750	0.12	0.12	0.12	0.12	0.11
20.000	0.11	0.11	0.11	0.11	0.11
20.250	0.11	0.11	0.11	0.11	0.11
20.500		0.11	0.11	0.11	0.11
20.750	0.11	0.11	0.11	0.10	0.10
21.000	0.10	0.10	0.10	0.10	0.10
21.250	0.10	0.10	0.10	0.10	0.10
21.500	0.10	0.10	0.10	0.10	0.10
21.750		0.10	0.10	0.10	0.09
22.000		0.09	0.09	0.09	0.09
22.250	0.09	0.09	0.09	0.09	0.09
22.500	0.09	0.09	0.09	0.09	0.09
22.750	0.09	0.09	0.09	0.09	0.09
23.000	0.08	0.08	0.08	0.08	0.08
23.250		0.08	0.08	0.08	0.08
23.500	0.08	0.08	0.08	0.08	0.08
23.750		0.08	0.08	0.08	0.08
24.000	0.08	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 100 years Label: Area-1D-Post Storm Event: 100-yr

Label: Area-1E-Post

Storm Event	2-yr	
Return Event	2	years
Duration	24.000	hours
Depth	3.0	in
Time of Concentration (Composite)	0.100	hours
Area (User Defined)	0.151	acres
Computational Time Increment	0.013	hours
Time to Peak (Computed)	12.120	hours
Flow (Peak, Computed)	0.21	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	12.100	hours
Flow (Peak Interpolated Output)	0.21	ft³/s
Drainage Area		
	22.222	
SCS CN (Composite)	82.000	
Area (User Defined)	0.151	acres
Maximum Retention (Pervious)	2.2	in
Maximum Retention (Pervious, 20 percent)	0.4	in
Cumulative Runoff		
Cumulative Runoff Depth	1.4	in
(Pervious)	0.017	CI.
Runoff Volume (Pervious)	0.017	ас-тт
Hydrograph Volume (Area under	Hydrograph c	urve)
Volume	0.017	ac-ft
SCS Unit Hydrograph Parameter	re	
	15	
Time of Concentration (Composite)	0.100	hours
Computational Time	0.012	hours
Increment	0.013	
Increment Unit Hydrograph Shape Factor	483.432	
Unit Hydrograph Shape		
Unit Hydrograph Shape Factor	483.432	
Unit Hydrograph Shape Factor K Factor	483.432 0.749	ft³/s
Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	483.432 0.749 1.670	
Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	483.432 0.749 1.670 1.71	hours

Return Event: 2 years

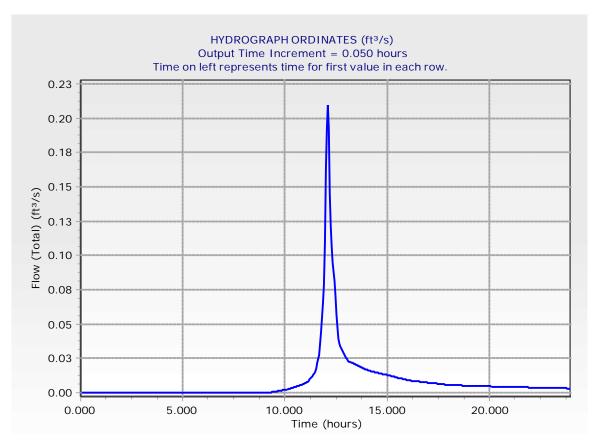
Storm Event: 2-yr

Return Event: 2 years Label: Area-1E-Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.151 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.600	0.00	0.00	0.00	0.00	0.00
9.850	0.00	0.00	0.00	0.00	0.00
10.100	0.00	0.00	0.00	0.00	0.00
10.350	0.00	0.00	0.00	0.00	0.00
10.600	0.00	0.00	0.01	0.01	0.01
10.850	0.01	0.01	0.01	0.01	0.01
11.100	0.01	0.01	0.01	0.01	0.01
11.350	0.01	0.01	0.01	0.02	0.02
11.600	0.02	0.03	0.04	0.04	0.05
11.850	0.07	0.08	0.11	0.16	0.19
12.100	0.21	0.19	0.15	0.12	0.11
12.350	0.09	0.08	0.07	0.06	0.05
12.600	0.04	0.04	0.03	0.03	0.03
12.850	0.03	0.03	0.03	0.03	0.02
13.100	0.02	0.02	0.02	0.02	0.02
13.350	0.02	0.02	0.02	0.02	0.02
13.600	0.02	0.02	0.02	0.02	0.02
13.850	0.02	0.02	0.02	0.02	0.02
14.100	0.02	0.02	0.02	0.02	0.02
14.350	0.02	0.01	0.01	0.01	0.01
14.600	0.01	0.01	0.01	0.01	0.01
14.850	0.01	0.01	0.01	0.01	0.01
15.100	0.01	0.01	0.01	0.01	0.01
15.350	0.01	0.01	0.01	0.01	0.01
15.600	0.01	0.01	0.01	0.01	0.01
15.850	0.01	0.01	0.01	0.01	0.01
16.100	0.01	0.01	0.01	0.01	0.01
16.350	0.01	0.01	0.01	0.01	0.01
16.600	0.01	0.01	0.01	0.01	0.01
16.850	0.01	0.01	0.01	0.01	0.01
17.100	0.01	0.01	0.01	0.01	0.01
17.350	0.01	0.01	0.01	0.01	0.01
17.600	0.01	0.01	0.01	0.01	0.01
17.850	0.01	0.01	0.01	0.01	0.01
18.100	0.01	0.01	0.01	0.01	0.01
18.350	0.01	0.01	0.01	0.01	0.01
18.600	0.01	0.01	0.01	0.01 0.01	0.01
18.850	0.01	0.01	0.01		0.01
19.100	0.01	0.01	0.01	0.00	0.00
19.350 19.600	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
19.850	0.00	0.00	0.00	0.00	0.00
20.100		0.00	0.00	0.00	0.00
20.100	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1E-Post

Storm Event: 2-yr

Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
20.350	0.00	0.00	0.00	0.00	0.00
20.600	0.00	0.00	0.00	0.00	0.00
20.850	0.00	0.00	0.00	0.00	0.00
21.100	0.00	0.00	0.00	0.00	0.00
21.350	0.00	0.00	0.00	0.00	0.00
21.600	0.00	0.00	0.00	0.00	0.00
21.850	0.00	0.00	0.00	0.00	0.00
22.100	0.00	0.00	0.00	0.00	0.00
22.350	0.00	0.00	0.00	0.00	0.00
22.600	0.00	0.00	0.00	0.00	0.00
22.850	0.00	0.00	0.00	0.00	0.00
23.100	0.00	0.00	0.00	0.00	0.00
23.350	0.00	0.00	0.00	0.00	0.00
23.600	0.00	0.00	0.00	0.00	0.00
23.850	0.00	0.00	0.00	0.00	(N/A)

Return Event: 2 years Label: Area-1E-Post Storm Event: 2-yr

Label: Area-1E-Post

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.151 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	0.40 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.100 hours
Flow (Peak Interpolated Output)	0.40 ft ³ /s
Drainage Area	
SCS CN (Composite)	82.000
Area (User Defined)	0.151 acres
Maximum Retention	2.2 in
(Pervious)	
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.6 in
Runoff Volume (Pervious)	0.033 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	0.033 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Return Event: 10 years

Storm Event: 10-yr

1.71 ft³/s

0.067 hours

0.267 hours

0.333 hours

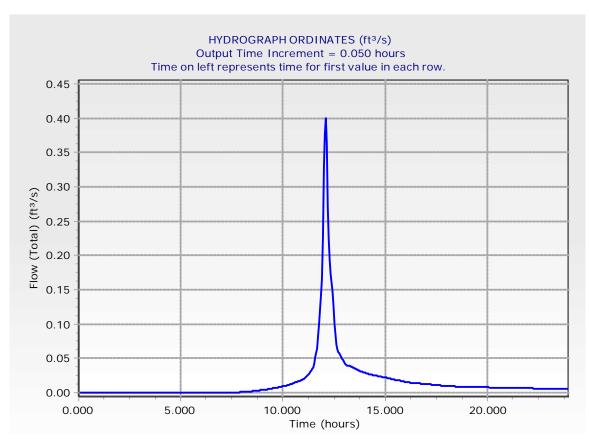
Unit peak, qp

Unit peak time, Tp

Total unit time, Tb

Unit receding limb, Tr

Return Event: 10 years Label: Area-1E-Post Storm Event: 10-yr


Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.151 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.000	0.00	0.00	0.00	0.00	0.00
8.250	0.00	0.00	0.00	0.00	0.00
8.500	0.00	0.00	0.00	0.00	0.00
8.750	0.00	0.00	0.00	0.00	0.00
9.000	0.00	0.00	0.00	0.00	0.00
9.250	0.01	0.01	0.01	0.01	0.01
9.500	0.01	0.01	0.01	0.01	0.01
9.750	0.01	0.01	0.01	0.01	0.01
10.000	0.01	0.01	0.01	0.01	0.01
10.250	0.01	0.01	0.01	0.01	0.01
10.500	0.01	0.01	0.01	0.02	0.02
10.750	0.02	0.02	0.02	0.02	0.02
11.000	0.02	0.02	0.02	0.02	0.03
11.250	0.03	0.03	0.03	0.03	0.03
11.500	0.04	0.04	0.05	0.06	0.08
11.750	0.10	0.12	0.14	0.17	0.23
12.000	0.33	0.38	0.40	0.36	0.27
12.250	0.22	0.19	0.17	0.15	0.13
12.500	0.10	0.09	0.07	0.06	0.06
12.750	0.06	0.05	0.05	0.05	0.05
13.000	0.04	0.04	0.04	0.04	0.04
13.250	0.04	0.04	0.04	0.04	0.04
13.500	0.04	0.03	0.03	0.03	0.03
13.750	0.03	0.03	0.03	0.03	0.03
14.000	0.03	0.03	0.03	0.03	0.03
14.250	0.03	0.03	0.03	0.03	0.03
14.500	0.03	0.02	0.02	0.02	0.02
14.750	0.02	0.02	0.02	0.02	0.02
15.000	0.02	0.02	0.02	0.02	0.02
15.250	0.02	0.02	0.02	0.02	0.02
15.500	0.02	0.02	0.02	0.02	0.02
15.750	0.02	0.02	0.02	0.02	0.02
16.000	0.02	0.02	0.02	0.01	0.01
16.250	0.01	0.01	0.01	0.01	0.01
16.500	0.01	0.01	0.01	0.01	0.01
16.750	0.01	0.01	0.01	0.01	0.01
17.000	0.01	0.01	0.01	0.01	0.01
17.250	0.01	0.01	0.01	0.01	0.01
17.500	0.01	0.01	0.01	0.01	0.01
17.750 18.000	0.01 0.01	0.01 0.01	0.01	0.01 0.01	0.01 0.01
18.000	0.01	0.01	0.01 0.01	0.01	0.01
					0.01
18.500	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years Label: Area-1E-Post Storm Event: 10-yr

Time of feet represents time for mot value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	
	1		, ,			
18.750	0.01	0.01	0.01	0.01	0.01	
19.000	0.01	0.01	0.01	0.01	0.01	
19.250	0.01	0.01	0.01	0.01	0.01	
19.500	0.01	0.01	0.01	0.01	0.01	
19.750	0.01	0.01	0.01	0.01	0.01	
20.000	0.01	0.01	0.01	0.01	0.01	
20.250	0.01	0.01	0.01	0.01	0.01	
20.500	0.01	0.01	0.01	0.01	0.01	
20.750	0.01	0.01	0.01	0.01	0.01	
21.000	0.01	0.01	0.01	0.01	0.01	
21.250	0.01	0.01	0.01	0.01	0.01	
21.500	0.01	0.01	0.01	0.01	0.01	
21.750	0.01	0.01	0.01	0.01	0.01	
22.000	0.01	0.01	0.01	0.01	0.01	
22.250	0.01	0.01	0.01	0.01	0.01	
22.500	0.01	0.01	0.01	0.01	0.01	
22.750	0.01	0.01	0.01	0.01	0.01	
23.000	0.01	0.01	0.01	0.01	0.01	
23.250	0.01	0.01	0.01	0.01	0.01	
23.500	0.01	0.01	0.01	0.01	0.01	
23.750	0.01	0.01	0.01	0.01	0.01	
24.000	0.01	(N/A)	(N/A)	(N/A)	(N/A)	

Return Event: 10 years Label: Area-1E-Post Storm Event: 10-yr

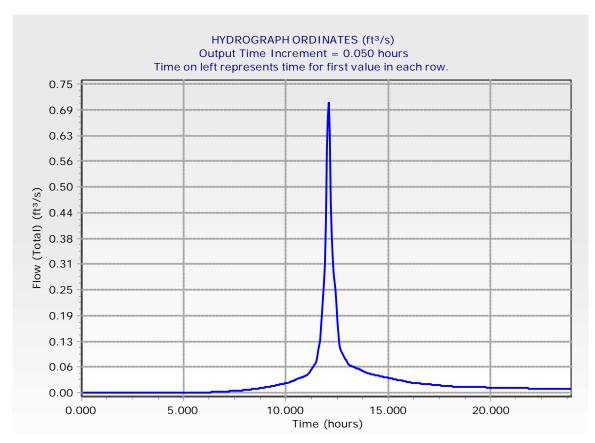
Label: Area-1E-Post

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.151 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	12.107 hours
Flow (Peak, Computed)	0.71 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.100 hours
Flow (Peak Interpolated	0.70.63/2
Output)	0.70 ft ³ /s
Drainage Area	
SCS CN (Composite)	82.000
Area (User Defined)	0.151 acres
Maximum Retention	0.131 acres
(Pervious)	2.2 in
Maximum Retention (Pervious, 20 percent)	0.4 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.7 in
Runoff Volume (Pervious)	0.059 ac-ft
Hydrograph Volume (Area under	: Hydrograph curvo)
Volume	0.059 ac-ft
SCS Unit Hydrograph Parameter	rs
Time of Concentration (Composite)	0.100 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	1.71 ft ³ /s
Unit peak time, Tp	0.067 hours
Unit receding limb, Tr	0.267 hours
Total unit time, Tb	0.333 hours

Return Event: 50 years

Storm Event: 50-yr

Return Event: 50 years Label: Area-1E-Post Storm Event: 50-yr


Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.151 acres

Time	Time of ferr represents time for first value in each row.					
(hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
6.250	0.00	0.00	0.00	0.00	0.00	
6.500	0.00	0.00	0.00	0.00	0.00	
6.750	0.00	0.00	0.00	0.00	0.00	
7.000	0.00	0.00	0.00	0.00	0.00	
7.250	0.00	0.00	0.00	0.00	0.00	
7.500	0.00	0.00	0.00	0.00	0.00	
7.750	0.00	0.00	0.00	0.00	0.01	
8.000	0.01	0.01	0.01	0.01	0.01	
8.250	0.01	0.01	0.01	0.01	0.01	
8.500	0.01	0.01	0.01	0.01	0.01	
8.750	0.01	0.01	0.01	0.01	0.01	
9.000	0.01	0.01	0.01	0.01	0.01	
9.250	0.02	0.02	0.02	0.02	0.02	
9.500	0.02	0.02	0.02	0.02	0.02	
9.750	0.02	0.02	0.02	0.02	0.02	
10.000	0.02	0.02	0.02	0.03	0.03	
10.250	0.03	0.03	0.03	0.03	0.03	
10.500	0.03	0.03	0.03	0.04	0.04	
10.750	0.04	0.04	0.04	0.04	0.04	
11.000	0.04	0.04	0.05	0.05	0.05	
11.250	0.06	0.06	0.06	0.07	0.07	
11.500	0.07	0.09	0.10	0.13	0.16	
11.750	0.19	0.23	0.27	0.31	0.42	
12.000	0.59	0.67	0.70	0.63	0.46	
12.250	0.38	0.33	0.29	0.25	0.21	
12.500	0.17	0.14	0.12	0.11	0.10	
12.750	0.10	0.09	0.09	0.08	0.08	
13.000	0.07	0.07	0.07	0.07	0.06	
13.250	0.06	0.06	0.06	0.06	0.06	
13.500	0.06	0.06	0.06	0.06	0.05	
13.750	0.05	0.05	0.05	0.05	0.05	
14.000	0.05	0.05	0.05	0.05	0.04	
14.250	0.04	0.04	0.04	0.04	0.04	
14.500	0.04	0.04	0.04	0.04	0.04	
14.750	0.04	0.04	0.04	0.04	0.04	
15.000	0.04	0.04	0.04	0.03	0.03	
15.250	0.03	0.03	0.03	0.03	0.03	
15.500	0.03	0.03	0.03	0.03	0.03	
15.750	0.03	0.03	0.03	0.03	0.03	
16.000	0.03	0.03	0.02	0.02	0.02	
16.250	0.02	0.02	0.02	0.02	0.02	
16.500	0.02	0.02	0.02	0.02	0.02	
16.750	0.02	0.02	0.02	0.02	0.02	

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years Label: Area-1E-Post Storm Event: 50-yr

rime on left represents time for first value in each row.						
Time	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	
(hours)						
17.000	0.02	0.02	0.02	0.02	0.02	
17.250	0.02	0.02	0.02	0.02	0.02	
17.500	0.02	0.02	0.02	0.02	0.02	
17.750	0.02	0.02	0.02	0.02	0.02	
18.000	0.02	0.02	0.02	0.02	0.02	
18.250	0.02	0.01	0.01	0.01	0.01	
18.500	0.01	0.01	0.01	0.01	0.01	
18.750	0.01	0.01	0.01	0.01	0.01	
19.000	0.01	0.01	0.01	0.01	0.01	
19.250	0.01	0.01	0.01	0.01	0.01	
19.500	0.01	0.01	0.01	0.01	0.01	
19.750	0.01	0.01	0.01	0.01	0.01	
20.000	0.01	0.01	0.01	0.01	0.01	
20.250	0.01	0.01	0.01	0.01	0.01	
20.500	0.01	0.01	0.01	0.01	0.01	
20.750	0.01	0.01	0.01	0.01	0.01	
21.000	0.01	0.01	0.01	0.01	0.01	
21.250	0.01	0.01	0.01	0.01	0.01	
21.500	0.01	0.01	0.01	0.01	0.01	
21.750	0.01	0.01	0.01	0.01	0.01	
22.000	0.01	0.01	0.01	0.01	0.01	
22.250	0.01	0.01	0.01	0.01	0.01	
22.500	0.01	0.01	0.01	0.01	0.01	
22.750	0.01	0.01	0.01	0.01	0.01	
23.000	0.01	0.01	0.01	0.01	0.01	
23.250	0.01	0.01	0.01	0.01	0.01	
23.500	0.01	0.01	0.01	0.01	0.01	
23.750	0.01	0.01	0.01	0.01	0.01	
24.000	0.01	(N/A)	(N/A)	(N/A)	(N/A)	

Return Event: 50 years Label: Area-1E-Post Storm Event: 50-yr

Label: Area-1E-Post

Storm Event 100-yr Return Event 100 years Duration 24,000 hours Depth 8.1 in Time of Concentration (Composite) 0.100 hours Area (User Defined) 0.151 acres Computational Time Increment 12,107 hours Flow (Peak, Computed) 12,107 hours Flow (Peak, Computed) 0.88 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12,100 hours Flow (Peak Interpolated Output) 13,100 hours Flow (Peak Interpolated Output) 14,100 hours Flow (Peak Interpolated Output) 15,100 hours Maximum Retention (Pervious) 10,4 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 5,9 in Runoff Volume (Pervious) 0.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Factor 483.432	ι	
Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) 0.100 hours Area (User Defined) 0.151 acres Computational Time Increment 0.013 hours Time to Peak (Computed) 12.107 hours Flow (Peak, Computed) 0.88 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.100 hours Flow (Pervious) 12.100 hours Flow (Pervious) 15.9 in Cumulative Runoff Output) 15.9 in Cumulative Runoff Depth (Pervious) 15.9 in Runoff Volume (Pervious) 0.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment Unit Hydrograph Shape 483 432	Storm Event	100-yr
Depth 8.1 in Time of Concentration (Composite) 0.100 hours Area (User Defined) 0.151 acres Computational Time Increment 0.013 hours Flow (Peak, Computed) 12.107 hours Flow (Peak, Computed) 0.88 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.100 hours Flow (Pervious) 12.100 hours Maximum Retention (Pervious) 0.151 acres Maximum Retention (Pervious) 0.151 acres Maximum Retention (Pervious, 20 percent) 0.4 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time Increment 0.013 hours Unit Hydrograph Shape 483 432	Return Event	100 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	Duration	24.000 hours
Composite) Area (User Defined) O.151 acres Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Prainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape O.013 hours O.151 acres 82.000 O.151 acres 82.000 O.4 in 9.4 in 9.5 in 9.7 in	Depth	8.1 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Incremen		0.100 hours
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output Increment Output) Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Output) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Output O	Area (User Defined)	0.151 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output Increment Output) Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Output) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Output O	Computational Time	0.040.1
Flow (Peak, Computed) Output Increment O	•	0.013 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 483 432	Time to Peak (Computed)	12.107 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 12.100 hours 0.88 ft³/s 12.100 hours 12.2 in 10.4	Flow (Peak, Computed)	0.88 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 483 432	Output Increment	0.050 hours
Output) Drainage Area SCS CN (Composite) 82.000 Area (User Defined) 0.151 acres Maximum Retention (Pervious) 2.2 in Maximum Retention (Pervious, 20 percent) 0.4 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 5.9 in Runoff Volume (Pervious) 0.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours (Computational Time Increment Unit Hydrograph Shape 483 432		12.100 hours
SCS CN (Composite) Area (User Defined) O.151 acres Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 483 432		0.88 ft ³ /s
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	Drainage Area	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	SCS CN (Composite)	82.000
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	Area (User Defined)	0.151 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape		2.2 in
Cumulative Runoff Depth (Pervious) 5.9 in Runoff Volume (Pervious) 0.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time 10.013 hours Unit Hydrograph Shape 483 432		0.4 in
(Pervious) Runoff Volume (Pervious) O.075 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	Cumulative Runoff	
Hydrograph Volume (Area under Hydrograph curve) Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time 1 0.013 hours Unit Hydrograph Shape 483 432		5.9 in
Volume 0.074 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.100 hours Computational Time 10.013 hours Unit Hydrograph Shape 483 432	Runoff Volume (Pervious)	0.075 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 483,432	Hydrograph Volume (Area unde	er Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 0.100 hours 0.013 hours	Volume	0.074 ac-ft
(Composite) Computational Time Increment Unit Hydrograph Shape 0.100 hours 0.013 hours	SCS Unit Hydrograph Parameter	ers
Increment Unit Hydrograph Shape 483,432		0.100 hours
3 3 1 1 483 437		0.013 hours
	3 3 1 1	483.432

0.749

1.670

1.71 ft³/s

0.067 hours

0.267 hours

0.333 hours

Return Event: 100 years

Storm Event: 100-yr

K Factor

Unit peak, qp

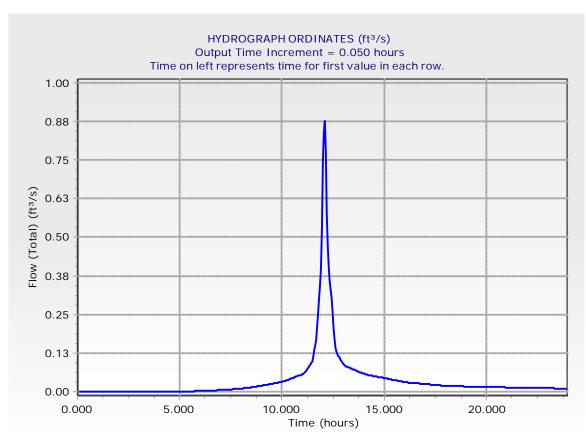
Unit peak time, Tp

Total unit time, Tb

Unit receding limb, Tr

Receding/Rising, Tr/Tp

Return Event: 100 years Label: Area-1E-Post Storm Event: 100-yr


Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.100 hours
Area (User Defined)	0.151 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
5.450	0.00	0.00	0.00	0.00	0.00
5.700	0.00	0.00	0.00	0.00	0.00
5.950	0.00	0.00	0.00	0.00	0.00
6.200	0.00	0.00	0.00	0.00	0.00
6.450	0.00	0.00	0.00	0.00	0.00
6.700	0.00	0.00	0.00	0.00	0.00
6.950	0.01	0.01	0.01	0.01	0.01
7.200	0.01	0.01	0.01	0.01	0.01
7.450	0.01	0.01	0.01	0.01	0.01
7.700	0.01	0.01	0.01	0.01	0.01
7.950	0.01	0.01	0.01	0.01	0.01
8.200	0.01	0.01	0.01	0.01	0.01
8.450	0.01	0.01	0.01	0.02	0.02
8.700	0.02	0.02	0.02	0.02	0.02
8.950	0.02	0.02	0.02	0.02	0.02
9.200	0.02	0.02	0.02	0.02	0.02
9.450	0.02	0.03	0.03	0.03	0.03
9.700	0.03	0.03	0.03	0.03	0.03
9.950	0.03	0.03	0.03	0.03	0.03
10.200	0.04	0.04	0.04	0.04	0.04
10.450	0.04	0.04	0.04	0.05	0.05
10.700	0.05	0.05	0.05	0.05	0.05
10.950	0.06	0.06	0.06	0.06	0.07
11.200	0.07	0.07	0.08	0.08	0.09
11.450	0.09	0.10	0.11	0.13	0.17
11.700	0.21	0.25	0.30	0.34	0.40
11.950	0.53	0.75	0.84	0.88	0.78
12.200	0.58	0.48	0.41	0.36	0.31
12.450	0.26	0.21	0.18	0.14	0.13
12.700	0.12	0.12	0.11	0.11	0.10
12.950	0.10	0.09	0.09	0.08	0.08
13.200	0.08	0.08	0.08	0.08	0.07
13.450	0.07	0.07	0.07	0.07	0.07
13.700	0.07	0.06	0.06	0.06	0.06
13.950	0.06	0.06	0.06	0.06	0.06
14.200	0.05	0.05	0.05	0.05	0.05
14.450	0.05	0.05	0.05	0.05	0.05
14.700	0.05	0.05	0.05	0.05	0.05
14.950	0.04	0.04	0.04	0.04	0.04
15.200	0.04	0.04	0.04	0.04	0.04
15.450	0.04	0.04	0.04	0.04	0.04
15.700	0.03	0.03	0.03	0.03	0.03
15.950	0.03	0.03	0.03	0.03	0.03

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years Label: Area-1E-Post Storm Event: 100-yr

time on left represents time for first value in each row.						
Time		Flow	Flow	Flow	Flow	Flow
(hours		(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
	.200	0.03	0.03	0.03	0.03	0.03
	.450	0.03	0.03	0.03	0.03	0.03
16	.700	0.03	0.03	0.03	0.03	0.03
16	.950	0.03	0.02	0.02	0.02	0.02
	.200	0.02	0.02	0.02	0.02	0.02
17	.450	0.02	0.02	0.02	0.02	0.02
17	.700	0.02	0.02	0.02	0.02	0.02
17	.950	0.02	0.02	0.02	0.02	0.02
18	.200	0.02	0.02	0.02	0.02	0.02
18	.450	0.02	0.02	0.02	0.02	0.02
18	.700	0.02	0.02	0.02	0.02	0.02
18	.950	0.02	0.02	0.02	0.02	0.02
19	.200	0.02	0.02	0.02	0.02	0.02
19	.450	0.02	0.02	0.02	0.02	0.02
19	.700	0.02	0.02	0.02	0.02	0.02
19	.950	0.02	0.02	0.02	0.02	0.02
20	.200	0.02	0.01	0.01	0.01	0.01
20	.450	0.01	0.01	0.01	0.01	0.01
20	.700	0.01	0.01	0.01	0.01	0.01
20	.950	0.01	0.01	0.01	0.01	0.01
21	.200	0.01	0.01	0.01	0.01	0.01
21	.450	0.01	0.01	0.01	0.01	0.01
21	.700	0.01	0.01	0.01	0.01	0.01
21	.950	0.01	0.01	0.01	0.01	0.01
22	.200	0.01	0.01	0.01	0.01	0.01
22	.450	0.01	0.01	0.01	0.01	0.01
22	.700	0.01	0.01	0.01	0.01	0.01
22	.950	0.01	0.01	0.01	0.01	0.01
23	.200	0.01	0.01	0.01	0.01	0.01
23	.450	0.01	0.01	0.01	0.01	0.01
23	.700	0.01	0.01	0.01	0.01	0.01
23	.950	0.01	0.01	(N/A)	(N/A)	(N/A)

Return Event: 100 years Storm Event: 100-yr Label: Area-1E-Post

Label: Area-1F-Post

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	6.421 acres
Computational Time Increment	0.024 hours
Time to Peak (Computed)	12.177 hours
Flow (Peak, Computed)	3.72 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.150 hours
Interpolated Output)	.200 110413
Flow (Peak Interpolated Output)	3.68 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	6.421 acres
Maximum Retention (Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.7 in
Runoff Volume (Pervious)	0.376 ac-ft
Lludragraph Valuma (Aragunda	or Lludrograph ourse)
Hydrograph Volume (Area unde	
Volume	0.375 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.180 hours
Computational Time Increment	0.024 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	40.31 ft ³ /s
Unit peak time, Tp	0.120 hours
Unit receding limb, Tr	0.481 hours
Total unit time, Tb	0.602 hours

Return Event: 2 years

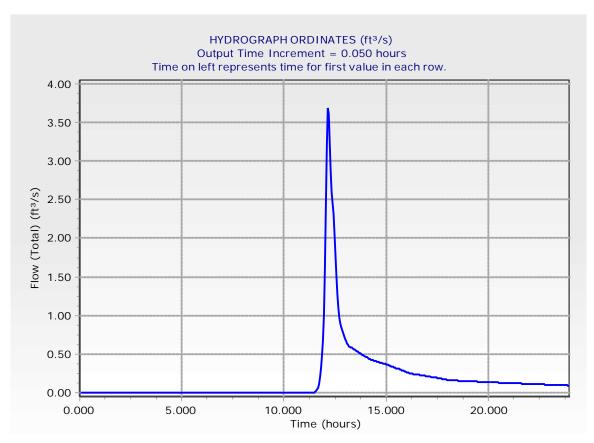
Storm Event: 2-yr

Return Event: 2 years Label: Area-1F-Post Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	6.421 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
11.450	0.00	0.00	0.01	0.03	0.06
11.700	0.12	0.20	0.32	0.47	0.67
11.950	1.00	1.62	2.42	3.19	3.68
12.200	3.61	3.24	2.87	2.59	2.32
12.450	2.06	1.78	1.51	1.27	1.09
12.700	0.97	0.90	0.84	0.80	0.77
12.950	0.73	0.70	0.67	0.64	0.62
13.200	0.60	0.59	0.58	0.57	0.57
13.450	0.56	0.55	0.54	0.53	0.52
13.700	0.52	0.51	0.50	0.49	0.48
13.950	0.47	0.46	0.45	0.45	0.44
14.200	0.43	0.43	0.43	0.42	0.42
14.450	0.41	0.41	0.40	0.40	0.40
14.700	0.39	0.39	0.38	0.38	0.37
14.950	0.37	0.36	0.36	0.36	0.35
15.200	0.35	0.34	0.34	0.33	0.33
15.450	0.32	0.32	0.31	0.31	0.30
15.700	0.30	0.29	0.29	0.28	0.28
15.950	0.27	0.27	0.26	0.26	0.25
16.200	0.25	0.25	0.25	0.24	0.24
16.450	0.24	0.24	0.23	0.23	0.23
16.700	0.23	0.23	0.22	0.22	0.22
16.950	0.22	0.21	0.21	0.21	0.21
17.200	0.21	0.20	0.20	0.20	0.20
17.450	0.19	0.19	0.19	0.19	0.18
17.700	0.18	0.18	0.18	0.17	0.17
17.950	0.17	0.17	0.17	0.16	0.16
18.200	0.16	0.16	0.16	0.16	0.16
18.450	0.16	0.16	0.16	0.15	0.15
18.700	0.15	0.15	0.15	0.15	0.15
18.950	0.15	0.15	0.15	0.15	0.15
19.200	0.15	0.15	0.15	0.14	0.14
19.450	0.14	0.14	0.14	0.14	0.14
19.700	0.14	0.14	0.14	0.14	0.14
19.950	0.14	0.14	0.14	0.13	0.13
20.200	0.13	0.13	0.13	0.13	0.13
20.450	0.13	0.13	0.13	0.13	0.13
20.700	0.13	0.13	0.13	0.13	0.13
20.950	0.13	0.13	0.12	0.12	0.12
21.200	0.12	0.12	0.12	0.12	0.12
21.450	0.12	0.12	0.12	0.12	0.12
21.700	0.12	0.12	0.12	0.12	0.12
21.950	0.12	0.11	0.11	0.11	0.11

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1F-Post

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.200	0.11	0.11	0.11	0.11	0.11
22.450	0.11	0.11	0.11	0.11	0.11
22.700	0.11	0.11	0.11	0.11	0.10
22.950	0.10	0.10	0.10	0.10	0.10
23.200	0.10	0.10	0.10	0.10	0.10
23.450	0.10	0.10	0.10	0.10	0.10
23.700	0.10	0.10	0.09	0.09	0.09
23.950	0.09	0.09	(N/A)	(N/A)	(N/A)

Return Event: 2 years Label: Area-1F-Post Storm Event: 2-yr

Label: Area-1F-Post

Storm Event	10-yr	
Return Event	10 years	
Duration	24.000 hours	
Depth	4.5 in	
Time of Concentration (Composite)	0.180 hours	
Area (User Defined)	6.421 acres	
Computational Time		=
Increment	0.024 hours	
Time to Peak (Computed)	12.153 hours	
Flow (Peak, Computed)	9.71 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	12.150 hours	
Flow (Peak Interpolated Output)	9.69 ft ³ /s	
Drainage Area		
SCS CN (Composite)	70.000	_
Area (User Defined)	6.421 acres	
Maximum Retention (Pervious)	4.3 in	
Maximum Retention (Pervious, 20 percent)	0.9 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.7 in	
Runoff Volume (Pervious)	0.888 ac-ft	
Hydrograph Volume (Area under H	lydrograph curve)	_
Volume	0.886 ac-ft	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	0.180 hours	
Computational Time Increment	0.024 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	40.31 ft ³ /s	

Return Event: 10 years

Storm Event: 10-yr

0.120 hours

0.481 hours

0.602 hours

Unit peak time, Tp

Total unit time, Tb

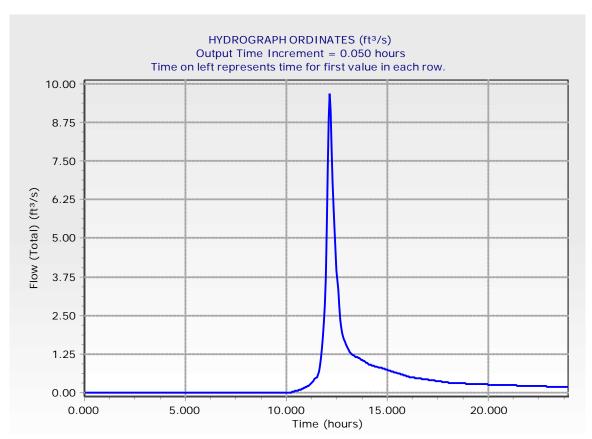
Unit receding limb, Tr

Return Event: 10 years Label: Area-1F-Post Storm Event: 10-yr

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	6.421 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.100	0.00	0.00	0.01	0.01	0.02
10.350	0.03	0.04	0.05	0.06	0.07
10.600	0.08	0.09	0.10	0.12	0.13
10.850	0.15	0.16	0.17	0.19	0.21
11.100	0.23	0.25	0.28	0.31	0.34
11.350	0.38	0.42	0.47	0.51	0.58
11.600	0.69	0.86	1.11	1.44	1.84
11.850	2.31	2.86	3.74	5.35	7.27
12.100	8.88	9.69	9.13	7.92	6.84
12.350	6.04	5.32	4.65	3.97	3.34
12.600	2.80	2.38	2.11	1.94	1.82
12.850	1.73	1.64	1.57	1.49	1.42
13.100	1.36	1.31	1.27	1.25	1.22
13.350	1.20	1.18	1.17	1.15	1.13
13.600	1.11	1.09	1.07	1.05	1.03
13.850	1.01	0.99	0.98	0.96	0.94
14.100	0.92	0.90	0.89	0.88	0.87
14.350	0.86	0.85	0.84	0.83	0.82
14.600	0.81	0.80	0.79	0.79	0.78
14.850	0.77	0.76	0.75	0.74	0.73
15.100	0.72	0.71	0.70	0.69	0.68
15.350	0.67	0.66	0.65	0.64	0.63
15.600	0.62	0.61	0.59	0.58	0.57
15.850	0.56	0.55	0.54	0.53	0.52
16.100	0.51	0.51	0.50	0.49	0.49
16.350	0.48	0.48	0.47	0.47	0.46
16.600	0.46	0.46	0.45	0.45	0.44
16.850	0.44	0.43	0.43	0.42	0.42
17.100	0.41	0.41	0.41	0.40	0.40
17.350	0.39	0.39	0.38	0.38	0.37
17.600	0.37	0.36	0.36	0.35	0.35
17.850	0.34	0.34	0.33	0.33	0.32
18.100	0.32	0.32	0.32	0.31	0.31
18.350	0.31	0.31	0.31	0.31	0.30
18.600	0.30	0.30	0.30	0.30	0.30
18.850	0.30	0.30	0.29	0.29	0.29
19.100	0.29	0.29	0.29	0.29	0.28
19.350	0.28	0.28	0.28	0.28	0.28
19.600	0.28	0.27	0.27	0.27	0.27
19.850	0.27	0.27 0.26	0.27	0.26	0.26 0.26
20.100 20.350	0.26 0.26	0.26	0.26 0.25	0.26 0.25	0.26
20.350		0.25	0.25	0.25	0.25
20.600	0.25	0.25	0.25	0.25	0.25

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 10 years

Label: Area-1F-Post

Storm Event: 10-yr

	Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
I	20.850	0.25	0.24	0.24	0.24	0.24
	21.100	0.24	0.24	0.24	0.24	0.24
	21.350	0.24	0.23	0.23	0.23	0.23
	21.600	0.23	0.23	0.23	0.23	0.23
	21.850	0.23	0.22	0.22	0.22	0.22
	22.100	0.22	0.22	0.22	0.22	0.21
	22.350	0.21	0.21	0.21	0.21	0.21
	22.600	0.21	0.21	0.21	0.21	0.20
	22.850	0.20	0.20	0.20	0.20	0.20
	23.100	0.20	0.20	0.19	0.19	0.19
	23.350	0.19	0.19	0.19	0.19	0.19
	23.600	0.19	0.19	0.18	0.18	0.18
	23.850	0.18	0.18	0.18	0.18	(N/A)

Return Event: 10 years Label: Area-1F-Post Storm Event: 10-yr

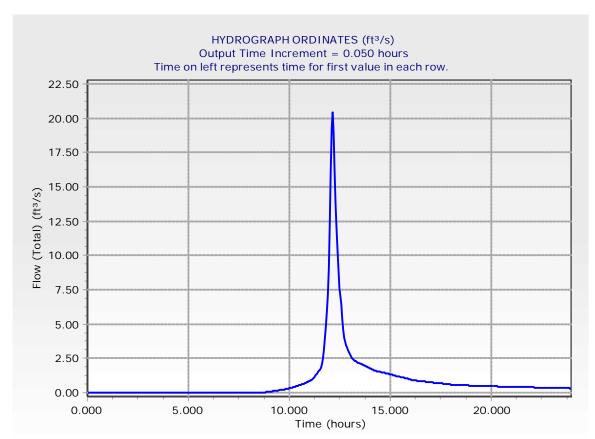
Label: Area-1F-Post

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	6.421 acres
Computational Time Increment	0.024 hours
Time to Peak (Computed)	12.153 hours
Flow (Peak, Computed)	20.47 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.150 hours
Interpolated Output)	
Flow (Peak Interpolated Output)	20.45 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	6.421 acres
Maximum Retention (Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.4 in
Runoff Volume (Pervious)	1.830 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	1.827 ac-ft
SCS Unit Hydrograph Parameters	s
Time of Concentration (Composite)	0.180 hours
Computational Time Increment	0.024 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	40.31 ft ³ /s
Unit peak time, Tp	0.120 hours
Unit receding limb, Tr	0.481 hours
Total unit time, Tb	0.602 hours

Return Event: 50 years

Storm Event: 50-yr

Return Event: 50 years Label: Area-1F-Post Storm Event: 50-yr


50-yr
50 years
24.000 hours
6.8 in
0.180 hours
6.421 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.500	0.00	0.00	0.01	0.01	0.02
8.750	0.02	0.03	0.04	0.05	0.06
9.000	0.07	0.08	0.09	0.10	0.11
9.250	0.12	0.13	0.14	0.15	0.16
9.500	0.18	0.19	0.20	0.22	0.23
9.750	0.24	0.26	0.27	0.29	0.30
10.000	0.32	0.34	0.35	0.37	0.39
10.250	0.42	0.44	0.46	0.49	0.51
10.500	0.54	0.57	0.60	0.63	0.66
10.750	0.69	0.72	0.75	0.78	0.82
11.000	0.85	0.89	0.94	1.00	1.07
11.250	1.15	1.24	1.33	1.43	1.54
11.500	1.65	1.81	2.10	2.53	3.19
11.750	3.99	4.94	5.97	7.17	9.03
12.000	12.41	16.27	19.25	20.45	18.88
12.250	16.12	13.72	11.98	10.44	9.06
12.500	7.67	6.42	5.35	4.55	4.01
12.750	3.68	3.45	3.26	3.09	2.95
13.000	2.80	2.66	2.54	2.45	2.38
13.250	2.33	2.28	2.24	2.20	2.17
13.500	2.13	2.09	2.06	2.02	1.98
13.750	1.95	1.91	1.87	1.83	1.80
14.000	1.76	1.72	1.69	1.66	1.63
14.250	1.61	1.59	1.58	1.56	1.54
14.500	1.52	1.50	1.49	1.47	1.45
14.750	1.43	1.41	1.39	1.38	1.36
15.000	1.34	1.32	1.30	1.28	1.26
15.250	1.25	1.23	1.21	1.19	1.17
15.500	1.15	1.13	1.11	1.09	1.07
15.750	1.05	1.04	1.02	1.00	0.98
16.000	0.96	0.94	0.92	0.91	0.90
16.250	0.89	0.88	0.87	0.86	0.85
16.500	0.84	0.84	0.83	0.82	0.81
16.750	0.80	0.79	0.78	0.78	0.77
17.000	0.76	0.75	0.74	0.73	0.73
17.250	0.72	0.71	0.70	0.69	0.68
17.500	0.67	0.67	0.66	0.65	0.64
17.750	0.63	0.62	0.61	0.61	0.60
18.000	0.59	0.58	0.57	0.57	0.56
18.250	0.56	0.56	0.55	0.55	0.55
18.500	0.55	0.54	0.54	0.54	0.54
18.750	0.53	0.53	0.53	0.53	0.52
19.000	0.52	0.52	0.52	0.51	0.51

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years Label: Area-1F-Post Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
19.250	0.51	0.51	0.50	0.50	0.50
19.500	0.50	0.49	0.49	0.49	0.49
19.750	0.48	0.48	0.48	0.47	0.47
20.000	0.47	0.47	0.46	0.46	0.46
20.250	0.46	0.46	0.45	0.45	0.45
20.500	0.45	0.45	0.45	0.44	0.44
20.750	0.44	0.44	0.44	0.43	0.43
21.000	0.43	0.43	0.43	0.42	0.42
21.250	0.42	0.42	0.42	0.41	0.41
21.500	0.41	0.41	0.41	0.40	0.40
21.750	0.40	0.40	0.40	0.40	0.39
22.000	0.39	0.39	0.39	0.38	0.38
22.250	0.38	0.38	0.38	0.37	0.37
22.500	0.37	0.37	0.37	0.37	0.36
22.750	0.36	0.36	0.36	0.36	0.35
23.000	0.35	0.35	0.35	0.34	0.34
23.250	0.34	0.34	0.34	0.34	0.33
23.500	0.33	0.33	0.33	0.33	0.32
23.750	0.32	0.32	0.32	0.32	0.31
24.000	0.31	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 50 years Label: Area-1F-Post Storm Event: 50-yr

Label: Area-1F-Post

Storm Event	100-yr	
Return Event	100	years
Duration	24.000	hours
Depth	8.1	in
Time of Concentration	0.180	hours
(Composite)	4 421	aaraa
Area (User Defined)	6.421	acres
Computational Time		
Increment	0.024	hours
Time to Peak (Computed)	12.153	hours
Flow (Peak, Computed)	27.06	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak	12.150	hours
Interpolated Output)	.230	
Flow (Peak Interpolated Output)	27.04	ft³/s
Catputy		
Drainage Area		
SCS CN (Composite)	70.000	
Area (User Defined)	6.421	acres
Maximum Retention (Pervious)	4.3	in
Maximum Retention (Pervious, 20 percent)	0.9	in
0 1 5		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	4.5	in
Runoff Volume (Pervious)	2.421	ac-ft
Hydrograph Volume (Area under Hy	/drograph c	urve)
Volume	2.417	•
volume	2.417	at-II
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	0.180	hours
Computational Time Increment	0.024	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	40.31	ft³/s
Unit peak time, Tp	0.120	hours
Unit receding limb, Tr	0.481	hours
Total unit time, Tb	0.602	hours

Return Event: 100 years

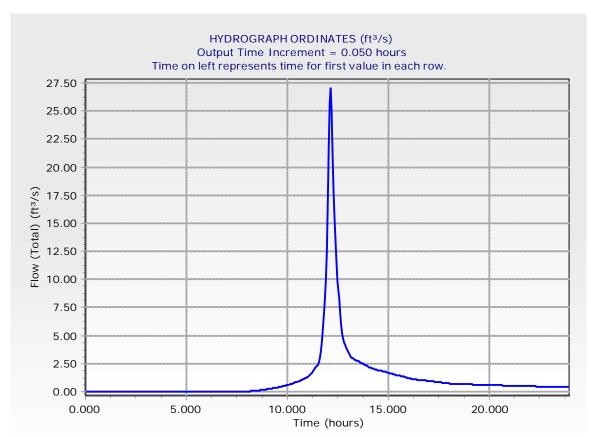
Storm Event: 100-yr

Return Event: 100 years Label: Area-1F-Post Storm Event: 100-yr

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	6.421 acres

	ne on lett rep				
Time	Flow (ft³/s)	Flow (ft³/s)	Flow	Flow	Flow (ft³/s)
(hours)			(ft³/s)	(ft³/s)	
7.750	0.00	0.00	0.00	0.01	0.01
8.000	0.02	0.03	0.03	0.04	0.05
8.250	0.06	0.06	0.07	0.08	0.09
8.500	0.10	0.11	0.12	0.13	0.14
8.750	0.16	0.17	0.18	0.19	0.21
9.000	0.22	0.23	0.25	0.26	0.28
9.250	0.30	0.31	0.33	0.35	0.36
9.500	0.38	0.40	0.42	0.44	0.46
9.750	0.48	0.50	0.52	0.54	0.56
10.000	0.58	0.60	0.63	0.65	0.68
10.250	0.71	0.75	0.78	0.82	0.85
10.500	0.89	0.93	0.97	1.01	1.05
10.750	1.09	1.13	1.18	1.22	1.27
11.000	1.32	1.37	1.43	1.51	1.62
11.250	1.73	1.85	1.98	2.12	2.26
11.500	2.42	2.64	3.04	3.65	4.56
11.750	5.66	6.96	8.35	9.95	12.40
12.000	16.86	21.88	25.66	27.04	24.82
12.250	21.08	17.86	15.54	13.50	11.68
12.500	9.88	8.25	6.87	5.83	5.14
12.750	4.71	4.41	4.17	3.95	3.76
13.000	3.57	3.39	3.24	3.12	3.03
13.250	2.96	2.90	2.85	2.80	2.75
13.500	2.71	2.66	2.61	2.57	2.52
13.750	2.47	2.42	2.37	2.32	2.28
14.000	2.23	2.18	2.14	2.10	2.07
14.250	2.04	2.02	1.99	1.97	1.95
14.500	1.92	1.90	1.88	1.85	1.83
14.750	1.81	1.78	1.76	1.74	1.71
15.000	1.69	1.67	1.64	1.62	1.59
15.250	1.57	1.55	1.52	1.50	1.47
15.500	1.45	1.43	1.40	1.38	1.35
15.750	1.33	1.30	1.28	1.26	1.23
16.000	1.21	1.18	1.16	1.14	1.13
16.250	1.12	1.10	1.09	1.08	1.07
16.500	1.06	1.05	1.04	1.03	1.02
16.750	1.01	1.00	0.99	0.98	0.97
17.000	0.95	0.94	0.93	0.92	0.91
17.250	0.90	0.89	0.88	0.87	0.86
17.500	0.85	0.84	0.83	0.81	0.80
17.750	0.79	0.78	0.77	0.76	0.75
18.000	0.74	0.73	0.72	0.71	0.71
18.250	0.70	0.70	0.69	0.69	0.69

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 100 years

Label: Area-1F-Post

Storm Event: 100-yr

	iic oii icit ici	or osomes time	o ioi illot tai		
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
18.500	0.68	0.68	0.68	0.68	0.67
18.750	0.67	0.67	0.66	0.66	0.66
19.000	0.65	0.65	0.65	0.64	0.64
19.250	0.64	0.63	0.63	0.63	0.62
19.500	0.62	0.62	0.61	0.61	0.61
19.750	0.60	0.60	0.60	0.59	0.59
20.000	0.59	0.59	0.58	0.58	0.58
20.250	0.57	0.57	0.57	0.57	0.56
20.500	0.56	0.56	0.56	0.55	0.55
20.750	0.55	0.55	0.54	0.54	0.54
21.000	0.54	0.54	0.53	0.53	0.53
21.250	0.53	0.52	0.52	0.52	0.52
21.500	0.51	0.51	0.51	0.51	0.50
21.750	0.50	0.50	0.50	0.49	0.49
22.000	0.49	0.49	0.48	0.48	0.48
22.250	0.48	0.47	0.47	0.47	0.47
22.500	0.46	0.46	0.46	0.46	0.46
22.750	0.45	0.45	0.45	0.44	0.44
23.000	0.44	0.44	0.43	0.43	0.43
23.250	0.43	0.42	0.42	0.42	0.42
23.500	0.42	0.41	0.41	0.41	0.40
23.750	0.40	0.40	0.40	0.39	0.39
24.000	0.39	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 100 years Storm Event: 100-yr Label: Area-1F-Post

Label: Area-1-Pre

Storm Event 2-yr Return Event 2 years Duration 24.000 hours Depth 3.0 in Time of Concentration (Composite) 0.315 hours Area (User Defined) 17.926 acres Computational Time Increment 0.042 hours Time to Peak (Computed) 12.280 hours Flow (Peak, Computed) 8.65 ft³/s Output Increment 0.050 hours Time to Flow (Peak 12.250 hours	
Duration 24.000 hours Depth 3.0 in Time of Concentration (Composite) 0.315 hours Area (User Defined) 17.926 acres Computational Time Increment 0.042 hours Time to Peak (Computed) 12.280 hours Flow (Peak, Computed) 8.65 ft³/s Output Increment 0.050 hours Time to Flow (Peak	
Depth 3.0 in Time of Concentration (Composite) 0.315 hours Area (User Defined) 17.926 acres Computational Time Increment 0.042 hours Time to Peak (Computed) 12.280 hours Flow (Peak, Computed) 8.65 ft³/s Output Increment 0.050 hours Time to Flow (Peak	
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) O.042 hours 12.280 hours Row (Peak, Computed) Output Increment O.050 hours	
(Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) O.042 hours 12.280 hours Flow (Peak, Computed) Output Increment Time to Flow (Peak	
Computational Time Increment 0.042 hours Time to Peak (Computed) 12.280 hours Flow (Peak, Computed) 8.65 ft ³ /s Output Increment 0.050 hours Time to Flow (Peak	
Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Output Increment Outpu	
Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak) Output Increment Outp	
Flow (Peak, Computed) 8.65 ft ³ /s Output Increment 0.050 hours Time to Flow (Peak	
Output Increment 0.050 hours Time to Flow (Peak	
Time to Flow (Peak	
Time to Flow (Peak	
` 17.750 n ours	
Interpolated Output)	
Flow (Peak Interpolated 8.58 ft ³ /s	
Output)	
Drainage Area	
SCS CN (Composite) 70.000	
Area (User Defined) 17.926 acres	
Maximum Retention (Pervious) 4.3 in	
Maximum Retention 0.9 in (Pervious, 20 percent)	
Cumulative Runoff	
Cumulative Runoff Depth 0.7 in	
(Pervious)	
Runoff Volume (Pervious) 1.050 ac-ft	
Hydrograph Volume (Area under Hydrograph curve)	
Volume 1.045 ac-ft	
00011 211 1 1 2	
SCS Unit Hydrograph Parameters	
Time of Concentration (Composite) 0.315 hours	
Computational Time 0.042 hours	
Unit Hydrograph Shape 483.432 Factor	
K Factor 0.749	
Receding/Rising, Tr/Tp 1.670	
Unit peak, qp 64.40 ft ³ /s	
Unit peak time, Tp 0.210 hours	
·	
Unit receding limb, Tr 0.841 hours	

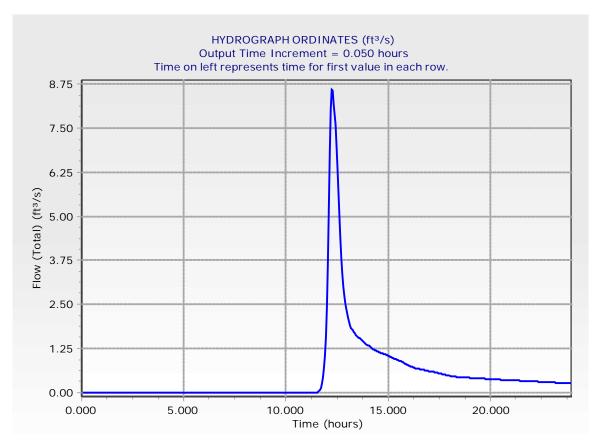
Return Event: 2 years Storm Event: 2-yr

Return Event: 2 years Label: Area-1-Pre Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)	(ft ³ /s)	(ft³/s)	(ft ³ /s)	(ft ³ /s)
11.450	0.00	0.00	0.01	0.03	0.07
11.700	0.15	0.27	0.45	0.70	1.05
11.950	1.58	2.43	3.68	5.24	6.83
12.200	8.05	8.58	8.55	8.17	7.61
12.450	7.00	6.37	5.69	5.01	4.37
12.700	3.81	3.38	3.04	2.77	2.57
12.950	2.39	2.25	2.12	2.01	1.92
13.200	1.84	1.77	1.72	1.68	1.65
13.450	1.62	1.59	1.56	1.54	1.52
13.700	1.49	1.47	1.44	1.42	1.40
13.950	1.37	1.35	1.32	1.30	1.28
14.200	1.26	1.24	1.22	1.21	1.19
14.450	1.18	1.17	1.15	1.14	1.13
14.700	1.12	1.11	1.09	1.08	1.07
14.950	1.06	1.04	1.03	1.02	1.01
15.200	0.99	0.98	0.97	0.95	0.94
15.450	0.93	0.91	0.90	0.89	0.87
15.700	0.86	0.84	0.83	0.82	0.80
15.950	0.79	0.77	0.76	0.75	0.73
16.200	0.72	0.71	0.70	0.69	0.69
16.450	0.68	0.67	0.67	0.66	0.65
16.700	0.65	0.64	0.64	0.63	0.62
16.950	0.62	0.61	0.61	0.60	0.59
17.200	0.59	0.58	0.57	0.57	0.56
17.450	0.55	0.55	0.54	0.54	0.53
17.700	0.52	0.52	0.51	0.50	0.50
17.950	0.49	0.48	0.48	0.47	0.46
18.200	0.46	0.45	0.45	0.45	0.45
18.450	0.44	0.44	0.44	0.44	0.43
18.700	0.43	0.43	0.43	0.43	0.43
18.950	0.42	0.42	0.42	0.42	0.42
19.200	0.41	0.41 0.40	0.41	0.41	0.41 0.40
19.450 19.700	0.41 0.40	0.40	0.40 0.39	0.40 0.39	0.40
19.700	0.40	0.39	0.39	0.39	0.39
20.200	0.38	0.37	0.37	0.37	0.37
20.450	0.37	0.37	0.37	0.36	0.36
20.700	0.36	0.36	0.37	0.36	0.36
20.700	0.35	0.35	0.35	0.35	0.35
21.200	0.35	0.35	0.34	0.34	0.34
21.450	0.34	0.34	0.34	0.33	0.33
21.700	0.33	0.33	0.33	0.33	0.33
21.950		0.32			0.32
1 21.750	0.32	0.32	0.52	0.32	0.02

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-1-Pre

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.200	0.32	0.32	0.31	0.31	0.31
22.450	0.31	0.31	0.31	0.30	0.30
22.700	0.30	0.30	0.30	0.30	0.30
22.950	0.29	0.29	0.29	0.29	0.29
23.200	0.29	0.28	0.28	0.28	0.28
23.450	0.28	0.28	0.28	0.27	0.27
23.700	0.27	0.27	0.27	0.27	0.26
23.950	0.26	0.26	(N/A)	(N/A)	(N/A)

Return Event: 2 years Label: Area-1-Pre Storm Event: 2-yr

Label: Area-1-Pre

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres
Computational Time Increment	0.042 hours
Time to Peak (Computed)	12.238 hours
Flow (Peak, Computed)	22.76 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.250 hours
Flow (Peak Interpolated Output)	22.65 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	17.926 acres
Maximum Retention (Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.7 in
Runoff Volume (Pervious)	2.479 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	2.469 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.315 hours
Computational Time Increment	0.042 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	64.40 ft ³ /s
Unit peak time, Tp	0.210 hours
Unit receding limb, Tr	0.841 hours
T T	4 054 1

Return Event: 10 years Storm Event: 10-yr

Total unit time, Tb

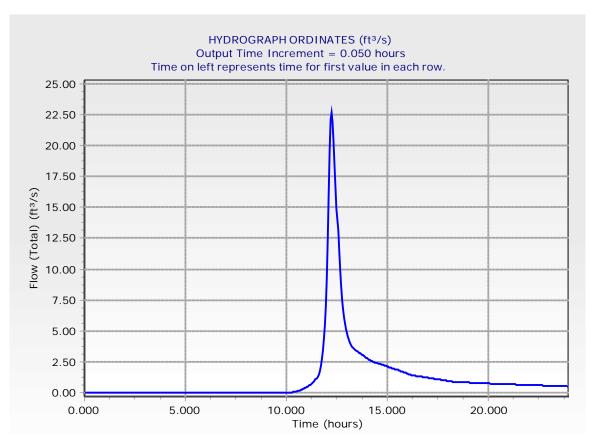
1.051 hours

Return Event: 10 years Label: Area-1-Pre Storm Event: 10-yr

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres

	ne on lett rep				
Time	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
(hours)					
10.100	0.00	0.00	0.01	0.01	0.03
10.350	0.04	0.06	0.08	0.11	0.13
10.600	0.16	0.19	0.22	0.26	0.29
10.850	0.33	0.36	0.40	0.44	0.49
11.100	0.53	0.58	0.64	0.71	0.79
11.350	0.87	0.97	1.07	1.19	1.32
11.600	1.50	1.77	2.16	2.72	3.45
11.850	4.36	5.46	6.99	9.28	12.48
12.100	16.22	19.74	22.11	22.65	21.85
12.350	20.31	18.47	16.66	14.90	13.14
12.600	11.44	9.88	8.54	7.50	6.69
12.850	6.07	5.58	5.18	4.84	4.55
13.100	4.30	4.08	3.90	3.76	3.64
13.350	3.55	3.47	3.40	3.33	3.28
13.600	3.22	3.16	3.11	3.06	3.00
13.850	2.95	2.89	2.84	2.78	2.73
14.100	2.68	2.63	2.58	2.54	2.50
14.350	2.47	2.44	2.41	2.38	2.36
14.600	2.33	2.30	2.28	2.25	2.22
14.850	2.20	2.17	2.14	2.11	2.09
15.100	2.06	2.03	2.00	1.98	1.95
15.350	1.92	1.89	1.86	1.84	1.81
15.600	1.78	1.75	1.72	1.69	1.66
15.850	1.63	1.61	1.58	1.55	1.52
16.100	1.49	1.46	1.44	1.42	1.40
16.350	1.38	1.37	1.35	1.34	1.33
16.600	1.31	1.30	1.29	1.27	1.26
16.850	1.25	1.24	1.22	1.21	1.20
17.100	1.18	1.17	1.16	1.15	1.13
17.350	1.12	1.11	1.09	1.08	1.07
17.600	1.05	1.04	1.03	1.02	1.00
17.850	0.99	0.98	0.96	0.95	0.94
18.100	0.92	0.91	0.90	0.89	0.89
18.350	0.88	0.87	0.87	0.86	0.86
18.600	0.86	0.85	0.85	0.84	0.84
18.850	0.84	0.83	0.83	0.83	0.82
19.100	0.82	0.81	0.81	0.81	0.80
19.350	0.80	0.79	0.79	0.79	0.78
19.600	0.78	0.78	0.77	0.77	0.76
19.850	0.76	0.76	0.75	0.75	0.74
20.100	0.74	0.74	0.73	0.73	0.73
20.350	0.72	0.72	0.72	0.71	0.71
20.600	0.71	0.70	0.70	0.70	0.70

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 10 years

Label: Area-1-Pre

Storm Event: 10-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
20.850	0.69	0.69	0.69	0.68	0.68
21.100	0.68	0.68	0.67	0.67	0.67
21.350	0.66	0.66	0.66	0.65	0.65
21.600	0.65	0.64	0.64	0.64	0.64
21.850	0.63	0.63	0.63	0.62	0.62
22.100	0.62	0.62	0.61	0.61	0.61
22.350	0.60	0.60	0.60	0.59	0.59
22.600	0.59	0.59	0.58	0.58	0.58
22.850	0.57	0.57	0.57	0.56	0.56
23.100	0.56	0.55	0.55	0.55	0.54
23.350	0.54	0.54	0.54	0.53	0.53
23.600	0.53	0.52	0.52	0.52	0.51
23.850	0.51	0.51	0.50	0.50	(N/A)

Return Event: 10 years Label: Area-1-Pre Storm Event: 10-yr

Label: Area-1-Pre

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres
Computational Time Increment	0.042 hours
Time to Peak (Computed)	12.238 hours
Flow (Peak, Computed)	48.30 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.250 hours
Interpolated Output)	12.230 110013
Flow (Peak Interpolated Output)	47.88 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	17.926 acres
Maximum Retention (Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.4 in
Runoff Volume (Pervious)	5.109 ac-ft
Hydrograph Volume (Area under I	Hydrograph curve)
Volume	5.091 ac-ft
SCS Unit Hydrograph Parameters	3
Time of Concentration (Composite)	0.315 hours
Computational Time Increment	0.042 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	64.40 ft ³ /s
Unit peak time, Tp	0.210 hours
Unit receding limb, Tr	0.841 hours
Total unit time, Tb	1.051 hours

Return Event: 50 years

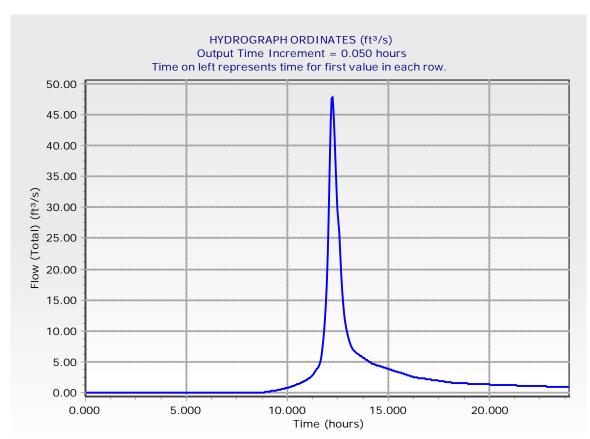
Storm Event: 50-yr

Return Event: 50 years Storm Event: 50-yr Label: Area-1-Pre

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.500	0.00	0.00	0.00	0.01	0.02
8.750	0.04	0.05	0.07	0.09	0.11
9.000	0.13	0.16	0.18	0.21	0.24
9.250	0.27	0.30	0.33	0.36	0.39
9.500	0.42	0.46	0.49	0.53	0.56
9.750	0.60	0.64	0.68	0.72	0.76
10.000	0.80	0.84	0.89	0.94	0.99
10.250	1.04	1.10	1.16	1.22	1.29
10.500	1.36	1.43	1.51	1.58	1.66
10.750	1.74	1.83	1.91	2.00	2.09
11.000	2.18	2.28	2.39	2.51	2.65
11.250	2.83	3.02	3.24	3.48	3.74
11.500	4.02	4.35	4.80	5.47	6.47
11.750	7.87	9.65	11.82	14.32	17.69
12.000	22.55	29.21	36.73	43.49	47.61
12.250	47.88	45.47	41.67	37.44	33.40
12.500	29.60	25.90	22.39	19.23	16.53
12.750	14.44	12.83	11.59	10.62	9.82
13.000	9.16	8.59	8.09	7.67	7.32
13.250	7.04	6.81	6.62	6.47	6.33
13.500	6.20	6.09	5.98	5.87	5.76
13.750	5.66	5.55	5.45	5.34	5.24
14.000	5.13	5.03	4.93	4.83	4.75
14.250	4.67	4.60	4.53	4.47	4.42
14.500	4.36	4.31	4.26	4.21	4.16
14.750	4.10	4.05	4.00	3.95	3.90
15.000	3.85	3.80	3.74	3.69	3.64
15.250	3.59	3.54	3.48	3.43	3.38
15.500	3.33	3.27	3.22	3.17	3.11
15.750	3.06	3.01	2.95	2.90	2.84
16.000	2.79	2.74	2.69	2.64	2.59
16.250	2.56	2.52	2.49	2.46	2.43
16.500	2.41	2.38	2.36	2.34	2.31
16.750	2.29	2.26	2.24	2.22	2.19
17.000	2.17	2.15	2.12	2.10	2.08
17.250	2.05	2.03	2.00	1.98	1.96
17.500	1.93	1.91	1.89	1.86	1.84
17.750	1.81	1.79	1.77	1.74	1.72
18.000	1.69	1.67	1.65	1.63	1.61
18.250	1.59	1.58	1.57	1.56	1.55
18.500	1.54	1.53	1.53	1.52	1.51
18.750	1.50	1.50	1.49	1.48	1.48
19.000	1.47	1.46	1.45	1.45	1.44

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 50 years

Label: Area-1-Pre

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
19.250	1.43	1.43	1.42	1.41	1.40
19.500	1.40	1.39	1.38	1.38	1.37
19.750	1.36	1.36	1.35	1.34	1.33
20.000	1.33	1.32	1.31	1.31	1.30
20.250	1.29	1.29	1.28	1.28	1.27
20.500	1.26	1.26	1.25	1.25	1.24
20.750	1.24	1.23	1.23	1.22	1.22
21.000	1.21	1.21	1.20	1.20	1.19
21.250	1.18	1.18	1.17	1.17	1.16
21.500	1.16	1.15	1.14	1.14	1.13
21.750	1.13	1.12	1.12	1.11	1.11
22.000	1.10	1.10	1.09	1.09	1.08
22.250	1.08	1.07	1.06	1.06	1.05
22.500	1.05	1.04	1.04	1.03	1.03
22.750	1.02	1.02	1.01	1.00	1.00
23.000	0.99	0.99	0.98	0.98	0.97
23.250	0.96	0.96	0.95	0.95	0.94
23.500	0.94	0.93	0.93	0.92	0.92
23.750	0.91	0.91	0.90	0.89	0.89
24.000	0.88	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 50 years Storm Event: 50-yr Label: Area-1-Pre

Label: Area-1-Pre

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres
0 17	
Computational Time Increment	0.042 hours
Time to Peak (Computed)	12.238 hours
Flow (Peak, Computed)	63.99 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.250 hours
Flow (Peak Interpolated Output)	63.35 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	17.926 acres
Maximum Retention (Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.5 in
Runoff Volume (Pervious)	6.759 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	6.737 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.315 hours
Computational Time Increment	0.042 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	64.40 ft ³ /s
Unit peak time, Tp	0.210 hours
Unit receding limb, Tr	0.841 hours
Takal south there. Th	4.054.1

Return Event: 100 years Storm Event: 100-yr

1.051 hours

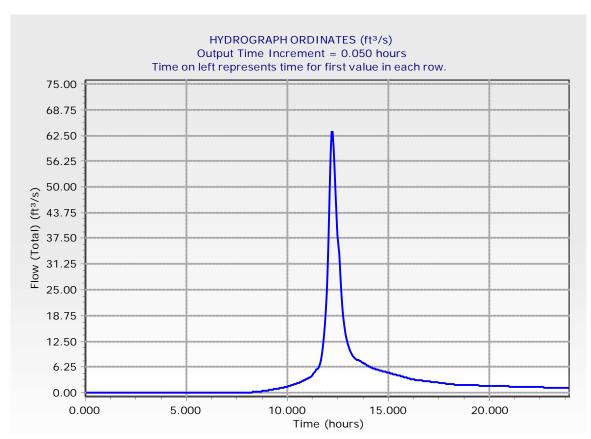
Total unit time, Tb

Return Event: 100 years Storm Event: 100-yr Label: Area-1-Pre

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.315 hours
Area (User Defined)	17.926 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
7.750	0.00	0.00	0.00	0.01	0.02
8.000	0.03	0.05	0.06	0.08	0.09
8.250	0.11	0.13	0.16	0.18	0.20
8.500	0.23	0.25	0.28	0.31	0.34
8.750	0.37	0.40	0.43	0.47	0.50
9.000	0.54	0.58	0.61	0.65	0.69
9.250	0.74	0.78	0.82	0.87	0.91
9.500	0.96	1.01	1.06	1.11	1.16
9.750	1.22	1.27	1.32	1.38	1.44
10.000	1.50	1.56	1.62	1.68	1.75
10.250	1.83	1.91	2.00	2.09	2.18
10.500	2.28	2.38	2.48	2.59	2.70
10.750	2.81	2.92	3.04	3.16	3.28
11.000	3.40	3.54	3.68	3.85	4.05
11.250	4.29	4.56	4.87	5.20	5.55
11.500	5.94	6.40	7.02	7.95	9.34
11.750	11.28	13.74	16.70	20.08	24.58
12.000	31.03	39.78	49.58	58.25	63.35
12.250	63.35	59.88	54.65	48.92	43.49
12.500	38.43	33.54	28.94	24.81	21.28
12.750	18.57	16.47	14.86	13.60	12.56
13.000	11.70	10.97	10.33	9.79	9.33
13.250	8.96	8.67	8.43	8.23	8.05
13.500	7.89	7.74	7.60	7.46	7.32
13.750	7.18	7.05	6.91	6.78	6.64
14.000	6.51	6.37	6.25	6.12	6.01
14.250	5.91	5.82	5.74	5.66	5.59
14.500	5.52	5.45	5.38	5.32	5.25
14.750	5.19	5.12	5.06	4.99	4.92
15.000	4.86	4.79	4.73	4.66	4.59
15.250	4.53	4.46	4.39	4.33	4.26
15.500	4.19	4.12	4.06	3.99	3.92
15.750	3.85	3.79	3.72	3.65	3.58
16.000	3.51	3.45	3.38	3.32	3.27
16.250	3.22	3.17	3.13	3.10	3.06
16.500	3.03	3.00	2.97	2.94	2.91
16.750	2.88	2.85	2.82	2.79	2.76
17.000	2.73	2.70	2.67	2.64	2.61
17.250	2.58	2.55	2.52	2.49	2.46
17.500	2.43	2.40	2.37	2.34	2.31
17.750	2.28	2.25	2.22	2.19	2.16
18.000	2.13	2.10	2.07	2.04	2.02
18.250	2.00	1.98	1.97	1.95	1.94

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 100 years

Label: Area-1-Pre

Storm Event: 100-yr

T!	Flance	Flann	Fl	El	El
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
18.500	1.93	1.92	1.91	1.90	1.90
18.750	1.89	1.88	1.87	1.86	1.85
19.000	1.84	1.83	1.82	1.81	1.81
19.250	1.80	1.79	1.78	1.77	1.76
19.500	1.75	1.74	1.73	1.72	1.72
19.750	1.71	1.70	1.69	1.68	1.67
20.000	1.66	1.65	1.64	1.63	1.63
20.250	1.62	1.61	1.61	1.60	1.59
20.500	1.58	1.58	1.57	1.56	1.56
20.750	1.55	1.54	1.53	1.53	1.52
21.000	1.51	1.51	1.50	1.50	1.49
21.250	1.48	1.47	1.47	1.46	1.45
21.500	1.45	1.44	1.43	1.43	1.42
21.750	1.41	1.41	1.40	1.39	1.39
22.000	1.38	1.37	1.37	1.36	1.35
22.250	1.34	1.34	1.33	1.32	1.32
22.500	1.31	1.30	1.30	1.29	1.28
22.750	1.28	1.27	1.26	1.26	1.25
23.000	1.24	1.23	1.23	1.22	1.21
23.250	1.21	1.20	1.19	1.19	1.18
23.500	1.17	1.17	1.16	1.15	1.14
23.750	1.14	1.13	1.12	1.12	1.11
24.000	1.10	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 100 years Label: Area-1-Pre Storm Event: 100-yr

Label: Area-2- Pre

Storm Event	2-yr	
Return Event	2 years	
Duration	24.000 hours	
Depth	3.0 in	
Time of Concentration (Composite)	0.302 hours	
Area (User Defined)	8.831 acres	
Computational Time Increment	0.040 hours	
Time to Peak (Computed)	12.256 hours	
Flow (Peak, Computed)	4.70 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	12.250 hours	
Flow (Peak Interpolated Output)	4.69 ft ³ /s	
Drainage Area		
SCS CN (Composite)	71.000	_
Area (User Defined)	8.831 acres	
Maximum Retention (Pervious)	4.1 in	
Maximum Retention (Pervious, 20 percent)	0.8 in	
Cumulative Runoff		_
Cumulative Runoff Depth (Pervious)	0.7 in	
Runoff Volume (Pervious)	0.551 ac-ft	
	I budas sasab sumus)	
Hydrograph Volume (Area under	Hydrograph curve)	
Volume	0.549 ac-ft	
SCS Unit Hydrograph Parameters	s	
Time of Concentration (Composite)	0.302 hours	
Computational Time Increment	0.040 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
	1.670	
Receding/Rising, Tr/Tp	1.070	
Receding/Rising, Tr/Tp Unit peak, qp	33.09 ft ³ /s	
Unit peak, qp	33.09 ft ³ /s	

Return Event: 2 years

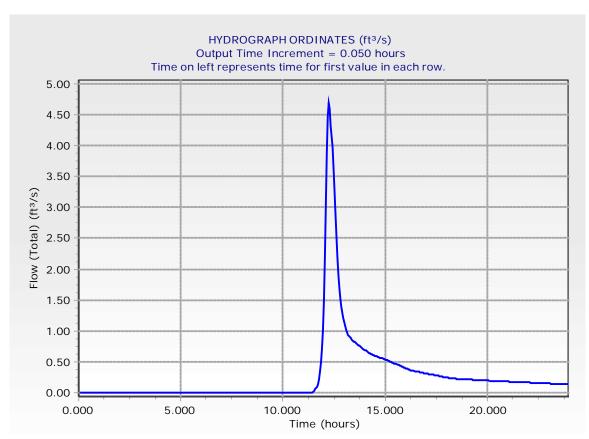
Storm Event: 2-yr

Return Event: 2 years Label: Area-2- Pre Storm Event: 2-yr

Storm Event	2-yr
Return Event	2 years
Duration	24.000 hours
Depth	3.0 in
Time of Concentration (Composite)	0.302 hours
Area (User Defined)	8.831 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.350	0.00	0.00	0.01	0.02	0.03
11.600	0.06	0.09	0.14	0.22	0.34
11.850	0.49	0.70	1.01	1.49	2.18
12.100	3.05	3.88	4.47	4.69	4.60
12.350	4.32	3.99	3.64	3.29	2.92
12.600	2.56	2.22	1.93	1.71	1.54
12.850	1.41	1.30	1.22	1.15	1.08
13.100	1.03	0.98	0.94	0.91	0.88
13.350	0.86	0.85	0.83	0.82	0.81
13.600	0.79	0.78	0.77	0.76	0.74
13.850	0.73	0.72	0.71	0.69	0.68
14.100	0.67	0.66	0.64	0.64	0.63
14.350	0.62	0.61	0.61	0.60	0.59
14.600	0.59	0.58	0.57	0.57	0.56
14.850	0.56	0.55	0.54	0.54	0.53
15.100	0.52	0.52	0.51	0.50	0.50
15.350	0.49	0.48	0.47	0.47	0.46
15.600	0.45	0.45	0.44	0.43	0.43
15.850	0.42	0.41	0.40	0.40	0.39
16.100	0.38	0.38	0.37	0.36	0.36
16.350	0.36	0.35	0.35	0.34	0.34
16.600	0.34	0.33	0.33	0.33	0.33
16.850	0.32	0.32	0.32	0.31	0.31
17.100	0.31	0.30	0.30	0.30	0.29
17.350	0.29	0.29	0.28	0.28	0.28
17.600	0.27	0.27	0.27	0.26	0.26
17.850	0.26	0.25	0.25	0.25	0.24
18.100	0.24	0.24	0.23	0.23	0.23
18.350	0.23	0.23	0.23	0.23	0.22
18.600	0.22	0.22	0.22	0.22	0.22
18.850	0.22	0.22	0.22	0.22	0.21
19.100	0.21	0.21	0.21	0.21	0.21
19.350	0.21	0.21	0.21	0.21	0.20
19.600	0.20	0.20	0.20	0.20	0.20
19.850	0.20	0.20	0.20	0.20	0.20
20.100	0.19	0.19	0.19	0.19	0.19
20.350	0.19	0.19	0.19	0.19	0.19
20.600	0.19	0.19	0.18	0.18	0.18
20.850	0.18	0.18	0.18	0.18	0.18
21.100 21.350	0.18 0.17	0.18 0.17	0.18	0.18 0.17	0.18 0.17
21.350	0.17	0.17	0.17 0.17	0.17	0.17
					0.17
21.850	0.17	0.17	0.17	0.16	0.16

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 2 years

Label: Area-2- Pre

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.100	0.16	0.16	0.16	0.16	0.16
22.350	0.16	0.16	0.16	0.16	0.16
22.600	0.16	0.15	0.15	0.15	0.15
22.850	0.15	0.15	0.15	0.15	0.15
23.100	0.15	0.15	0.15	0.14	0.14
23.350	0.14	0.14	0.14	0.14	0.14
23.600	0.14	0.14	0.14	0.14	0.14
23.850	0.14	0.13	0.13	0.13	(N/A)

Return Event: 2 years Label: Area-2- Pre Storm Event: 2-yr

Label: Area-2- Pre

Storm Event	10-yr
Return Event	10 years
Duration	24.000 hours
Depth	4.5 in
Time of Concentration	0.302 hours
(Composite)	0.021 0000
Area (User Defined)	8.831 acres
Computational Time	
Increment	0.040 hours
Time to Peak (Computed)	12.216 hours
Flow (Peak, Computed)	11.91 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.250 hours
Interpolated Output)	12.200 110013
Flow (Peak Interpolated	11.84 ft ³ /s
Output)	
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	8.831 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth	1.7 in
(Pervious)	1.7 111
Runoff Volume (Pervious)	1.275 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	1.270 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.302 hours
Computational Time Increment	0.040 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	33.09 ft ³ /s
Unit peak time, Tp	0.202 hours
=	
Unit receding limb, Tr	0.806 hours

Return Event: 10 years

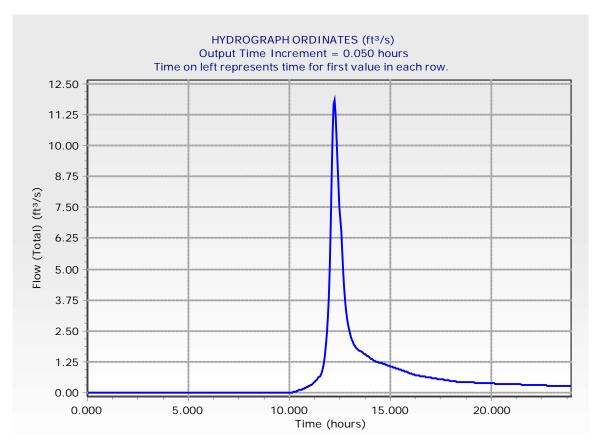
Storm Event: 10-yr

Return Event: 10 years Label: Area-2- Pre Storm Event: 10-yr

10-yr
10 years
24.000 hours
4.5 in
0.302 hours
8.831 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.950	0.00	0.00	0.01	0.01	0.02
10.200	0.03	0.04	0.05	0.06	0.07
10.450	0.08	0.10	0.11	0.13	0.14
10.700	0.16	0.18	0.20	0.22	0.24
10.950	0.26	0.28	0.30	0.33	0.35
11.200	0.39	0.42	0.46	0.51	0.56
11.450	0.62	0.68	0.75	0.85	1.00
11.700	1.22	1.53	1.93	2.43	3.04
11.950	3.87	5.11	6.83	8.83	10.61
12.200	11.70	11.84	11.28	10.35	9.35
12.450	8.40	7.46	6.54	5.67	4.88
12.700	4.21	3.70	3.30	3.00	2.77
12.950	2.58	2.42	2.27	2.15	2.05
13.200	1.96	1.89	1.83	1.79	1.75
13.450	1.72	1.68	1.66	1.63	1.60
13.700	1.57	1.54	1.52	1.49	1.46
13.950	1.43	1.41	1.38	1.35	1.33
14.200	1.30	1.28	1.26	1.25	1.23
14.450	1.22	1.20	1.19	1.18	1.16
14.700	1.15	1.14	1.12	1.11	1.09
14.950	1.08	1.07	1.05	1.04	1.03
15.200	1.01	1.00	0.98	0.97	0.95
15.450	0.94	0.93	0.91	0.90	0.88
15.700	0.87	0.85	0.84	0.82	0.81
15.950	0.79	0.78	0.76	0.75	0.74
16.200	0.73	0.71	0.71	0.70	0.69
16.450	0.68	0.68	0.67	0.66	0.66
16.700	0.65	0.64	0.64	0.63	0.62
16.950	0.62	0.61	0.60	0.60	0.59
17.200	0.58	0.58	0.57	0.56	0.56
17.450	0.55	0.54	0.54	0.53	0.52
17.700	0.52	0.51	0.50	0.50	0.49
17.950	0.48	0.48	0.47	0.46	0.46
18.200	0.45	0.45	0.45	0.44	0.44
18.450	0.44	0.44	0.43	0.43	0.43
18.700	0.43	0.43	0.42	0.42	0.42
18.950	0.42	0.42	0.41	0.41	0.41
19.200	0.41	0.41	0.40	0.40	0.40
19.450	0.40	0.40	0.39	0.39	0.39
19.700	0.39	0.39	0.38	0.38	0.38
19.950	0.38	0.38	0.37	0.37	0.37
20.200	0.37	0.37	0.37	0.36	0.36
20.450	0.36	0.36	0.36	0.36	0.36

Subsection: Unit Hydrograph (Hydrograph Table)


Return Event: 10 years

Label: Area-2- Pre

Storm Event: 10-yr

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.700	0.35	0.35	0.35	0.35	0.35
20.950	0.35	0.34	0.34	0.34	0.34
21.200	0.34	0.34	0.34	0.33	0.33
21.450	0.33	0.33	0.33	0.33	0.32
21.700	0.32	0.32	0.32	0.32	0.32
21.950	0.32	0.31	0.31	0.31	0.31
22.200	0.31	0.31	0.31	0.30	0.30
22.450	0.30	0.30	0.30	0.30	0.29
22.700	0.29	0.29	0.29	0.29	0.29
22.950	0.29	0.28	0.28	0.28	0.28
23.200	0.28	0.28	0.27	0.27	0.27
23.450	0.27	0.27	0.27	0.27	0.26
23.700	0.26	0.26	0.26	0.26	0.26
23.950	0.25	0.25	(N/A)	(N/A)	(N/A)

Return Event: 10 years Label: Area-2- Pre Storm Event: 10-yr

Label: Area-2- Pre

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.302 hours
Area (User Defined)	8.831 acres
Computational Time Increment	0.040 hours
Time to Peak (Computed)	12.216 hours
Flow (Peak, Computed)	24.92 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak	12.200 hours
Interpolated Output)	12.200 110013
Flow (Peak Interpolated Output)	24.62 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	8.831 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.5 in
Runoff Volume (Pervious)	2.592 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	2.583 ac-ft
SCS Unit Hydrograph Parameter	rs
Time of Concentration (Composite)	0.302 hours
Computational Time Increment	0.040 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	33.09 ft ³ /s
Unit peak time, Tp	0.202 hours
Unit receding limb, Tr	0.806 hours

Return Event: 50 years

Storm Event: 50-yr

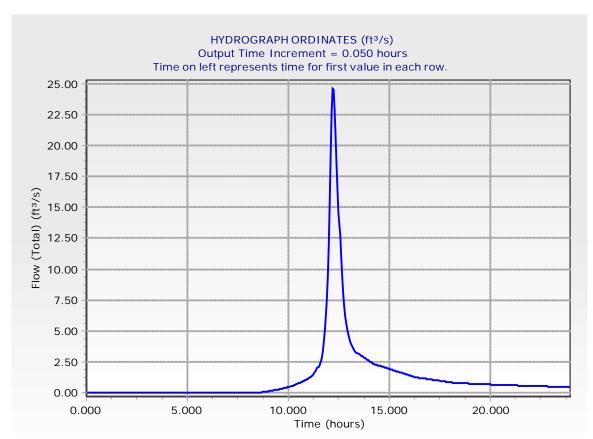
Return Event: 50 years Label: Area-2- Pre Storm Event: 50-yr

Storm Event	50-yr
Return Event	50 years
Duration	24.000 hours
Depth	6.8 in
Time of Concentration (Composite)	0.302 hours
Area (User Defined)	8.831 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.350	0.00	0.00	0.01	0.01	0.02
8.600	0.02	0.03	0.04	0.05	0.06
8.850	0.07	0.09	0.10	0.11	0.12
9.100	0.14	0.15	0.17	0.18	0.20
9.350	0.21	0.23	0.24	0.26	0.28
9.600	0.30	0.32	0.34	0.35	0.37
9.850	0.40	0.42	0.44	0.46	0.48
10.100	0.50	0.53	0.56	0.58	0.61
10.350	0.65	0.68	0.71	0.75	0.79
10.600	0.83	0.87	0.91	0.95	0.99
10.850	1.03	1.08	1.13	1.17	1.22
11.100	1.28	1.34	1.42	1.51	1.61
11.350	1.73	1.86	1.99	2.13	2.31
11.600	2.55	2.91	3.46	4.21	5.16
11.850	6.31	7.65	9.44	12.03	15.54
12.100	19.48	22.81	24.62	24.50	22.99
12.350	20.84	18.61	16.54	14.57	12.69
12.600	10.93	9.35	8.02	7.02	6.24
12.850	5.66	5.19	4.82	4.51	4.23
13.100	4.00	3.80	3.63	3.50	3.39
13.350	3.30	3.23	3.16	3.10	3.04
13.600	2.99	2.93	2.88	2.83	2.77
13.850	2.72	2.67	2.62	2.56	2.51
14.100	2.46	2.41	2.37	2.33	2.30
14.350	2.26	2.24	2.21	2.18	2.15
14.600	2.13	2.10	2.08	2.05	2.02
14.850	2.00	1.97	1.95	1.92	1.90
15.100	1.87	1.84	1.82	1.79	1.77
15.350	1.74	1.71	1.69	1.66	1.63
15.600	1.61	1.58	1.55	1.53	1.50
15.850	1.47	1.44	1.42	1.39	1.36
16.100	1.34	1.32	1.29	1.27	1.26
16.350	1.24	1.23	1.21	1.20	1.19
16.600	1.18	1.17	1.15	1.14	1.13
16.850	1.12	1.11	1.09	1.08	1.07
17.100	1.06	1.05	1.04	1.02	1.01
17.350	1.00	0.99	0.98	0.96	0.95
17.600	0.94	0.93	0.92	0.90	0.89
17.850	0.88	0.87	0.86	0.84	0.83
18.100	0.82	0.81	0.80	0.79	0.79
18.350	0.78	0.78	0.77	0.77	0.77
18.600	0.76	0.76	0.75	0.75	0.75
18.850	0.74	0.74	0.74	0.73	0.73

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years


Label: Area-2- Pre

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)
19.100	0.73	0.72	0.72	0.72	0.71
19.350	0.71	0.70	0.70	0.70	0.69
19.600	0.69	0.69	0.68	0.68	0.68
19.850	0.67	0.67	0.67	0.66	0.66
20.100	0.65	0.65	0.65	0.65	0.64
20.350	0.64	0.64	0.63	0.63	0.63
20.600	0.63	0.62	0.62	0.62	0.61
20.850	0.61	0.61	0.61	0.60	0.60
21.100	0.60	0.60	0.59	0.59	0.59
21.350	0.59	0.58	0.58	0.58	0.57
21.600	0.57	0.57	0.57	0.56	0.56
21.850	0.56	0.56	0.55	0.55	0.55
22.100	0.54	0.54	0.54	0.54	0.53
22.350	0.53	0.53	0.52	0.52	0.52
22.600	0.52	0.51	0.51	0.51	0.51
22.850	0.50	0.50	0.50	0.50	0.49
23.100	0.49	0.49	0.48	0.48	0.48
23.350	0.48	0.47	0.47	0.47	0.47
23.600	0.46	0.46	0.46	0.45	0.45
23.850	0.45	0.45	0.44	0.44	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years Label: Area-2- Pre Storm Event: 50-yr

Subsection: Unit Hydrograph Summary

Label: Area-2- Pre

Storm Event 100-yr Return Event 100 years Duration 24.000 hours Depth 8.1 in Time of Concentration (Composite) Area (User Defined) 8.831 acres Computational Time Increment 0.040 hours Flow (Peak, Computed) 12.216 hours Flow (Peak, Computed) 32.88 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 32.54 ft³/s Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 8.831 acres Maximum Retention (Pervious) 4.1 in (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.302 hours (Computational Time Increment 0.040 hours Increment 0.040 hours K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours Total unit time, Tb 1.008 hours		
Duration 24,000 hours Depth 8.1 in Time of Concentration (Composite) 0.302 hours Area (User Defined) 8.831 acres Computational Time Increment 0.040 hours Flow (Peak, Computed) 12,216 hours Flow (Peak, Computed) 32.88 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12,200 hours Flow (Peak Interpolated Output) 12,200 hours Flow (Peak Interpolated Output) 14,3/s Drainage Area SCS CN (Composite) 71,000 Area (User Defined) 8.831 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.302 hours (Computational Time Increment 0.040 hours Increment 0.040 hours Increment 0.040 hours K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit Hydrograpl Imb, Tr 0.806 hours	Storm Event	100-yr
Depth 8.1 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) At 1 in Cumulative Runoff SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor N Factor N Factor N Geode As 33.99 ft 3/s Unit peak, qp Unit peak, qp Unit peak time, Tp O.202 hours Unit receding limb, Tr O.806 hours	Return Event	100 years
Time of Concentration (Composite) Area (User Defined) Rea (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.806 hours	Duration	24.000 hours
Composite) Area (User Defined) Rea (Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Time (Peak Interpolated Output) Rea (User Defined) Rea (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Runoff Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	Depth	8.1 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) 32.88 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined		0.302 hours
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.4.6 in Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-749 Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.806 hours	Area (User Defined)	8.831 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.4.6 in Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-749 Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.806 hours		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Porainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Outpus 32.54 ft³/s 12.200 hours 12.200 hours 14.000 0.8831 acres 14.1 in 0.8831 acres 14.6 in 14.6 in 15.7 in 0.806 hours 16.6 hours 17.0 0.050 hours 18.831 acres 18.831 acr	•	0.040 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Oxac Assar 12.200 hours	Time to Peak (Computed)	12.216 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.4 in Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	Flow (Peak, Computed)	32.88 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.4 in A.6 in Runoff Volume (Pervious) Volume 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	Output Increment	0.050 hours
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 0.806 hours		12 200 hours
Output) Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 8.831 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.302 hours Computational Time Increment 0.040 hours Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	• • •	12.200 110013
Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 8.831 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.302 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	•	32.54 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.4 in 4.6 in Runoff Volume (Pervious) Volume 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.806 hours		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.806 hours	Drainage Area	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.806 hours	SCS CN (Composite)	71.000
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 33.09 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.806 hours	Area (User Defined)	8.831 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.806 hours		4.1 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.415 ac-ft 4.6 in 4.7 in 4.8 in 4.9 in 4.		0.8 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.415 ac-ft 4.6 in 4.7 in 4.8 in 4.9 in 4.	Cumulative Runoff	
Runoff Volume (Pervious) Runoff Volume (Pervious) 3.415 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.415 ac-ft 0.302 hours 483.432 483.432 483.432 483.432 483.432 483.432 6749 1.670		
Hydrograph Volume (Area under Hydrograph curve) Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.302 hours Computational Time 1 0.040 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours		4.6 in
Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 3.404 ac-ft 0.302 hours 4.302 hours 0.749 1.670	Runoff Volume (Pervious)	3.415 ac-ft
Volume 3.404 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 3.404 ac-ft 0.302 hours 4.302 hours 0.749 1.670	Hydrograph Volume (Area under I	Hydrograph curve)
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit person of the time of tim		
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.302 hours 0.040 hours 483.432 483.432 1.670 1.670 0.749 1.670 0.202 hours 0.202 hours	Volume	3.404 ac-11
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit one of the control of the cont	SCS Unit Hydrograph Parameters	
Computational Time Increment 0.040 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours		0.302 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.806 hours	Computational Time	0.040 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours		483.432
Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	K Factor	0.749
Unit peak, qp 33.09 ft³/s Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours	Receding/Rising, Tr/Tp	1.670
Unit peak time, Tp 0.202 hours Unit receding limb, Tr 0.806 hours		33.09 ft ³ /s
Unit receding limb, Tr 0.806 hours	. "	0.202 hours
5		0.806 hours
	Total unit time, Tb	1.008 hours

Return Event: 100 years

Storm Event: 100-yr

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years Label: Area-2- Pre Storm Event: 100-yr

Storm Event	100-yr
Return Event	100 years
Duration	24.000 hours
Depth	8.1 in
Time of Concentration (Composite)	0.302 hours
Area (User Defined)	8.831 acres

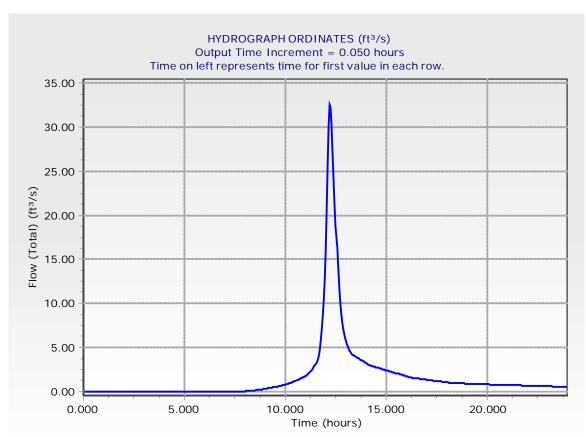
HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
7.600	0.00	0.00	0.01	0.01	0.02
7.850	0.02	0.03	0.04	0.05	0.06
8.100	0.07	0.07	0.08	0.10	0.11
8.350	0.12	0.13	0.14	0.16	0.17
8.600	0.19	0.20	0.22	0.23	0.25
8.850	0.27	0.28	0.30	0.32	0.34
9.100	0.36	0.38	0.40	0.42	0.45
9.350	0.47	0.49	0.52	0.54	0.57
9.600	0.59	0.62	0.64	0.67	0.70
9.850	0.73	0.76	0.79	0.82	0.85
10.100	0.88	0.91	0.95	0.99	1.03
10.350	1.07	1.12	1.17	1.22	1.27
10.600	1.32	1.38	1.43	1.49	1.55
10.850	1.61	1.67	1.73	1.80	1.86
11.100	1.94	2.03	2.13	2.26	2.40
11.350	2.56	2.73	2.91	3.11	3.35
11.600	3.68	4.18	4.94	5.97	7.27
11.850	8.82	10.62	13.00	16.41	21.00
12.100	26.10	30.33	32.54	32.21	30.09
12.350	27.16	24.18	21.41	18.82	16.35
12.600	14.05	12.00	10.28	8.98	7.98
12.850	7.22	6.62	6.14	5.74	5.39
13.100	5.08	4.82	4.61	4.44	4.30
13.350	4.18	4.09	4.00	3.93	3.85
13.600	3.78	3.71	3.64	3.58	3.51
13.850	3.44	3.37	3.31	3.24	3.17
14.100	3.11	3.04	2.99	2.94	2.90
14.350	2.86	2.82	2.78	2.75	2.71
14.600	2.68	2.65	2.62	2.58	2.55
14.850	2.52	2.48	2.45	2.42	2.39
15.100	2.35	2.32	2.29	2.25	2.22
15.350	2.19	2.15	2.12	2.09	2.05
15.600	2.02	1.98	1.95	1.92	1.88
15.850	1.85	1.81	1.78	1.75	1.71
16.100	1.68	1.65	1.62	1.60	1.58
16.350	1.56	1.54	1.52	1.51	1.49
16.600	1.48	1.46	1.45	1.43	1.42
16.850	1.40	1.39	1.37	1.36	1.34
17.100	1.33	1.31	1.30	1.28	1.27
17.350	1.25	1.24	1.22	1.21	1.19
17.600	1.18	1.16	1.15	1.13	1.12
17.850	1.10	1.09	1.07	1.06	1.04
18.100	1.03	1.01	1.00	0.99	0.99

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Area-2- Pre


Storm Event: 100-yr

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

	• • • • • • • • • • • • • • • • • • • •	iic oii icit ici	or escrits time	c ioi ilist vai	ac iii cacii io	
	Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
ı		0.98	0.97	0.97	0.96	
	18.350					0.96
	18.600	0.95	0.95	0.94	0.94	0.93
	18.850	0.93	0.93	0.92	0.92	0.91
	19.100	0.91	0.90	0.90	0.89	0.89
	19.350	0.89	0.88	0.88	0.87	0.87
	19.600	0.86	0.86	0.85	0.85	0.84
	19.850	0.84	0.84	0.83	0.83	0.82
	20.100	0.82	0.81	0.81	0.81	0.80
	20.350	0.80	0.80	0.79	0.79	0.78
	20.600	0.78	0.78	0.77	0.77	0.77
	20.850	0.76	0.76	0.76	0.75	0.75
	21.100	0.75	0.74	0.74	0.74	0.73
	21.350	0.73	0.73	0.72	0.72	0.72
	21.600	0.71	0.71	0.71	0.70	0.70
	21.850	0.70	0.69	0.69	0.69	0.68
	22.100	0.68	0.68	0.67	0.67	0.67
	22.350	0.66	0.66	0.65	0.65	0.65
	22.600	0.64	0.64	0.64	0.64	0.63
	22.850	0.63	0.62	0.62	0.62	0.61
	23.100	0.61	0.61	0.60	0.60	0.60
	23.350	0.59	0.59	0.59	0.58	0.58
	23.600	0.58	0.57	0.57	0.57	0.56
	23.850	0.56	0.56	0.55	0.55	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years Label: Area-2- Pre Storm Event: 100-yr

Subsection: Addition Summary
Label: Post Outlet O-1

Return Event: 2 years
Storm Event: 2-yr

Summary for Hydrograph Addition at 'Post Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1F-Post
OCS-1	DT-1
OCS-2	IF-1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1F-Post	0.375	12.150	3.68
Flow (From)	OCS-1	0.185	19.100	0.19
Flow (From)	OCS-2	0.213	12.550	1.61
Flow (In)	Post Outlet O-	0.774	12.250	3.98

Subsection: Addition Summary
Label: Post Outlet O-1

Return Event: 10 years
Storm Event: 10-yr

Summary for Hydrograph Addition at 'Post Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1F-Post
OCS-1	DT-1
OCS-2	IF-1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1F-Post	0.886	12.150	9.69
Flow (From)	OCS-1	0.386	16.550	0.60
Flow (From)	OCS-2	0.716	12.350	6.84
Flow (In)	Post Outlet O-	1.988	12.200	15.38

Subsection: Addition Summary
Label: Post Outlet O-1

Return Event: 50 years
Storm Event: 50-yr

Summary for Hydrograph Addition at 'Post Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1F-Post
OCS-1	DT-1
OCS-2	IF-1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1F-Post	1.827	12.150	20.45
Flow (From)	OCS-1	1.549	12.850	4.76
Flow (From)	OCS-2	1.583	12.250	14.81
Flow (In)	Post Outlet O-	4.959	12.150	34.39

Subsection: Addition Summary
Label: Post Outlet O-1

Return Event: 100 years
Storm Event: 100-yr

Summary for Hydrograph Addition at 'Post Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1F-Post
OCS-1	DT-1
OCS-2	IF-1

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1F-Post	2.417	12.150	27.04
Flow (From)	OCS-1	2.277	12.700	9.47
Flow (From)	OCS-2	2.112	12.250	18.87
Flow (In)	Post Outlet O-	6.805	12.150	44.30

Subsection: Addition Summary
Label: Post Outlet O-2

Return Event: 2 years
Storm Event: 2-yr

Summary for Hydrograph Addition at 'Post Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area 2- Post

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area 2- Post	0.441	12.250	3.88
Flow (In)	Post Outlet O-	0.441	12.250	3.88

Subsection: Addition Summary
Label: Post Outlet O-2

Return Event: 10 years
Storm Event: 10-yr

Summary for Hydrograph Addition at 'Post Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area 2- Post

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area 2- Post	1.020	12.200	9.89
Flow (In)	Post Outlet O- 2	1.020	12.200	9.89

Subsection: Addition Summary
Label: Post Outlet O-2

Return Event: 50 years
Storm Event: 50-yr

Summary for Hydrograph Addition at 'Post Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area 2- Post

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Area 2- Post	2.076	12.200	20.66
Flow (In)	Post Outlet O- 2	2.076	12.200	20.66

Subsection: Addition Summary
Label: Post Outlet O-2

Return Event: 100 years
Storm Event: 100-yr

Summary for Hydrograph Addition at 'Post Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area 2- Post

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Area 2- Post	2.735	12.200	27.24
Flow (In)	Post Outlet O- 2	2.735	12.200	27.24

Subsection: Addition Summary
Label: Pre Outlet O-1

Return Event: 2 years
Storm Event: 2-yr

Summary for Hydrograph Addition at 'Pre Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1-Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Area-1-Pre	1.045	12.250	8.58
Flow (In)	Pre Outlet O-1	1.045	12.250	8.58

Subsection: Addition Summary
Label: Pre Outlet O-1

Return Event: 10 years
Storm Event: 10-yr

Summary for Hydrograph Addition at 'Pre Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1-Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1-Pre	2.469	12.250	22.65
Flow (In)	Pre Outlet O-1	2.469	12.250	22.65

Subsection: Addition Summary Return Event: 50 years

Label: Pre Outlet O-1 Storm Event: 50-yr

Summary for Hydrograph Addition at 'Pre Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1-Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1-Pre	5.091	12.250	47.88
Flow (In)	Pre Outlet O-1	5.091	12.250	47.88

Subsection: Addition Summary
Label: Pre Outlet O-1

Return Event: 100 years
Storm Event: 100-yr

Summary for Hydrograph Addition at 'Pre Outlet O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-1-Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-1-Pre	6.737	12.250	63.35
Flow (In)	Pre Outlet O-1	6.737	12.250	63.35

Subsection: Addition Summary
Label: Pre Outlet O-2

Return Event: 2 years
Storm Event: 2-yr

Summary for Hydrograph Addition at 'Pre Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-2- Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-2- Pre	0.549	12.250	4.69
Flow (In)	Pre Outlet O-2	0.549	12.250	4.69

Subsection: Addition Summary
Label: Pre Outlet O-2
Return Event: 10 years
Storm Event: 10-yr

Summary for Hydrograph Addition at 'Pre Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-2- Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Area-2- Pre	1.270	12.250	11.84
Flow (In)	Pre Outlet O-2	1.270	12.250	11.84

Subsection: Addition Summary Return Event: 50 years

Label: Pre Outlet O-2 Storm Event: 50-yr

Summary for Hydrograph Addition at 'Pre Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-2- Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Area-2- Pre	2.583	12.200	24.62
Flow (In)	Pre Outlet O-2	2.583	12.200	24.62

Subsection: Addition Summary
Label: Pre Outlet O-2

Return Event: 100 years
Storm Event: 100-yr

Summary for Hydrograph Addition at 'Pre Outlet O-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Area-2- Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Area-2- Pre	3.404	12.200	32.54
Flow (In)	Pre Outlet O-2	3.404	12.200	32.54

Subsection: Elevation-Area Volume Curve

Return Event: 2 years Storm Event: 2-yr Label: DT-1

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
379.00	0.0	0.000	0.000	0.000	0.000
380.00	0.0	0.390	0.390	0.130	0.130
381.00	0.0	0.428	1.226	0.409	0.539
382.00	0.0	0.468	1.344	0.448	0.987
383.00	0.0	0.510	1.467	0.489	1.476
384.00	0.0	0.555	1.597	0.532	2.008

Subsection: Elevation-Area Volume Curve

Return Event: 2 years Label: IF-1 Storm Event: 2-yr

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
369.00	0.0	0.210	0.000	0.000	0.000
370.00	0.0	0.240	0.674	0.225	0.225
371.00	0.0	0.276	0.773	0.258	0.483
372.00	0.0	0.318	0.890	0.297	0.779
373.00	0.0	0.364	1.022	0.341	1.120

Subsection: Elevation-Area Volume Curve

Return Event: 2 years Storm Event: 2-yr Label: SF-1

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
376.00	0.0	0.017	0.000	0.000	0.000
377.00	0.0	0.027	0.065	0.022	0.022
378.00	0.0	0.040	0.100	0.033	0.055
379.00	0.0	0.056	0.143	0.048	0.103

Subsection: Outlet Input Data

Return Event: 2 years

Label: OCS - 2 Storm Event: 2-yr

Requested Pond Water Surface Elevations				
Minimum (Headwater)	369.00 ft			
Increment (Headwater)	0.50 ft			
Maximum (Headwater)	373.00 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	Riser - 1	Forward	Culvert - 1	371.50	373.00
Rectangular Weir	Weir - 1	Forward	Culvert - 1	370.00	373.00
Culvert-Circular	Culvert - 1	Forward	TW	367.50	373.00
Rectangular Weir	Weir - 2	Forward	TW	372.00	373.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 2 years

Label: OCS - 2 Storm Event: 2-yr

Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	18.0 in
Length	36.00 ft
Length (Computed Barrel)	36.00 ft
Slope (Computed)	0.007 ft/ft
Outlet Control Date	
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.018
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	1.092

Use unsubmerged inlet control 0 equation below T1 elevation.

T2 ratio (HW/D)

Slope Correction Factor

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	369.14 ft	T1 Flow	7.58 ft ³ /s
T2 Elevation	369.29 ft	T2 Flow	8.66 ft ³ /s

1.194

-0.500

Subsection: Outlet Input Data Return Event: 2 years

Label: OCS - 2 Storm Event: 2-yr

Structure ID: Weir - 1 Structure Type: Rectangular We	ir
Number of Openings	1
Elevation	370.00 ft
Weir Length	2.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	371.50 ft
Orifice Area	5.1 ft ²
Orifice Coefficient	0.600
Weir Length	9.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False
Structure ID: Weir - 2 Structure Type: Rectangular We	ir
	ir1
Structure Type: Rectangular We	
Structure Type: Rectangular We Number of Openings	1
Structure Type: Rectangular We Number of Openings Elevation	1 372.00 ft
Structure Type: Rectangular We Number of Openings Elevation Weir Length	1 372.00 ft 32.00 ft 3.00 (ft^0.5)/s
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW	1 372.00 ft 32.00 ft 3.00 (ft^0.5)/s
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C	1 372.00 ft 32.00 ft 3.00 (ft^0.5)/s
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type	1 372.00 ft 32.00 ft 3.00 (ft^0.5)/s
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance	1 372.00 ft 32.00 ft 3.00 (ft^0.5)/s channel Free Outfall
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations	1 372.00 ft 32.00 ft 3.00 (ft^0.5)/s channel Free Outfall
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance	1 372.00 ft 32.00 ft 32.00 ft 3.00 (ft^0.5)/s Channel Free Outfall 30 0.01 ft
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance	1 372.00 ft 32.00 ft 32.00 ft 3.00 (ft^0.5)/s Channel Free Outfall 30 0.01 ft 0.50 ft
Structure Type: Rectangular We Number of Openings Elevation Weir Length Weir Coefficient Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance	1 372.00 ft 32.00 ft 32.00 ft 3.00 (ft^0.5)/s Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft

Subsection: Outlet Input Data

Return Event: 2 years

Label: OCS-1 Storm Event: 2-yr

Requested Pond Water Surface Elevations			
Minimum (Headwater) 379.00 ft			
Increment (Headwater)	0.50 ft		
Maximum (Headwater)	384.00 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	379.00	384.00
Inlet Box	Riser - 1	Forward	Culvert-1	383.00	384.00
Rectangular Weir	Weir - 1	Forward	Culvert-1	381.50	384.00
Culvert-Circular	Culvert-1	Forward	TW	379.00	384.00
Rectangular Weir	Weir - 2	Forward	TW	383.00	384.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data

Return Event: 2 years

Label: OCS-1 Storm Event: 2-yr

Structure ID: Culvert-1	
Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	18.0 in
Length	53.00 ft
Length (Computed Barrel)	53.01 ft
Slope (Computed)	0.019 ft/ft
O. H1 O1 D1	
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.018
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	1.086
T2 ratio (HW/D)	1.188

Use unsubmerged inlet control 0 equation below T1 elevation.

Slope Correction Factor

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	380.63 ft	T1 Flow	7.58 ft ³ /s
T2 Elevation	380.78 ft	T2 Flow	8.66 ft ³ /s

-0.500

Subsection: Outlet Input Data Return Event: 2 years

Label: OCS-1 Storm Event: 2-yr

Structure ID: Weir - 1 Structure Type: Rectangular We	eir	
Number of Openings	1	
Elevation	381.50 ft	
Weir Length	2.00 ft	
Weir Coefficient	3.00 (ft^0.5)	/s
Structure ID: Riser - 1 Structure Type: Inlet Box		
Number of Openings	1	
Elevation	383.00 ft	
Orifice Area	5.1 ft ²	
Orifice Coefficient	0.600	
Weir Length	9.00 ft	
Weir Coefficient	3.00 (ft^0.5)	ı/s
K Reverse	1.000	
Manning's n	0.000	
Kev, Charged Riser	0.000	
Weir Submergence	False	
Orifice H to crest	False	
Structure ID: Weir - 2 Structure Type: Rectangular We	eir	
Number of Openings	1	
Elevation	383.00 ft	
Weir Length	33.00 ft	
Weir Coefficient	3.00 (ft^0.5)	/s
Structure ID: Orifice - 1 Structure Type: Orifice-Circular		
Number of Openings	1	
Flevation	379.00 ft	
Orifice Diameter	2.5 in	
Orifice Coefficient	0.600	
		_
Structure ID: TW Structure Type: TW Setup, DS	Channel	
Tailwater Type	Free Outfall	
Convergence Tolerances		
Maximum Iterations	30	
Tailwater Tolerance (Minimum)	0.01 ft	
Tailwater Tolerance (Maximum)	0.50 ft	
Headwater Tolerance (Minimum)	0.01 ft	
Headwater Tolerance (Maximum)	0.50 ft	
Flow Tolerance (Minimum)	0.001 ft ³ /s	
Flow Tolerance (Maximum)	10.000 ft ³ /s	

Subsection: Outlet Input Data

Return Event: 2 years

Label: OCS-3 Storm Event: 2-yr

Requested Pond Water Surface Elevations		
Minimum (Headwater)	376.00 ft	
Increment (Headwater)	0.50 ft	
Maximum (Headwater)	379.00 ft	

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Rectangular Weir	Weir - 1	Forward	TW	378.00	379.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 2 years

Label: OCS-3 Storm Event: 2-yr

Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	378.00 ft
Weir Length	13.00 ft
Weir Coefficient	3.00 (ft^0.5)/s

Structure ID: TW

Structure Type: TW Setup, DS Channel

Tailwater Type	Free Outfall		
Convergence Tolerances			
Maximum Iterations	30		
Tailwater Tolerance (Minimum)	0.01 ft		
Tailwater Tolerance (Maximum)	0.50 ft		
Headwater Tolerance (Minimum)	0.01 ft		
Headwater Tolerance (Maximum)	0.50 ft		
Flow Tolerance (Minimum)	0.001 ft ³ /s		
Flow Tolerance (Maximum)	10.000 ft ³ /s		

Label: DT-1 (IN)

Label. D1-1 (IN)		
Infiltration		_
Infiltration Method (Computed)	No Infiltration	<u> </u>
Initial Conditions		_
Elevation (Water Surface, Initial)	379.00 ft	
Volume (Initial)	0.000 ac-ft	
Flow (Initial Outlet)	0.00 ft ³ /s	
Flow (Initial Infiltration)	0.00 ft ³ /s	
Flow (Initial, Total)	0.00 ft ³ /s	
Time Increment	0.050 hours	
Inflow/Outflow Hydrograph S	Summary	
Flow (Peak In)	4.33 ft ³ /s	Time to Peak (Flow, In)
Flow (Peak Outlet)	0.19 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	380.49 ft	_
Volume (Peak)	0.324 ac-ft	
Mass Balance (ac-ft)		
Volume (Initial)	0.000 ac-ft	

Elevation (Water Surface, Peak)	380.49 ft
Volume (Peak)	0.324 ac-ft
Mass Balance (ac-ft)	
Volume (Initial)	0.000 ac-ft
Volume (Total Inflow)	0.495 ac-ft
Volume (Total Infiltration)	0.000 ac-ft
Volume (Total Outlet Outflow)	0.185 ac-ft
Volume (Retained)	0.308 ac-ft
Volume (Unrouted)	-0.001 ac-ft
Error (Mass Balance)	0.2 %

Return Event: 2 years

12.250 hours 19.100 hours

Storm Event: 2-yr

Label: DT-1 (IN)

Return Event: 10 years Storm Event: 10-yr

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	379.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	10.90 ft ³ /s	Time to Peak (Flow, In)	12.200 hours
Flow (Peak Outlet)	0.60 ft ³ /s	Time to Peak (Flow, Outlet)	16.550 hours
Elevation (Water Surface, Peak)	381.58 ft	_	
Volume (Peak)	0.794 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.145 ac-ft		

0.000 ac-ft

0.386 ac-ft

0.758 ac-ft

-0.001 ac-ft

0.1 %

Volume (Total Infiltration)

Volume (Total Outlet

Volume (Retained)

Volume (Unrouted)

Error (Mass Balance)

Outflow)

Label: DT-1 (IN)

Volume (Retained)

Volume (Unrouted)

Error (Mass Balance)

Return Event: 50 years Storm Event: 50-yr

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	379.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	22.83 ft ³ /s	Time to Peak (Flow, In)	12.200 hours
Flow (Peak Outlet)	4.76 ft ³ /s	Time to Peak (Flow, Outlet)	12.850 hours
Elevation (Water Surface, Peak)	382.30 ft	_	
Volume (Peak)	1.130 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	2.329 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	1.549 ac-ft		

0.778 ac-ft

-0.002 ac-ft 0.1 %

Label: DT-1 (IN)

Return Event:	100 years
Storm Ever	nt: 100-yr

Eddon Bir (m)			Otomin Evoluti
Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	379.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	30.13 ft ³ /s	Time to Peak (Flow, In)	12.200 hours
Flow (Peak Outlet)	9.47 ft ³ /s	Time to Peak (Flow, Outlet)	12.700 hours
Elevation (Water Surface, Peak)	382.81 ft		
Volume (Peak)	1.381 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	3.069 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	2.277 ac-ft		
Volume (Retained)	0.789 ac-ft		

-0.003 ac-ft

0.1 %

Volume (Unrouted)

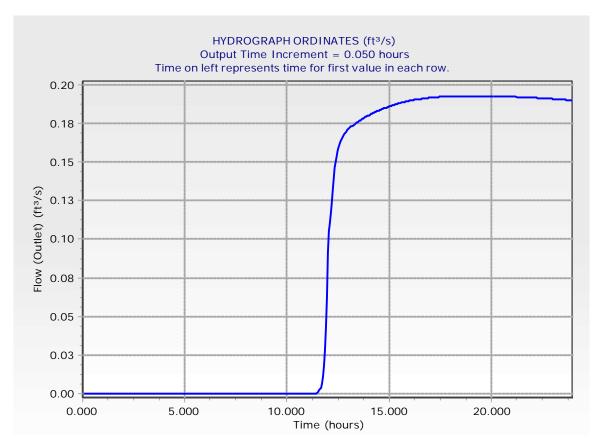
Error (Mass Balance)

Return Event: 2 years Label: DT-1 (OUT) Storm Event: 2-yr

Peak Discharge	0.19 ft ³ /s
Time to Peak	19.100 hours
Hydrograph Volume	0.185 ac-ft

Time on left represents time for first value in each row.							
Time	Flow	Flow	Flow	Flow	Flow		
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)		
11.500	0.00	0.00	0.00	0.00	0.01		
11.750	0.01	0.02	0.03	0.04	0.06		
12.000	0.09	0.11	0.11	0.12	0.12		
12.250	0.13	0.14	0.15	0.15	0.16		
12.500	0.16	0.16	0.16	0.16	0.17		
12.750	0.17	0.17	0.17	0.17	0.17		
13.000	0.17	0.17	0.17	0.17	0.17		
13.250	0.17	0.17	0.17	0.18	0.18		
13.500	0.18	0.18	0.18	0.18	0.18		
13.750	0.18	0.18	0.18	0.18	0.18		
14.000	0.18	0.18	0.18	0.18	0.18		
14.250	0.18	0.18	0.18	0.18	0.18		
14.500	0.18	0.18	0.18	0.18	0.18		
14.750	0.18	0.19	0.19	0.19	0.19		
15.000	0.19	0.19	0.19	0.19	0.19		
15.250	0.19	0.19	0.19	0.19	0.19		
15.500	0.19	0.19	0.19	0.19	0.19		
15.750	0.19	0.19	0.19	0.19	0.19		
16.000	0.19	0.19	0.19	0.19	0.19		
16.250	0.19	0.19	0.19	0.19	0.19		
16.500	0.19	0.19	0.19	0.19	0.19		
16.750	0.19	0.19	0.19	0.19	0.19		
17.000	0.19	0.19	0.19	0.19	0.19		
17.250	0.19	0.19	0.19	0.19	0.19		
17.500	0.19	0.19	0.19	0.19	0.19		
17.750	0.19	0.19	0.19	0.19	0.19		
18.000	0.19	0.19	0.19	0.19	0.19		
18.250	0.19	0.19	0.19	0.19	0.19		
18.500	0.19	0.19	0.19	0.19	0.19		
18.750	0.19	0.19	0.19	0.19	0.19		
19.000	0.19	0.19	0.19	0.19	0.19		
19.250	0.19	0.19	0.19	0.19	0.19		
19.500	0.19	0.19	0.19	0.19	0.19		
19.750	0.19	0.19	0.19	0.19	0.19		
20.000	0.19	0.19	0.19	0.19	0.19		
20.250	0.19	0.19	0.19	0.19	0.19		
20.500	0.19	0.19	0.19	0.19	0.19		
20.750	0.19	0.19	0.19	0.19	0.19		
21.000	0.19	0.19	0.19	0.19	0.19		
21.250	0.19	0.19	0.19	0.19	0.19		
21.500	0.19	0.19	0.19	0.19	0.19		
21.750	0.19	0.19	0.19	0.19	0.19		
22.000	0.19	0.19	0.19	0.19	0.19		
22.250	0.19	0.19	0.19	0.19	0.19		
22.500	0.19	0.19	0.19	0.19	0.19		
22.750	0.19	0.19	0.19	0.19	0.19		
23.000	0.19	0.19	0.19	0.19	0.19		
23.250	0.19	0.19	0.19	0.19	0.19		

Subsection: Pond Routed Hydrograph (total out)


Return Event: 2 years

Label: DT-1 (OUT)

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
23.500	0.19	0.19	0.19	0.19	0.19
23.750	0.19	0.19	0.19	0.19	0.19
24.000	0.19	(N/A)	(N/A)	(N/A)	(N/A)

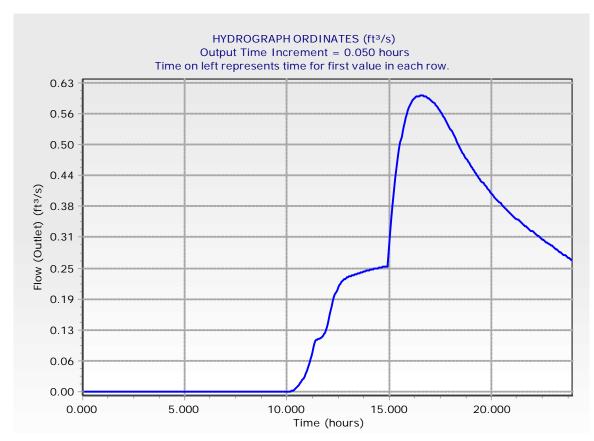
Return Event: 2 years Label: DT-1 (OUT) Storm Event: 2-yr

Return Event: 10 years Label: DT-1 (OUT) Storm Event: 10-yr

Peak Discharge	0.60 ft ³ /s
Time to Peak	16.550 hours
Hydrograph Volume	0.386 ac-ft

Time on left represents time for first value in each row.							
Time	Flow	Flow	Flow	Flow	Flow		
(hours)	(ft³/s)	(ft³/s)	(ft ³ /s)	(ft³/s)	(ft³/s)		
10.150	0.00	0.00	0.00	0.00	0.00		
10.400	0.01	0.01	0.01	0.01	0.01		
10.650	0.02	0.02	0.02	0.03	0.03		
10.900	0.04	0.04	0.05	0.05	0.06		
11.150	0.07	0.07	0.08	0.09	0.10		
11.400	0.10	0.10	0.11	0.11	0.11		
11.650	0.11	0.11	0.11	0.12	0.12		
11.900	0.12	0.13	0.14	0.15	0.16		
12.150	0.17	0.17	0.18	0.19	0.20		
12.400	0.20	0.21	0.21	0.22	0.22		
12.650	0.22	0.22	0.23	0.23	0.23		
12.900	0.23	0.23	0.23	0.23	0.23		
13.150	0.23	0.24	0.24	0.24	0.24		
13.400	0.24	0.24	0.24	0.24	0.24		
13.650	0.24	0.24	0.24	0.24	0.24		
13.900	0.24	0.25	0.25	0.25	0.25		
14.150	0.25	0.25	0.25	0.25	0.25		
14.400	0.25	0.25	0.25	0.25	0.25		
14.650	0.25	0.25	0.25	0.25	0.25		
14.900	0.25	0.28	0.30	0.33	0.35		
15.150	0.37	0.39	0.41	0.43	0.45		
15.400	0.46	0.48	0.49	0.51	0.52		
15.650	0.53	0.54	0.55	0.55	0.56		
15.900	0.57	0.57	0.58	0.58	0.59		
16.150	0.59	0.59	0.59	0.60	0.60		
16.400	0.60	0.60	0.60	0.60	0.60		
16.650	0.60	0.60	0.60	0.60	0.60		
16.900	0.59	0.59	0.59	0.59	0.59		
17.150	0.59	0.58	0.58	0.58	0.58		
17.400	0.57	0.57	0.57	0.56	0.56		
17.650	0.56	0.55	0.55	0.55	0.54		
17.900	0.54	0.54	0.53	0.53	0.52		
18.150	0.52	0.52	0.51	0.51	0.50		
18.400	0.50	0.50	0.49	0.49	0.48		
18.650	0.48	0.48	0.47	0.47	0.47		
18.900	0.46	0.46	0.46	0.45	0.45		
19.150	0.45	0.44	0.44	0.44	0.44		
19.400	0.43	0.43	0.43	0.42	0.42		
19.650	0.42	0.42	0.41	0.41	0.41		
19.900	0.41	0.40	0.40	0.40	0.40		
20.150	0.39	0.39	0.39	0.39	0.39		
20.400	0.38	0.38	0.38	0.38	0.37		
20.650	0.37	0.37	0.37	0.37	0.36		
20.900	0.36	0.36	0.36	0.36	0.35		
21.150	0.35	0.35	0.35	0.35	0.35		
21.400	0.34	0.34	0.34	0.34	0.34		
21.650	0.34	0.33	0.33	0.33	0.33		
21.900	0.33	0.33	0.32	0.32	0.32		

Subsection: Pond Routed Hydrograph (total out)


Return Event: 10 years

Label: DT-1 (OUT)

Storm Event: 10-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.150	0.32	0.32	0.32	0.31	0.31
22.400	0.31	0.31	0.31	0.31	0.31
22.650	0.30	0.30	0.30	0.30	0.30
22.900	0.30	0.30	0.29	0.29	0.29
23.150	0.29	0.29	0.29	0.28	0.28
23.400	0.28	0.28	0.28	0.28	0.28
23.650	0.27	0.27	0.27	0.27	0.27
23.900	0.27	0.27	0.26	(N/A)	(N/A)

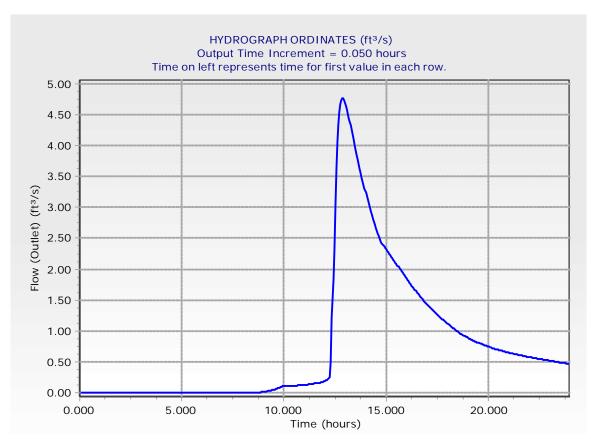
Return Event: 10 years Label: DT-1 (OUT) Storm Event: 10-yr

Return Event: 50 years Label: DT-1 (OUT) Storm Event: 50-yr

Darla Diarkanna	4 7/ £2/-
Peak Discharge	4.76 ft ³ /s
Time to Peak	12.850 hours
Hydrograph Volume	1.549 ac-ft

Time on left represents time for first value in each row.							
Time	Flow	Flow	Flow	Flow	Flow		
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)		
8.550	0.00	0.00	0.00	0.00	0.00		
8.800	0.01	0.01	0.01	0.01	0.01		
9.050	0.02	0.02	0.02	0.02	0.03		
9.300	0.03	0.04	0.04	0.04	0.05		
9.550	0.05	0.06	0.07	0.07	0.08		
9.800	0.08	0.09	0.10	0.10	0.10		
10.050	0.10	0.11	0.11	0.11	0.11		
10.300	0.11	0.11	0.11	0.11	0.11		
10.550	0.11	0.11	0.12	0.12	0.12		
10.800	0.12	0.12	0.12	0.12	0.13		
11.050	0.13	0.13	0.13	0.13	0.14		
11.300	0.14	0.14	0.14	0.15	0.15		
11.550	0.15	0.16	0.16	0.16	0.16		
11.800	0.17	0.17	0.18	0.18	0.19		
12.050	0.20	0.21	0.22	0.23	0.25		
12.300	0.50	1.22	1.83	2.35	3.04		
12.550	3.62	4.04	4.35	4.55	4.67		
12.800	4.74	4.76	4.76	4.74	4.69		
13.050	4.64	4.57	4.50	4.42	4.34		
13.300	4.25	4.17	4.09	4.01	3.93		
13.550	3.85	3.78	3.71	3.63	3.56		
13.800	3.50	3.43	3.36	3.30	3.23		
14.050	3.17	3.11	3.05	2.99	2.93		
14.300	2.88	2.82	2.77	2.72	2.67		
14.550	2.62	2.58	2.53	2.49	2.45		
14.800	2.41	2.38	2.36	2.34	2.31		
15.050	2.29	2.27	2.25	2.22	2.20		
15.300	2.18	2.15	2.13	2.11	2.08		
15.550	2.06	2.04	2.02	1.99	1.97		
15.800	1.95	1.92	1.90	1.88	1.85		
16.050	1.83	1.81	1.78	1.76	1.74		
16.300	1.71	1.69	1.67	1.65	1.63		
16.550	1.60	1.58	1.56	1.54	1.52		
16.800	1.51	1.49	1.47	1.45	1.43		
17.050	1.41	1.40	1.38	1.36	1.35		
17.300	1.33	1.31	1.30	1.28	1.27		
17.550	1.25	1.24	1.22	1.21	1.19		
17.800	1.18	1.16	1.15	1.13	1.12		
18.050	1.11	1.09	1.08	1.06	1.05		
18.300	1.04	1.03	1.01	1.00	0.99		
18.550	0.98	0.97	0.96	0.95	0.94		
18.800	0.93	0.92	0.91	0.90	0.89		
19.050	0.88	0.87	0.86	0.85	0.85		
19.300	0.84	0.83	0.82	0.82	0.81		
19.550	0.80	0.80	0.79	0.78	0.78		
19.800	0.77	0.76	0.76	0.75	0.75		
20.050	0.74	0.73	0.73	0.72	0.72		
20.300	0.71	0.71	0.70	0.70	0.69		

Subsection: Pond Routed Hydrograph (total out)


Return Event: 50 years

Label: DT-1 (OUT)

Storm Event: 50-yr

Time (hours)	Flow (ft ³ /s)				
20.550	0.69	0.68	0.68	0.67	0.67
20.800	0.67	0.66	0.66	0.65	0.65
21.050	0.64	0.64	0.64	0.63	0.63
21.300	0.63	0.62	0.62	0.61	0.61
21.550	0.61	0.60	0.60	0.60	0.59
21.800	0.59	0.59	0.58	0.58	0.58
22.050	0.57	0.57	0.57	0.56	0.56
22.300	0.56	0.56	0.55	0.55	0.55
22.550	0.54	0.54	0.54	0.53	0.53
22.800	0.53	0.53	0.52	0.52	0.52
23.050	0.52	0.51	0.51	0.51	0.50
23.300	0.50	0.50	0.50	0.49	0.49
23.550	0.49	0.49	0.48	0.48	0.48
23.800	0.47	0.47	0.47	0.47	0.46

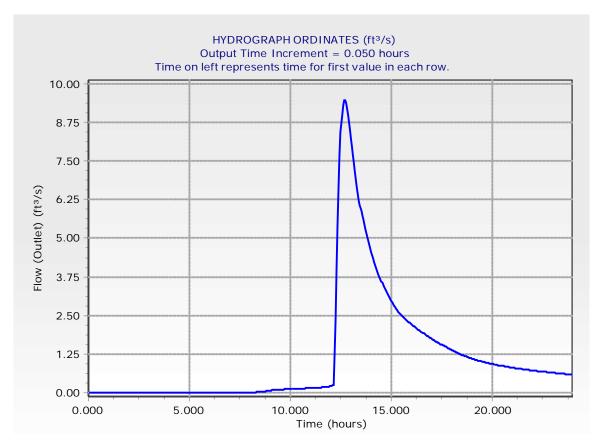
Return Event: 50 years Label: DT-1 (OUT) Storm Event: 50-yr

Return Event: 100 years Label: DT-1 (OUT) Storm Event: 100-yr

Peak Discharge	9.47 ft ³ /s
Time to Peak	12.700 hours
Hydrograph Volume	2.277 ac-ft

Time on left represents time for first value in each row.							
Time	Flow	Flow	Flow	Flow	Flow		
(hours)	(ft³/s)	(ft³/s)	(ft ³ /s)	(ft³/s)	(ft³/s)		
7.800	0.00	0.00	0.00	0.00	0.00		
8.050	0.00	0.01	0.01	0.01	0.01		
8.300	0.01	0.02	0.02	0.02	0.02		
8.550	0.03	0.03	0.03	0.04	0.04		
8.800	0.05	0.05	0.06	0.06	0.07		
9.050	0.08	0.08	0.09	0.10	0.10		
9.300	0.10	0.10	0.10	0.11	0.11		
9.550	0.11	0.11	0.11	0.11	0.11		
9.800	0.11	0.11	0.11	0.11	0.12		
10.050	0.12	0.12	0.12	0.12	0.12		
10.300	0.12	0.13	0.13	0.13	0.13		
10.550	0.13	0.13	0.14	0.14	0.14		
10.800	0.14	0.15	0.15	0.15	0.15		
11.050	0.16	0.16	0.16	0.16	0.16		
11.300	0.16	0.16	0.17	0.17	0.17		
11.550	0.17	0.18	0.18	0.18	0.19		
11.800	0.19	0.20	0.20	0.21	0.22		
12.050	0.23	0.24	0.25	1.29	2.37		
12.300	4.02	5.41	6.58	7.65	8.45		
12.550	8.99	9.32	9.47	9.47	9.37		
12.800	9.20	8.99	8.75	8.50	8.23		
13.050	7.96	7.70	7.43	7.17	6.92		
13.300	6.67 5.74	6.44 5.59	6.24 5.45	6.07 5.31	5.90 5.17		
13.550 13.800	5.74	4.92	4.80	4.68	4.56		
14.050	4.45	4.92	4.00	4.14	4.05		
14.300	3.95	3.86	3.78	3.70	3.62		
14.550	3.54	3.47	3.40	3.70	3.02		
14.800	3.20	3.14	3.08	3.03	2.97		
15.050	2.92	2.87	2.82	2.77	2.72		
15.300	2.67	2.63	2.58	2.54	2.50		
15.550	2.46	2.41	2.39	2.36	2.34		
15.800	2.31	2.29	2.26	2.24	2.22		
16.050	2.19	2.16	2.14	2.11	2.09		
16.300	2.06	2.04	2.01	1.99	1.97		
16.550	1.94	1.92	1.90	1.87	1.85		
16.800	1.83	1.81	1.79	1.77	1.75		
17.050	1.73	1.71	1.69	1.67	1.65		
17.300	1.63	1.61	1.59	1.57	1.55		
17.550	1.54	1.52	1.50	1.48	1.46		
17.800	1.45	1.43	1.41	1.40	1.38		
18.050	1.36	1.35	1.33	1.31	1.30		
18.300	1.28	1.27	1.25	1.24	1.22		
18.550	1.21	1.20	1.18	1.17	1.16		
18.800	1.15	1.14	1.12	1.11	1.10		
19.050	1.09	1.08	1.07	1.06	1.05		
19.300	1.04	1.03	1.02	1.01	1.01		
19.550	1.00	0.99	0.98		0.97		
-	•	<u>'</u>	•	•	'		

Subsection: Pond Routed Hydrograph (total out)


Return Event: 100 years

Label: DT-1 (OUT)

Storm Event: 100-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.800	0.96	0.95	0.94	0.94	0.93
20.050	0.92	0.91	0.91	0.90	0.89
20.300	0.89	0.88	0.87	0.87	0.86
20.550	0.86	0.85	0.85	0.84	0.83
20.800	0.83	0.82	0.82	0.81	0.81
21.050	0.80	0.80	0.79	0.79	0.78
21.300	0.78	0.77	0.77	0.77	0.76
21.550	0.76	0.75	0.75	0.74	0.74
21.800	0.74	0.73	0.73	0.72	0.72
22.050	0.72	0.71	0.71	0.70	0.70
22.300	0.70	0.69	0.69	0.69	0.68
22.550	0.68	0.67	0.67	0.67	0.66
22.800	0.66	0.66	0.65	0.65	0.65
23.050	0.64	0.64	0.64	0.63	0.63
23.300	0.62	0.62	0.62	0.61	0.61
23.550	0.61	0.60	0.60	0.60	0.59
23.800	0.59	0.59	0.58	0.58	0.58

Return Event: 100 years Label: DT-1 (OUT) Storm Event: 100-yr

Label: IF-1 (IN)

Infiltration	
Infiltration Method (Computed)	Average Infiltration Rate
Infiltration Rate (Average)	1.2500 in/h
Initial Conditions	
Elevation (Water Surface, Initial)	369.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours
·	

Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	8.77 ft ³ /s	Time to Peak (Flow, In)	12.100 hours
Infiltration (Peak)	0.32 ft ³ /s	Time to Peak (Infiltration)	12.550 hours
Flow (Peak Outlet)	1.61 ft ³ /s	Time to Peak (Flow, Outlet)	12.550 hours
	•	<u> </u>	

0.1 %

Return Event: 2 years

Storm Event: 2-yr

Elevation (Water Surface, Peak)	370.30 ft
Volume (Peak)	0.299 ac-ft
Mass Balance (ac-ft)	
Volume (Initial)	0.000 ac-ft
Volume (Total Inflow)	0.660 ac-ft
Volume (Total Infiltration)	0.305 ac-ft
Volume (Total Outlet Outflow)	0.213 ac-ft
Volume (Retained)	0.141 ac-ft
Volume (Unrouted)	-0.001 ac-ft

Error (Mass Balance)

Label: IF-1 (IN)

ummary Return Event: 10 years
Storm Event: 10-yr

, ,			
Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate		
Infiltration Rate (Average)	1.2500 in/h		
Initial Conditions			
Elevation (Water Surface, Initial)	369.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S			
Flow (Peak In)	15.55 ft ³ /s 0.34 ft ³ /s	Time to Peak (Flow, In)	12.100 hours 12.350 hours
Infiltration (Peak) Flow (Peak Outlet)	6.84 ft ³ /s	Time to Peak (Infiltration) Time to Peak (Flow, Outlet)	12.350 hours
Floorities (Materia Confess		<u> </u>	
Elevation (Water Surface, Peak)	370.93 ft		
Volume (Peak)	0.464 ac-ft	<u></u>	
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.243 ac-ft		
Volume (Total Infiltration)	0.332 ac-ft		
Volume (Total Outlet Outflow)	0.716 ac-ft		
Volume (Retained)	0.194 ac-ft		

-0.001 ac-ft

0.1 %

Volume (Unrouted) Error (Mass Balance)

Label: IF-1 (IN)

Return Event: 50 years Storm Event: 50-yr

` '			
Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate	<u> </u>	
Infiltration Rate (Average)	1.2500 in/h		
Initial Conditions			
Elevation (Water Surface, Initial)	369.00 ft	<u> </u>	
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	Summary		
	<u>-</u>		
Flow (Peak In)	26.05 ft ³ /s	Time to Peak (Flow, In)	12.100 hours
Infiltration (Peak)	0.38 ft ³ /s	Time to Peak (Infiltration)	12.250 hours
Flow (Peak Outlet)	14.81 ft ³ /s	Time to Peak (Flow, Outlet)	12.250 hours
Elevation (Water Surface, Peak)	371.66 ft		
Volume (Peak)	0.673 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	2.181 ac-ft		
Volume (Total Infiltration)	0.374 ac-ft		
Volume (Total Outlet Outflow)	1.583 ac-ft		

0.223 ac-ft

0.000 ac-ft

0.0 %

Volume (Retained)

Volume (Unrouted)

Error (Mass Balance)

Label: IF-1 (IN)

Return Event: 100 years Storm Event: 100-yr

Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate		
Infiltration Rate (Average)	1.2500 in/h		
Initial Conditions			
Elevation (Water Surface, Initial)	369.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	Summary		
Flow (Peak In)	32.11 ft ³ /s	Time to Peak (Flow, In)	12.100 hours
Infiltration (Peak)	0.40 ft ³ /s	Time to Peak (Infiltration)	12.250 hours
Flow (Peak Outlet)	18.87 ft ³ /s	Time to Peak (Flow, Outlet)	12.250 hours
Elevation (Water Surface, Peak)	372.01 ft	<u></u>	
Volume (Peak)	0.783 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	2.733 ac-ft		
Volume (Total Infiltration)	0.395 ac-ft		
Volume (Total Outlet Outflow)	2.112 ac-ft		
Volume (Retained)	0.226 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Pond Infiltration Hydrograph

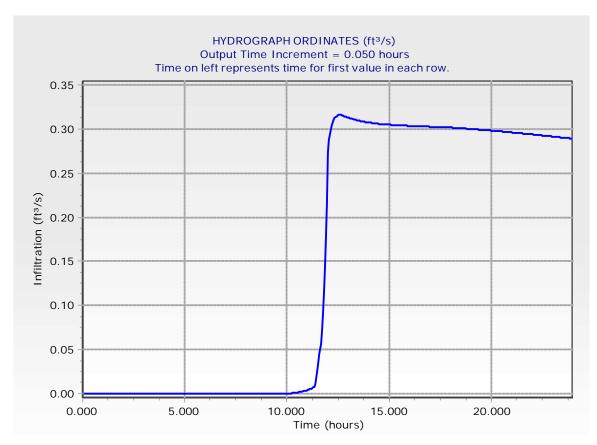
Label: IF-1 (INF)

Return Event: 2 years

Storm Event: 2-yr

Peak Discharge 0.32 ft³/s
Time to Peak 12.550 hours
Hydrograph Volume 0.303 ac-ft

	Time on left represents time for first value in each row.				
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.400	0.00	0.00	0.00	0.00	0.00
10.650	0.00	0.00	0.00	0.00	0.00
10.900	0.00	0.00	0.00	0.00	0.00
11.150	0.01	0.01	0.01	0.01	0.01
11.400	0.01	0.02	0.03	0.03	0.04
11.650	0.06	0.07	0.09	0.11	0.14
11.900	0.18	0.22	0.27	0.29	0.29
12.150 12.400	0.30 0.31	0.30 0.32	0.31 0.32	0.31 0.32	0.31 0.32
12.400	0.31	0.32	0.32	0.32	0.32
12.900	0.32	0.32	0.31	0.31	0.31
13.150	0.31	0.31	0.31	0.31	0.31
13.400 13.650	0.31 0.31	0.31 0.31	0.31 0.31	0.31 0.31	0.31 0.31
13.900	0.31	0.31	0.31	0.31	0.31
14.150	0.31	0.31	0.31	0.31	0.31
14.130	0.31	0.31	0.31	0.31	0.31
14.650	0.31	0.31	0.31	0.31	0.31
14.900	0.31	0.30	0.30	0.30	0.30
15.150	0.30	0.30	0.30	0.30	0.30
15.400	0.30	0.30	0.30	0.30	0.30
15.650	0.30	0.30	0.30	0.30	0.30
15.900	0.30	0.30	0.30	0.30	0.30
16.150	0.30	0.30	0.30	0.30	0.30
16.400	0.30	0.30	0.30	0.30	0.30
16.650	0.30	0.30	0.30	0.30	0.30
16.900	0.30	0.30	0.30	0.30	0.30
17.150	0.30	0.30	0.30	0.30	0.30
17.400	0.30	0.30	0.30	0.30	0.30
17.650	0.30	0.30	0.30	0.30	0.30
17.900	0.30	0.30	0.30	0.30	0.30
18.150	0.30	0.30	0.30	0.30	0.30
18.400	0.30	0.30	0.30	0.30	0.30
18.650	0.30	0.30	0.30	0.30	0.30
18.900	0.30	0.30	0.30	0.30	0.30
19.150	0.30	0.30	0.30	0.30	0.30
19.400	0.30	0.30	0.30	0.30	0.30
19.650	0.30	0.30	0.30	0.30	0.30
19.900	0.30	0.30	0.30	0.30	0.30
20.150	0.30	0.30	0.30	0.30	0.30
20.400	0.30	0.30	0.30	0.30	0.30
20.650	0.30	0.30	0.30	0.30	0.30
20.900	0.30	0.30	0.30	0.30	0.30
21.150	0.30	0.30	0.30	0.30	0.30
21.400	0.30	0.30	0.30	0.29	0.29
21.650	0.29	0.29	0.29	0.29	0.29
21.900	0.29	0.29	0.29	0.29	0.29
22.150	0.29	0.29	0.29	0.29	0.29
	!	•		. '	


Subsection: Pond Infiltration Hydrograph
Label: IF-1 (INF)

Return Event: 2 years
Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.400	0.29	0.29	0.29	0.29	0.29
22.650	0.29	0.29	0.29	0.29	0.29
22.900	0.29	0.29	0.29	0.29	0.29
23.150	0.29	0.29	0.29	0.29	0.29
23.400	0.29	0.29	0.29	0.29	0.29
23.650	0.29	0.29	0.29	0.29	0.29
23.900	0.29	0.29	0.29	(N/A)	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 2 years Label: IF-1 (INF) Storm Event: 2-yr

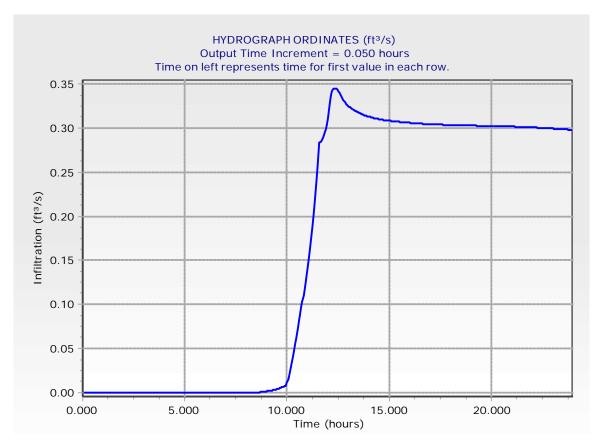
Subsection: Pond Infiltration Hydrograph Return Event: 10 years

Label: IF-1 (INF) Storm Event: 10-yr

Peak Discharge	0.34 ft ³ /s
Time to Peak	12.350 hours
Hydrograph Volume	0.331 ac-ft

(hours) (ft³/s) (ft³/s		Time on left represents time for first value in each row.				
8.850 0.01 0.02 0.02 0.02 <t< th=""><th>Time (bours)</th><th>Flow</th><th>Flow</th><th>Flow (ft3/s)</th><th>Flow (ft3/s)</th><th>Flow (ft3/s)</th></t<>	Time (bours)	Flow	Flow	Flow (ft3/s)	Flow (ft3/s)	Flow (ft3/s)
9,100 0,00 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
9.350						
9.600 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.04 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
9.850						
10.100						
10.350						
10.600						
10.850						
11.100 0.16 0.17 0.18 0.19 0.20 11.350 0.21 0.22 0.24 0.25 0.27 11.600 0.28 0.28 0.29 0.29 0.29 11.850 0.30 0.30 0.30 0.31 0.32 12.100 0.33 0.34 0.34 0.34 0.34 0.34 12.550 0.34 0.34 0.34 0.33 0.33 0.33 0.33 12.600 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.3						
11.350 0.21 0.22 0.24 0.25 0.27 11.600 0.28 0.28 0.29 0.29 0.29 11.850 0.30 0.30 0.30 0.31 0.32 12.100 0.33 0.34 0.34 0.34 0.34 0.34 12.600 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0						
11.600 0.28 0.28 0.29 0.29 0.29 11.850 0.30 0.30 0.30 0.31 0.32 12.100 0.33 0.34 0.33 0.33 0.33 0.33 0.32 <td< th=""><th></th><td></td><td></td><td></td><td></td><td></td></td<>						
11.850 0.30 0.30 0.30 0.31 0.32 12.100 0.33 0.34 0.34 0.34 0.34 0.34 12.350 0.34 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 <td< th=""><th></th><td></td><td></td><td></td><td></td><td></td></td<>						
12.100 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 <						
12.350 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 <						
12.600 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 <						
12.850 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.31 <						
13.100 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.31 <						
13.350 0.32 0.32 0.32 0.32 0.31 <						
13.600 0.32 0.32 0.32 0.31 0.31 13.850 0.31 0.31 0.31 0.31 0.31 0.31 14.100 0.31 0.31 0.31 0.31 0.31 0.31 14.350 0.31 0.31 0.31 0.31 0.31 0.31 14.600 0.31 0.31 0.31 0.31 0.31 0.31 15.100 0.31 0.31 0.31 0.31 0.31 0.31 15.100 0.31 0.31 0.31 0.31 0.31 0.31 15.500 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
13.850 0.31 <						
14.100 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 <						
14.350 0.31 <						
14.600 0.31 0.31 0.31 0.31 0.31 14.850 0.31 0.31 0.31 0.31 0.31 0.31 15.100 0.31 0.31 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 0.31 16.850 0.30 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100						
14.850 0.31 0.31 0.31 0.31 0.31 15.100 0.31 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 16.600 0.30 0.30 0.30 0.30 0.30 16.850 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30						
15.100 0.31 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.30 0.30 0.30 16.600 0.30 0.30 0.30 0.30 0.30 0.30 16.850 0.30 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
15.350 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 <						
15.600 0.31 0.30 <						
15.850 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.30 0.30 16.600 0.30 0.30 0.30 0.30 0.30 16.850 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.600 0.30						
16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.30 0.30 16.600 0.30 0.30 0.30 0.30 0.30 16.850 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30						
16.350 0.31 0.31 0.31 0.30 0.30 16.600 0.30 0.30 0.30 0.30 0.30 16.850 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30						
16.600 0.30 0.30 0.30 0.30 0.30 16.850 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30						
16.850 0.30 0.30 0.30 0.30 0.30 17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30						
17.100 0.30 0.30 0.30 0.30 0.30 17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 20.350 0.30						
17.350 0.30 0.30 0.30 0.30 0.30 17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30						
17.600 0.30 0.30 0.30 0.30 0.30 17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30						
17.850 0.30 0.30 0.30 0.30 0.30 18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30						
18.100 0.30 0.30 0.30 0.30 0.30 18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30 0.30 0.30	17.850					
18.350 0.30 0.30 0.30 0.30 0.30 18.600 0.30 0.30 0.30 0.30 0.30 0.30 18.850 0.30 <td< th=""><th></th><td></td><td></td><td></td><td></td><td></td></td<>						
18.600 0.30 0.30 0.30 0.30 0.30 18.850 0.30 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30 0.30						
18.850 0.30 0.30 0.30 0.30 0.30 19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30	18.600					
19.100 0.30 0.30 0.30 0.30 0.30 19.350 0.30 0.30 0.30 0.30 0.30 19.600 0.30 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30 0.30						
19.600 0.30 0.30 0.30 0.30 19.850 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30						
19.850 0.30 0.30 0.30 0.30 20.100 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30	19.350	0.30	0.30	0.30	0.30	0.30
20.100 0.30 0.30 0.30 0.30 20.350 0.30 0.30 0.30 0.30	19.600	0.30	0.30	0.30	0.30	0.30
20.350 0.30 0.30 0.30 0.30 0.30	19.850	0.30	0.30	0.30	0.30	0.30
	20.100	0.30	0.30	0.30	0.30	0.30
20,600 0.30 0.30 0.30 0.30 0.30	20.350	0.30	0.30	0.30	0.30	0.30
1 2.22 2.22 2.20	20.600	0.30	0.30	0.30	0.30	0.30

Subsection: Pond Infiltration Hydrograph Return Event: 10 years


Label: IF-1 (INF)

Storm Event: 10-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.850	0.30	0.30	0.30	0.30	0.30
21.100	0.30	0.30	0.30	0.30	0.30
21.350	0.30	0.30	0.30	0.30	0.30
21.600	0.30	0.30	0.30	0.30	0.30
21.850	0.30	0.30	0.30	0.30	0.30
22.100	0.30	0.30	0.30	0.30	0.30
22.350	0.30	0.30	0.30	0.30	0.30
22.600	0.30	0.30	0.30	0.30	0.30
22.850	0.30	0.30	0.30	0.30	0.30
23.100	0.30	0.30	0.30	0.30	0.30
23.350	0.30	0.30	0.30	0.30	0.30
23.600	0.30	0.30	0.30	0.30	0.30
23.850	0.30	0.30	0.30	0.30	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 10 years Label: IF-1 (INF) Storm Event: 10-yr

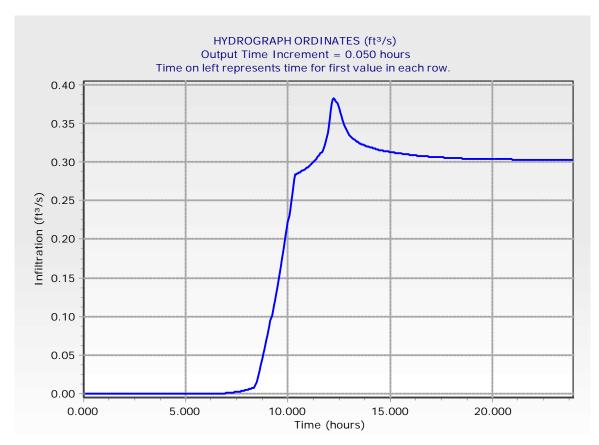
Subsection: Pond Infiltration Hydrograph Return Event: 50 years

Label: IF-1 (INF) Storm Event: 50-yr

Peak Discharge	0.38 ft ³ /s
Time to Peak	12.250 hours
Hydrograph Volume	0.373 ac-ft

Time on left represents time for first value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
7.100	0.00	0.00	0.00	0.00	0.00	
7.350	0.00	0.00	0.00	0.00	0.00	
7.600	0.00	0.00	0.00	0.00	0.00	
7.850	0.00	0.00	0.00	0.01	0.01	
8.100	0.01	0.01	0.01	0.01	0.01	
8.350	0.01	0.01	0.02	0.02	0.03	
8.600	0.03	0.04	0.04	0.05	0.05	
8.850 9.100	0.06	0.06 0.09	0.07 0.10	0.08 0.11	0.08 0.11	
9.350	0.09 0.12	0.09	0.10	0.11	0.11	
9.600	0.12	0.16	0.17	0.14	0.19	
9.850	0.10	0.10	0.17	0.18	0.19	
10.100	0.20	0.21	0.21	0.27	0.28	
10.350	0.24	0.28	0.28	0.27	0.28	
10.600	0.29	0.29	0.29	0.29	0.29	
10.850	0.29	0.29	0.29	0.29	0.30	
11.100	0.30	0.30	0.30	0.29	0.30	
11.350	0.30	0.30	0.31	0.31	0.31	
11.600	0.31	0.31	0.32	0.32	0.32	
11.850	0.33	0.33	0.34	0.35	0.36	
12.100	0.37	0.38	0.38	0.38	0.38	
12.350	0.38	0.38	0.37	0.37	0.36	
12.600	0.36	0.36	0.35	0.35	0.34	
12.850	0.34	0.34	0.34	0.34	0.33	
13.100	0.33	0.33	0.33	0.33	0.33	
13.350	0.33	0.33	0.33	0.32	0.32	
13.600	0.32	0.32	0.32	0.32	0.32	
13.850	0.32	0.32	0.32	0.32	0.32	
14.100	0.32	0.32	0.32	0.32	0.32	
14.350	0.32	0.32	0.32	0.32	0.32	
14.600	0.32	0.31	0.31	0.31	0.31	
14.850	0.31	0.31	0.31	0.31	0.31	
15.100	0.31	0.31	0.31	0.31	0.31	
15.350	0.31	0.31	0.31	0.31	0.31	
15.600	0.31	0.31	0.31	0.31	0.31	
15.850	0.31	0.31	0.31	0.31	0.31	
16.100	0.31	0.31	0.31	0.31	0.31	
16.350	0.31	0.31	0.31	0.31	0.31	
16.600	0.31	0.31	0.31	0.31	0.31	
16.850	0.31	0.31	0.31	0.31	0.31	
17.100	0.31	0.31	0.31	0.31	0.31	
17.350	0.31	0.31	0.31	0.31	0.31	
17.600	0.31	0.31	0.31	0.31	0.31	
17.850	0.31	0.31	0.31	0.31	0.31	
18.100	0.31	0.31	0.31	0.30	0.30	
18.350	0.30	0.30	0.30	0.30	0.30	
18.600	0.30	0.30	0.30	0.30	0.30	
18.850	0.30	0.30	0.30	0.30	0.30	

Subsection: Pond Infiltration Hydrograph Return Event: 50 years


Label: IF-1 (INF)

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
19.100	0.30	0.30	0.30	0.30	0.30
19.350	0.30	0.30	0.30	0.30	0.30
19.600	0.30	0.30	0.30	0.30	0.30
19.850	0.30	0.30	0.30	0.30	0.30
20.100	0.30	0.30	0.30	0.30	0.30
20.350	0.30	0.30	0.30	0.30	0.30
20.600	0.30	0.30	0.30	0.30	0.30
20.850	0.30	0.30	0.30	0.30	0.30
21.100	0.30	0.30	0.30	0.30	0.30
21.350	0.30	0.30	0.30	0.30	0.30
21.600	0.30	0.30	0.30	0.30	0.30
21.850	0.30	0.30	0.30	0.30	0.30
22.100	0.30	0.30	0.30	0.30	0.30
22.350	0.30	0.30	0.30	0.30	0.30
22.600	0.30	0.30	0.30	0.30	0.30
22.850	0.30	0.30	0.30	0.30	0.30
23.100	0.30	0.30	0.30	0.30	0.30
23.350	0.30	0.30	0.30	0.30	0.30
23.600	0.30	0.30	0.30	0.30	0.30
23.850	0.30	0.30	0.30	0.30	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 50 years Label: IF-1 (INF) Storm Event: 50-yr

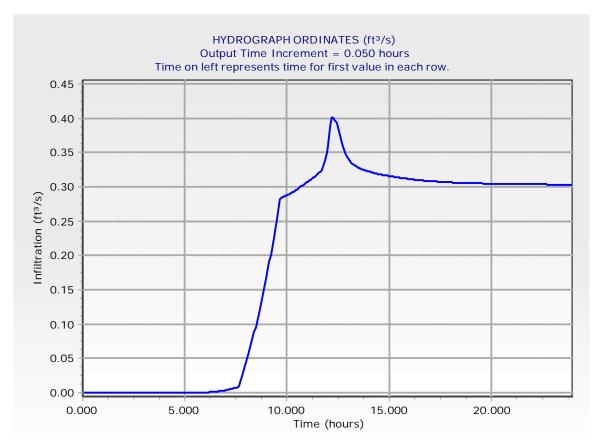
Subsection: Pond Infiltration Hydrograph Return Event: 100 years

Label: IF-1 (INF) Storm Event: 100-yr

Peak Discharge	0.40 ft ³ /s
Time to Peak	12.250 hours
Hydrograph Volume	0.393 ac-ft

(hours) (ft³/s) (ft³/s	Time on left represents time for first value in each row.						
6.350 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.05 8.350 0.06 0.06 0.06 0.06 0.07 0.08 8.350 0.05 8.350 0.05 8.350 0.08 0.09 0.01 0.11 1.12 0.13 0.13 0.13 0.13 0.13 0.13	Time (bours)	Flow	Flow	Flow (ft3/s)	Flow	Flow	
6.600							
6.850 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
7,100 0,00 0,00 0,00 0,01 0,01 7,350 0,01 0,01 0,01 0,01 0,01 0,01 7,600 0,01 0,01 0,02 0,02 0,03 8,100 0,06 0,06 0,07 0,07 0,08 8,350 0,08 0,09 0,09 0,10 0,11 8,600 0,11 0,12 0,13 0,13 0,14 8,850 0,15 0,15 0,15 0,16 0,17 0,18 9,100 0,18 0,19 0,20 0,21 0,22 0,22 9,600 0,27 0,28 0,28 0,28 0,29							
7.350 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
7,600 0,01 0,01 0,02 0,02 0,03 7,850 0,03 0,04 0,04 0,05 0,05 8,100 0,06 0,06 0,07 0,07 0,08 8,350 0,08 0,09 0,09 0,10 0,11 8,600 0,11 0,12 0,13 0,13 0,14 9,100 0,18 0,19 0,20 0,21 0,22 9,100 0,18 0,19 0,20 0,21 0,22 9,500 0,23 0,23 0,23 0,24 0,25 0,26 9,600 0,27 0,28 0,28 0,29 0,29 0,29 0,29 9,850 0,29 0,29 0,29 0,29 0,29 0,29 0,29 10,500 0,30 0,30 0,30 0,30 0,30 0,30 0,30 10,850 0,30 0,30 0,31 0,31 0,31 0,31 0,31 0,31							
7.850 0.03 0.04 0.04 0.05 0.05 8.100 0.06 0.06 0.07 0.07 0.08 8.350 0.08 0.09 0.09 0.10 0.11 8.600 0.11 0.12 0.13 0.13 0.14 8.850 0.15 0.15 0.16 0.17 0.18 9.100 0.18 0.19 0.20 0.21 0.22 9.350 0.23 0.23 0.24 0.25 0.26 9.600 0.27 0.28 0.28 0.28 0.28 0.29 9.850 0.29							
8.100 0.06 0.06 0.07 0.07 0.08 8.350 0.08 0.09 0.09 0.10 0.11 8.600 0.11 0.12 0.13 0.13 0.14 8.850 0.15 0.15 0.16 0.17 0.18 9.100 0.18 0.19 0.20 0.21 0.22 9.350 0.23 0.23 0.24 0.25 0.26 9.600 0.27 0.28 0.28 0.28 0.29 9.850 0.29 0.29 0.29 0.29 0.29 10.100 0.29 0.29 0.29 0.29 0.29 10.500 0.30 0.30 0.30 0.30 0.30 10.600 0.30 0.30 0.31 0.31 0.31 0.31 11.100 0.31 0.31 0.31 0.31 0.31 0.31 11.600 0.32 0.32 0.32 0.32 0.32 0.32 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
8.350 0.08 0.09 0.09 0.10 0.11 8.600 0.11 0.12 0.13 0.13 0.14 8.850 0.15 0.15 0.16 0.17 0.18 9.100 0.18 0.19 0.20 0.21 0.22 9.600 0.27 0.28 0.28 0.28 0.29 9.850 0.29 0.29 0.29 0.29 0.29 10.100 0.29 0.29 0.29 0.29 0.29 10.350 0.29 0.29 0.29 0.29 0.29 0.29 10.600 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10.600 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 1.31 0.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31							
8.600 0.11 0.12 0.13 0.13 0.14 8.850 0.15 0.15 0.15 0.16 0.17 0.18 9.100 0.18 0.19 0.20 0.21 0.22 9.350 0.23 0.23 0.24 0.25 0.26 9.600 0.27 0.28 0.28 0.28 0.29 0.29 9.850 0.29 0.29 0.29 0.29 0.29 0.29 0.29 10.100 0.29							
8.850 0.15 0.15 0.16 0.17 0.18 9.100 0.18 0.19 0.20 0.21 0.22 9.350 0.23 0.23 0.24 0.25 0.26 9.600 0.27 0.28 0.28 0.29							
9.100 0.18 0.19 0.20 0.21 0.22 9.350 0.23 0.23 0.24 0.25 0.26 9.600 0.27 0.28 0.28 0.28 0.29 0.							
9.350 0.23 0.23 0.24 0.25 0.26 9.600 0.27 0.28 0.28 0.28 0.29 9.850 0.29 0.29 0.29 0.29 0.29 10.100 0.29 0.29 0.29 0.29 0.29 0.29 10.350 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32							
9.600 0.27 0.28 0.29 0.30 0.30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
9.850 0.29 0.20 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
10.100							
10.350							
10.600 0.30 0.30 0.30 0.30 0.30 10.850 0.30 0.31 0.31 0.31 0.31 0.31 11.100 0.31 0.31 0.32 0.32 0.32 0.32 11.600 0.32 0.32 0.33 0.33 0.33 0.33 11.850 0.34 0.34 0.35 0.36 0.37 12.100 0.38 0.39 0.40 0.40 0.40 12.350 0.40 0.39 0.39 0.38 0.38 12.600 0.37 0.37 0.36 0.36 0.35 12.850 0.35 0.35 0.34 0.34 0.34 0.34 13.100 0.34 0.34 0.34 0.34 0.34 0.34 13.350 0.33 0.33 0.33 0.33 0.33 0.33 13.600 0.33 0.32 0.32 0.32 0.32 0.32 0.32 14.100							
10.850 0.30 0.31 0.33 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.34 0.34 0.34 0.34 0.34 0.34 0.34 <							
11.100 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.34 0.40 <							
11.350 0.31 0.32 0.32 0.32 0.33 0.34 0.40 0.32 0.32 <							
11.600 0.32 0.32 0.33 0.33 0.33 11.850 0.34 0.34 0.35 0.36 0.37 12.100 0.38 0.39 0.40 0.40 0.40 12.350 0.40 0.39 0.39 0.38 0.38 12.600 0.37 0.37 0.36 0.36 0.35 12.850 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.							
11.850 0.34 0.34 0.35 0.36 0.37 12.100 0.38 0.39 0.40 0.40 0.40 12.350 0.40 0.39 0.39 0.38 0.38 12.600 0.37 0.37 0.36 0.36 0.35 12.850 0.35 0.35 0.34 0.34 0.34 13.100 0.34 0.34 0.33 0.33 0.33 13.350 0.33 0.33 0.33 0.33 0.33 13.850 0.32 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.32 0.32 0.32 0.32 0.32 15.4600 0.31 0.31 0.31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
12.100 0.38 0.39 0.40 0.40 0.40 12.350 0.40 0.39 0.39 0.38 0.38 12.600 0.37 0.37 0.36 0.36 0.35 12.850 0.35 0.35 0.34 0.34 0.34 13.100 0.34 0.34 0.33 0.33 0.33 13.350 0.33 0.33 0.33 0.33 0.33 13.600 0.33 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.32 0.32 0.32 15.350 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 15.850 0.31							
12.350 0.40 0.39 0.39 0.38 0.38 12.600 0.37 0.37 0.36 0.36 0.35 12.850 0.35 0.35 0.34 0.34 0.34 0.34 13.100 0.34 0.34 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32							
12.600 0.37 0.37 0.36 0.36 0.34 12.850 0.35 0.35 0.34 0.34 0.34 13.100 0.34 0.34 0.33 0.33 0.33 13.350 0.33 0.33 0.33 0.33 0.33 13.600 0.33 0.33 0.33 0.32 0.32 13.850 0.32 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.32 0.32 0.32 15.500 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 16.600 0.31							
12.850 0.35 0.35 0.34 0.34 0.34 13.100 0.34 0.34 0.33 0.33 0.33 13.350 0.33 0.33 0.33 0.33 0.33 13.600 0.33 0.32 0.32 0.32 0.32 13.850 0.32 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.32 0.32 0.32 15.350 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 16.600 0.31							
13.100 0.34 0.34 0.33 0.33 0.33 13.350 0.33 0.33 0.33 0.33 0.33 13.600 0.33 0.32 0.32 0.32 0.32 13.850 0.32 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31							
13.350 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.31 <							
13.600 0.33 0.33 0.33 0.32 0.32 13.850 0.32 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0							
13.850 0.32 0.32 0.32 0.32 0.32 14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0							
14.100 0.32 0.32 0.32 0.32 0.32 14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.600 0							
14.350 0.32 0.32 0.32 0.32 0.32 14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31							
14.600 0.32 0.32 0.32 0.32 0.32 14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 0.							
14.850 0.32 0.32 0.32 0.32 0.32 15.100 0.32 0.32 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31							
15.100 0.32 0.32 0.31 0.31 0.31 15.350 0.31 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31							
15.350 0.31 0.31 0.31 0.31 15.600 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31							
15.600 0.31 0.31 0.31 0.31 0.31 15.850 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31							
15.850 0.31 0.31 0.31 0.31 0.31 16.100 0.31 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31							
16.100 0.31 0.31 0.31 0.31 16.350 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31							
16.350 0.31 0.31 0.31 0.31 16.600 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31							
16.600 0.31 0.31 0.31 0.31 0.31 16.850 0.31 0.31 0.31 0.31 0.31 17.100 0.31 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31							
17.100 0.31 0.31 0.31 0.31 17.350 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31							
17.350 0.31 0.31 0.31 0.31 17.600 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	16.850	0.31	0.31	0.31	0.31	0.31	
17.600 0.31 0.31 0.31 0.31 17.850 0.31 0.31 0.31 0.31	17.100	0.31	0.31	0.31	0.31	0.31	
17.850 0.31 0.31 0.31 0.31	17.350	0.31	0.31	0.31	0.31	0.31	
	17.600	0.31	0.31	0.31	0.31	0.31	
	17.850	0.31	0.31	0.31	0.31	0.31	
18.100 0.31 0.31 0.31 0.31	18.100	0.31	0.31	0.31	0.31	0.31	

Subsection: Pond Infiltration Hydrograph Return Event: 100 years

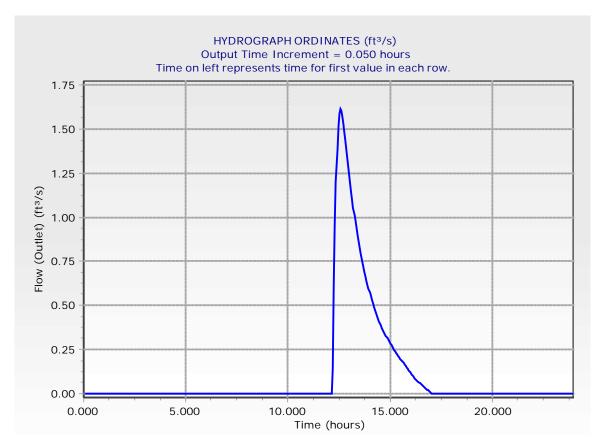

Label: IF-1 (INF)

Storm Event: 100-yr

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
18.350	0.31	0.31	0.31	0.31	0.31
18.600	0.31	0.31	0.31	0.31	0.31
18.850	0.31	0.31	0.31	0.31	0.31
19.100	0.31	0.31	0.31	0.31	0.31
19.350	0.31	0.31	0.30	0.30	0.30
19.600	0.30	0.30	0.30	0.30	0.30
19.850	0.30	0.30	0.30	0.30	0.30
20.100	0.30	0.30	0.30	0.30	0.30
20.350	0.30	0.30	0.30	0.30	0.30
20.600	0.30	0.30	0.30	0.30	0.30
20.850	0.30	0.30	0.30	0.30	0.30
21.100	0.30	0.30	0.30	0.30	0.30
21.350	0.30	0.30	0.30	0.30	0.30
21.600	0.30	0.30	0.30	0.30	0.30
21.850	0.30	0.30	0.30	0.30	0.30
22.100	0.30	0.30	0.30	0.30	0.30
22.350	0.30	0.30	0.30	0.30	0.30
22.600	0.30	0.30	0.30	0.30	0.30
22.850	0.30	0.30	0.30	0.30	0.30
23.100	0.30	0.30	0.30	0.30	0.30
23.350	0.30	0.30	0.30	0.30	0.30
23.600	0.30	0.30	0.30	0.30	0.30
23.850	0.30	0.30	0.30	0.30	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 100 years Storm Event: 100-yr Label: IF-1 (INF)

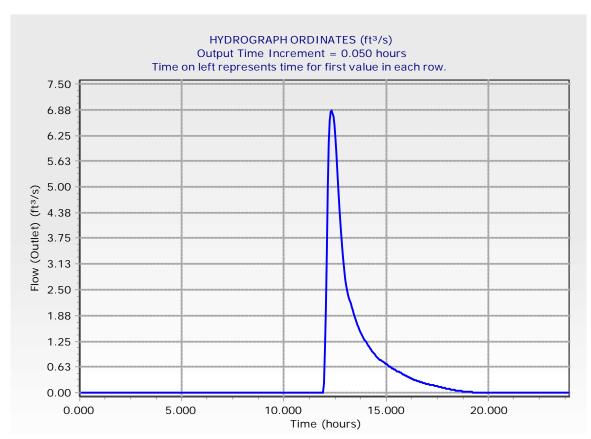


Return Event: 2 years Label: IF-1 (OUT) Storm Event: 2-yr

Peak Discharge	1.61 ft ³ /s
Time to Peak	12.550 hours
Hydrograph Volume	0.213 ac-ft

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)
12.150	0.00	0.14	0.61	0.95	1.20
12.400	1.39	1.51	1.59	1.61	1.60
12.650	1.57	1.53	1.49	1.44	1.39
12.900	1.34	1.29	1.24	1.20	1.15
13.150	1.10	1.05	1.01	0.97	0.93
13.400	0.90	0.86	0.83	0.80	0.77
13.650	0.74	0.71	0.69	0.66	0.64
13.900	0.62	0.59	0.57	0.55	0.53
14.150	0.51	0.49	0.47	0.46	0.44
14.400	0.43	0.41	0.40	0.38	0.37
14.650	0.36	0.35	0.34	0.33	0.32
14.900	0.30	0.29	0.28	0.28	0.27
15.150	0.26	0.25	0.24	0.23	0.22
15.400	0.21	0.21	0.20	0.19	0.18
15.650	0.17	0.16	0.16	0.15	0.14
15.900	0.13	0.13	0.12	0.11	0.10
16.150	0.10	0.09	0.08	0.08	0.07
16.400	0.06	0.06	0.05	0.05	0.04
16.650	0.04	0.03	0.03	0.02	0.02
16.900	0.01	0.01	0.01	0.00	0.00

Return Event: 2 years Label: IF-1 (OUT) Storm Event: 2-yr



Return Event: 10 years Label: IF-1 (OUT) Storm Event: 10-yr

Peak Discharge	6.84 ft ³ /s
Time to Peak	12.350 hours
Hydrograph Volume	0.716 ac-ft

Time of fert represents time for first value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft ³ /s)	
			. ,		, ,	
11.900	0.00	0.21	1.03	2.03	3.40	
12.150	4.99	6.08	6.62	6.82	6.84	
12.400	6.72	6.49	6.17	5.78	5.36	
12.650	4.93	4.52	4.15	3.82	3.52	
12.900	3.25	3.01	2.78	2.61	2.49	
13.150	2.38	2.28	2.18	2.09	2.00	
13.400	1.92	1.85	1.77	1.71	1.64	
13.650	1.58	1.53	1.47	1.42	1.37	
13.900	1.32	1.28	1.23	1.19	1.15	
14.150	1.11	1.08	1.04	1.01	0.98	
14.400	0.95	0.92	0.90	0.87	0.85	
14.650	0.83	0.81	0.78	0.76	0.75	
14.900	0.73	0.71	0.69	0.67	0.66	
15.150	0.64	0.62	0.61	0.59	0.58	
15.400	0.56	0.55	0.54	0.52	0.51	
15.650	0.49	0.48	0.47	0.45	0.44	
15.900	0.43	0.41	0.40	0.39	0.38	
16.150	0.36	0.35	0.34	0.33	0.32	
16.400	0.31	0.30	0.29	0.28	0.27	
16.650	0.27	0.26	0.25	0.24	0.24	
16.900	0.23	0.22	0.21	0.21	0.20	
17.150	0.19	0.19	0.18	0.18	0.17	
17.400	0.16	0.16	0.15	0.15	0.14	
17.650	0.13	0.13	0.12	0.12	0.11	
17.900	0.11	0.10	0.10	0.09	0.08	
18.150	0.08	0.07	0.07	0.06	0.06	
18.400	0.06	0.05	0.05	0.05	0.04	
18.650	0.04	0.04	0.03	0.03	0.03	
18.900	0.03	0.02	0.02	0.02	0.02	
19.150	0.01	0.01	0.01	0.01	0.01	
19.400	0.00	0.00	0.00	(N/A)	(N/A)	

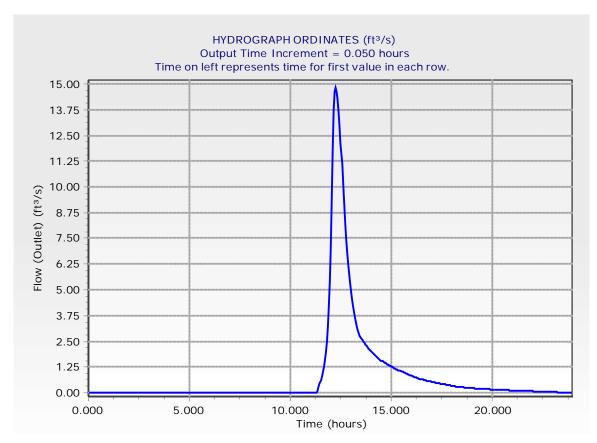
Return Event: 10 years Label: IF-1 (OUT) Storm Event: 10-yr

Return Event: 50 years Label: IF-1 (OUT) Storm Event: 50-yr

Peak Discharge	14.81 ft ³ /s
Time to Peak	12.250 hours
Hydrograph Volume	1.583 ac-ft

Time on left represents time for first value in each row.						
Time	Flow	Flow	Flow	Flow	Flow	
(hours)	(ft³/s)	(ft³/s)	(ft ³ /s)	(ft³/s)	(ft³/s)	
11.300	0.00	0.05	0.24	0.43	0.61	
11.550	0.80	1.01	1.26	1.58	1.98	
11.800	2.46	3.23	4.23	5.42	7.09	
12.050	9.43	11.86	13.72	14.61	14.81	
12.300	14.63	14.24	13.71	13.01	12.09	
12.550	11.10	10.11	9.15	8.27	7.50	
12.800	6.88	6.32	5.82	5.37	4.96	
13.050	4.59	4.26	3.96	3.69	3.45	
13.300	3.24	3.06	2.89	2.75	2.63	
13.550	2.56	2.49	2.42	2.35	2.29	
13.800	2.23	2.17	2.11	2.06	2.00	
14.050	1.95	1.90	1.85	1.80	1.75	
14.300	1.71	1.67	1.63	1.59	1.56	
14.550	1.52	1.49	1.46	1.43	1.40	
14.800	1.37	1.34	1.32	1.29	1.26	
15.050	1.24	1.21	1.19	1.17	1.14	
15.300	1.12	1.10	1.07	1.05	1.03	
15.550	1.01	0.99	0.97	0.95	0.92	
15.800	0.90	0.88	0.86	0.84	0.82	
16.050	0.80	0.78	0.76	0.74	0.73	
16.300	0.71	0.69	0.68	0.66	0.65	
16.550	0.63	0.62	0.61	0.60	0.58	
16.800	0.57	0.56	0.55	0.54	0.53	
17.050	0.52	0.51	0.50	0.49	0.48	
17.300	0.47	0.46	0.45	0.44	0.43	
17.550	0.42	0.41	0.40	0.39	0.38	
17.800	0.37	0.36	0.35	0.35	0.34	
18.050	0.33	0.32	0.31	0.30	0.30	
18.300	0.29	0.28	0.28	0.27	0.26	
18.550	0.26	0.25	0.25	0.24	0.24	
18.800	0.23	0.23	0.23	0.22	0.22	
19.050	0.22	0.21	0.21	0.20	0.20	
19.300	0.20	0.19	0.19	0.19	0.19	
19.550	0.18	0.18	0.18	0.17	0.17	
19.800	0.17	0.17	0.16	0.16	0.16	
20.050	0.15	0.15	0.15	0.15	0.14	
20.300	0.14	0.14	0.14	0.13	0.13	
20.550	0.13	0.13	0.13	0.12	0.12	
20.800	0.12	0.12	0.11	0.11	0.11	
21.050	0.11	0.11	0.10	0.10	0.10	
21.300	0.10	0.10	0.09	0.09	0.09	
21.550	0.09	0.09	0.08	0.08	0.08	
21.800	0.08	0.08	0.08	0.07	0.07	
22.050	0.07	0.07	0.07	0.06	0.06	
22.300	0.06	0.06	0.06	0.05	0.05	
22.550	0.05	0.05	0.05	0.04	0.04	
22.800	0.04	0.04	0.04	0.03	0.03	
23.050	0.03	0.03	0.03	0.03	0.02	

Subsection: Pond Routed Hydrograph (total out)


Return Event: 50 years

Label: IF-1 (OUT)

Storm Event: 50-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
23.300	0.02	0.02	0.02	0.02	0.01
23.550	0.01	0.01	0.01	0.01	0.00
23.800	0.00	0.00	(N/A)	(N/A)	(N/A)

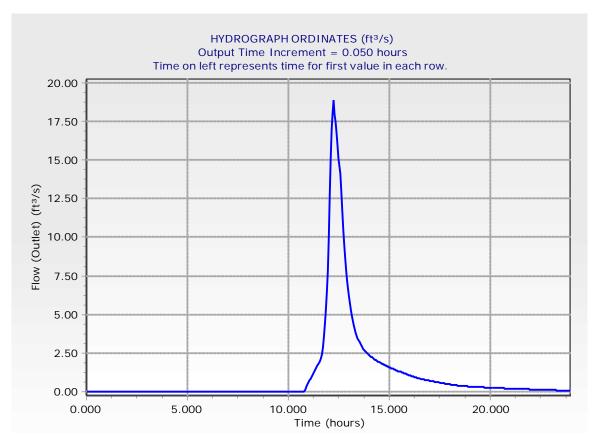
Return Event: 50 years Label: IF-1 (OUT) Storm Event: 50-yr

Return Event: 100 years Label: IF-1 (OUT) Storm Event: 100-yr

Peak Discharge	18.87 ft ³ /s
Time to Peak	12.250 hours
Hydrograph Volume	2.112 ac-ft

Time on left represents time for first value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
	0.00		0.22	0.35		
10.750		0.07			0.48	
11.000 11.250	0.61 1.19	0.72 1.31	0.84	0.95 1.57	1.07 1.71	
			1.44 2.19	2.44		
11.500	1.85	2.00			2.86	
11.750	3.57 9.98	4.42	5.38 15.12	6.45 17.01	7.80 18.08	
12.000	9.98 18.87	12.78				
12.250		17.96	17.48	16.83	16.03	
12.500	15.12	14.12	13.04	11.77	10.62	
12.750	9.60	8.70 5.72	7.92 5.30	7.25 4.93	6.69	
13.000	6.18				4.60	
13.250	4.30	4.05	3.82	3.61	3.43	
13.500	3.27	3.12	2.98	2.86	2.75	
13.750	2.65 2.37	2.60	2.54	2.48	2.43	
14.000 14.250	2.37	2.32 2.07	2.27 2.03	2.21 1.99	2.16 1.95	
14.250	1.91	1.87	1.84	1.80	1.77	
14.750	1.73	1.70	1.67	1.64	1.61	
15.000	1.73	1.55	1.52	1.49	1.47	
15.250	1.44	1.41	1.39	1.36	1.33	
15.500	1.44	1.41	1.39	1.23	1.33	
15.750	1.18	1.16	1.13	1.23	1.08	
16.000	1.16	1.04	1.13	0.99	0.97	
16.250	0.94	0.92	0.91	0.89	0.87	
16.500	0.94	0.92	0.82	0.80	0.79	
16.750	0.77	0.76	0.74	0.73	0.72	
17.000	0.70	0.69	0.68	0.67	0.65	
17.250	0.64	0.63	0.62	0.61	0.60	
17.500	0.58	0.57	0.56	0.55	0.54	
17.750	0.53	0.52	0.51	0.50	0.49	
18.000	0.47	0.46	0.45	0.44	0.43	
18.250	0.42	0.42	0.41	0.40	0.39	
18.500	0.39	0.38	0.37	0.37	0.36	
18.750	0.36	0.35	0.35	0.34	0.34	
19.000	0.33	0.33	0.32	0.32	0.31	
19.250	0.31	0.31	0.30	0.30	0.30	
19.500	0.29	0.29	0.28	0.28	0.28	
19.750	0.27	0.27	0.27	0.26	0.26	
20.000	0.26	0.25	0.25	0.25	0.24	
20.250	0.24	0.24	0.24	0.23	0.23	
20.500	0.23	0.22	0.22	0.22	0.22	
20.750	0.21	0.21	0.21	0.21	0.20	
21.000	0.20	0.20	0.20	0.19	0.19	
21.250	0.19	0.19	0.18	0.18	0.18	
21.500	0.18	0.17	0.17	0.17	0.17	
21.750	0.16	0.16	0.16	0.16	0.16	
22.000	0.15	0.15	0.15	0.15	0.14	
22.250	0.14	0.14	0.14	0.13	0.13	
22.500	0.13	0.13	0.12		0.12	
•				•		

Subsection: Pond Routed Hydrograph (total out)


Return Event: 100 years

Label: IF-1 (OUT)

Storm Event: 100-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.750	0.12	0.12	0.11	0.11	0.11
23.000	0.11	0.10	0.10	0.10	0.10
23.250	0.09	0.09	0.09	0.09	0.09
23.500	0.08	0.08	0.08	0.08	0.07
23.750	0.07	0.07	0.07	0.06	0.06
24.000	0.06	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 100 years Label: IF-1 (OUT) Storm Event: 100-yr

Label: SF-1 (IN)

Return Event: 2 y	ears/
Storm Event:	2-yr

Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate		
Infiltration Rate (Average)	0.5000 in/h	<u> </u>	
Initial Conditions		<u> </u>	
Elevation (Water Surface, Initial)	376.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	Summary		
Flow (Peak In)	7.37 ft ³ /s	Time to Peak (Flow, In)	12.100 hours
Infiltration (Peak)	0.02 ft ³ /s	Time to Peak (Infiltration)	12.100 hours
Flow (Peak Outlet)	7.20 ft ³ /s	Time to Peak (Flow, Outlet)	12.100 hours
Elevation (Water Surface, Peak)	378.26 ft	 -	
Volume (Peak)	0.066 ac-ft		
Mass Balance (ac-ft)		 ,	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.610 ac-ft		
Volume (Total Infiltration)	0.024 ac-ft		
Volume (Total Outlet Outflow)	0.530 ac-ft		
Volume (Retained)	0.055 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Return Event: 10 years Label: SF-1 (IN) Storm Event: 10-yr

Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate	<u>—</u>	
Infiltration Rate (Average)	0.5000 in/h		
Initial Conditions		_	
Elevation (Water Surface, Initial)	376.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
	-	T: t- DI: (Fl I-)	10 100 5
Flow (Peak In) Infiltration (Peak)	12.59 ft ³ /s 0.02 ft ³ /s	Time to Peak (Flow, In) Time to Peak (Infiltration)	12.100 hours 12.100 hours
Flow (Peak Outlet)	12.38 ft ³ /s	Time to Peak (Flow, Outlet)	12.100 hours
Tiow (Foundation)	12.00 10 75	—	12.100 110413
Elevation (Water Surface, Peak)	378.45 ft		
Volume (Peak)	0.075 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.066 ac-ft		
Volume (Total Infiltration)	0.027 ac-ft		
Volume (Total Outlet Outflow)	0.984 ac-ft		
Volume (Retained)	0.055 ac-ft		
Volume (Unrouted)	0.000 ac-ft		

Label: SF-1 (IN)

ond Routing Summary Return Event: 50 years
Storm Event: 50-yr

2000 0 ()			0.0 270
Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate		
Infiltration Rate (Average)	0.5000 in/h		
Initial Conditions			
Elevation (Water Surface, Initial)	376.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	Summary		
Flow (Peak In)	20.52 ft ³ /s	Time to Peak (Flow, In)	12.100 hours
Infiltration (Peak)	0.03 ft ³ /s	Time to Peak (Infiltration)	12.100 hours
Flow (Peak Outlet)	20.29 ft ³ /s	Time to Peak (Flow, Outlet)	12.100 hours
Elevation (Water Surface, Peak)	378.63 ft		
Volume (Peak)	0.083 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.789 ac-ft		
Volume (Total Infiltration)	0.030 ac-ft		
Volume (Total Outlet Outflow)	1.703 ac-ft		
Volume (Retained)	0.055 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Label: SF-1 (IN)

Return Event: 100 years Storm Event: 100-yr

,			
Infiltration			
Infiltration Method (Computed)	Average Infiltration Rate		
Infiltration Rate (Average)	0.5000 in/h		
Initial Conditions			
Elevation (Water Surface, Initial)	376.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	Summary		
Flow (Peak In)	25.05 ft ³ /s	Time to Peak (Flow, In)	12.100 hours
Infiltration (Peak)	0.03 ft ³ /s	Time to Peak (Infiltration)	12.100 hours
Flow (Peak Outlet)	24.84 ft ³ /s	Time to Peak (Flow, Outlet)	12.100 hours
Elevation (Water Surface, Peak)	378.72 ft	-	
Volume (Peak)	0.088 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	2.211 ac-ft		
Volume (Total Infiltration)	0.032 ac-ft		
Volume (Total Outlet Outflow)	2.124 ac-ft		
Volume (Retained)	0.055 ac-ft		
Volume (Unrouted)	-0.001 ac-ft		

0.0 %

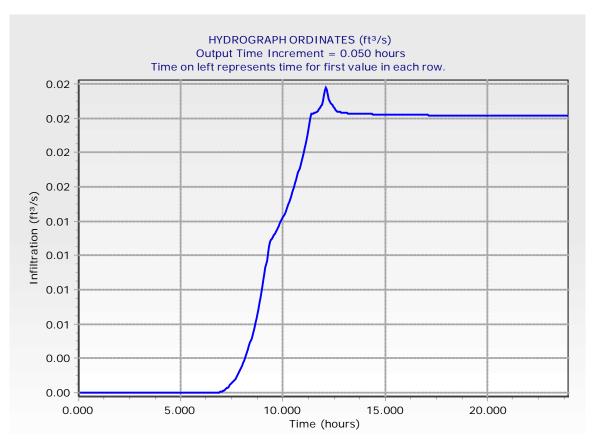
Error (Mass Balance)

Subsection: Pond Infiltration Hydrograph Return Event: 2 years

Label: SF-1 (INF) Storm Event: 2-yr

Peak Discharge	0.02 ft ³ /s
9	0.02 70
Time to Peak	12.100 hours
Hydrograph Volume	0.024 ac-ft

Time on left represents time for first value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
7.650	0.00	0.00	0.00	0.00	0.00	
7.900	0.00	0.00	0.00	0.00	0.00	
8.150	0.00	0.00	0.00	0.00	0.00	
8.400	0.00	0.00	0.00	0.00	0.00	
8.650	0.00	0.00	0.00	0.00	0.00	
8.900	0.01	0.01	0.01	0.01	0.01	
9.150	0.01	0.01	0.01	0.01	0.01	
9.400	0.01	0.01	0.01	0.01	0.01	
9.650	0.01	0.01	0.01	0.01	0.01	
9.900	0.01	0.01	0.01	0.01	0.01	
10.150	0.01	0.01	0.01	0.01	0.01	
10.400	0.01	0.01	0.01	0.02	0.02	
10.650	0.02	0.02	0.02	0.02	0.02	
10.900	0.02	0.02	0.02	0.02	0.02	
11.150	0.02	0.02	0.02	0.02	0.02	
11.400	0.02	0.02	0.02	0.02	0.02	
11.650	0.02	0.02	0.02	0.02	0.02	
11.900	0.02	0.02	0.02	0.02	0.02	
12.150	0.02	0.02	0.02	0.02	0.02	
12.400	0.02	0.02	0.02	0.02	0.02	
12.650	0.02	0.02	0.02	0.02	0.02	
12.900	0.02	0.02	0.02	0.02	0.02	
13.150	0.02	0.02	0.02	0.02	0.02	
13.400	0.02	0.02	0.02	0.02	0.02	
13.650	0.02	0.02	0.02	0.02	0.02	
13.900	0.02	0.02	0.02	0.02	0.02	
14.150	0.02	0.02	0.02	0.02	0.02	
14.400	0.02	0.02	0.02	0.02	0.02	
14.650	0.02	0.02	0.02	0.02	0.02	
14.900	0.02	0.02	0.02	0.02	0.02	
15.150	0.02	0.02	0.02	0.02	0.02	
15.400	0.02	0.02	0.02	0.02	0.02	
15.650	0.02	0.02	0.02	0.02	0.02	
15.900	0.02	0.02	0.02	0.02	0.02	
16.150	0.02	0.02	0.02	0.02	0.02	
16.400	0.02	0.02	0.02	0.02	0.02	
16.650	0.02	0.02	0.02	0.02	0.02	
16.900 17.150	0.02 0.02	0.02 0.02	0.02 0.02	0.02 0.02	0.02 0.02	
17.150	0.02	0.02	0.02	0.02	0.02	
17.400	0.02	0.02	0.02	0.02	0.02	
17.900	0.02	0.02	0.02	0.02	0.02	
18.150	0.02	0.02	0.02	0.02	0.02	
18.400	0.02	0.02	0.02	0.02	0.02	
18.650	0.02	0.02	0.02	0.02	0.02	
18.900	0.02	0.02	0.02	0.02	0.02	
19.150	0.02	0.02	0.02	0.02	0.02	
19.400	0.02	0.02	0.02		0.02	
	0.02	0.02	0.02	0.02	0.02	


Subsection: Pond Infiltration Hydrograph
Label: SF-1 (INF)

Return Event: 2 years
Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.650	0.02	0.02	0.02	0.02	0.02
19.900	0.02	0.02	0.02	0.02	0.02
20.150	0.02	0.02	0.02	0.02	0.02
20.400	0.02	0.02	0.02	0.02	0.02
20.650	0.02	0.02	0.02	0.02	0.02
20.900	0.02	0.02	0.02	0.02	0.02
21.150	0.02	0.02	0.02	0.02	0.02
21.400	0.02	0.02	0.02	0.02	0.02
21.650	0.02	0.02	0.02	0.02	0.02
21.900	0.02	0.02	0.02	0.02	0.02
22.150	0.02	0.02	0.02	0.02	0.02
22.400	0.02	0.02	0.02	0.02	0.02
22.650	0.02	0.02	0.02	0.02	0.02
22.900	0.02	0.02	0.02	0.02	0.02
23.150	0.02	0.02	0.02	0.02	0.02
23.400	0.02	0.02	0.02	0.02	0.02
23.650	0.02	0.02	0.02	0.02	0.02
23.900	0.02	0.02	0.02	(N/A)	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 2 years Storm Event: 2-yr Label: SF-1 (INF)

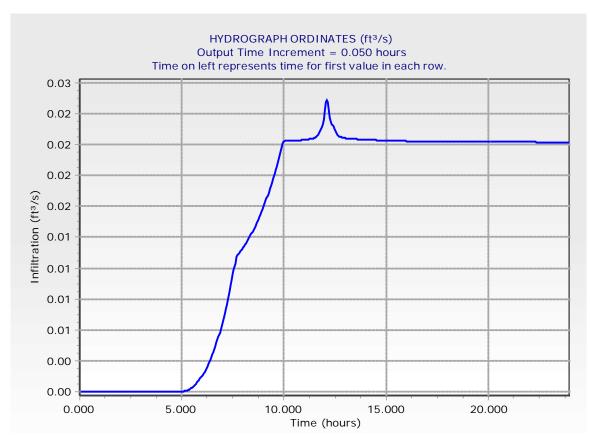
Subsection: Pond Infiltration Hydrograph Return Event: 10 years

Label: SF-1 (INF) Storm Event: 10-yr

Peak Discharge	0.02 ft ³ /s
Time to Peak	12.100 hours
Hydrograph Volume	0.027 ac-ft

Time on left represents time for first value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
5.850	0.00	0.00	0.00	0.00	0.00	
6.100 6.350	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	
		0.00	0.00	0.00	0.00	
6.600 6.850	0.00	0.00 0.01			0.00	
7.100	0.00 0.01	0.01	0.01 0.01	0.01 0.01	0.01 0.01	
7.100	0.01	0.01	0.01	0.01	0.01	
7.600	0.01	0.01	0.01	0.01	0.01	
7.850	0.01	0.01	0.01	0.01	0.01	
8.100	0.01	0.01	0.01	0.01	0.01	
8.350	0.01	0.01	0.01	0.01	0.01	
8.600	0.01	0.01	0.01	0.01	0.01	
8.850	0.01	0.01	0.01	0.01	0.02	
9.100	0.02	0.02	0.02	0.02	0.02	
9.350	0.02	0.02	0.02	0.02	0.02	
9.600	0.02	0.02	0.02	0.02	0.02	
9.850	0.02	0.02	0.02	0.02	0.02	
10.100	0.02	0.02	0.02	0.02	0.02	
10.350	0.02	0.02	0.02	0.02	0.02	
10.600	0.02	0.02	0.02	0.02	0.02	
10.850	0.02	0.02	0.02	0.02	0.02	
11.100	0.02	0.02	0.02	0.02	0.02	
11.350	0.02	0.02	0.02	0.02	0.02	
11.600	0.02	0.02	0.02	0.02	0.02	
11.850	0.02	0.02	0.02	0.02	0.02	
12.100	0.02	0.02	0.02	0.02	0.02	
12.350	0.02	0.02	0.02	0.02	0.02	
12.600	0.02	0.02	0.02	0.02	0.02	
12.850	0.02	0.02	0.02	0.02	0.02	
13.100	0.02	0.02	0.02	0.02	0.02	
13.350	0.02	0.02	0.02	0.02	0.02	
13.600	0.02	0.02	0.02	0.02	0.02	
13.850	0.02	0.02	0.02	0.02	0.02	
14.100	0.02	0.02	0.02	0.02	0.02	
14.350	0.02	0.02	0.02	0.02	0.02	
14.600	0.02	0.02	0.02	0.02	0.02	
14.850	0.02	0.02	0.02	0.02	0.02	
15.100	0.02	0.02	0.02	0.02	0.02	
15.350	0.02	0.02	0.02	0.02	0.02	
15.600	0.02	0.02	0.02	0.02	0.02	
15.850 16.100	0.02 0.02	0.02 0.02	0.02 0.02	0.02 0.02	0.02 0.02	
16.350	0.02	0.02	0.02	0.02	0.02	
16.600	0.02	0.02	0.02	0.02	0.02	
16.850	0.02	0.02	0.02	0.02	0.02	
17.100	0.02	0.02	0.02	0.02	0.02	
17.100	0.02	0.02	0.02	0.02	0.02	
17.600	0.02	0.02	0.02		0.02	
17.000	0.02	0.02	0.02	0.02	0.02	

Subsection: Pond Infiltration Hydrograph Return Event: 10 years


Label: SF-1 (INF)

Storm Event: 10-yr

Time of left represents time for mist value in each row.					
Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
17.850	0.02	0.02	0.02	0.02	0.02
18.100	0.02	0.02	0.02	0.02	0.02
18.350	0.02	0.02	0.02	0.02	0.02
18.600	0.02	0.02	0.02	0.02	0.02
18.850	0.02	0.02	0.02	0.02	0.02
19.100	0.02	0.02	0.02	0.02	0.02
19.350	0.02	0.02	0.02	0.02	0.02
19.600	0.02	0.02	0.02	0.02	0.02
19.850	0.02	0.02	0.02	0.02	0.02
20.100	0.02	0.02	0.02	0.02	0.02
20.350	0.02	0.02	0.02	0.02	0.02
20.600	0.02	0.02	0.02	0.02	0.02
20.850	0.02	0.02	0.02	0.02	0.02
21.100	0.02	0.02	0.02	0.02	0.02
21.350	0.02	0.02	0.02	0.02	0.02
21.600	0.02	0.02	0.02	0.02	0.02
21.850	0.02	0.02	0.02	0.02	0.02
22.100	0.02	0.02	0.02	0.02	0.02
22.350	0.02	0.02	0.02	0.02	0.02
22.600	0.02	0.02	0.02	0.02	0.02
22.850	0.02	0.02	0.02	0.02	0.02
23.100	0.02	0.02	0.02	0.02	0.02
23.350	0.02	0.02	0.02	0.02	0.02
23.600	0.02	0.02	0.02	0.02	0.02
23.850	0.02	0.02	0.02	0.02	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 10 years Label: SF-1 (INF) Storm Event: 10-yr

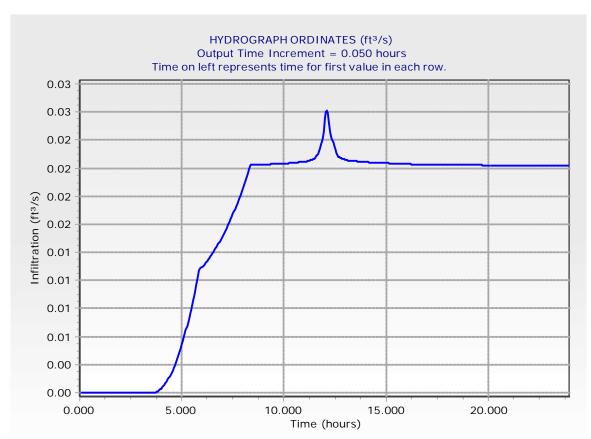
Subsection: Pond Infiltration Hydrograph Return Event: 50 years

Label: SF-1 (INF) Storm Event: 50-yr

Peak Discharge	0.03 ft ³ /s
Time to Peak	12.100 hours
Hydrograph Volume	0.030 ac-ft

lime on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft ³ /s)	(ft³/s)	(ft³/s)
4.250	0.00	0.00	0.00	0.00	0.00
4.500	0.00	0.00	0.00	0.00	0.00
4.750	0.00	0.00	0.00	0.00	0.00
5.000	0.00	0.00	0.00	0.01	0.01
5.250	0.01	0.01	0.01	0.01	0.01
5.500	0.01	0.01	0.01	0.01	0.01
5.750	0.01	0.01	0.01	0.01	0.01
6.000	0.01	0.01	0.01	0.01	0.01
6.250	0.01	0.01	0.01	0.01	0.01
6.500	0.01	0.01	0.01	0.01	0.01
6.750	0.01	0.01	0.01	0.01	0.01
7.000	0.01	0.01	0.01	0.01	0.01
7.250	0.01	0.02	0.02	0.02	0.02
7.500	0.02	0.02	0.02	0.02	0.02
7.750	0.02	0.02	0.02	0.02	0.02
8.000	0.02	0.02	0.02	0.02	0.02
8.250	0.02	0.02	0.02	0.02	0.02
8.500	0.02	0.02	0.02	0.02	0.02
8.750	0.02	0.02	0.02	0.02	0.02
9.000	0.02	0.02	0.02	0.02	0.02
9.250	0.02	0.02	0.02	0.02	0.02
9.500	0.02	0.02	0.02	0.02	0.02
9.750	0.02	0.02	0.02	0.02	0.02
10.000	0.02	0.02	0.02	0.02	0.02
10.250	0.02	0.02	0.02	0.02	0.02
10.500	0.02	0.02	0.02	0.02	0.02
10.750	0.02	0.02	0.02	0.02	0.02
11.000	0.02	0.02	0.02	0.02	0.02
11.250	0.02	0.02	0.02	0.02	0.02
11.500	0.02	0.02	0.02	0.02	0.02
11.750	0.02	0.02	0.02	0.02	0.02
12.000	0.02	0.03	0.03	0.02	0.02
12.250	0.02	0.02	0.02	0.02	0.02
12.500	0.02	0.02	0.02	0.02	0.02
12.750	0.02	0.02	0.02	0.02	0.02
13.000	0.02	0.02	0.02	0.02	0.02
13.250	0.02	0.02	0.02	0.02	0.02
13.500	0.02	0.02	0.02	0.02	0.02
13.750	0.02	0.02	0.02	0.02	0.02
14.000	0.02	0.02	0.02	0.02	0.02
14.250	0.02	0.02	0.02	0.02	0.02
14.500	0.02	0.02	0.02	0.02	0.02
14.750	0.02	0.02	0.02	0.02	0.02
15.000	0.02	0.02	0.02	0.02	0.02
15.250	0.02	0.02	0.02	0.02	0.02
15.500	0.02	0.02	0.02	0.02	0.02
15.750	0.02	0.02	0.02	0.02	0.02
16.000	0.02	0.02	0.02	0.02	0.02

Subsection: Pond Infiltration Hydrograph Return Event: 50 years


Label: SF-1 (INF)

Storm Event: 50-yr

Time of fert represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
16.250	0.02	0.02	0.02	0.02	0.02
16.500	0.02	0.02	0.02	0.02	0.02
16.750	0.02	0.02	0.02	0.02	0.02
17.000	0.02	0.02	0.02	0.02	0.02
17.250	0.02	0.02	0.02	0.02	0.02
17.500	0.02	0.02	0.02	0.02	0.02
17.750	0.02	0.02	0.02	0.02	0.02
18.000	0.02	0.02	0.02	0.02	0.02
18.250	0.02	0.02	0.02	0.02	0.02
18.500	0.02	0.02	0.02	0.02	0.02
18.750	0.02	0.02	0.02	0.02	0.02
19.000	0.02	0.02	0.02	0.02	0.02
19.250	0.02	0.02	0.02	0.02	0.02
19.500	0.02	0.02	0.02	0.02	0.02
19.750	0.02	0.02	0.02	0.02	0.02
20.000	0.02	0.02	0.02	0.02	0.02
20.250	0.02	0.02	0.02	0.02	0.02
20.500	0.02	0.02	0.02	0.02	0.02
20.750	0.02	0.02	0.02	0.02	0.02
21.000	0.02	0.02	0.02	0.02	0.02
21.250	0.02	0.02	0.02	0.02	0.02
21.500	0.02	0.02	0.02	0.02	0.02
21.750	0.02	0.02	0.02	0.02	0.02
22.000	0.02	0.02	0.02	0.02	0.02
22.250	0.02	0.02	0.02	0.02	0.02
22.500	0.02	0.02	0.02	0.02	0.02
22.750	0.02	0.02	0.02	0.02	0.02
23.000	0.02	0.02	0.02	0.02	0.02
23.250	0.02	0.02	0.02	0.02	0.02
23.500	0.02	0.02	0.02	0.02	0.02
23.750	0.02	0.02	0.02	0.02	0.02
24.000	0.02	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Pond Infiltration Hydrograph

Return Event: 50 years Storm Event: 50-yr Label: SF-1 (INF)

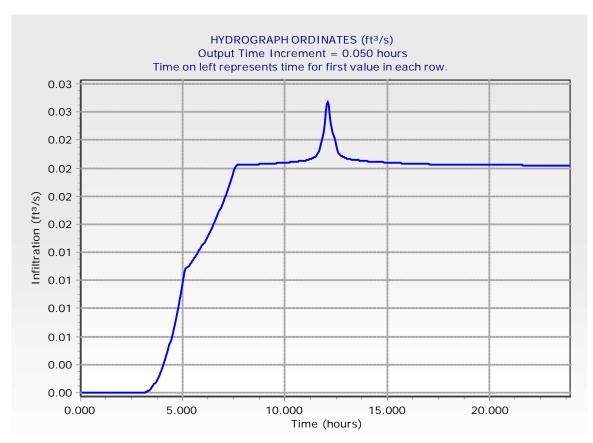
Subsection: Pond Infiltration Hydrograph
Label: SF-1 (INF)

Return Event: 100 years
Storm Event: 100-yr

Peak Discharge 0.03 ft³/s
Time to Peak 12.100 hours
Hydrograph Volume 0.032 ac-ft

lime on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
3.700	0.00	0.00	0.00	0.00	0.00
3.950	0.00	0.00	0.00	0.00	0.00
4.200	0.00	0.00	0.00	0.00	0.00
4.450	0.00	0.01	0.01	0.01	0.01
4.700	0.01	0.01	0.01	0.01	0.01
4.950	0.01	0.01	0.01	0.01	0.01
5.200	0.01	0.01	0.01	0.01	0.01
5.450	0.01	0.01	0.01	0.01	0.01
5.700	0.01	0.01	0.01	0.01	0.01
5.950	0.01	0.01	0.01	0.01	0.01
6.200	0.01	0.01	0.01	0.01	0.01
6.450	0.01	0.01	0.02	0.02	0.02
6.700	0.02	0.02	0.02	0.02	0.02
6.950	0.02	0.02	0.02	0.02	0.02
7.200	0.02	0.02	0.02	0.02	0.02
7.450	0.02	0.02	0.02	0.02	0.02
7.700	0.02	0.02	0.02	0.02	0.02
7.950	0.02	0.02	0.02	0.02	0.02
8.200	0.02	0.02	0.02	0.02	0.02
8.450	0.02	0.02	0.02	0.02	0.02
8.700	0.02	0.02	0.02	0.02	0.02
8.950	0.02	0.02	0.02	0.02	0.02
9.200	0.02	0.02	0.02	0.02	0.02
9.450	0.02	0.02	0.02	0.02	0.02
9.700	0.02	0.02	0.02	0.02	0.02
9.950	0.02	0.02	0.02	0.02	0.02
10.200	0.02	0.02	0.02	0.02	0.02
10.450	0.02	0.02	0.02	0.02	0.02
10.700	0.02	0.02	0.02	0.02	0.02
10.950	0.02	0.02	0.02	0.02	0.02
11.200	0.02	0.02	0.02	0.02	0.02
11.450	0.02	0.02	0.02	0.02	0.02
11.700	0.02	0.02	0.02	0.02	0.02
11.950	0.02	0.03	0.03	0.03	0.03
12.200	0.02	0.02	0.02	0.02	0.02
12.450	0.02	0.02	0.02	0.02	0.02
12.700	0.02	0.02	0.02	0.02	0.02
12.950	0.02	0.02	0.02	0.02	0.02
13.200	0.02	0.02	0.02	0.02	0.02
13.450	0.02	0.02	0.02	0.02	0.02
13.700	0.02	0.02	0.02	0.02	0.02
13.950	0.02	0.02	0.02	0.02	0.02
14.200	0.02	0.02	0.02	0.02	0.02
14.450	0.02	0.02	0.02	0.02	0.02
14.700	0.02	0.02	0.02	0.02	0.02
14.950	0.02	0.02	0.02	0.02	0.02
15.200	0.02	0.02	0.02	0.02	0.02
15.450	0.02	0.02	0.02	0.02	0.02

Subsection: Pond Infiltration Hydrograph Return Event: 100 years


Label: SF-1 (INF)

Storm Event: 100-yr

Time of fert represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.700	0.02	0.02	0.02	0.02	0.02
15.950	0.02	0.02	0.02	0.02	0.02
16.200	0.02	0.02	0.02	0.02	0.02
16.450	0.02	0.02	0.02	0.02	0.02
16.700	0.02	0.02	0.02	0.02	0.02
16.950	0.02	0.02	0.02	0.02	0.02
17.200	0.02	0.02	0.02	0.02	0.02
17.450	0.02	0.02	0.02	0.02	0.02
17.700	0.02	0.02	0.02	0.02	0.02
17.950	0.02	0.02	0.02	0.02	0.02
18.200	0.02	0.02	0.02	0.02	0.02
18.450	0.02	0.02	0.02	0.02	0.02
18.700	0.02	0.02	0.02	0.02	0.02
18.950	0.02	0.02	0.02	0.02	0.02
19.200	0.02	0.02	0.02	0.02	0.02
19.450	0.02	0.02	0.02	0.02	0.02
19.700	0.02	0.02	0.02	0.02	0.02
19.950	0.02	0.02	0.02	0.02	0.02
20.200	0.02	0.02	0.02	0.02	0.02
20.450	0.02	0.02	0.02	0.02	0.02
20.700	0.02	0.02	0.02	0.02	0.02
20.950	0.02	0.02	0.02	0.02	0.02
21.200	0.02	0.02	0.02	0.02	0.02
21.450	0.02	0.02	0.02	0.02	0.02
21.700	0.02	0.02	0.02	0.02	0.02
21.950	0.02	0.02	0.02	0.02	0.02
22.200	0.02	0.02	0.02	0.02	0.02
22.450	0.02	0.02	0.02	0.02	0.02
22.700	0.02	0.02	0.02	0.02	0.02
22.950	0.02	0.02	0.02	0.02	0.02
23.200	0.02	0.02	0.02	0.02	0.02
23.450	0.02	0.02	0.02	0.02	0.02
23.700	0.02	0.02	0.02	0.02	0.02
23.950	0.02	0.02	(N/A)	(N/A)	(N/A)

Subsection: Pond Infiltration Hydrograph

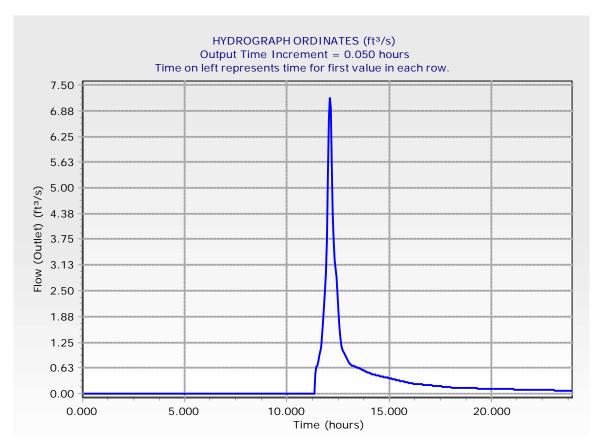
Return Event: 100 years Storm Event: 100-yr Label: SF-1 (INF)

Return Event: 2 years Label: SF-1 (OUT) Storm Event: 2-yr

Peak Discharge	7.20 ft ³ /s
Time to Peak	12.100 hours
Hydrograph Volume	0.530 ac-ft

Time on left represents time for first value in each row.					
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.350	0.00	0.49	0.66	0.68	0.76
11.600	0.91	1.12 2.92	1.42 3.75	1.76	2.12
11.850	2.51 7.20	6.94	5.59	5.32 4.33	6.65
12.100	3.24	2.82		1.99	3.71
12.350 12.600	1.35	1.16	2.40 1.08	1.02	1.62 0.98
12.850	0.93	0.89	0.84	0.80	0.76
13.100	0.73	0.89	0.69	0.68	0.78
13.350	0.73	0.64	0.63	0.62	0.61
13.600	0.60	0.58	0.57	0.56	0.55
13.850	0.54	0.53	0.51	0.50	0.49
14.100	0.48	0.47	0.47	0.46	0.46
14.350	0.45	0.45	0.44	0.43	0.43
14.600	0.42	0.42	0.41	0.41	0.40
14.850	0.40	0.39	0.38	0.38	0.37
15.100	0.37	0.36	0.35	0.35	0.34
15.350	0.34	0.33	0.33	0.32	0.31
15.600	0.31	0.30	0.30	0.29	0.29
15.850	0.28	0.27	0.27	0.26	0.26
16.100	0.25	0.25	0.25	0.24	0.24
16.350	0.24	0.23	0.23	0.23	0.23
16.600	0.22	0.22	0.22	0.22	0.21
16.850	0.21	0.21	0.21	0.20	0.20
17.100	0.20	0.20	0.19	0.19	0.19
17.350	0.19	0.18	0.18	0.18	0.18
17.600	0.17	0.17	0.17	0.17	0.16
17.850	0.16	0.16	0.16	0.15	0.15
18.100	0.15	0.15	0.15	0.15	0.14
18.350	0.14	0.14	0.14	0.14	0.14
18.600	0.14	0.14	0.14	0.14	0.14
18.850	0.14	0.14	0.13	0.13	0.13
19.100	0.13	0.13	0.13	0.13	0.13
19.350	0.13	0.13	0.13	0.13	0.13
19.600	0.12	0.12	0.12	0.12	0.12
19.850	0.12	0.12	0.12	0.12	0.12
20.100	0.12	0.12	0.12	0.12	0.11
20.350	0.11	0.11	0.11	0.11	0.11
20.600	0.11	0.11	0.11	0.11	0.11
20.850	0.11	0.11	0.11	0.11	0.11
21.100	0.11	0.10	0.10	0.10	0.10
21.350 21.600	0.10	0.10	0.10 0.10	0.10 0.10	0.10 0.10
21.850	0.10 0.10	0.10 0.10	0.10	0.10	0.10
22.100	0.10	0.10	0.10	0.09	0.09
22.100	0.09	0.09	0.09	0.09	0.09
22.600	0.09	0.09	0.09	0.09	0.09
22.850	0.09	0.09	0.09	0.08	0.09
23.100	0.08	0.08	0.08	0.08	0.08
23.100	0.00	0.00	0.00	0.00	0.00

Subsection: Pond Routed Hydrograph (total out)


Return Event: 2 years

Label: SF-1 (OUT)

Storm Event: 2-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
23.350	0.08	0.08	0.08	0.08	0.08
23.600	0.08	0.08	0.07	0.07	0.07
23.850	0.07	0.07	0.07	0.07	(N/A)

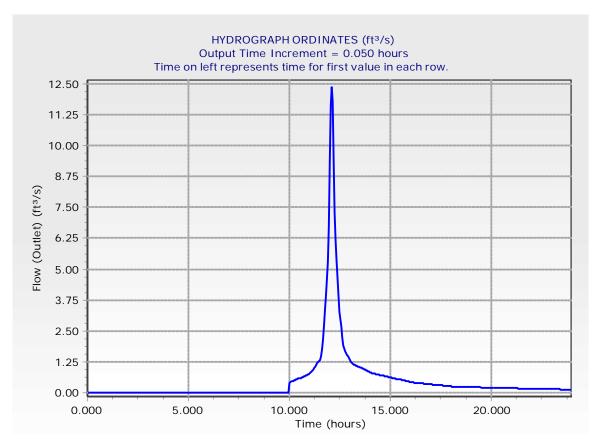
Return Event: 2 years Label: SF-1 (OUT) Storm Event: 2-yr

Return Event: 10 years Label: SF-1 (OUT) Storm Event: 10-yr

Peak Discharge	12.38 ft ³ /s
Time to Peak	12.100 hours
Hydrograph Volume	0.984 ac-ft
Tryatograph Volume	0.704 dc 1t

Time on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
9.950	0.00	0.38	0.44	0.45	0.47
10.200	0.48	0.50	0.51	0.53	0.55
10.450	0.57	0.58	0.60	0.62	0.64
10.700	0.66	0.68	0.70	0.72	0.74
10.950	0.76	0.78	0.80	0.84	0.88
11.200	0.94	1.00	1.07	1.13	1.20
11.450	1.27	1.34	1.48	1.75	2.15
11.700	2.69	3.30	3.93	4.60	5.30
11.950	6.73	9.40	11.59	12.38	11.81
12.200	9.44	7.27	6.19	5.39	4.67
12.450	3.98	3.28	2.67	2.23	1.92
12.700	1.78	1.69	1.61	1.54	1.46
12.950	1.39	1.32	1.25	1.20	1.16
13.200	1.13	1.11	1.09	1.07	1.06
13.450	1.04	1.02	1.00	0.98	0.96
13.700	0.94	0.92	0.90	0.88	0.86
13.950	0.84	0.83	0.81	0.79	0.78
14.200	0.77	0.76	0.75	0.74	0.73
14.450	0.72	0.71	0.70	0.69	0.69
14.700	0.68	0.67	0.66	0.65	0.64
14.950	0.63	0.62	0.61	0.60	0.59
15.200	0.58	0.57	0.56	0.55	0.55
15.450	0.54	0.53	0.52	0.51	0.50
15.700	0.49	0.48	0.47	0.46	0.45
15.950	0.44	0.43	0.42	0.42	0.41
16.200	0.40	0.40	0.40	0.39	0.39
16.450	0.38	0.38	0.38	0.37	0.37
16.700	0.36	0.36	0.36	0.35	0.35
16.950	0.34	0.34	0.33	0.33	0.33
17.200	0.32	0.32	0.31 0.29	0.31 0.29	0.31
17.450	0.30	0.30			0.28
17.700	0.28	0.28	0.27	0.27	0.26
17.950	0.26	0.26 0.24	0.25 0.24	0.25 0.24	0.25
18.200 18.450	0.25 0.24	0.24	0.24	0.24	0.24 0.23
18.700	0.24	0.24	0.24		
18.950	0.23	0.23	0.23	0.23 0.22	0.23 0.22
	0.23	0.23	0.22	0.22	0.22
19.200 19.450	0.22	0.22	0.22	0.22	0.22
19.700	0.21	0.21	0.21	0.20	0.21
19.700	0.21	0.21	0.21	0.20	0.20
20.200	0.20	0.20	0.20	0.20	0.20
20.200	0.20	0.20	0.19	0.19	0.19
20.450	0.19	0.19	0.19	0.19	0.19
20.700	0.19	0.19	0.19	0.18	0.18
21.200	0.18	0.18	0.18	0.18	0.18
21.450	0.18	0.18	0.18	0.18	0.17
21.700	0.17	0.17	0.17	0.17	0.17
1 21.700	0.17	0.17	0.17	0.17	0.10

Subsection: Pond Routed Hydrograph (total out)


Return Event: 10 years

Label: SF-1 (OUT)

Storm Event: 10-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
21.950	0.16	0.16	0.16	0.16	0.16
22.200	0.16	0.16	0.16	0.16	0.16
22.450	0.15	0.15	0.15	0.15	0.15
22.700	0.15	0.15	0.15	0.15	0.15
22.950	0.15	0.14	0.14	0.14	0.14
23.200	0.14	0.14	0.14	0.14	0.14
23.450	0.14	0.13	0.13	0.13	0.13
23.700	0.13	0.13	0.13	0.13	0.13
23.950	0.13	0.13	(N/A)	(N/A)	(N/A)

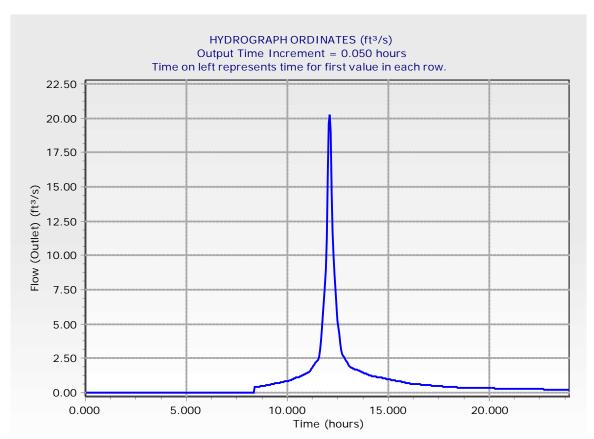
Return Event: 10 years Label: SF-1 (OUT) Storm Event: 10-yr

Return Event: 50 years Label: SF-1 (OUT) Storm Event: 50-yr

Peak Discharge	20.29 ft ³ /s
Time to Peak	12.100 hours
Hydrograph Volume	1.703 ac-ft

lime on left represents time for first value in each row.						
Time	Flow	Flow	Flow	Flow	Flow	
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	
8.350	0.00	0.40	0.41	0.42	0.43	
8.600	0.45	0.46	0.47	0.49	0.50	
8.850	0.51	0.53	0.54	0.55	0.57	
9.100	0.58	0.60	0.61	0.62	0.64	
9.350	0.65	0.67	0.68	0.70	0.71	
9.600	0.73	0.74	0.76	0.78	0.79	
9.850	0.81	0.82	0.84	0.86	0.87	
10.100	0.89	0.92	0.95	0.97	1.00	
10.350	1.03	1.06	1.09	1.12	1.15	
10.600	1.18	1.21	1.25	1.28	1.31	
10.850	1.34	1.37	1.41	1.44	1.48	
11.100	1.54	1.62	1.72	1.82	1.93	
11.350	2.04	2.15	2.27	2.38	2.63	
11.600	3.10	3.77	4.70	5.72	6.77	
11.850	7.86	8.99	11.31	15.99	19.64	
12.100	20.29	18.99	14.62	11.66	9.94	
12.350	8.63	7.47	6.35	5.23	4.26	
12.600	3.55	3.06	2.83	2.69	2.56	
12.850	2.44	2.33	2.21	2.09	1.99	
13.100	1.91	1.84	1.80	1.77	1.74	
13.350	1.71	1.68	1.65	1.62	1.59	
13.600	1.56	1.53	1.49	1.46	1.43	
13.850	1.40	1.37	1.34	1.31	1.28	
14.100	1.26	1.24	1.22	1.21	1.19	
14.350	1.18	1.16	1.15	1.13	1.12	
14.600	1.10	1.09	1.07	1.06	1.04	
14.850	1.03	1.01	1.00	0.98	0.97	
15.100	0.95	0.94	0.93	0.91	0.90	
15.350	0.88	0.87	0.85	0.84	0.82	
15.600	0.81	0.79	0.78	0.76	0.75	
15.850	0.73	0.72	0.70	0.69	0.67	
16.100	0.66	0.65	0.65	0.64	0.63	
16.350	0.63	0.62	0.61	0.61	0.60	
16.600	0.59	0.59	0.58	0.57	0.57	
16.850	0.56	0.55	0.55	0.54	0.53	
17.100	0.53	0.52	0.52	0.51	0.50	
17.350	0.50	0.49	0.48	0.48	0.47	
17.600	0.46	0.46	0.45	0.44	0.44	
17.850	0.43	0.42	0.42	0.41	0.40	
18.100	0.40	0.40	0.39	0.39	0.39	
18.350	0.39	0.39	0.39	0.38	0.38	
18.600	0.38	0.38	0.37	0.37	0.37	
18.850	0.37	0.37	0.36	0.36	0.36	
19.100	0.36	0.36	0.36	0.35	0.35	
19.350	0.35	0.35	0.35	0.34	0.34	
19.600	0.34	0.34	0.34	0.33	0.33	
19.850	0.33	0.33	0.33	0.32	0.32	
20.100	0.32	0.32	0.32	0.32	0.32	

Subsection: Pond Routed Hydrograph (total out)


Return Event: 50 years

Label: SF-1 (OUT)

Storm Event: 50-yr

Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
20.350	0.31	0.31	0.31	0.31	0.31
20.600	0.31	0.30	0.30	0.30	0.30
20.850	0.30	0.30	0.30	0.29	0.29
21.100	0.29	0.29	0.29	0.29	0.29
21.350	0.28	0.28	0.28	0.28	0.28
21.600	0.28	0.28	0.27	0.27	0.27
21.850	0.27	0.27	0.27	0.26	0.26
22.100	0.26	0.26	0.26	0.26	0.26
22.350	0.25	0.25	0.25	0.25	0.25
22.600	0.25	0.25	0.24	0.24	0.24
22.850	0.24	0.24	0.24	0.24	0.23
23.100	0.23	0.23	0.23	0.23	0.23
23.350	0.22	0.22	0.22	0.22	0.22
23.600	0.22	0.22	0.21	0.21	0.21
23.850	0.21	0.21	0.21	0.21	(N/A)

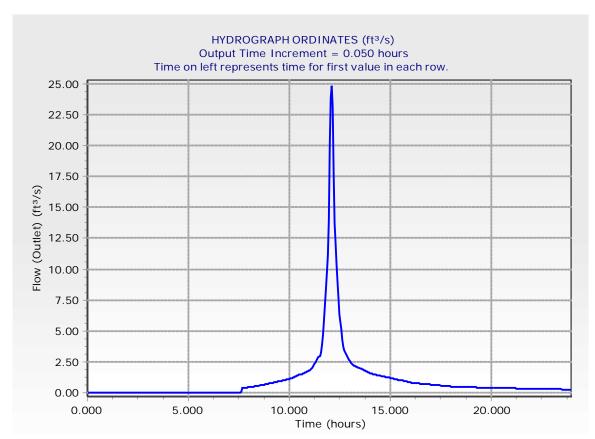
Return Event: 50 years Label: SF-1 (OUT) Storm Event: 50-yr

Return Event: 100 years Label: SF-1 (OUT) Storm Event: 100-yr

Peak Discharge	24.84 ft ³ /s
Time to Peak	12.100 hours
Hydrograph Volume	2.124 ac-ft

Time on left represents time for first value in each row.						
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
7.550	0.00		0.42	0.39		
		0.11			0.40	
7.800	0.41	0.41	0.42	0.43	0.44	
8.050	0.45	0.46	0.47	0.48	0.50	
8.300	0.51	0.53	0.54	0.56	0.58	
8.550	0.59	0.61	0.62	0.64	0.66	
8.800	0.67	0.69	0.71	0.72	0.74	
9.050 9.300	0.76 0.85	0.78 0.87	0.79	0.81 0.90	0.83 0.92	
9.550	0.85	0.87	0.88 0.98	1.00		
9.800	1.04	1.06	1.08	1.00	1.02 1.11	
10.050	1.14	1.16	1.19	1.23	1.26	
10.300	1.14	1.10	1.17	1.41	1.44	
10.550	1.48	1.52	1.56	1.59	1.63	
10.800	1.40	1.71	1.75	1.79	1.83	
11.050	1.88	1.76	2.05	2.17	2.30	
11.300	2.44	2.57	2.71	2.85	2.99	
11.550	3.29	3.87	4.70	5.86	7.11	
11.800	8.40	9.73	11.11	13.96	20.18	
12.050	23.88	24.84	23.13	17.80	13.72	
12.300	12.13	10.46	9.06	7.70	6.35	
12.550	5.17	4.30	3.70	3.44	3.26	
12.800	3.10	2.96	2.82	2.68	2.53	
13.050	2.41	2.31	2.23	2.18	2.14	
13.300	2.11	2.07	2.03	2.00	1.96	
13.550	1.92	1.88	1.85	1.81	1.77	
13.800	1.74	1.70	1.66	1.62	1.59	
14.050	1.55	1.52	1.50	1.48	1.46	
14.300	1.44	1.42	1.41	1.39	1.37	
14.550	1.35	1.34	1.32	1.30	1.28	
14.800	1.26	1.25	1.23	1.21	1.19	
15.050	1.17	1.16	1.14	1.12	1.10	
15.300	1.08	1.07	1.05	1.03	1.01	
15.550	0.99	0.98	0.96	0.94	0.92	
15.800	0.91	0.89	0.87	0.85	0.83	
16.050	0.82	0.80	0.79	0.78	0.77	
16.300	0.77	0.76	0.75	0.74	0.74	
16.550	0.73	0.72	0.71	0.70	0.70	
16.800	0.69	0.68	0.67	0.67	0.66	
17.050	0.65	0.64	0.63	0.62	0.62	
17.300	0.61	0.60	0.59	0.59	0.58	
17.550	0.57	0.56	0.55	0.55	0.54	
17.800	0.53	0.52	0.52	0.51	0.50	
18.050	0.49	0.49	0.48	0.48	0.48	
18.300	0.47	0.47	0.47	0.47	0.47	
18.550	0.46	0.46	0.46	0.46	0.45	
18.800	0.45	0.45	0.45	0.44	0.44	
19.050	0.44	0.44	0.43	0.43	0.43	
19.300	0.43	0.43	0.42	0.42	0.42	

Subsection: Pond Routed Hydrograph (total out)


Return Event: 100 years

Label: SF-1 (OUT)

Storm Event: 100-yr

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.550	0.42	0.41	0.41	0.41	0.41
19.800	0.40	0.40	0.40	0.40	0.39
20.050	0.39	0.39	0.39	0.39	0.39
20.300	0.38	0.38	0.38	0.38	0.38
20.550	0.37	0.37	0.37	0.37	0.37
20.800	0.37	0.36	0.36	0.36	0.36
21.050	0.36	0.36	0.35	0.35	0.35
21.300	0.35	0.35	0.34	0.34	0.34
21.550	0.34	0.34	0.34	0.33	0.33
21.800	0.33	0.33	0.33	0.32	0.32
22.050	0.32	0.32	0.32	0.32	0.31
22.300	0.31	0.31	0.31	0.31	0.31
22.550	0.30	0.30	0.30	0.30	0.30
22.800	0.29	0.29	0.29	0.29	0.29
23.050	0.29	0.28	0.28	0.28	0.28
23.300	0.28	0.27	0.27	0.27	0.27
23.550	0.27	0.27	0.26	0.26	0.26
23.800	0.26	0.26	0.25	0.25	0.25

Return Event: 100 years Label: SF-1 (OUT) Storm Event: 100-yr

Index

Α

- Area 2- Post (Runoff CN-Area, 2 years)...23
- Area 2- Post (Time of Concentration Calculations, 2 years)...13, 14
- Area 2- Post (Unit Hydrograph (Hydrograph Table), 10 years)...37, 38, 39
- Area 2- Post (Unit Hydrograph (Hydrograph Table), 100 years)...45, 46, 47
- Area 2- Post (Unit Hydrograph (Hydrograph Table), 2 years)...33, 34, 35
- Area 2- Post (Unit Hydrograph (Hydrograph Table), 50 years)...41, 42, 43
- Area 2- Post (Unit Hydrograph Summary, 10 years)...36
- Area 2- Post (Unit Hydrograph Summary, 100 years)...44
- Area 2- Post (Unit Hydrograph Summary, 2 years)...32
- Area 2- Post (Unit Hydrograph Summary, 50 years)...40
- Area-1A-Post (Runoff CN-Area, 2 years)...24
- Area-1A-Post (Time of Concentration Calculations, 2 years)...15, 16
- Area-1A-Post (Unit Hydrograph (Hydrograph Table), 10 years)...53, 54, 55
- Area-1A-Post (Unit Hydrograph (Hydrograph Table), 100 years)...61, 62, 63
- Area-1A-Post (Unit Hydrograph (Hydrograph Table), 2 years)...49, 50, 51
- Area-1A-Post (Unit Hydrograph (Hydrograph Table), 50 years)...57, 58, 59
- Area-1A-Post (Unit Hydrograph Summary, 10 years)...52
- Area-1A-Post (Unit Hydrograph Summary, 100 years)...60
- Area-1A-Post (Unit Hydrograph Summary, 2 years)...48
- Area-1A-Post (Unit Hydrograph Summary, 50 years)...56
- Area-1B-Post (Runoff CN-Area, 2 years)...25
- Area-1B-Post (Unit Hydrograph (Hydrograph Table), 10 years)...69, 70, 71
- Area-1B-Post (Unit Hydrograph (Hydrograph Table), 100 years)...77, 78, 79
- Area-1B-Post (Unit Hydrograph (Hydrograph Table), 2 years)...65, 66, 67
- Area-1B-Post (Unit Hydrograph (Hydrograph Table), 50 years)...73, 74, 75
- Area-1B-Post (Unit Hydrograph Summary, 10 years)...68
- Area-1B-Post (Unit Hydrograph Summary, 100 years)...76
- Area-1B-Post (Unit Hydrograph Summary, 2 years)...64
- Area-1B-Post (Unit Hydrograph Summary, 50 years)...72
- Area-1C-Post (Runoff CN-Area, 2 years)...26
- Area-1C-Post (Unit Hydrograph (Hydrograph Table), 10 years)...85, 86, 87
- Area-1C-Post (Unit Hydrograph (Hydrograph Table), 100 years)...93, 94, 95
- Area-1C-Post (Unit Hydrograph (Hydrograph Table), 2 years)...81, 82, 83
- Area-1C-Post (Unit Hydrograph (Hydrograph Table), 50 years)...89, 90, 91
- Area-1C-Post (Unit Hydrograph Summary, 10 years)...84
- Area-1C-Post (Unit Hydrograph Summary, 100 years)...92
- Area-1C-Post (Unit Hydrograph Summary, 2 years)...80

```
Area-1C-Post (Unit Hydrograph Summary, 50 years)...88
```

Area-1D-Post (Runoff CN-Area, 2 years)...27

Area-1D-Post (Unit Hydrograph (Hydrograph Table), 10 years)...101, 102, 103

Area-1D-Post (Unit Hydrograph (Hydrograph Table), 100 years)...109, 110, 111

Area-1D-Post (Unit Hydrograph (Hydrograph Table), 2 years)...97, 98, 99

Area-1D-Post (Unit Hydrograph (Hydrograph Table), 50 years)...105, 106, 107

Area-1D-Post (Unit Hydrograph Summary, 10 years)...100

Area-1D-Post (Unit Hydrograph Summary, 100 years)...108

Area-1D-Post (Unit Hydrograph Summary, 2 years)...96

Area-1D-Post (Unit Hydrograph Summary, 50 years)...104

Area-1E-Post (Runoff CN-Area, 2 years)...28

Area-1E-Post (Unit Hydrograph (Hydrograph Table), 10 years)...117, 118, 119

Area-1E-Post (Unit Hydrograph (Hydrograph Table), 100 years)...125, 126, 127

Area-1E-Post (Unit Hydrograph (Hydrograph Table), 2 years)...113, 114, 115

Area-1E-Post (Unit Hydrograph (Hydrograph Table), 50 years)...121, 122, 123

Area-1E-Post (Unit Hydrograph Summary, 10 years)...116

Area-1E-Post (Unit Hydrograph Summary, 100 years)...124

Area-1E-Post (Unit Hydrograph Summary, 2 years)...112

Area-1E-Post (Unit Hydrograph Summary, 50 years)...120

Area-1F-Post (Runoff CN-Area, 2 years)...29

Area-1F-Post (Time of Concentration Calculations, 2 years)...17, 18

Area-1F-Post (Unit Hydrograph (Hydrograph Table), 10 years)...133, 134, 135

Area-1F-Post (Unit Hydrograph (Hydrograph Table), 100 years)...141, 142, 143

Area-1F-Post (Unit Hydrograph (Hydrograph Table), 2 years)...129, 130, 131

Area-1F-Post (Unit Hydrograph (Hydrograph Table), 50 years)...137, 138, 139

Area-1F-Post (Unit Hydrograph Summary, 10 years)...132

Area-1F-Post (Unit Hydrograph Summary, 100 years)...140

Area-1F-Post (Unit Hydrograph Summary, 2 years)...128

Area-1F-Post (Unit Hydrograph Summary, 50 years)...136

Area-1-Pre (Runoff CN-Area, 2 years)...30

Area-1-Pre (Time of Concentration Calculations, 2 years)...19, 20

Area-1-Pre (Unit Hydrograph (Hydrograph Table), 10 years)...149, 150, 151

Area-1-Pre (Unit Hydrograph (Hydrograph Table), 100 years)...157, 158, 159

Area-1-Pre (Unit Hydrograph (Hydrograph Table), 2 years)...145, 146, 147

Area-1-Pre (Unit Hydrograph (Hydrograph Table), 50 years)...153, 154, 155

Area-1-Pre (Unit Hydrograph Summary, 10 years)...148

Area-1-Pre (Unit Hydrograph Summary, 100 years)...156

Area-1-Pre (Unit Hydrograph Summary, 2 years)...144

Area-1-Pre (Unit Hydrograph Summary, 50 years)...152

```
Area-2- Pre (Runoff CN-Area, 2 years)...31
Area-2- Pre (Time of Concentration Calculations, 2 years)...21, 22
Area-2- Pre (Unit Hydrograph (Hydrograph Table), 10 years)...165, 166, 167
Area-2- Pre (Unit Hydrograph (Hydrograph Table), 100 years)...173, 174, 175
Area-2- Pre (Unit Hydrograph (Hydrograph Table), 2 years)...161, 162, 163
Area-2- Pre (Unit Hydrograph (Hydrograph Table), 50 years)...169, 170, 171
Area-2- Pre (Unit Hydrograph Summary, 10 years)...164
Area-2- Pre (Unit Hydrograph Summary, 100 years)...172
Area-2- Pre (Unit Hydrograph Summary, 2 years)...160
Area-2- Pre (Unit Hydrograph Summary, 50 years)...168
DT-1 (Elevation-Area Volume Curve, 2 years)...192
DT-1 (IN) (Level Pool Pond Routing Summary, 10 years)...204
DT-1 (IN) (Level Pool Pond Routing Summary, 100 years)...206
DT-1 (IN) (Level Pool Pond Routing Summary, 2 years)...203
DT-1 (IN) (Level Pool Pond Routing Summary, 50 years)...205
DT-1 (OUT) (Pond Routed Hydrograph (total out), 10 years)...210, 211, 212
DT-1 (OUT) (Pond Routed Hydrograph (total out), 100 years)...216, 217, 218
DT-1 (OUT) (Pond Routed Hydrograph (total out), 2 years)...207, 208, 209
DT-1 (OUT) (Pond Routed Hydrograph (total out), 50 years)...213, 214, 215
IF-1 (Elevation-Area Volume Curve, 2 years)...193
IF-1 (IN) (Level Pool Pond Routing Summary, 10 years)...220
IF-1 (IN) (Level Pool Pond Routing Summary, 100 years)...222
IF-1 (IN) (Level Pool Pond Routing Summary, 2 years)...219
IF-1 (IN) (Level Pool Pond Routing Summary, 50 years)...221
IF-1 (INF) (Pond Infiltration Hydrograph, 10 years)...226, 227, 228
IF-1 (INF) (Pond Infiltration Hydrograph, 100 years)...232, 233, 234
IF-1 (INF) (Pond Infiltration Hydrograph, 2 years)...223, 224, 225
IF-1 (INF) (Pond Infiltration Hydrograph, 50 years)...229, 230, 231
IF-1 (OUT) (Pond Routed Hydrograph (total out), 10 years)...237, 238
IF-1 (OUT) (Pond Routed Hydrograph (total out), 100 years)...242, 243, 244
IF-1 (OUT) (Pond Routed Hydrograph (total out), 2 years)...235, 236
IF-1 (OUT) (Pond Routed Hydrograph (total out), 50 years)...239, 240, 241
M
Master Network Summary...2, 3, 4
```

OCS - 2 (Outlet Input Data, 2 years)...195, 196, 197 OCS-1 (Outlet Input Data, 2 years)...198, 199, 200

0

```
OCS-3 (Outlet Input Data, 2 years)...201, 202
Р
Post Outlet O-1 (Addition Summary, 10 years)...177
Post Outlet O-1 (Addition Summary, 100 years)...179
Post Outlet O-1 (Addition Summary, 2 years)...176
Post Outlet O-1 (Addition Summary, 50 years)...178
Post Outlet O-2 (Addition Summary, 10 years)...181
Post Outlet O-2 (Addition Summary, 100 years)...183
Post Outlet O-2 (Addition Summary, 2 years)...180
Post Outlet O-2 (Addition Summary, 50 years)...182
Pre Outlet O-1 (Addition Summary, 10 years)...185
Pre Outlet O-1 (Addition Summary, 100 years)...187
Pre Outlet O-1 (Addition Summary, 2 years)...184
```

- Pre Outlet O-1 (Addition Summary, 50 years)...186
- Pre Outlet O-2 (Addition Summary, 10 years)...189
- Pre Outlet O-2 (Addition Summary, 100 years)...191
- Pre Outlet O-2 (Addition Summary, 2 years)...188
- Pre Outlet O-2 (Addition Summary, 50 years)...190

R

- Rockingham Co NH (Time-Depth Curve, 10 years)...7, 8
- Rockingham Co NH (Time-Depth Curve, 100 years)...5, 6
- Rockingham Co NH (Time-Depth Curve, 2 years)...9, 10
- Rockingham Co NH (Time-Depth Curve, 50 years)...11, 12

S

- SF-1 (Elevation-Area Volume Curve, 2 years)...194
- SF-1 (IN) (Level Pool Pond Routing Summary, 10 years)...246
- SF-1 (IN) (Level Pool Pond Routing Summary, 100 years)...248
- SF-1 (IN) (Level Pool Pond Routing Summary, 2 years)...245
- SF-1 (IN) (Level Pool Pond Routing Summary, 50 years)...247
- SF-1 (INF) (Pond Infiltration Hydrograph, 10 years)...252, 253, 254
- SF-1 (INF) (Pond Infiltration Hydrograph, 100 years)...258, 259, 260
- SF-1 (INF) (Pond Infiltration Hydrograph, 2 years)...249, 250, 251
- SF-1 (INF) (Pond Infiltration Hydrograph, 50 years)...255, 256, 257
- SF-1 (OUT) (Pond Routed Hydrograph (total out), 10 years)...264, 265, 266
- SF-1 (OUT) (Pond Routed Hydrograph (total out), 100 years)...270, 271, 272
- SF-1 (OUT) (Pond Routed Hydrograph (total out), 2 years)...261, 262, 263
- SF-1 (OUT) (Pond Routed Hydrograph (total out), 50 years)...267, 268, 269

Worksheet for P1- 10 year

Pro	iect	Descri	ption
	JOUL	200011	puon

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.012 Roughness Coefficient Channel Slope 0.01000 ft/ft 2.00 Diameter ft Discharge 11.560 ft³/s

Results

Normal Depth 0.97 Flow Area 1.50 ft2 Wetted Perimeter 3.08 ft Hydraulic Radius 0.49 ft Top Width 2.00 ft Critical Depth 1.22 ft Percent Full % 48.3 Critical Slope 0.00468 ft/ft 7.68 ft/s Velocity Velocity Head 0.92 ft Specific Energy 1.88 ft Froude Number 1.56 Maximum Discharge 26.36 ft³/s Discharge Full ft3/s 24.51 Slope Full 0.00223 ft/ft Flow Type SuperCritical

GVF Input Data

0.00 Downstream Depth Length 0.00 0 Number Of Steps

GVF Output Data

0.00 ft Upstream Depth Profile Description 0.00 ft Profile Headloss 0.00 % Average End Depth Over Rise 48.34 Normal Depth Over Rise Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.97 Normal Depth ft Critical Depth 1.22 0.01000 Channel Slope ft/ft 0.00468 Critical Slope ft/ft

Burns & McDonnell

ft

ft

Worksheet for P2- 10 year

Project	Description

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.012 Roughness Coefficient Channel Slope 0.01500 ft/ft 2.00 Diameter ft Discharge 11.540 ft³/s

Results

Normal Depth 0.86 ft Flow Area 1.29 ft2 Wetted Perimeter 2.86 ft Hydraulic Radius 0.45 ft Top Width 1.98 ft Critical Depth 1.22 ft Percent Full % 43.0 Critical Slope 0.00468 8.93 ft/s Velocity Velocity Head 1.24 ft Specific Energy 2.10 ft Froude Number 1.95 Maximum Discharge 32.29 ft3/s Discharge Full 30.01 ft³/s Slope Full 0.00222 ft/ft Flow Type SuperCritical

GVF Input Data

0.00 Downstream Depth ft Length 0.00 ft 0 Number Of Steps

GVF Output Data

0.00 ft Upstream Depth Profile Description 0.00 ft Profile Headloss 0.00 % Average End Depth Over Rise 43.03 Normal Depth Over Rise Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.86 Normal Depth ft Critical Depth 1.22 0.01500 Channel Slope ft/ft 0.00468 Critical Slope ft/ft

Worksheet for P3- 10 year

Pro	iect	Descri	ntion
1 10	JOUL	DCSCII	Puon

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.012 Roughness Coefficient Channel Slope 0.01000 ft/ft 2.00 Diameter ft Discharge 11.540 ft³/s

Results

Normal Depth 0.97 Flow Area 1.50 ft2 Wetted Perimeter 3.07 ft Hydraulic Radius 0.49 ft Top Width 2.00 ft Critical Depth 1.22 ft Percent Full % 48.3 Critical Slope 0.00467 ft/ft 7.68 ft/s Velocity Velocity Head 0.92 ft Specific Energy 1.88 ft Froude Number 1.56 Maximum Discharge 26.36 ft³/s Discharge Full ft³/s 24.51 Slope Full 0.00222 ft/ft

Flow Type SuperCritical

GVF Input Data

0.00 Downstream Depth ft Length 0.00 ft 0 Number Of Steps

GVF Output Data

0.00 ft Upstream Depth Profile Description 0.00 ft Profile Headloss 0.00 % Average End Depth Over Rise 48.29 Normal Depth Over Rise Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.97 Normal Depth ft Critical Depth 1.22 0.01000 Channel Slope ft/ft 0.00467 Critical Slope ft/ft

	Worksheet for P4- WQ	event
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.011	
Channel Slope	0.06500	ft/ft
Diameter	0.33	ft
Discharge	0.266	ft³/s
Results		
Normal Depth	0.16	ft
Flow Area	0.04	ft²
Wetted Perimeter	0.51	ft
Hydraulic Radius	0.08	ft
Top Width	0.33	ft
Critical Depth	0.29	ft
Percent Full	48.6	%
Critical Slope	0.01348	ft/ft
Velocity	6.45	ft/s
Velocity Head	0.65	ft
Specific Energy	0.81	ft
Froude Number	3.22	
Maximum Discharge	0.60	ft³/s
Discharge Full	0.56	ft³/s
Slope Full	0.01476	ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	4

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	48.60	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.16	ft
Critical Depth	0.29	ft
Channel Slope	0.06500	ft/ft
Critical Slope	0.01348	ft/ft

Worksheet for P5- 10 year

Project Description	

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.013 Roughness Coefficient Channel Slope 0.01900 ft/ft 1.50 Diameter ft Discharge 0.720 ft³/s

Results

Normal Depth 0.23 Flow Area 0.17 ft2 Wetted Perimeter 1.20 ft Hydraulic Radius 0.14 ft Top Width 1.08 ft Critical Depth 0.32 ft Percent Full % 15.2 Critical Slope 0.00501 ft/ft 4.26 ft/s Velocity Velocity Head 0.28 ft Specific Energy 0.51 ft Froude Number 1.90 Maximum Discharge 15.57 ft³/s Discharge Full ft³/s 14.48 Slope Full 0.00005 ft/ft Flow Type SuperCritical

GVF Input Data

0.00 Downstream Depth ft Length 0.00 ft 0 Number Of Steps

GVF Output Data

0.00 ft Upstream Depth Profile Description 0.00 ft Profile Headloss 0.00 % Average End Depth Over Rise 15.17 Normal Depth Over Rise Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.23 ft Normal Depth Critical Depth 0.32 0.01900 Channel Slope ft/ft 0.00501 Critical Slope ft/ft

Worksheet for P6- 10 year

Project	Description

Manning Formula Friction Method Solve For Normal Depth

Input Data

0.012 Roughness Coefficient 0.00500 ft/ft Channel Slope 1.00 ft Diameter 0.410 ft³/s Discharge

Results

Normal Depth		0.26	ft
Flow Area		0.16	ft²
Wetted Perimeter		1.07	ft
Hydraulic Radius		0.15	ft
Top Width		0.88	ft
Critical Depth		0.26	ft
Percent Full		26.2	%
Critical Slope		0.00481	ft/ft
Velocity		2.50	ft/s
Velocity Head		0.10	ft
Specific Energy		0.36	ft
Froude Number		1.02	
Maximum Discharge		2.94	ft³/s
Discharge Full		2.73	ft³/s
Slope Full		0.00011	ft/ft
Flow Type	SuperCritical		

GVF Input Data

0.00 ft Downstream Depth 0.00 ft Length Number Of Steps 0

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	26.19	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.26	ft
Critical Depth	0.26	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00481	ft/ft

Worksheet for P7- 10 year

Project	Description

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.012 Roughness Coefficient Channel Slope 0.00500 ft/ft 1.00 Diameter ft Discharge 0.410 ft³/s

Results

Normal Depth 0.26 Flow Area 0.16 ft2 Wetted Perimeter 1.07 ft Hydraulic Radius 0.15 ft Top Width 0.88 ft Critical Depth 0.26 ft Percent Full % 26.2 Critical Slope 0.00481 ft/ft 2.50 ft/s Velocity Velocity Head 0.10 ft Specific Energy 0.36 ft Froude Number 1.02 Maximum Discharge 2.94 ft3/s Discharge Full ft³/s 2.73 Slope Full 0.00011 ft/ft Flow Type SuperCritical

GVF Input Data

0.00 Downstream Depth ft Length 0.00 ft 0 Number Of Steps

GVF Output Data

0.00 ft Upstream Depth Profile Description 0.00 ft Profile Headloss 0.00 % Average End Depth Over Rise 26.19 Normal Depth Over Rise Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.26 Normal Depth ft Critical Depth 0.26 0.00500 Channel Slope ft/ft 0.00481 Critical Slope ft/ft

	Worksheet f	or P9- 10	year
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.05800	ft/ft
Diameter		0.50	ft
Discharge		0.010	ft³/s
Results			
Normal Depth		0.03	ft
Flow Area		0.00	ft²
Wetted Perimeter		0.25	ft
Hydraulic Radius		0.02	ft
Top Width		0.24	ft
Critical Depth		0.05	ft
Percent Full		5.9	%
Critical Slope		0.00730	ft/ft
Velocity		2.12	ft/s
Velocity Head		0.07	ft
Specific Energy		0.10	ft
Froude Number		2.65	
Maximum Discharge		1.57	ft³/s
Discharge Full		1.46	ft³/s
Slope Full		0.00000	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		5.92	%

Critical Slope
Burns & McDonnell

Normal Depth

Critical Depth

Channel Slope

Downstream Velocity Upstream Velocity

Infinity ft/s

Infinity ft/s

0.03 ft 0.05 ft

0.05800 ft/ft

0.00730 ft/ft

	Worksheet f	or P10- 10 y	/ear	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.00800	ft/ft	
Diameter		2.00	ft	
Discharge		2.700	ft³/s	
Results				
Normal Depth		0.49	ft	
Flow Area		0.60	ft²	
Wetted Perimeter		2.08	ft	
Hydraulic Radius		0.29	ft	
Top Width		1.72	ft	
Critical Depth		0.57	ft	
Percent Full		24.7	%	
Critical Slope		0.00446	ft/ft	
Velocity		4.48	ft/s	
Velocity Head		0.31	ft	
Specific Energy		0.81	ft	
Froude Number		1.34		
Maximum Discharge		21.76	ft³/s	
Discharge Full		20.23	ft³/s	
Slope Full		0.00014	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
-				

	_	
Burns	&	McDonnell

Normal Depth Over Rise

Downstream Velocity

Upstream Velocity

Normal Depth Critical Depth

Channel Slope

Critical Slope

24.67 %

Infinity ft/s Infinity ft/s

0.49 ft

0.57 ft 0.00800 ft/ft

0.00446 ft/ft

	Worksheet for I	FES 1 - P5,	25 year	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.01900	ft/ft	
Diameter		1.50	ft	
Discharge		1.790	ft³/s	
Results				
Normal Depth		0.36	ft	
Flow Area		0.32	ft²	
Wetted Perimeter		1.53	ft	
Hydraulic Radius		0.21	ft	
Top Width		1.28	ft	
Critical Depth		0.50	ft	
Percent Full		23.8	%	
Critical Slope		0.00492	ft/ft	
Velocity		5.57	ft/s	
Velocity Head		0.48	ft	
Specific Energy		0.84	ft	
Froude Number		1.96		
Maximum Discharge		15.57	ft³/s	
Discharge Full		14.48	ft³/s	
Slope Full		0.00029	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Longth		0.00	£.	

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	23.75	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.36	ft
Critical Depth	0.50	ft
Channel Slope	0.01900	ft/ft
Critical Slope	0.00492	ft/ft

Worksheet for FES 2 - P7, 25 year

		٠.			_			_
n	tı	വ	ш	\sim	Des	2 ∩ †	'n	P
ł	ш	. DI	ш	u	ノヒシ	- (:1	O	

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0.012

 Channel Slope
 0.00500 ft/ft

 Diameter
 1.00 ft

 Discharge
 0.460 ft³/s

Results

Normal Depth 0.28 Flow Area 0.18 ft2 Wetted Perimeter 1.11 ft Hydraulic Radius 0.16 ft Top Width 0.90 ft Critical Depth 0.28 ft Percent Full % 27.8 Critical Slope 0.00479 ft/ft 2.58 ft/s Velocity Velocity Head 0.10 ft Specific Energy 0.38 ft Froude Number 1.02 Maximum Discharge 2.94 ft3/s Discharge Full 2.73 ft³/s Slope Full 0.00014 ft/ft

GVF Input Data

Flow Type

 Downstream Depth
 0.00

 Length
 0.00

 Number Of Steps
 0

SuperCritical

GVF Output Data

0.00 ft Upstream Depth Profile Description 0.00 ft Profile Headloss 0.00 % Average End Depth Over Rise 27.80 Normal Depth Over Rise Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.28 Normal Depth ft Critical Depth 0.28 0.00500 Channel Slope ft/ft 0.00479 Critical Slope ft/ft

Burns & McDonnell

ft

ft

	Worksheet for F	ES 3 - P10,	25 year	
Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.00800	ft/ft	
Diameter		2.00	ft	
Discharge		8.770	ft³/s	
Results				
Normal Depth		0.92	ft	
Flow Area		1.41	ft²	
Wetted Perimeter		2.98	ft	
Hydraulic Radius		0.47	ft	
Top Width		1.99	ft	
Critical Depth		1.06	ft	
Percent Full		46.0	%	
Critical Slope		0.00500	ft/ft	
Velocity		6.21	ft/s	
Velocity Head		0.60	ft	
Specific Energy		1.52	ft	
Froude Number		1.30		
Maximum Discharge		21.76	ft³/s	
Discharge Full		20.23	ft³/s	
Slope Full		0.00150	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		46.04	%	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	

Burns & McDonnell

Normal Depth

Critical Depth

Channel Slope

Critical Slope

0.92 ft

1.06 ft 0.00800 ft/ft

0.00500 ft/ft

Worksheet for FES 4 - P3, 25 year

_			
Pro	IACT.	Descri	ntion
			Puon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0.012

 Channel Slope
 0.01000 ft/ft

 Diameter
 2.00 ft

 Discharge
 16.470 ft³/s

Results

Normal Depth		1.20	ft
Flow Area		1.97	ft²
Wetted Perimeter		3.55	ft
Hydraulic Radius		0.56	ft
Top Width		1.96	ft
Critical Depth		1.46	ft
Percent Full		60.0	%
Critical Slope		0.00576	ft/ft
Velocity		8.37	ft/s
Velocity Head		1.09	ft
Specific Energy		2.29	ft
Froude Number		1.47	
Maximum Discharge		26.36	ft³/s
Discharge Full		24.51	ft³/s
Slope Full		0.00452	ft/ft
Flow Type	SuperCritical		

GVF Input Data

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	60.02	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.20	ft
Critical Depth	1.46	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00576	ft/ft

Worksheet for SW-1A-10yr

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.00500	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	11.970	ft³/s

Results

Normal Depth		1.18	ft
Flow Area		6.55	ft²
Wetted Perimeter		9.47	ft
Hydraulic Radius		0.69	ft
Top Width		9.09	ft
Critical Depth		0.73	ft
Critical Slope		0.03960	ft/ft
Velocity		1.83	ft/s
Velocity Head		0.05	ft
Specific Energy		1.23	ft
Froude Number		0.38	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.18	ft
Critical Depth	0.73	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.03960	ft/ft

Worksheet for SW-1A-100yr

Project	Description
---------	-------------

Friction Method Manning Formula Normal Depth Solve For

Input Data

Roughness Coefficient	0.045		
Channel Slope	0.00500	ft/ft	
Left Side Slope	3.00	ft/ft (H:V)	
Right Side Slope	3.00	ft/ft (H:V)	
Bottom Width	2.00	ft	
Discharge	31.610	ft³/s	

Results

Normal Depth		1.82	ft
Flow Area		13.52	ft²
Wetted Perimeter		13.48	ft
Hydraulic Radius		1.00	ft
Top Width		12.89	ft
Critical Depth		1.18	ft
Critical Slope		0.03477	ft/ft
Velocity		2.34	ft/s
Velocity Head		0.08	ft
Specific Energy		1.90	ft
Froude Number		0.40	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.82	ft
Critical Depth	1.18	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.03477	ft/ft

	Worksheet fo	or SW-1A-R-	10yr	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.078		
Channel Slope		0.10000	ft/ft	
Left Side Slope		3.00	ft/ft (H:V)	
Right Side Slope		3.00	ft/ft (H:V)	
Bottom Width		2.00	ft	
Discharge		11.970	ft³/s	
Results				
Normal Depth		0.76	ft	
Flow Area		3.25	ft²	
Wetted Perimeter		6.81	ft	
Hydraulic Radius		0.48	ft	
Top Width		6.56	ft	
Critical Depth		0.73	ft	
Critical Slope		0.11897	ft/ft	
Velocity		3.68	ft/s	
Velocity Head		0.21	ft	
Specific Energy		0.97	ft	
Froude Number		0.92		
Flow Type	Subcritical			
OVE Innet Data				

GVF	Input	Data
------------	-------	------

Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	0

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.76	ft
Critical Depth	0.73	ft
Channel Slope	0.10000	ft/ft
Critical Slope	0.11897	ft/ft

Worksheet for SW-1A-R-100yr

2ro	iect	Descri	ntion
-10	PCL	Descii	puon

Friction Method Manning Formula Solve For Normal Depth

Input Data

Roughness Coefficient	0.078	
Channel Slope	0.10000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	31.610	ft³/s

Results

Normal Depth		1.19	ft
Flow Area		6.67	ft²
Wetted Perimeter		9.55	ft
Hydraulic Radius		0.70	ft
Top Width		9.17	ft
Critical Depth		1.18	ft
Critical Slope		0.10445	ft/ft
Velocity		4.74	ft/s
Velocity Head		0.35	ft
Specific Energy		1.54	ft
Froude Number		0.98	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.19	ft
Critical Depth	1.18	ft
Channel Slope	0.10000	ft/ft
Critical Slope	0.10445	ft/ft

	Worksheet 1	for SW-1R-1	Ovr	
	Worksneet	101 3W-1D-1	- Cyr	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.045		
Channel Slope		0.02800	ft/ft	
Left Side Slope		3.00	ft/ft (H:V)	
Right Side Slope		3.00	ft/ft (H:V)	
Bottom Width		4.00	ft	
Discharge		12.460	ft³/s	
Results				
Normal Depth		0.63	ft	
Flow Area		3.75	ft²	
Wetted Perimeter		8.01	ft	
Hydraulic Radius		0.47	ft	
Top Width		7.81	ft	
Critical Depth		0.58	ft	
Critical Slope		0.04002	ft/ft	
Velocity		3.33	ft/s	
Velocity Head		0.17	ft	
Specific Energy		0.81	ft	
Froude Number		0.85		
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.63	ft
Critical Depth	0.58	ft
Channel Slope	0.02800	ft/ft
Critical Slope	0.04002	ft/ft

Worksheet for SW-1B-100yr

Project	Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045		
Channel Slope	0.02800	ft/ft	
Left Side Slope	3.00	ft/ft (H:V)	
Right Side Slope	3.00	ft/ft (H:V)	
Bottom Width	4.00	ft	
Discharge	24.590	ft³/s	

Results

Normal Depth		0.91	ft
Flow Area		6.08	ft²
Wetted Perimeter		9.73	ft
Hydraulic Radius		0.63	ft
Top Width		9.43	ft
Critical Depth		0.85	ft
Critical Slope		0.03619	ft/ft
Velocity		4.04	ft/s
Velocity Head		0.25	ft
Specific Energy		1.16	ft
Froude Number		0.89	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.91	ft
Critical Depth	0.85	ft
Channel Slope	0.02800	ft/ft
Critical Slope	0.03619	ft/ft

Worksheet for SW-1C-10yr

Project	Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.03000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	4.00	ft
Discharge	15.550	ft³/s

Results

Normal Depth		0.70	ft
Flow Area		4.28	ft²
Wetted Perimeter		8.43	ft
Hydraulic Radius		0.51	ft
Top Width		8.20	ft
Critical Depth		0.65	ft
Critical Slope		0.03870	ft/ft
Velocity		3.64	ft/s
Velocity Head		0.21	ft
Specific Energy		0.91	ft
Froude Number		0.89	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.70	ft
Critical Depth	0.65	ft
Channel Slope	0.03000	ft/ft
Critical Slope	0.03870	ft/ft

Worksheet for SW-1C-100yr

_		_		
Pro	IACT.	Des	rın	tion
		レしる	JIID	uon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.03000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	4.00	ft
Discharge	32.110	ft³/s

Results

Normal Depth		1.02	ft
Flow Area		_	ft²
		_	
Wetted Perimeter		10.45	ft
Hydraulic Radius		0.69	ft
Top Width		10.12	ft
Critical Depth		0.98	ft
Critical Slope		0.03485	ft/ft
Velocity		4.46	ft/s
Velocity Head		0.31	ft
Specific Energy		1.33	ft
Froude Number		0.93	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.02	ft
Critical Depth	0.98	ft
Channel Slope	0.03000	ft/ft
Critical Slope	0.03485	ft/ft

0.00 ft

	Workshe	et for UI	D-1
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.00500	ft/ft
Diameter		0.67	ft
Discharge		0.830	ft³/s
Results			
Normal Depth		0.49	ft
Flow Area		0.28	ft²
Wetted Perimeter		1.37	ft
Hydraulic Radius		0.20	ft
Top Width		0.59	ft
Critical Depth		0.43	ft
Percent Full		73.1	%
Critical Slope		0.00706	ft/ft
Velocity		3.01	ft/s
Velocity Head		0.14	ft
Specific Energy		0.63	ft
Froude Number		0.78	
Maximum Discharge		1.01	ft³/s
Discharge Full		0.94	ft³/s
Slope Full		0.00391	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.49	ft
Length		255.00	ft
Number Of Steps		5	
GVF Output Data			
Upstream Depth		0.49	ft
Profile Description	M1		
Profile Headloss		1.27	ft

Downstream Velocity Burns & McDonnell

Average End Depth Over Rise

Normal Depth Over Rise

73.12 %

73.11 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshee	et for UD	-10	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.00500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.49	ft	
Flow Area		0.28	ft²	
Wetted Perimeter		1.37	ft	
Hydraulic Radius		0.20	ft	
Top Width		0.59	ft	
Critical Depth		0.43	ft	
Percent Full		73.1	%	
Critical Slope		0.00706	ft/ft	
Velocity		3.01	ft/s	
Velocity Head		0.14	ft	
Specific Energy		0.63	ft	
Froude Number		0.78		
Maximum Discharge		1.01	ft³/s	
Discharge Full		0.94	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		200.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.49	ft	
Profile Description	M1			

Upstream Depth		0.49	ft
Profile Description	M1		
Profile Headloss		1.00	ft
Average End Depth Over Rise		73.12	%
		70.44	

Normal Depth Over Rise 73.11 %

Downstream Velocity 3.00 ft/s

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshee	et for UD	-11	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.00500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.49	ft	
Flow Area		0.28	ft²	
Wetted Perimeter		1.37	ft	
Hydraulic Radius		0.20	ft	
Top Width		0.59	ft	
Critical Depth		0.43	ft	
Percent Full		73.1	%	
Critical Slope		0.00706	ft/ft	
Velocity		3.01	ft/s	
Velocity Head		0.14	ft	
Specific Energy		0.63	ft	
Froude Number		0.78		
Maximum Discharge		1.01	ft³/s	
Discharge Full		0.94	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		200.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.49	ft	
Profile Description	M1		-	
Profile Headloss		1.00	ft	
		-	-	

Downstream Velocity

Burns & McDonnell

Average End Depth Over Rise

Normal Depth Over Rise

73.12 %

73.11 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshee	et for UD	-12	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
nput Data				
Roughness Coefficient		0.012		
Channel Slope		0.00500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.49	ft	
Flow Area		0.28	ft²	
Netted Perimeter		1.37	ft	
Hydraulic Radius		0.20	ft	
Top Width		0.59	ft	
Critical Depth		0.43	ft	
Percent Full		73.1	%	
Critical Slope		0.00706	ft/ft	
/elocity		3.01	ft/s	
Velocity Head		0.14	ft	
Specific Energy		0.63	ft	
Froude Number		0.78		
Maximum Discharge		1.01	ft³/s	
Discharge Full		0.94	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length			ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.49	ft	
Profile Description	M1			
Profile Headloss		1.00	ft	

Downstream Velocity
Burns & McDonnell

Average End Depth Over Rise

Normal Depth Over Rise

73.12 %

73.11 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshee	et for UD	-13	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.01500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.34	ft	
Flow Area		0.18	ft²	
Wetted Perimeter		1.06	ft	
Hydraulic Radius		0.17	ft	
Top Width		0.67	ft	
Critical Depth		0.43	ft	
Percent Full		50.6	%	
Critical Slope		0.00706	ft/ft	
Velocity		4.63	ft/s	
Velocity Head		0.33	ft	
Specific Energy		0.67	ft	
Froude Number		1.58		
Maximum Discharge		1.75	ft³/s	
Discharge Full		1.62	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		255.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.43	ft	
Profile Description	Composite S1 -> S2			
Profile Headloss		3.77	ft	
Average End Depth Over Rise		68.72	%	

Burns & McDonnell

Normal Depth Over Rise

Downstream Velocity

50.63 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.34 ft Critical Depth 0.43 ft Channel Slope 0.01500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshee	et for UD	-14
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.01900	ft/ft
Diameter		0.67	ft
Discharge		0.830	ft³/s
Results			
Normal Depth		0.32	ft
Flow Area		0.16	ft²
Wetted Perimeter		1.02	ft
Hydraulic Radius		0.16	ft
Top Width		0.67	ft
Critical Depth		0.43	ft
Percent Full		47.3	%
Critical Slope		0.00706	ft/ft
Velocity		5.06	ft/s
Velocity Head		0.40	ft
Specific Energy		0.71	ft
Froude Number		1.80	
Maximum Discharge		1.97	ft³/s
Discharge Full		1.83	ft³/s
Slope Full		0.00391	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.49	ft
Length		175.00	ft
Number Of Steps		5	
GVF Output Data			
Upstream Depth		0.43	ft
Profile Description	Composite S1 -> S2		
Profile Headloss		3.27	ft
Average End Depth Over Rise		68.72	%

Burns & McDonnell

Downstream Velocity

Normal Depth Over Rise

47.26 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.32 ft Critical Depth 0.43 ft Channel Slope 0.01900 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshe	et for UI	D-2	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.00500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.49	ft	
Flow Area		0.28	ft²	
Wetted Perimeter		1.37	ft	
Hydraulic Radius		0.20	ft	
Top Width		0.59	ft	
Critical Depth		0.43	ft	
Percent Full		73.1	%	
Critical Slope		0.00706	ft/ft	
Velocity		3.01	ft/s	
Velocity Head		0.14	ft	
Specific Energy		0.63	ft	
Froude Number		0.78		
Maximum Discharge		1.01	ft³/s	
Discharge Full		0.94	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		255.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.49	ft	
Profile Description	M1			
Profile Headloss		1.27	ft	
Average End Depth Over Rise		73.12	%	
		· - · · -	, .	

Burns & McDonnell

Downstream Velocity

Normal Depth Over Rise

73.11 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshe	et for UI	D-3
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.00500	ft/ft
Diameter		0.67	ft
Discharge		0.830	ft³/s
Results			
Normal Depth		0.49	ft
Flow Area		0.28	ft²
Wetted Perimeter		1.37	ft
Hydraulic Radius		0.20	ft
Top Width		0.59	ft
Critical Depth		0.43	ft
Percent Full		73.1	%
Critical Slope		0.00706	ft/ft
Velocity		3.01	ft/s
Velocity Head		0.14	ft
Specific Energy		0.63	ft
Froude Number		0.78	
Maximum Discharge		1.01	ft³/s
Discharge Full		0.94	ft³/s
Slope Full		0.00391	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.49	ft
Length		370.00	ft
Number Of Steps		5	
GVF Output Data			
Upstream Depth		0.49	ft
Profile Description	M1		

Upstream Depth		0.49	ft
Profile Description	M1		
Profile Headloss		1.85	ft
Average End Depth Over Rise		73.12	%
Normal Depth Over Rise		73.11	%
Downstream Velocity		3.00	ft/s

Burns & McDonnell

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshe	et for UI	D-4	-
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
	Normai Deptii			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.01600	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.33	ft	
Flow Area		0.17	ft²	
Wetted Perimeter		1.05	ft	
Hydraulic Radius		0.17	ft	
Top Width		0.67	ft	
Critical Depth		0.43	ft	
Percent Full		49.7	%	
Critical Slope		0.00706	ft/ft	
Velocity		4.75	ft/s	
Velocity Head		0.35	ft	
Specific Energy		0.68	ft	
Froude Number		1.64		
Maximum Discharge		1.81	ft³/s	
Discharge Full		1.68	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		192.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.43	ft	
Profile Description	Composite S1 -> S2			
Profile Headloss	,	3.01	ft	
Average End Depth Over Rise		68.72	%	
		<u> </u>	70	

Burns & McDonnell

Downstream Velocity

Normal Depth Over Rise

49.67 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.33 ft Critical Depth 0.43 ft Channel Slope 0.01600 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshe	et for Ul)-5	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.01500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.34	ft	
Flow Area		0.18	ft²	
Wetted Perimeter		1.06	ft	
Hydraulic Radius		0.17	ft	
Top Width		0.67	ft	
Critical Depth		0.43	ft	
Percent Full		50.6	%	
Critical Slope		0.00706	ft/ft	
Velocity		4.63	ft/s	
Velocity Head		0.33	ft	
Specific Energy		0.67	ft	
Froude Number		1.58		
Maximum Discharge		1.75	ft³/s	
Discharge Full		1.62	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		218.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.43	ft	
Profile Description	Composite S1 -> S2			
Profile Headloss	·	3.21	ft	

Downstream Velocity

Burns & McDonnell

Average End Depth Over Rise

Normal Depth Over Rise

68.72 %

50.63 %

3.00 ft/s

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.34 ft Critical Depth 0.43 ft Channel Slope 0.01500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshe	et for UI	D-6	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.00500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.49	ft	
Flow Area		0.28	ft²	
Wetted Perimeter		1.37	ft	
Hydraulic Radius		0.20	ft	
Top Width		0.59	ft	
Critical Depth		0.43	ft	
Percent Full		73.1	%	
Critical Slope		0.00706	ft/ft	
Velocity		3.01	ft/s	
Velocity Head		0.14	ft	
Specific Energy		0.63	ft	
Froude Number		0.78		
Maximum Discharge		1.01	ft³/s	
Discharge Full		0.94	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		370.00	ft	
Number Of Steps		5		
GVF Output Data				
		0.40		

GVF Output Data					
Upstream Depth		0.49	ft		
Profile Description	M1				
Profile Headloss		1.85	ft		
Average End Depth Over Rise		73.12	%		
Normal Depth Over Rise		73.11	%		
Downstream Velocity		3.00	ft/s		

Burns & McDonnell

GVF Output Data

Upstream Velocity 3.01 ft/s Normal Depth 0.49 ft Critical Depth 0.43 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshe	et for Ul	D-7	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.01500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.34	ft	
Flow Area		0.18	ft²	
Wetted Perimeter		1.06	ft	
Hydraulic Radius		0.17	ft	
Top Width		0.67	ft	
Critical Depth		0.43	ft	
Percent Full		50.6	%	
Critical Slope		0.00706	ft/ft	
Velocity		4.63	ft/s	
Velocity Head		0.33	ft	
Specific Energy		0.67	ft	
Froude Number		1.58		
Maximum Discharge		1.75	ft³/s	
Discharge Full		1.62	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		200.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.43	ft	
Profile Description	Composite S1 -> S2			
Profile Headloss		2.94	ft	

Upstream Depth		0.43	ft
Profile Description	Composite S1 -> S2		
Profile Headloss		2.94	ft
Average End Depth Over Rise		68.72	%
Normal Depth Over Rise		50.63	%
Downstream Velocity		3.00	ft/s

Burns & McDonnell

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.34 ft Critical Depth 0.43 ft Channel Slope 0.01500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

	Workshee	et for Ul	D-8	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.012		
Channel Slope		0.01500	ft/ft	
Diameter		0.67	ft	
Discharge		0.830	ft³/s	
Results				
Normal Depth		0.34	ft	
Flow Area		0.18	ft²	
Wetted Perimeter		1.06	ft	
Hydraulic Radius		0.17	ft	
Top Width		0.67	ft	
Critical Depth		0.43	ft	
Percent Full		50.6	%	
Critical Slope		0.00706	ft/ft	
Velocity		4.63	ft/s	
Velocity Head		0.33	ft	
Specific Energy		0.67	ft	
Froude Number		1.58		
Maximum Discharge		1.75	ft³/s	
Discharge Full		1.62	ft³/s	
Slope Full		0.00391	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.49	ft	
Length		200.00	ft	
Number Of Steps		5		
GVF Output Data				
Upstream Depth		0.43	ft	
Profile Description	Composite S1 -> S2	-	-	
	•			

Profile Description

Composite S1 -> S2

Profile Headloss

2.94 ft

Average End Depth Over Rise

Normal Depth Over Rise

50.63 %

Downstream Velocity

3.00 ft/s

Burns & McDonnell

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.34 ft Critical Depth 0.43 ft Channel Slope 0.01500 ft/ft Critical Slope 0.00706 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

Project Description	
Friction Method	Manning Formula

Solve For Normal Depth

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.01000	ft/ft
Diameter	0.67	ft
Discharge	0.830	ft³/s

Results

Normal Depth		0.38	ft
Flow Area		0.21	ft²
Wetted Perimeter		1.15	ft
Hydraulic Radius		0.18	ft
Top Width		0.66	ft
Critical Depth		0.43	ft
Percent Full		57.3	%
Critical Slope		0.00705	ft/ft
Velocity		3.97	ft/s
Velocity Head		0.25	ft
Specific Energy		0.63	ft
Froude Number		1.25	
Maximum Discharge		1.43	ft³/s
Discharge Full		1.33	ft³/s
Slope Full		0.00391	ft/ft
Flow Type	SuperCritical		

GVF Input Data

Downstream Depth	0.49	ft
Length	200.00	ft
Number Of Steps	5	

GVF Output Data

Upstream Depth		0.43	ft
Profile Description	Composite S1 -> S2		
Profile Headloss		1.94	ft
Average End Depth Over Rise		68.72	%
Normal Depth Over Rise		57.32	%
Downstream Velocity		3.00	ft/s

Burns & McDonnell

GVF Output Data

Upstream Velocity 3.46 ft/s Normal Depth 0.38 ft Critical Depth 0.43 ft Channel Slope 0.01000 ft/ft Critical Slope 0.00705 ft/ft

Messages

Notes

10 Year Peak Flow for Sub-Area 1B = 11.56 With 14 underdrains it is assumed that this flow can be divided between the conduits.

Worksheet for Emergency Spillway Channel- DT1 - 100 yr

works	worksneet for Emergency Spillway Channel- D11 - 100 yr				
Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient		0.078			
Channel Slope		0.33300	ft/ft		
Left Side Slope		3.00	ft/ft (H:V)		
Right Side Slope		3.00	ft/ft (H:V)		
Bottom Width		33.00	ft		
Discharge		9.470	ft³/s		
Results					
Normal Depth		0.11	ft		
Flow Area		3.73	ft²		
Wetted Perimeter		33.71	ft		
Hydraulic Radius		0.11	ft		
Top Width		33.67	ft		
Critical Depth		0.14	ft		
Critical Slope		0.17330	ft/ft		
Velocity		2.54	ft/s		
Velocity Head		0.10	ft		
Specific Energy		0.21	ft		
Froude Number		1.34			
Flow Type	Supercritical				

GVF	Input	Data
-----	-------	------

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.11	ft
Critical Depth	0.14	ft
Channel Slope	0.33300	ft/ft
Critical Slope	0.17330	ft/ft

0.00 ft

Worksheet for Emergency Spillway Weir - DT1 - 100 yr

Project Description			
Solve For	Headwater Elevation		
Input Data			
Discharge		9.470	ft³/s
Crest Elevation		383.00	ft
Tailwater Elevation		0.00	ft
Crest Surface Type	Gravel		
Crest Breadth		12.00	ft
Crest Length		33.00	ft
Results			
Headwater Elevation		383.23	ft
Headwater Height Above Crest		0.23	ft
Tailwater Height Above Crest		-383.00	ft
Weir Coefficient		2.60	US
Submergence Factor		1.00	
Adjusted Weir Coefficient		2.60	US
Flow Area		7.60	ft²
Velocity		1.25	ft/s
Wetted Perimeter		33.46	ft
Top Width		33.00	ft

Worksheet for Emergency Spillway Channel- IF1 - 100 yr

21 0111		ор ау о	
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.078	
Channel Slope		0.33333	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	ft/ft (H:V)
Bottom Width		32.00	ft
Discharge		18.870	ft³/s
Results			
Normal Depth		0.17	ft
Flow Area		5.60	ft²
Wetted Perimeter		33.09	ft
Hydraulic Radius		0.17	ft
Top Width		33.03	ft
Critical Depth		0.22	ft
Critical Slope		0.14830	ft/ft
Velocity		3.37	ft/s
Velocity Head		0.18	ft
Specific Energy		0.35	ft
Froude Number		1.44	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.23	ft
Length		15.00	ft
Number Of Steps		5	
GVF Output Data			
Upstream Depth		0.22	ft
Profile Description	Composite S1 -> S2		
Profile Headloss		4.99	ft
Downstream Velocity		2.51	ft/s
Upstream Velocity		2.63	ft/s
Normal Depth		0.17	ft
Critical Depth		0.22	ft
Channel Slope		0.33333	ft/ft
Critical Slope		0.14830	ft/ft

Worksheet for Emergency Spillway Weir- IF1 -100 yr

Project Description			
Solve For	Headwater Elevation		
Input Data			
Discharge	18	8.870	ft³/s
Crest Elevation	37	72.00	ft
Tailwater Elevation		0.00	ft
Crest Surface Type	Gravel		
Crest Breadth	•	12.00	ft
Crest Length	3	32.00	ft
Results			
Headwater Elevation	37	72.37	ft
Headwater Height Above Crest		0.37	ft
Tailwater Height Above Crest	-37	72.00	ft
Weir Coefficient		2.65	US
Submergence Factor		1.00	
Adjusted Weir Coefficient		2.65	US
Flow Area	•	11.76	ft²
Velocity		1.61	ft/s
Wetted Perimeter	3	32.73	ft
Top Width	3	32.00	ft

Worksheet for Emergency Spillway Channel- SF - 10 yr

Project	Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.078	
Channel Slope	0.33300	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	13.00	ft
Discharge	11.710	ft³/s

Results

Normal Depth		0.22	ft
Flow Area		3.02	ft²
Wetted Perimeter		14.40	ft
Hydraulic Radius		0.21	ft
Top Width		14.33	ft
Critical Depth		0.29	ft
Critical Slope		0.13833	ft/ft
Velocity		3.88	ft/s
Velocity Head		0.23	ft
Specific Energy		0.45	ft
Froude Number		1.49	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.22	ft
Critical Depth	0.29	ft
Channel Slope	0.33300	ft/ft
Critical Slope	0.13833	ft/ft

0.00 ft

Worksheet for Emergency Spillway Weir - SF- 10 yr

Solve For Headwater Elevation

Input D	Data
---------	------

Discharge		11.710	ft³/s
Crest Elevation		378.00	ft
Tailwater Elevation		0.00	ft
Crest Surface Type	Gravel		
Crest Breadth		13.00	ft
Crest Length		13.00	ft

Results

Headwater Elevation	378.48	ft
Headwater Height Above Crest	0.48	ft
Tailwater Height Above Crest	-378.00	ft
Weir Coefficient	2.69	US
Submergence Factor	1.00	
Adjusted Weir Coefficient	2.69	US
Flow Area	6.27	ft²
Velocity	1.87	ft/s
Wetted Perimeter	13.97	ft
Top Width	13.00	ft

Client E	versource			_Page	1	of	
Project	Northern Pass	Date	12/30/16	Made By C	C. Kane		
	Deerfield Substation			Checked B	By R. Re	ed	
	Swale Shear Stress			_ _ Proliminar\	,	Final	v

				She	ar S	Stre	ess C	alcu	latio	ons	for	Swal	es													
Г																		Alle	owak	ole			Cal	cula	ated	
				10 y	yr :	*	1	0 yr	flov	٧*	Cha	nnel	*	С	hanr	nel		She	ear				She	ear		T
T	Sv	vale		Flov			d	epth	າ (ft))	Slop	oe (ft	/ft)	L	ning			Str	ess (lb/ft	:)		Str	ess	(lb/f	t)
S١	W-1	Α			11.9	97		1.	.18			0.00	5	NΑ	G/S0	C250			8					0.3	37	
S١	W-1	A-R			11.9	97		0.	.76			0.1		12	" Rip	orap			4.8					4.7	'4	
S١	W-1	B			12.4	46		0.	.63			0.02	8			C250			8					1.:	1	
S١	W-1	C			15.	55		0).7			0.03	3	NΑ	G/S0	C250			8					1.3	31	
		_			_						_									-						4
╁	+			She	ar S	Stre	ess C	alcu	latio	on f	or B	Basin	 Spillw	av	+			Н	+	+		Н		-	-	+
T	+	+	,	' Sto										,			All	owa	able	+	т	Cal	cul	ated	*	*
f	+	+		Eve			1	low	,	Cha	anne	el		Char	nel		_	ear		+		She	_		+	1
Ва	asir	1	Flo	w (c				h (ft				ft/ft)		Linin					(lb/f	t)				(lb/	ft)	1
D.	T-1			9.4	_).11			0.33			2" Rip			_	4.		-			2.2		•	7
IF	-1			18.	87	1	().17			0.33	33		2" Rip				4.	8				3.5	53		7
SI	F-1			11.	71		().22			0.33	33		2" Rip				4.	8				4.5	57		1
Г																										T
*	Va	alue	s ta	ken	fro	m F	low	mas	ter	Res	ults	- 100) year	storr	n eve	ent ι	ised t	for c	deter	ntior	n ba	sins	;			
10 year storm even used for sa																										
	_																									
-	* Sh	near	str	ess =	= 62	2.4	lb/c	f x (f	low	de	oth)	x (ch	annel							\perp						
-	_	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	ırec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel	cture	er's p					on if	mai	nufa	actu	irec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	ırec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	maı	nufa	actu	ırec	l linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	irec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	irec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	maı	nufa	actu	irec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	I linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	I linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					pon if	mai	nufa	actu	urec	I linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	I linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	man	nufa	actu	urec	l linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	əctu	urec	l linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	ured	I lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	l linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	l lini	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	ured	I linii	ng
-	* Sh	near All	str low	ess = able	= 62 : sh	2.4 ear	lb/c Stre	f x (f ess a	low re ta	de _l ake	oth) n fro	x (ch om M	annel Ianufa	cture	er's p					on if	mai	nufa	actu	urec	l linii	ng

Erosion Control Materials Design Software Version 5.0

Project Name: Deerfield Project Number: 107457 Project Location: Deerfield, NH Channel Name: SW-1A

Discharge	11.97
Peak Flow Period	24
Channel Slope	0.005
Channel Bottom Width	2
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	С
Vegtation Type	Bunch Type
Vegetation Density	Good 75-95%
Soil Type	Sandy Loam

SC250 - Class C - Bunch Type - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
SC250 Unvegetated	Straight	11.97 cfs	2.44 ft/s	0.99 ft	0.031	2.5 lbs/ft2	0.31 lbs/ft2	8.1	STABLE	Е
SC250 Reinforced Vegetation	Straight		1.12 ft/s	1.58 ft	0.086	8 lbs/ft2	0.49 lbs/ft2	16.22	STABLE	Е
Underlying Substrate	Straight	11.97 cfs	1.12 ft/s	1.58 ft		0.8 lbs/ft2	0.012 lbs/ft2	66.49	STABLE	

Erosion Control Materials Design Software Version 5.0

Project Name: Deerfield Project Number: 107457
Project Location: Deerfield, NH
Channel Name: SW-1A-R

Discharge	11.97
Peak Flow Period	24
Channel Slope	0.1
Channel Bottom Width	2
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	
Vegtation Type	
Vegetation Density	Good 75-95%
Soil Type	Sandy Loam

Rock Riprap

* *										
Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Rock Riprap Unvegetated	Straight	11.97 cfs	7.06 ft/s	0.49 ft	0.032	4 lbs/ft2	3.05 lbs/ft2	1.31	STABLE	

Erosion Control Materials Design Software Version 5.0

Project Name: Deerfield Project Number: 107457 Project Location: Deerfield, NH **Channel Name: SW-1B**

Discharge	12.46
Peak Flow Period	24
Channel Slope	0.028
Channel Bottom Width	4
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	С
Vegtation Type	Bunch Type
Vegetation Density	Good 75-95%
Soil Type	Sandy Loam

SC250 - Class C - Bunch Type - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
SC250 Unvegetated	Straight	12.46 cfs	3.72 ft/s	0.58 ft	0.038	2.5 lbs/ft2	1.02 lbs/ft2	2.46	STABLE	Е
SC250 Reinforced Vegetation	Straight		2.33 ft/s	0.83 ft	0.074	8 lbs/ft2	1.44 lbs/ft2	5.55	STABLE	Е
Underlying Substrate	Straight	12.46 cfs	2.33 ft/s	0.83 ft		0.8 lbs/ft2	0.149 lbs/ft2	5.36	STABLE	

Erosion Control Materials Design Software Version 5.0

Project Name: Deerfield Project Number: 108839 Project Location: Deerfield, NH Channel Name: SW-1C

Discharge	15.55
Peak Flow Period	24
Channel Slope	.03
Channel Bottom Width	4
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	С
Vegtation Type	Bunch Type
Vegetation Density	Good 75-95%
Soil Type	Sandy Loam

SC250 - Class C - Bunch Type - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
SC250 Unvegetated	Straight	15.55 cfs	4.15 ft/s	0.64 ft	0.037	2.5 lbs/ft2	1.19 lbs/ft2	2.1	STABLE	Е
SC250 Reinforced Vegetation	Straight	15.55 cfs	2.7 ft/s	0.87 ft	0.068	8 lbs/ft2	1.63 lbs/ft2	4.91	STABLE	Е
Underlying Substrate	Straight	15.55 cfs	2.7 ft/s	0.87 ft		0.8 lbs/ft2	0.189 lbs/ft2	4.24	STABLE	

BURNS Client Eversource

MCDONNELL Project Northern Pass Date Checked By R. Reed Deerfield Substation Outlet Protection - Riprap Sizing Preliminary _____Final

				'	Apron Len	gth
Source:			Apron —			
New Hampshire Stormwate	r Manual	Volume 2	Width at			
Post-Construction Best Man			Outlet		1	Apron
Selection & Design, Dec 200	_					Width
Selection & Design, Dec 200	o, sectioi	14.0.0				at End
				\$666566		at Ellu
					<u>V</u>	
				100000000		Apron
	\perp			222222		Depth
						Бериі
Apron Width at Outlet:	Width:	= 3 x Pipe Dia	a. (or width o	of channel)		
Apron Length:	Length:	= (1.8 x Q) / (Dia. ^1.5) +	7 x Dia.		epth is < 1/2 dia.
	Length	= (3.0 x Q) / (Dia. ^1.5) +	7 x Dia.	if Tw de	epth is >= 1/2 dia.
Apron Width at End:	Width:	= 3 x Dia + Apı	ron Length		if Tw de	epth is < 1/2 dia.
	Width:	= 3 x Dia + 0.4	x Apron Ler	ngth	if Tw de	epth is >= 1/2 dia.
		n width = cha	· ·			
Rock Riprap:	Mediar	n Diameter =	(0.2 x 0.^4	1/3) / Tw x Dia	a	
Nock Hiprop.		= 18" or 1.5 x			<u> </u>	
	Верин	- 10 01 1.5 X	largest stork	c did.		
Design Element		Low Flow	FES-1	FES-2	FES-3	FES-4
Design Storm (YR)		WQF	25-yr	25-yr	25-yr	25-yr
Defined Channel (yes/no)		No	-	-		
Channel Width (ft)		1.14	No	Yes	No	Yes
. ,		N/A	N/A	4	N/A	4
Pipe Dia (in)		4	18	12	24	24
Tail Water (ft)		1	0.1	0.48	0.1	0.44
	$\perp \perp \perp$	TW>=0.5D	TW<0.5D	TW<0.5D	TW<0.5D	TW<0.5D
Flow (Q), cfs		0.23	1.79	0.46	8.77	16.47
Apron Width (outlet) ft		1	4.5	4	6	4
Apron Length, ft		5.92	12.25	7.83	19.58	24.48
Apron Width (end) ft		3.37	16.75	10.83	25.58	30.48
Apron Width, (channel), ft		N/A	N/A	4	N/A	4
Median Stone dia. (D50), i	nches	6	6	6	20.2	10.4
Apron Depth, inches		18	18	18	60.6	31.2
<u> </u>						
	+++					
	+++	 		++++		
		+		+	+	+

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.06)

Type/Node Name:

Surface Sand Filter SF-1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.06(b)?
3.98 ac	A = Area draining to the practice1
0.32 ac	A_I = Impervious area draining to the practice
0.08 decimal	I = percent impervious area draining to the practice, in decimal form
0.12 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.49 ac-in	WQV=1" x Rv x A
1,768 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")
442 cf	25% x WQV (check calc for sediment forebay volume)
1,326 cf	75% x WQV (check calc for surface sand filter volume)
Sediment Forebay	Method of Pretreatment? (not required for clean or roof runoff)
452 cf	V_{SED} = sediment forebay volume, if used for pretreatment $\leftarrow \geq 25\%WQV$
603 sf	A_{SA} = surface area of the practice
0.50 iph	$I_{DESIGN} = design infiltration rate2$
Yes Yes/No	If I _{DESIGN} is < 0.50 iph, has an underdrain been provided?
70.4 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ $\leftarrow \leq 72-hrs$
373.75 feet	E_{FC} = elevation of the bottom of the filter course material
372.00 feet	E _{UD} = invert elevation of the underdrain (UD), if applicable
371.90 feet	E_{BTM} = elevation of the bottom of the practice (i.e., bottom of the stone reservoir).
N/A* feet	E _{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)
N/A* feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)
1.75 feet	$D_{FC \text{ to UD}} = \text{depth to UD from the bottom of the filter course}^3$ $\leftarrow \ge 1'$
#VALUE! feet	$D_{FC \text{ to ROCK}} = \text{depth to bedrock from the bottom of the filter course}^3$ $\leftarrow \geq 1'$
#VALUE! feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}^3$ $\leftarrow \geq 1'$
#VALUE! feet	$D_{BTM \text{ to } SHWT} = depth \text{ to } SHWT \text{ from the bottom of the practice}^3$ $\leftarrow \geq 2'$
378.45 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)
379.00 ft	Elevation of the top of the practice
YES	10 peak elevation \leq Elevation of the top of the practice \leftarrow yes
If a gunfage gond filts	

If a surface sand filter is proposed:

	YES	ac	Drainage Area check.	← < 10 ac
	2,859	cf	$V = \text{volume of storage}^{4,5}$ (attach a stage-storage table)	← ≥ 75%WQV
	24.0	inches	D_{FC} = filter course thickness	← 18"
	Sheet	C509	Note what sheet in the plan set contains the filter course specification	
Y	es	Yes/No	Access grate provided?	← yes
	Ston	e Fill	The filter shall not be covered in grass. What is covering the filter?	

If an underground sand filter is proposed:

YES ac	;	Drainage Area check.	← < 10 ac
cf	•	$V = volume of storage^{4,5}$ (attach a stage-storage table)	← ≥75%WQV
in	ches	D_{FC} = filter course thickness	← 24''
Sheet		Note what sheet in the plan set contains the filter course specification	
Ye	es/No	Access grate provided?	← yes

If a bioretention area is proposed:

YES	ac	Drainage Area no larger than 5 ac?	← yes
	cf	V = volume of storage ^{4,5} (attach a stage-storage table)	$\leftarrow \geq WQV$
	inches	D_{FC} = filter course thickness	← 18''
Sheet	•	Note what sheet in the plan set contains the filter course specification	
	:1	Pond side slopes	← ≥2:1
Sheet	•	Note what sheet in the plan set contains the planting plans and surface	cover

If porous pavement is proposed:

	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
acres	A_{SA} = surface area of the pervious pavement	
- :1	ratio of the contributing area to the pervious surface area	← 5:1
3.0 inches	D_{FC} = filter course thickness	← 12"
Sheet	Note what sheet in the plan set contains the filter course spec.	← 304.1 sand

- 1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre
- 2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.
- 3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.
- 4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.
- 5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Designer's Notes:
* Elevation of bottom of filter course (Efc) is approximately 1.75-ft above existing grade,
therefore minimum 1-ft separation to both the SHWT and bedrock are met.
Elevation of bottom of the practice (Ebtm) is equal to existing grade.

Client_	Eversourd	e		Page	of	
Project	Northern Pass	Date	10/13/15	Made By R.Reed		
	Deerfield Substation		Checked By			
	Surface Sand Filter SF-1 - St	Preliminary	Final x			

Stage/Storage Calculations

Volume Below Filter Bed

ELEV	AREA	AREA	DIFFERENCE IN	STORA	STORAGE VOLUME (Conic Method)							
(FT.)	(S.F.)	(Ac)	ELEVATION (FT.)	INCREMENTAL	x 0.40 *	TOTAL (CF)	Total Ac-Ft					
373.75	603	0.014		0	0	0	0					
374.00	603	0.014	0.25	151	60	60	0.001					
375.00	603	0.014	1.00	603	241	302	0.007					
375.90	603	0.014	0.90	543	217	519	0.012					

^{* 0.4 =} void factor of filter material

Volume Above Filter Bed

ELEV	AREA	AREA	DIFFERENCE IN	STORAGE VOLUME (Conic Method)							
(FT.)	(S.F.)	(Ac)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft					
375.90	576	0.013		0	0	0					
376.00	603	0.014	0.10	59	59	0.001					
377.00	906	0.021	1.00	749	808	0.019					
378.00	1265	0.029	1.00	1081	1889	0.043					

<-- Spillway
Elevation

Volume of Forebay

				•							
Г	ELEV	AREA	AREA	DIFFERENCE IN	STORAGE VC	OLUME (Conic Method)					
	(FT.)	(S.F.)	(Ac)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft				
Ī	376.00	116	0.003		0	0	0				
	377.00	266	0.006	1.00	127	127	0.003				
	378.00	473	0.011	1.00	324	452	0.010				

WQV = 1354 CF Spillway set to Elevation 378.0

75% of WQV= 1015.5 CF 25% of WQV= 338.5 CF

Volume in the filter chamber:

519 CF below the filter bed

+ <u>1889</u> CF Above the filter bed but below the spillway

= 2407 CF total volume provided in the filter chamber

+ 452 CF in forebay

= 2859 CF of Storage provided by Sand Filter

General Calculations - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided</u>. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

3.98 ac	A = Area draining to the practice
0.32 ac	A_{I} = Impervious area draining to the practice
0.08 decimal	I = percent impervious area draining to the practice, in decimal form
0.12 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.49 ac-in	WQV= 1" x Rv x A
1,768 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.12	inches	Q = water quality depth. Q = WQV/A
82	unitless	$CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q^2 + 1.25*Q*P]^{0.5})$
2.1	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.425	inches	Ia = initial abstraction. Ia = 0.2S
6.0	minutes	$T_c = Time of Concentration$
350.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.266	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac

Designer's Notes:			

1	BURNS			Client Eversource Project Northern Pass D															Page <i>1</i>						of										
11	M	CD	10	NN	EL	L.	Pro	ojed	ct	No	rthe	ern l	Pas.	s					Da	te	1	0/1	7/1	6	Made By R. Reed										
											erfi														Ch	eck	æd	Ву							
										Wá	ater	·Qι	ıalit	y E	Зура	ass									Pre	elim	ina	ıry			Fin	nal			
																															-				
<u>Cal</u>	cul	late	<u> W</u>	<u>eir</u>	He	igh	t ar	<u>nd (</u>	<u>Orif</u>	ice	Siz	e fo	or B	y-F	ass	s St	ruc	tur	<u>e</u>																
Ш		Kn	ow	n D	ata	:																					Re	fer	enc	e					
			atei					k Fl	ow																				Ш						
	٧	NQ	F =	0.2	266	cfs																													
Ш																													Ш						
Ш		_	QF :																			ruc	ture	e (c	hed	k d	am	1)	Ш						
Ш		Siz	e tł	ne l	ow	flo	W (orif	ice	to	pas	s th	ie V	Vat	er	Qua	ality	/ Pe	ak	Flo	w								Ш						
																													Ш						
Ш		Or	ifice			_			gh)	^1/	2																		Ш						
Ш			wh	ere	: :	C=																							Ш						
Ш									e ar																				Ш						
Ш						_				ior	du	e t	o gi	avi	ity :	= 32	2.2	ft/s	ec^	2									Ш						
						h=	he	ad	ft																				Ш						
																							Ш						Ш						
			Let	H	=	1	.0	ft		(Tł	ne h	neig	ght	of t	he	Che	eck	Dai	m V	Vei	r W	/all))												
													<u> </u>																Ш						
			sol	ve	for		_				orif		(A)																Ш						
Ш											1/2			L	<u> </u>		_			. ,-		_							Ш		Ш			_	
Ш										/ (O	.6 x	(2)	x 32	2.2	ft/s	ec′	`2 x	1ft)) ^ :	1/2									Ш						
								06	_																				Ш						
Ш			So	lve	for						f th		rifi	ce															Ш						
											1/2																		Ш						
							-			5sf	/3.:	14)	^1/	2															Ш						
								26	_													L.													
						D=	3.	18	inc	h	:	> 5	Say	4 I	nch	es	(0	rific	e D	iar	net	er)													
	_							_							_							_							Ш		Ш		_		
\square								<u> </u>														_							Ш		Ш				
\vdash																																		_	
\vdash																																		_	
\square																																		_	
\square																																		_	
\vdash								_														_							Ш					_	
\vdash								_														_							Ш					_	
\square		<u> </u>			<u> </u>			<u> </u>				<u> </u>					<u> </u>				<u> </u>	<u> </u>	Н					<u> </u>	\vdash		\square	\square			
\square								<u> </u>														_							Ш		Ш				
\square								<u> </u>														_							Ш		Ш				
\square		<u> </u>			<u> </u>			<u> </u>				<u> </u>					<u> </u>				<u> </u>	<u> </u>	Н					<u> </u>	\vdash		\square	\square			
\square	_							_							-							_	H						Ш		\square	\square	_		
\square	_							<u> </u>														<u> </u>	Н						Ш		\square		_		
1 1															1																1				

INFILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.05)

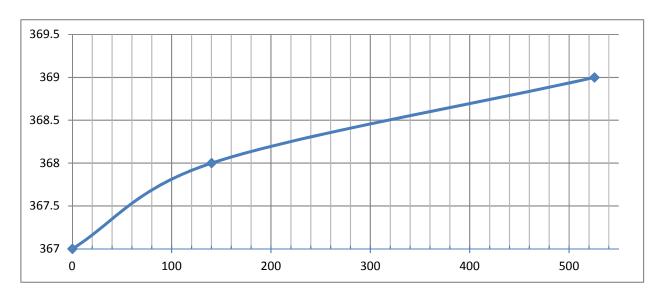
Type/Node Name: Infiltration Basin IF-1

Enter the type of infiltration practice (e.g., trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	ved?
5.29 ac	A = Area draining to the practice	
0.32 ac	$A_{\rm I}$ = Impervious area draining to the practice	
0.06 decimal	I = percent impervious area draining to the practice, in decimal form	
0.10 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.55 ac-in	WQV= 1" x Rv x A	
2,005 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
501 cf	25% x WQV (check calc for sediment forebay volume)	
Sediment Forebay	Method of pretreatment? (not required for clean or roof runoff)	
525 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
9,796 cf	V = volume ¹ (attach a stage-storage table)	$\leftarrow \geq WQV$
9,139 sf	A_{SA} = surface area of the bottom of the pond	
1.25 iph	$I_{DESIGN} = design infiltration rate2$	
10.3 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
369.00 feet	E_{BTM} = elevation of the bottom of the practice	
366.00 feet	E _{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
362.00 feet	E _{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
3.00 feet	$D_{SHWT} = separation from SHWT3$	← ≥ * ³
7.0 feet	D_{ROCK} = separation from bedrock ³	← ≥ * ³
N/A ft	D_T = depth of trench, if trench proposed	← 4 - 10 ft
N/A Yes/No	If a trench or underground system is proposed, observation well provi	ded
N/A	If a trench is proposed, material in trench	
Sand or Pea Gravel	If a basin is proposed, basin floor material	
Yes Yes/No	If a basin is proposed, the perimeter should be curvilinear.	
3.0 :1	If a basin is proposed, pond side slopes	← ≥3:1
370.93 ft	Peak elevation of the 10-year storm event (infiltration can be used in	analysis)
371.66 ft	Peak elevation of the 50-year storm event (infiltration can be used in	• •
373.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of	
YES	10 peak elevation ≤ Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation ≤ Elevation of berm?	← yes

- 1. Volume below the lowest invert of the outlet structure and excludes forebay volume
- 2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate
- 3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Designer's Notes:			

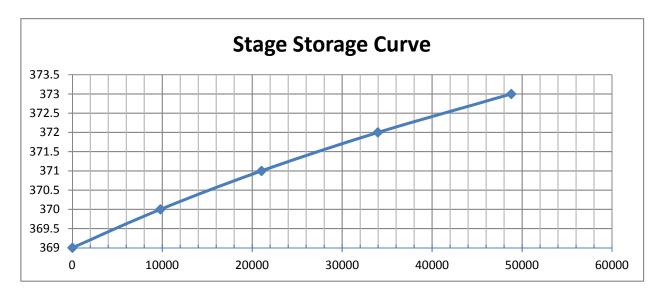


Client_	Eversource		Page	of				
Project	Northern Pass	Date	12/29/16	Made By <i>C. Kane</i>				
	Deerfield Substation		Checked By	R. Reed				
,	IF-1 Forebay - Stage-Storage	Table		Preliminary	Final	х		

Stage/Storage Table

ELEV	AREA	AREA	DIFFERENCE IN	STORAGE VOLUME (Conic Method					
(FT.)	(S.F.)	(Ac)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft			
367	50	0.001			0	0.000			
368	257	0.006	1	140	140	0.003			
369	530	0.012	1	385	525	0.012			

Stage Storage Curve



Client_	Eversourd	e		Page	of	
Project	Northern Pass	Date	12/29/16	Made By C.	Kane	
	Deerfield Substation			Checked By	R. Reed	
	Infiltration Basin IF-1 - Stage-	Storage	e Table	Preliminary	Final	Х

Stage/Storage Table

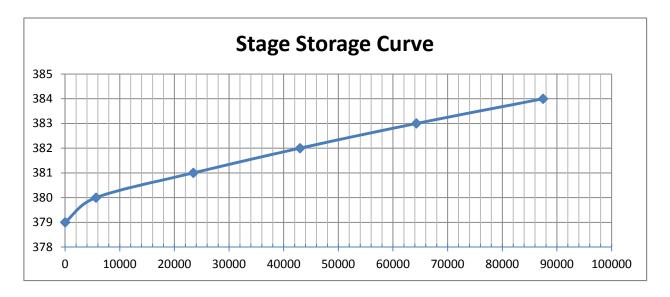
ELEV	AREA	AREA	DIFFERENCE IN	STORAGE VOLUME (Conic Metho					
(FT.)	(S.F.)	(Ac)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft			
369	9139	0.210			0	0.000			
370	10468	0.240	1	9796	9796	0.225			
371	12036	0.276	1	11243	21039	0.483			
372	13838	0.318	1	12927	33965	0.780			
373	15860	0.364	1	14838	48803	1.120			

Stage Storage Curve

Groundwater Recharge Volume (GRV) Calculation

	-	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	-	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	0.32	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	-	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
	0.10	inches	Rd = weighted groundwater recharge depth	
(0.032	ac-in	GRV = AI * Rd	
	116	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04): Groundwater recharge is being provided by the infiltration basin. The proposed storage volume below the lowest invert is 9796 cubic feet which is greater than 116 cubic feet.



Client_	Eversourc	е		Page	of _	
Project	Northern Pass	Date	06/26/15	Made By <i>L.</i>	Monzon	
	Deerfield Substation		Checked By			
	Detention Basin DT-1 - Stage	Preliminary	Fina	al		

Stage/Storage Table

ELEV	AREA	AREA	DIFFERENCE IN	STORAGE VOLUME (Conic Metho				
(FT.)	(S.F.)	(Ac)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft		
379	0	0		0	0	0		
380	16981	0.39	1	5660.33	5660.33	0.130		
381	18645	0.428	1	17806.52	23466.85	0.539		
382	20395	0.468	1	19513.46	42980.31	0.987		
383	22233	0.51	1	21307.39	64287.71	1.476		
384	24161	0.555	1	23190.32	87478.03	2.008		

Stage Storage Curve

NS	5			Cli	ent	EV	ers	our	се													Ра	ge			7		ot		
DO	ΝN	IEL	L.	Pro	ojec	ct	No	<u>rthe</u>	<u>rn F</u>	Pass	3					Da	te					Ма	de	Ву						
							De	erfi	eld													Ch	eck	ed	Bv					
							Im	nen	/iOI	15 A	rea	2.5	ımı	mar	1/							Pre	lim	ina	ır\/			Fin	al	_
							,,,,,	0011	7100	13 /	1700	7 00	<i></i>	mai	<u>у</u>								JIII I	11110	цу				ai	_
_	_																													
+	+			Н				Н	-	-	-					_						_						Н	\vdash	-
	_							Ш	_	_	_																	Ш		
_ı = Iı	npe	ervi	ous	are	ea c	Irai	nin	g to	th	е р	rac	tice	<u> = (</u>	0.32	2 ac	<u>:</u>														
(C	ont	ribı	ıtin	g w	ate	ersh	ed	s: P	ost.	-Are	ea 1	1B.	Pos	st-A	rea	10	2)													
1	T	Т															,											Н		
+	+			Н				Н																				Н		
+	-			Н	۵.																							Н		-
4	U	.32	ac	Ш	Sta	itio	n (r	001	to	ps a	and	со	ncr	ete	τοι	ınd	atı	on)										Ш		
Т	0	.32	ac		то	TA	L In	npe	rvi	ous	Ar	ea	Cor	ntril	but	ing	to	BIV	IP:	Sur	fac	e S	and	l Fil	lter					
	1			П				İ																				П		
+	+			Н				H	\dashv	\dashv	\dashv			\vdash	\vdash	\dashv		\vdash	\vdash	\vdash		-				\vdash		Н		
+	+			\vdash				\vdash	-	-	-			\vdash	\vdash			\vdash	\vdash	\vdash						\vdash		Н	\vdash	
+	+	-		$\vdash\vdash$				$\vdash\vdash$	-	-	-				\vdash	_			\vdash	-		_						$\vdash\vdash$	-	
+	+	-		Ш	\vdash	\vdash		Ш							Ш				Ш						\vdash		\vdash	Ш	Ш	-
\perp	_			Ш																								Ш		
$^{+}$	+																													
+	+			Н																								Н		
+	+	-		Н			_	Н			_					_						_						Н	-	
+	-			Н				Н																				Н		-
+	-			Ш				Ш	_	_	_					_												Ш		
								Ш																						
Т																														
$^{+}$	\top																													
+				Н				Н																				Н		
+	+	\vdash		Н				\vdash								-												Н		
+	-	-		$\vdash\vdash$				$\vdash\vdash$	-	-	-				\vdash	_			\vdash	-		_						$\vdash\vdash$		
+	-			$\vdash\vdash$				$\vdash\vdash$	_	_	_				\vdash				\vdash									$\vdash\vdash$		
1	-			Ш				Ш	_	_																		Ш		
\perp				Ш				Ш																				Ш		
				П				П																				П		
+	+			Н				\vdash	\neg	\neg	\neg				\vdash	\neg			\vdash	\vdash								Н		
+	+	+		H	H	H		H	-	-	-			\vdash	\vdash			\vdash	\vdash	\vdash					H	\vdash	H	H	\vdash	
+	-	-		$\vdash\vdash$	<u> </u>	<u> </u>		$\vdash\vdash$	-	-	-			\vdash	\vdash			\vdash	\vdash	-					<u> </u>	\vdash	<u> </u>	$\vdash\vdash$		
+	-	-		\square				Ш			_				Ш				Ш						\vdash		\vdash	\square	\square	
				\square				\square																				Ш		
				П				П																				П		
				Н				Н	-	-	-				\vdash				\vdash	\vdash						\vdash		Н		
				\square																										
	: Su	: Surface	: Surface S = Impervio (Contribu	: Surface Sanc	: Surface Sand Fil = Impervious are (Contributing w	: Surface Sand Filter = Impervious area of the contributing water of the contribution of the contribut	: Surface Sand Filter = Impervious area drai (Contributing watersh 0.32 ac Statio	: Surface Sand Filter = Impervious area drainin (Contributing watershed) = 0.32 ac Station (1	: Surface Sand Filter = Impervious area draining to (Contributing watersheds: P	: Surface Sand Filter = Impervious area draining to the (Contributing watersheds: Post-	: Surface Sand Filter = Impervious area draining to the process (Contributing watersheds: Post-Area) 0.32 ac Station (roof tops a	: Surface Sand Filter = Impervious area draining to the pract (Contributing watersheds: Post-Area 2	: Surface Sand Filter = Impervious area draining to the practice (Contributing watersheds: Post-Area 1B, 0.32 ac Station (roof tops and co	: Surface Sand Filter = Impervious area draining to the practice = (Contributing watersheds: Post-Area 1B, Post	: Surface Sand Filter = Impervious area draining to the practice = 0.32 (Contributing watersheds: Post-Area 1B, Post-Area 1B, Post-Area 2D, Post-Area 2	: Surface Sand Filter = Impervious area draining to the practice = 0.32 acc (Contributing watersheds: Post-Area 1B, Post-	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete found	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter I = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	: Surface Sand Filter = Impervious area draining to the practice = 0.32 ac (Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)	(Contributing watersheds: Post-Area 1B, Post-Area 1C) 0.32 ac Station (roof tops and concrete foundation)

Northern Pass Transmission Project Deerfield Substation

Stormwater System Operations and Maintenance Plan

General Overview

Eversource has established an operations and maintenance (O&M) plan for the station post-construction stormwater management system in accordance with the New Hampshire Department of Environmental Services Stormwater Manual (2008) and will be implemented upon completion of construction as outlined below. Any required post construction stormwater management permits will be obtained and implemented by Eversource.

The new substation expansion located on Eversource owned property off Cate Road (43.140316 latitude and –71.186953 longitude) in Deerfield, Rockingham County, New Hampshire (Site)

Purpose & Goals

The purpose of this O&M Plan is to provide guidance for the implementation and documentation process of the station site stormwater management system to help conform with the corresponding regulatory agency approvals and permits. The guidance provided herein is the minimum required. The primary goal is to inform all the property managers about how the system operates and what maintenance items are necessary to protect the downstream storm drain system and waters. The secondary goal is to provide a practical, efficient means of maintenance planning and record keeping to verify permit compliance.

Responsible Parties

Eversource will be responsible for implementing the O&M Plan.

Eversource 13 Legends Drive Hooksett, NH 03106

Maintenance Logs and Checklists

Eversource will keep a record of all maintenance procedures performed, date of inspection/cleanings, etc. Copies of inspection reports and maintenance records shall be kept on site.

Forms

The following forms will be developed for annual maintenance. Copies of the forms will be kept onsite as part of the Post-Construction Stormwater Management Plan.

- Annual Checklist
- Quarterly Checklist
- Monthly Checklist

Training

Responsible operations and maintenance workers and contractors will be trained with a basic description of the purpose and function of the onsite stormwater management system as well as

safety protocol and procedures, with annual up-dates, to provide that the workers tasked with maintaining the station site do so in accordance with the approved permit conditions. All workers that have maintenance duties will be adequately informed of their responsibilities. All subcontractors (Vactor, landscaping, snowplowing, etc.) will be informed of special requirements and responsibilities.

Stormwater Management System

The onsite stormwater management system has several components that are shown on the Site Development Plans and they perform various functions in conveying and treating stormwater runoff. Refer to the Site Development Plans for locations and details for each of the stormwater system components. Regular operations and maintenance is critical to the long term success of the stormwater management system components. The stormwater system components are:

Stormwater Swales:

Onsite stormwater swales collect and convey stormwater runoff and are either lined with vegetation or riprap. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species.
- Perform periodic mowing; frequency depends on location and type of grass. Do not cut shorter than Water Quality Flow depth (maximum 4-inches).
- Remove debris and accumulated sediment, based on inspection.
- Removal of woody vegetation from embankments.
- Repair eroded areas, remove invasive species and dead vegetation, and reseed with applicable grass mix as warranted by inspection.
- For riprap lined swales, inspect and repair for erosion, displaced riprap, and remove accumulated sediment.
- Periodic mowing of vegetated swales.

Culverts:

Culverts convey stormwater runoff under driveways and consists of an open pipe end upstream and a flared end section downstream. It is typical that stormwater swales are located both upstream and downstream of the culvert and may have riprap outlet protection. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment and debris in the culvert and also at the upstream and downstream ends that may be restricting flow though.
- Inspect and repair any damage and deterioration to the upstream and downstream swales and outlet protection.

Underdrains:

Onsite underdrains are located under cable trench and within yard along perimeter fence. The underdrains will act as curtain drains and aid in surface drainage. These underdrains are connected to a stormwater swale (SW-1B) and the onsite storm drainage system which conveys the flow into the

basin system. Cleanouts are provided on the underdrains to provide access. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment and debris in the underdrains through the cleanouts and outlets.
- Inspect and Repair any damage and deterioration to the outlet protection and downstream areas.

Storm Drainage System:

Onsite storm drainage system including conveyance pipes, flared end sections, storm manholes and catch basins convey stormwater. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment or debris at the outfalls.
- Inspect and repair any damage and deterioration to the conveyance pipes, manholes, catch basins and riprap outlet protection.

Outfalls:

Storm drainage outfalls are the point stormwater discharges from pipe outlets and consist of a flared end section and riprap outlet protection. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment or debris at the outfalls.
- Inspect and repair any damage and deterioration to riprap outlet protection.

Detention Basin:

The detention basin attenuates stormwater and consists of numerous components including an outlet control structure, trash rack, outlet pipe, emergency spillway, anti-seep collar, low flow channel, etc. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any trash and debris.
- Periodic mowing of embankments.
- Removal of woody vegetation from embankments.
- Removal of debris from outlet structures. Removal of accumulated sediment.
- Inspection and repair of inlet pipes, outlet structures, and appurtenances.
- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species
- Inspection of embankments by a qualified professional for settlement, erosion, seepage, animal burrows, woody vegetation and other conditions that could degrade the embankment and reduce its stability for impounding water.

Infiltration Basin:

The infiltration basin attenuates stormwater, provides water quality and groundwater recharge and consists of numerous components including embankments and a riprap spillway. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any trash or debris from any pretreatment devices and basin bottom
- Periodic mowing of embankments
- Removal of woody vegetation from embankments
- Removal of debris from spillway.
- Removal of accumulated sediment
- Inspection and repair of embankments and spillway
- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species.
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Inspection of pretreatment measures (vegetated swale) at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- If infiltration system does not drain within 72 hour following a rainfall event, then a
 qualified professional should assess the condition of the facility and determine
 measures required to restore the condition of the facility and restore infiltration
 function, including but not limited to removal of accumulated sediments or
 reconstruction.

Surface Sand Filter

The surface sand filter provides water quality and groundwater recharge and consists of numerous components including a diversion check dam, sediment forebay, basin spillway, outlet pipe, underdrain, perforated standpipe, stone fill cover, etc. the following is recommended for regular maintenance twice annually unless otherwise noted.

- Remove any trash and debris.
- Removal of woody vegetation from embankments.
- Removal of debris from low flow pipe inlet and outlet structures.
- Removal of accumulated sediment.
- Inspection and repair of check dam, embankments, outlet structures, and appurtenances.
- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Inspection of pretreatment measures at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore the condition of the facility to determine measures requires to restore

infiltration function, including but not limited to removal of accumulates sediments or reconstruction.

• Manufactured filter media should be replaces periodically per manufacturer's specifications.

Substation Yard Stone:

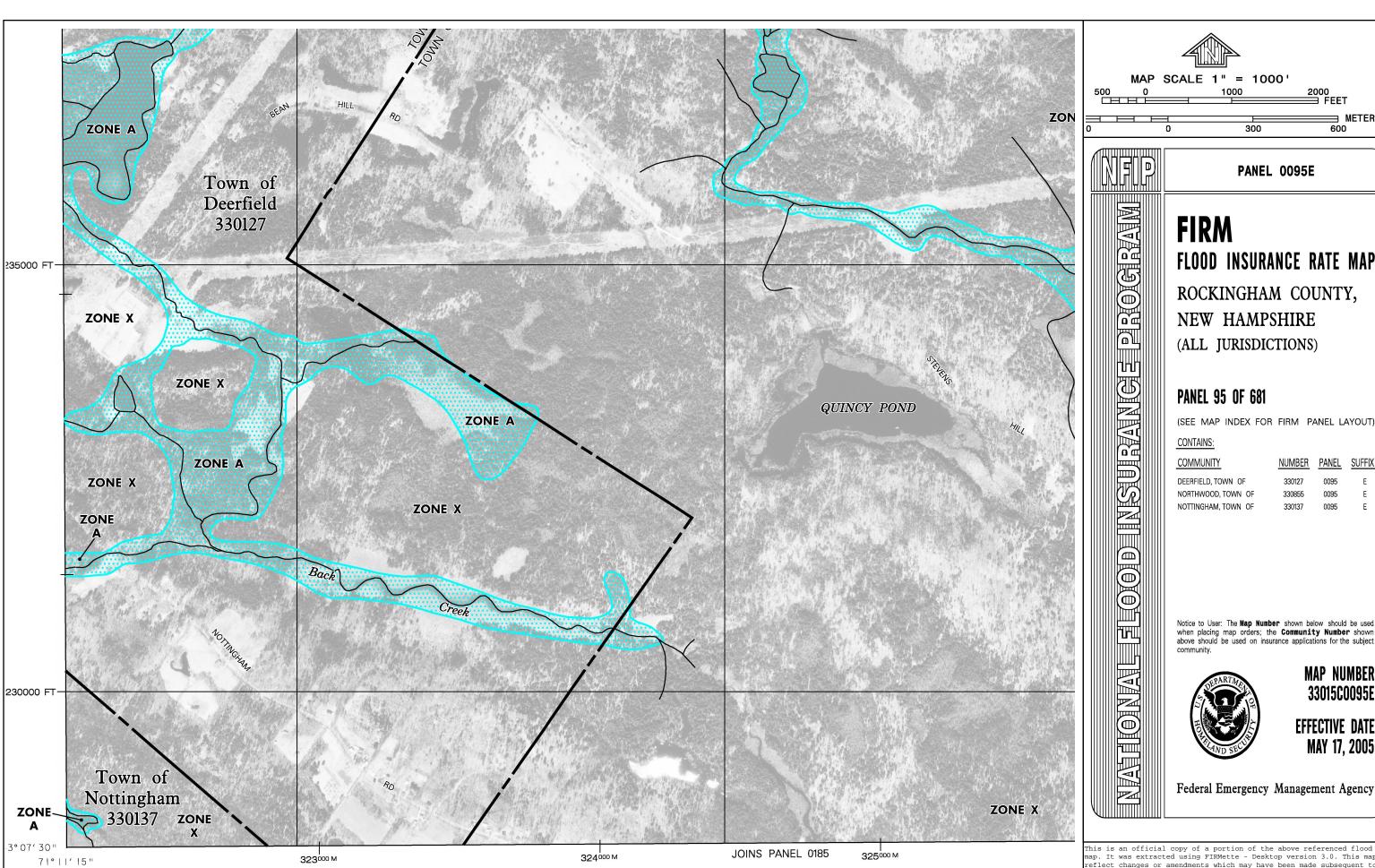
The substation yard stone within the substation yard, on access roads, and in parking areas can become compacted and eroded over time. The following is recommended for regular maintenance twice annually unless otherwise noted:

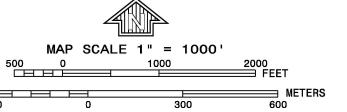
- Inspect for and repair any erosion in the yard, on access roads, and at the perimeter of the gravel areas.
- As the gravel areas become compacted, scrape off top layer to subgrade elevation and install new gravel surfacing layer at design elevation and pitch.

Spill Control

Eversource will have a spill control program. That program will be updated annually and incorporated into the employee-training program.

Disposal:


For all removed sediment, debris, trash, etc. from the stormwater management system during operations and maintenance shall be disposed of properly and legally by a New Hampshire Licensed hauler. Road sand may be reused for winter sanding, but may not be stored on-site.


Pesticides:

Northern Pass anticipates that vegetation management activities will be performed by Eversource. Work will be performed in accordance with Eversource's vegetation management program, which currently employs only mechanical means for controlling vegetation within the Eversource rights of way. Eversource does not currently plan to use herbicides as part of its vegetation management program, and as indicated in the Northern Pass application for a Presidential Permit (at page 52), all vegetation management and maintenance will be carried out in accordance with the New Hampshire Division of Forest and Lands Best Management Practice for utility maintenance. Herbicides will not be used before or during construction of the Northern Pass.

* * * * *

PANEL 0095E

FLOOD INSURANCE RATE MAP ROCKINGHAM COUNTY, NEW HAMPSHIRE (ALL JURISDICTIONS)

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

COMMUNITY	NUMBER	PANEL	SUFFI)
DEERFIELD, TOWN OF	330127	0095	Е
NORTHWOOD, TOWN OF	330855	0095	Е
NOTTINGHAM, TOWN OF	330137	0095	Е

Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject

MAP NUMBER 33015C0095E

EFFECTIVE DATE MAY 17, 2005

Federal Emergency Management Agency

ap. It was extracted using FIRMette - Desktop version 3.0. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. Further information about National Flood
Insurance Program flood hazard maps is available at http://www.msc.fema.gov/

Northern Pass Transmission Project Soil Survey Report for Transition Stations, Substation Expansions, and Converter Terminal

Prepared For: Northern Pass Transmission, LLC

Submitted On: February 6, 2015

Prepared By: Normandeau Associates, Inc. 25 Nashua Road Bedford, NH 03110

www.normandeau.com

Table of Contents

	Pag	e
1.0	INTRODUCTION	1
2.0	PURPOSE	5
3.0	METHODOLOGY 5	5
	3.1 FIELD PROCEDURES 5 3.2 SOIL MAP UNITS 6 3.3 HYDRIC SOILS 7	6
4.0	SUMMARY OF FINDINGS	7
	4.1 STATION 1, PITTSBURGH 4.2 STATION 2, CLARKSVILLE NORTH 5.3 STATION 3, CLARKSVILLE SOUTH 6.4 STATION 4, STEWARTSTOWN 6.5 CONVERTER TERMINAL, FRANKLIN 6.6 DEERFIELD SUBSTATION EXPANSION- DEERFIELD 6.7 SCOBIE POND SUBSTATION EXPANSION- LONDONDERRY 6.8 STATION 1, PITTSBURGH 6.9 STATION 2, CLARKSVILLE NORTH 6.1 STATION 2, CLARKSVILLE NORTH 6.1 STATION 2, CLARKSVILLE NORTH 6.2 STATION 2, CLARKSVILLE NORTH 6.3 STATION 4, STEWARTSTOWN 6.4 STATION 4, STEWARTSTOWN 6.5 STATION 4, STEWARTSTOWN 6.6 STATION 4, STEWARTSTOWN 6.6 STATION 4, STEWARTSTOWN 6.7 STATION 4,	9 1 4 5 8
5.0	REFERENCES	<u> </u>
Appe Appe	Appendix B-1: Station 2, Clarksville, Soil Test Pit Logs	
,	Appendix B-3: Station 3, Clarksville, and Underground Segment Soil Test Pit Logs Appendix B-4: Station 4, Stewartstown, Soil Test Pit Logs Appendix B-5: Converter Terminal, Franklin, Soil Test Pit Logs	
	Appendix B-6: Deerfield Substation Expansion, Deerfield, Soil Test Pit Logs Appendix B-7: Scobie Pond Substation Expansion, Londonderry, Soil Test Pit Logs	
	endix C: NRCS Soil Survey Map Unit Descriptions endix D: Soil Survey Maps	

List of Figures

		Page
Figure 1.	Site Location Transition Stations	2
Figure 2.	Site Location Franklin Converter Station	3
Figure 3.	Deerfield and Scobie Substations	4

List of Tables

	ſ	Page
Table 3-1.	Slope Class	6
Table 4-1.	Station 1, Pittsburgh- Summary of Soil Physical Characteristics	8
Table 4-2a.	Station 2, Clarksville, Summary of Soil Physical Characteristics	10
Table 4-2b.	Station2. Clarksville, Summary of Made Land Estimated Physical Characteristics ¹	10
Table 4-3.	Station 3, Clarksville South, Summary of Soil Physical Characteristics	12
Table 4-4A.	Station 4, Stewartstown, Summary of Soil Physical Characteristics	15
Table 4-5B.	Converter Terminal, Franklin, Summary of Udorthents and Udipsamments (Made Land) Estimated Physical Characteristics ¹	18
Table 4-6B.	Deerfield Substation Expansion, Summary of Udorthents (Made Land) Estimated Physical Characteristics ¹	19
Table 4-7A.	Scobie Pond Substation Expansion, Summary of Soil Physical Characteristics	21
Table 4-7B.	Scobie Pond Substation Expansion, Summary of Udorthents (Made Land) Estimated Physical Characteristics ¹	21

^{1.} Society of Soil Scientists of Northern New England. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNNE Special Publication No. 3. Durham, NH.

1.0 Introduction

Normandeau Associates, Inc. (Normandeau) has reviewed and mapped the soils in areas under consideration for four proposed Transition Stations located in Pittsburgh, Clarksville (two), and Stewartstown (Figure 1) associated with the Northern Pass Transmission (NPT) project.

In addition, Normandeau also conducted a soil survey on a potential new converter terminal site in Franklin (Figure 2), and two substation expansions areas; one in Deerfield and one in Londonderry (Figure 3). The report is summarizes the soil surveys completed at each site.

All sites were previously surveyed for wetlands by Normandeau wetland scientists in 2012-2013. Information obtained during the soil surveys indicates that wetland boundaries were consistent with hydric soil boundaries.

Table 4-5B. Converter Terminal, Franklin, Summary of Udorthents and Udipsamments (Made Land) Estimated Physical Characteristics¹.

Characteristic	299A/cbaaa	300A/dbcbb
Drainage Class	c-well drained	d-moderately well drained
Parent Material	b-glaciofluvial deposits	b-glaciofluvial deposits
Restrictive/Impervious layer	a- none	c- mineral restrictive layer, < 40"
Estimated ksat	a-high	b-moderate
Hydrologic Group	a-Goup A	b- Group B

Society of Soil Scientists of Northern New England. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNNE Special Publication No. 3. Durham, NH.

4.6 Deerfield Substation Expansion- Deerfield

Overview

The Deerfield Substation is located south of Cate Road in Deerfield. The proposed expansion site is located to the south of the existing substation and east of a power line right-of-way. The site is wooded with shrubs and saplings in the understory. Several erratic boulders are scattered across the site. The site slopes to the east and south. Moderately steep (15 to 25%) to steep (25 to 45%) slopes occur within the southern portion of the site. The remainder of the site is gently sloping (3 to 8%) to strongly sloping (8 to 15%). Several stream corridors with bordering wetlands occur within the northern half of the site, draining east to a large wetland. A stream corridor with associated wetlands occurs along the southern boundary.

Soil Mapping Results

Normandeau completed a total of 14 test pits evenly distributed across the site on September 25, 2014. The final survey area is 9 acres. The wetland boundaries had been previously flagged and located in the field by Normandeau. Eight soil map units were mapped within the project site. The soils within the site are formed from lodgement till overlain by windblown material. Well drained Montauk sandy loam is found within the southern half of the site. Moderately well drained Scituate fine sandy loam and moderately well drained Chatfield Variant, deep, are found within the northern half of the site. Somewhat poorly drained Ridgebury sandy loam is found in the northwest corner bordering wetlands. Poorly drained Ridgebury sandy loam is found within wetland drainages. A small inclusion of Rubble land, in which boulders have been piled, occurs along the northern boundary adjacent to the existing substation. The soils mapped within the existing facility were identified by the NRCS as Urban land-Canton Complex (799) (Soil Survey Staff 2014).

Slope phases are not provided in Table 4-6 but are included in the detailed summary on each map unit provided in Appendix A. Table 4-6B provides an overview of the made land map unit based on NRCS mapping (SSSNNE 2011).

Map Unit	Hydrologic Group	Seasonal Water Table (SWT) Depth¹ (Inches)	Depth to Bedrock (Inches)	Drainage Class²	Ksat (in/hr)	Limitations
44-Montauk	C	>40	>60	W	0.06-6.0	
189-Chatfield	В	>40	40-60	MW	0.6-6.0	Bedrock
Variant (MW)						
295-Greenwood	A/D	Surface	>60	VP	unk	VP ²
656-Ridgebury (P)	С	Surface to 12	>60	P	0-6.0	P^2
727-Rubble land	Unkown	Unknown	Unknown	Unknown	Unknown	
926-Ridgebury (SW)	С	<15	>60	SP	0-6.0	
799-Urban land-	В	>40	>60	W	2.0-20	
Canton Complex ³						

Table 4-6A. Deerfield Substation Expansion, Summary of Soil Physical Characteristics

- 1. Seasonal water table ranges are provided from the NRCS. On-site conditions are expected to fall within these ranges based on test pit observations.
- 2. Drainage Classes:
 - VP- very poorly drained; P- poorly drained; SP- somewhat poorly drained; MW- moderately well drained; W- well drained; SE- somewhat excessively drained.
- 3. Physical characteristics of disturbed soil are estimated based on Canton series.

Summary

The major limitations to development within the Deerfield Substation expansion site are wetlands and steep slopes. A stream corridor with associated wetlands separates the existing facility from the expansion site. A stream corridor and associated wetlands are located at the base of a steep slope at the southern end of the site. Steep slopes border the existing facility site north of the expansion area.

Table 4-6B. Deerfield Substation Expansion, Summary of Udorthents (Made Land) Estimated Physical Characteristics¹.

Characteristic	799A/ccaab
Drainage Class	c- estimated to be well drained.
Parent Material	c-glacial till
Restrictive/Impervious layer	a- none
Estimated ksat	a-high
Hydrologic Group	b- Group B (estimated based on Canton)

1. Society of Soil Scientists of Northern New England. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNNE Special Publication No. 3. Durham, NH.

2.0 Purpose

The purpose of the soil survey is to provide a soil map of each site showing limitations to development, including hydric soil boundaries where observed, for inclusion in an Alteration of Terrain Permit application that is anticipated to be filed for the project. This survey is appropriate for use in planning site design for stormwater runoff and erosion control. Information is also provided regarding limitations to the potential for site development including roads, shallow excavations, and stormwater detention. It is important to note that soils considered appropriate (non-limiting) for one use may be considered limiting for another use. Soil map units described in this report have been influenced by the intended use of the soil map; consequently, the information provided may not be adequate for uses other than for those for which the soil map was originally developed.

This soil narrative and accompanying soil survey map have been completed in accordance with the *Site Specific Standards for New Hampshire and Vermont* (SSSNNE 2011). No other warranty, expressed or implied, is made. This map product is within the technical standards of the National Cooperative Soil Survey. It is a special purpose product, intended for the assessment of site limitations to development of the site. It was produced by professional soil scientists, and is not the product of the USDA Natural Resources Conservation Service (NRCS). There are maps for each site that accompany this report.

Data provided on soil series are based on interpretation of published information by the NRCS. Due to the complexity of the glaciated landscape in New Hampshire, variations in subsurface conditions may exist, which were not evident during the project review. Should significant variations in subsurface conditions become evident during site development, re-evaluation of site conditions may be warranted based on the present findings of this report.

3.0 Methodology

3.1 Field Procedures

Certified Soil Scientists conducted the field reviews at the various sites. Jennifer West and Ian Broadwater are Maine-Certified Soil Scientists, with reciprocity to practice in New Hampshire. John Hayes is a Certified New Hampshire Soil Scientist. Field observations were made using borings dug by hand with a dutch auger and tile spade and test pits dug with an excavator. Soil observations were made to either bedrock or to 60 inches, where feasible. The area of soils review at each site was generally larger than the final surveyed site, which was reduced during planning.

The general field procedures used to make this soil map follow those of the National Cooperative Soil Survey (Schoeneberger et al. 1998). The soils mapped are either established soil series used in the State of New Hampshire by the NRCS (USDA NRCS 2011) or are classified according to the NRCS classification system described in the *Disturbed Soil Mapping*

Unit Supplement for New Hampshire, DES AoT Site Specific Soil Maps (SSSNNE 2011). Map unit descriptions are provided in Appendix A.

Soil test pit logs were completed for each observation. Representative observations are provided in Appendix B. Test pits were located with a Trimble® GPS, which is capable of submeter accuracy. Soil map unit boundaries are approximate, as their placement is based on a combination of field observations and surveyed site topography.

3.2 Soil Map Units

The soil map units used for this survey are either consociations or complexes. Consociations are dominated by a single soil series and similar soils. Complexes consist of two or more dissimilar components that cannot be mapped separately and the named components are sufficiently different in either morphology or behavior that the unit cannot be considered a consociation. Map unit symbols in this survey are from the State Numerical Legend along with the soil series name. Slope phases are designated as a letter in the map unit symbol - A, B, C, D, E - refers to slope class (Table 3-1).

Table 3-1. Slope Class

Slope Symbol	Standard Range
Α	0-3%
В	3-8%
С	8-15%
D	15-25%
Е	25-50%

The soil interpretations provided are based on information in the soil series descriptions and technical information provided by the NRCS web soil survey (Soil Survey Staff 2014). All limitations and constraints invoked by the NRCS for such interpretations also apply to this soil survey.

The map units observed are summarized on an attached plan and described in Appendix A. These descriptions are within the NRCS range for each official Soil Series Description; however, they provide more detail as they are based on site-specific observations. Each map unit description includes information on soil taxonomic classification, general description, morphology, physical characteristics, inclusions, use, and management. The taxonomic classification follows Keys to Soil Taxonomy (Soil Survey Staff 2014). Information on soil morphology and physical characteristics were obtained from the NRCS (Soil Survey Staff 2014).

Disturbed soil map units were classified according to the New Hampshire State-Wide Numerical Soils Legend (USDA NRCS 2011). Additional information on each map unit is provided according to criteria outlined in the disturbed soil supplement created by SSSNNE (2011), which utilizes the definition of disturbed land, including excavated and filled land, as defined by RSA 485-A:6, VIII; RSA 485-A: 17; and NHDES Env-Wq 1500. The map symbol for disturbed soil consists of two parts separated by a forward slash (/). The first part consists of the NRCS Disturbed Map Unit symbol (USDA NRCS 2011) and a capital letter designating

slope. The second part consists of symbols of the Disturbed Soil Supplement (SSSNNE 2011) and is composed of 5 lower case letters, which describe drainage class, parent material, restrictive/impervious layers, estimated Ksat, and estimated hydrologic soil group.

Consociation map units, in accordance with the standards, will have a minimum of 75% of the named soil or similar soils within that unit. The named soil will be the most common of all similar soils. The total number of dissimilar soils in any one mapping unit for either consociations or complexes should not exceed 25% of the map unit of which no more than 15% is limiting. Similar soils are alike in most properties and share similar limitations such as depth to water table or content of organic matter. Dissimilar soils do not share limits of some important diagnostic properties of the named soil and may have different use or management requirements for a particular land use. It is important to note that some dissimilar soils are more limiting in their use than the named soil. For instance, an inclusion of somewhat poorly drained soils can occur within a well-drained soil map unit. A summary of potential inclusions of similar and dissimilar soils is provided for each map unit.

The hydrologic group identifies soils having the same runoff potential under similar storm conditions. Soil properties that influence runoff are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. Infiltration rate is the rate at which water enters the soil at the surface and is controlled by surface conditions. Transmission rate is the rate at which water moves in the soil and is controlled by soil properties.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. Ksat values are based on soil characteristics in the field, particularly structure, consistence, porosity and texture (SSSNNE 2009). The Ksat values provided are from the Typical Pedon from the county that best reflected the soil and/or had the most acres of that soil. The data represents the range within the B and C horizons (SSSNNE 2009).

3.3 Hydric Soils

Hydric soils refer to those soil series the NRCS considers to be either poorly or very poorly drained. The NRCS (Soil Survey Staff 2014) defines hydric soil as "a soil that is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part". The hydric soil boundary corresponds with the wetland boundary in the areas observed for this project. The hydric soil boundary was located with a Trimble® GPS unit and post processed for submeter accuracy. Impacts to wetlands come under the jurisdiction of the U.S. Army Corps of Engineers and New Hampshire Department of Environmental Services.

4.0 Summary of Findings

The following summarizes the results of the soil surveys at the seven sites. Soil map unit descriptions are provided in Appendix A; representative soil logs in Appendix B; NRCS soil map unit descriptions for Station 3 underground segment in Appendix C, and soil maps in Appendix D. Soil logs that are provided in Appendix B but are not shown on the relevant map were outside the final project survey area.

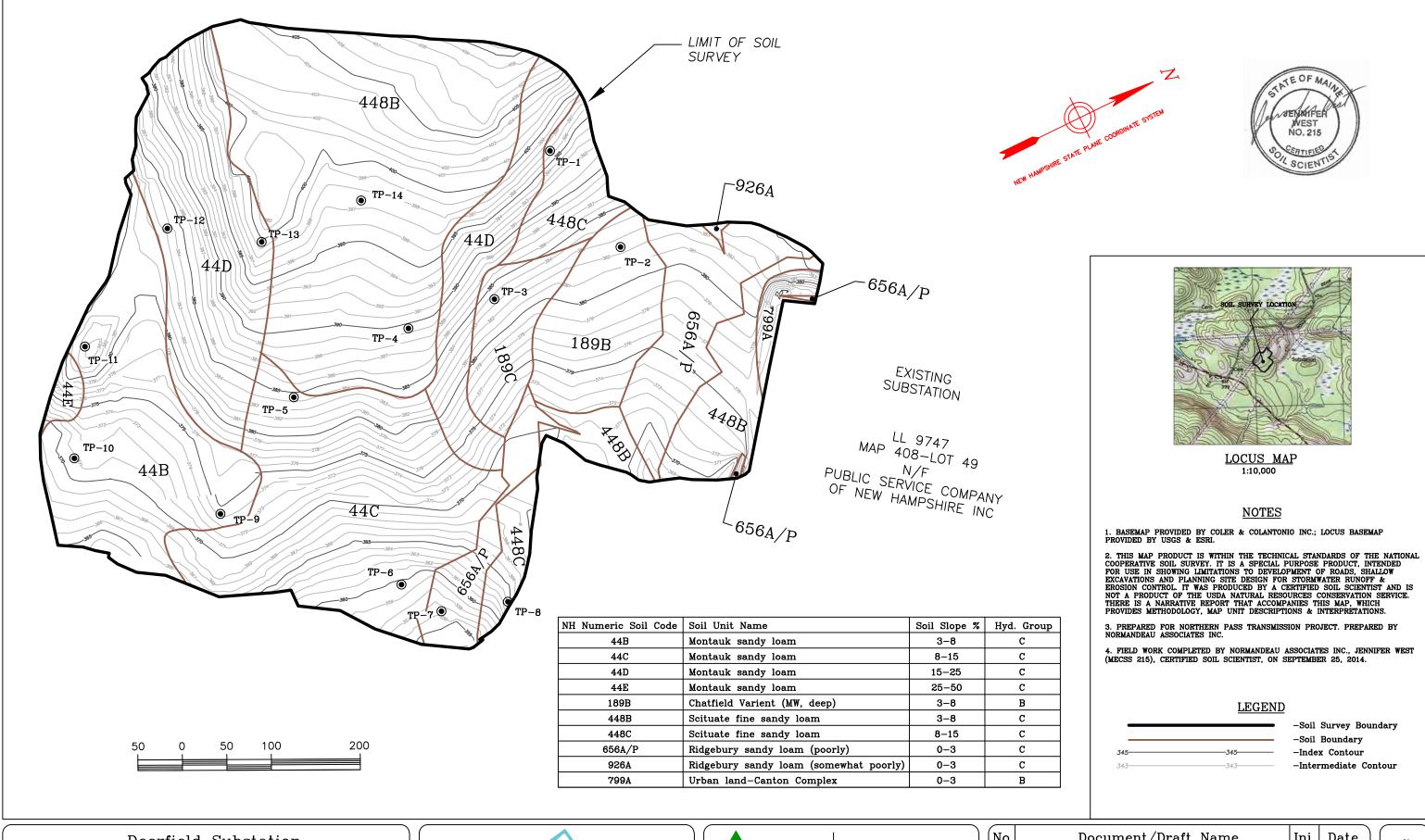
Appendix B-6

Deerfield Substation Expansion, Deerfield, Soil Test Pit Logs

Town, City, Plantation Described Street, Road, St. Described	
SOIL PROFILE DESCRIPTION AND CLASSIFICATION	Sulstateur Expansion
COIL PROFILE DESCRIPTION AND CLASSIFICATION	ON (Location of Observation Holes Shown Above)
Observation Hole #	ng Observation Hole # 2 🕅 Test Pit 🔲 Boring
Depth of organic horizon above mineral so	La root it La Boring
Texture Consistency Color May	Table 1 of State 1 of
O NOCE	0 Solisistency Color Mothing
VESL Friable 10723/3	WEST Englis
	D 6 104#3/3
© 12 IOYR4/4	U 12
The state of the s	2,57 5/4
See 10 12 10 10	See 10 12 18 18 19 19 19 19 19 19
<u>v</u> 24	© \$ 10785/4 7.54N4/4
grantly 10885/4 1088	g 24 grazelly
TE grantly 10YR5/4 10YR5	7/3 E 30 VESUS
oje /	No. 30
를 ³⁶	<u>\$</u> 56
O O	O D D D D D D D D D D D D D D D D D D D
42 Secretary of the sec	42
48 EOE 60" FIRM 10 YR414 7.5 YR:	
Soil Classification Slope Limiting Factor ☐ Groundwate	Coundwater Globe Limiting Factor 1 Groundwater
Profile Condition Percent Depth ☐ Bedrock	ayer
Profile Condition Percent Depth ☐ Bedrock Soil Series Name Hydrologic Group	ayer Profile Condition Percent Depth Bedrock Soil Series Name Hydrologic Group
Profile Condition Percent Depth Bedrock	ayer Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth ☐ Bedrock Soil Series Name Scituate Hydrologic Group	ayer Profile Condition Percent Depth Bedrock Soil Series Name Hydrologic Group
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth ☐ Bedrock Soil Series Name Scituate Hydrologic Group	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Hydrologic Group Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Hydrologic Group Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling VESS Series Late 3.5 x 2.2/2	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling Texture Consistency Color Mottling 12	Profile Condition Percent Depth Bedrock Bedrock Bedrock Hydrologic Group Percent Depth Bedrock Hydrologic Group Depth Bedrock Hydrologic Group Depth Group Group Group Depth Group
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling Texture Consistency Tolor Mottling 12	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3.	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Observation Hole # 3. Test Pit Borin Texture Consistency Color Mottling Texture Consistency Color Mottling 12	Profile Condition Percent Depth Bedrock
Profile Condition Percent Depth Bedrock Soil Series Name Scituate Hydrologic Group	Profile Condition Percent Depth Bedrock

Soil/Scientist/Site Evaluator Signature

9 - 25 - 14 Date


	on	, Plantation	AAPILLI SI		eet, Road, Subdivi	sion ら、ど×つ	+		Owner or Appli		
OIL	Pr	KOFILE DE	SCRIPTION	AND CLAS	SIFICATION			(Locati	on of Observ	ation Holes S	hown Above)
Obse	erva 3	ation Hole #	Penth of organ		Boring	Ob	serv	ation Hole #	***************************************	▼ Test Pit	Boring
_		Toxturo	1	nic horizon abov	1			r 19	ı	nic horizon abov	e mineral soil
	0	Texture	Consistency		Mottling	1 1	0	Texture	Consistency	Color	Mottling
(S		VFSL	Friable	7,54 R3/3				LOOM	Friable	10×12/2	}
che	6) les	6	www.mockatoriodologicatorioscopy.compressional	*		ioque/
Ë	12			7.5724/4		Ĕ		Grandy		16413/2	
Depth below mineral soil surface (inches)	-			440000000000000000000000000000000000000	1000	Depth below mineral soil surface (inches)	12	1 Ula Van		7.578414	
sur	18					surf	.18			1078413	7.578.41
soil	E			10×R3/6		ij	.10				
ig :	24					<u>a</u>	24		firm.	2.574/3	
nin	V CONTRACTOR OF THE PARTY OF TH			104 45/4		i e					
¥ 3	30 -	1 ravelle	FIRM		10 Y R3/2	}	30				
pelc	16	V F S Z			few, Gint	elo	ļ				
ott E	6 –	A / 20 Pro				를 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	36		4.2		
	-					Dep	ļ	E06 70	1		
*	2						42				
4	8						40				
		Soil Classific	ation Slope	Limiting Factor	☐ Groundwater		48 L	Soil Classifi	cation Slope	Limiting Factor	☐ Groundwater
	·····	teuk		Hydrologic Group	☐ Bedrock	Soil Se			926 (SW?)	Depth Hydrologic Group	☐ Bedrock
bsei	·····	tion Hole#		Hydrologic Group Test Pit ic horizon above	☐ Boring	/2	rdg	ame	926(swi) _8_ [Hydrologic Group Test Pit	☐ Boring
bsei	vat	tion Hole#	Depth of organi Consistency	☐ Test Pit	☐ Boring	/2	rdg	ame	926 (SWP)	Hydrologic Group	☐ Boring
bsei	vat	tion Hole #	Depth of organi	☐ Test Pit	Boring	Obs	serva ° [ation Hole #	926 (SWP)	Hydrologic Group Test Pit ic horizon above	☐ Boring mineral soil Mottling
bsei	vat 2	Texture	Depth of organi Consistency	Test Pit ic horizon above Color	Boring	Obs	serva ° [ation Hole #	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color	☐ Boring mineral soil Mottling
bsei	vat 2	Texture	Depth of organi Consistency	Test Pit ic horizon above	Boring mineral soil Mottling	Obs	serva 0 6	ation Hole # Texture	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color	☐ Boring mineral soil Mottling
bsei	vat 2	Texture	Depth of organi Consistency	Test Pit ic horizon above Color	Boring mineral soil Mottling	Obs	serva 0 6	ation Hole # Texture VFSL	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color	☐ Boring mineral soil Mottling
bsei	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Texture	Depth of organi Consistency	Test Pit ic horizon above Color	Boring mineral soil Mottling	Obs	serva 0 6	ation Hole # Texture	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57/12.2/5/	☐ Boring mineral soil Mottling
bsei	vat 2	Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	Obs	serva 0 6 12	ation Hole # Texture VFSL	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57/12.2/5/	☐ Boring mineral soil Mottling
bsei	vat	Texture Texture Texture	Depth of organi Consistency	Test Pit ic horizon above Color	Boring mineral soil Mottling	Obs	o constant	ation Hole # Texture VFSL Grantle	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57 12.35	☐ Boring mineral soil Mottling
bsei	vat	Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	Obs	0 6 12 18 24	Texture VFSL Cranke, 1068 FS.	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57 12.57 1 0 7 R 3/7 2.57 9/7	☐ Boring mineral soil Mottling
bsei	vat	Texture Texture Texture Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	Obs	serva 0 6 12	ation Hole # Texture VFSL Grantle	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57 12.35	☐ Boring mineral soil Mottling
bsei	vat	Texture Texture Texture Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	Obs	0 6 12 18 24	Texture VFSL Cranke, 1068 FS.	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57 12.57 1 0 7 R 3/7 2.57 9/7	☐ Boring mineral soil Mottling
bsei	vat	Texture Texture Texture Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	Obs	0 6 12 18 24	Texture VFSL Cranke, 1068 FS.	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57 12.57 1 0 7 R 3/7 2.57 9/7	☐ Boring mineral soil Mottling
18 18 18 24 300 24 300 25 200 25 200 25 200 25 200 25 200 25 200 25 2000	vat	Texture Texture Texture Texture Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	/2	0 6 12 18 24	Texture VFSL Cranke, 1068 FS.	926 (SWP) B Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color 7.57 12.57 1 0 7 R 3/7 2.57 9/7	☐ Boring mineral soil Mottling
18 18 24 30 36 36 42	vat	Texture Texture Texture Texture	Depth of organi Consistency	Test Pit ic horizon above Color 109122/2 2.594/2	Boring mineral soil Mottling	Obs	0 6 12 18 24 7 30 36	Texture VFSL Cranke, 1068 FS.	926 (SWP) B [Depth of organ Consistency Friable	Hydrologic Group Test Pit ic horizon above Color 7.57 12.57 1 0 7 R 3/7 2.57 9/7	☐ Boring mineral soil Mottling
12 15 16 17 18 17 18 18 18 18 18	vat	Texture Texture Texture Texture Texture Texture	Depth of organi Consistency Frasile	Test Pit ic horizon above Color IEYR2/2 2.5Y4/2	Boring emineral soil Mottling	Obs	0 6 12 18 24 7 30 36	Texture VfSL Crank Crank LASS EOE 63	926 (SW) B Depth of organ Consistency Friable	Hydrologic Group Test Pit ic horizon above Color 7.57 12.57 1 0 7 R 3/7 2.57 9/7	☐ Boring mineral soil Mottling
18 18 24 30 36 42 48	Vat	Texture Tex	Depth of organi Consistency Fraction Slope	Test Pit ic horizon above Color Colo	Boring mineral soil Mottling	Obs	0 6 12 18 24 7 30 42 48	Texture VfSL Grantly VfSL Crantly VfSL Crantly Soil Classification	926 (SW) B Depth of organ Consistency Frice e	Hydrologic Group Test Pit ic horizon above Color 7.5 yr. 2.5 p 1.5 yr. 3/2 1.0 yr. 3/y 2.5 y 4/4 2.5 y 5/3 5/y Limiting Factor " [Boring mineral soil Mottling Groundwater Restrictive Layer
(60 10 10 10 10 10 10 10 10 10 10 10 10 10	Vati	Texture Texture For 19 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Depth of organi Consistency Fracile for the fracile tion Slope n Percent	Test Pit ic horizon above Color Colo	Boring mineral soil Mottling 10 > £3/3	Depth below mineral soil surface (inches)	0 - 6 - 12 - 18 - 24 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	ation Hole # Texture VfsL Grants VfsL Grants Corants Corant	926 (SW) B Depth of organ Consistency Friable	Hydrologic Group Test Pit ic horizon above Color 7.5 yr. 2.5 p 1.5 yr. 3/2 1.0 yr. 3/y 2.5 y 4/4 2.5 y 5/3 5/y Limiting Factor " [☐ Boring mineral soil Mottling ☐ Groundwater
(60 10 10 10 10 10 10 10 10 10 10 10 10 10	Vati	Texture Tex	Depth of organi Consistency Fraction Slope	Test Pit ic horizon above Color Colo	Boring mineral soil Mottling 10 > £3/3	Depth below mineral soil surface (inches)	0 - 6 - 12 - 18 - 24 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	Texture VFSL Grantly VFSL Grantly VFSL Crantly VFSL Crantly VFSL Crantly Coracles Co	926 (SW) B Depth of organ Consistency Frice e	Hydrologic Group Test Pit ic horizon above Color 7.5 yr. 3/2 1 0 y r. 3/y 2.5 y 4/4 2.5 y 5/3 5/y Limiting Factor Depth	Boring mineral soil Mottling Groundwater Restrictive Layer

Date

		ty, Plantation erfeed			reet, Road, Subdiv Seerfeld		` w 10		Owner or Appl	icant Name	
			ESCRIPTION	AND CLAS	SSIFICATION				tion of Observ	ation Holes S	hown Above
Obs	erv	ation Hole	# _ 9	☑ Test Pit	Boring		nsėn	/ation Hole			
	<u>3</u>	11	Depth of orga		ove mineral soil		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>9</i> "		শ্ব	Boring
	0 -	Texture	Consistenc	1	Mottling			Texture	Consistency	nic horizon abov	1
_		VESL	freable	107x2/2		1	0		friable	Color	Mottling
hes	6			1041231	14	es)	6	VFSL		The state of the s	
(inc	F			1071-2/	.5	[2	Ū			10784/9	,
Depth below mineral soil surface (inches)	12					Depth below mineral soil surface (inches)	12				
sur	18			IOYEY/	5	urfa					
soil	-			42000000000000000000000000000000000000	puressa.	oil s	,18				
<u>a</u>	24			N (2) (1) (1)		a s	24		1	Oliver of the second se	10724
min	F			7,574/6	•	iner		garally	FICHM	21574/4	Few
No	30					. ≥	30	VESC			1 480
pel	36	Gravella	CONTRACTOR OF PROPERTY AND ADDRESS.	STATE OF THE PROPERTY OF THE P	ta konistr	pelo					
epth	-	V 45L	Estar	2,545/	2	bth	36				
Ω	42			\$ (3 y 3 /s		De	42				
	-	EOEGY	4				42	EOE 6	4		
	48	Soil Classif	ication Slope	4:			48		T		
	-		- Olope	Limiting Factor	☐ Groundwater ☐ Restrictive Layer			Soil Classif	fication Slope	Limiting Factor	☐ Groundwater
oil Serie		Profile Cond	lition Percent	Depth	☐ Bedrock			Profile Cond	dition Percent	Depth	☐ Restrictive Laye ☐ Bedrock
		Montac	. 10	Hydrologic Group)	Soil Se	eries Na	ma			
			Contraction of the Contraction o							Hydrologic Group	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					h tack		Hydrologic Group	
 Obse		tion Hole #		☑ Test Pit	Boring		Mo	n tauk	: 12 - F		
Obse	rva 2		<u>//</u> [				Mo				Boring
Obse	2			ic horizon abov	re mineral soil		Mo	ation Hole #	Depth of organ		mineral soil
	<u>2</u> °_	tion Hole #	Depth of organ	ic horizon abov	re mineral soil  Mottling		serva _2	ation Hole #	Depth of organ		-
	<u>2</u> °_	tion Hole # " Texture	/-/[ Depth of organ	ic horizon abov	re mineral soil  Mottling	Obs	serva 2	ation Hole #	Depth of organ	Test Pit ic horizon above	mineral soil
	<u>2</u> °[	tion Hole # " Texture	Depth of organ	ic horizon abov	re mineral soil  Mottling	Obs	serva _2	ation Hole #	Depth of organ	Test Pit ic horizon above	mineral soil
	<u>2</u> °[	tion Hole # " Texture	Depth of organ	Color	re mineral soil  Mottling	Obs	serva 2	ation Hole #	Depth of organ	Test Pit ic horizon above Color 10 Y 1/2 1/2	mineral soil
	0 6 2	tion Hole # " Texture	Depth of organ	Color	re mineral soil  Mottling	Obs	serva 2	ation Hole #	Depth of organ	Test Pit ic horizon above Color 10 Y 1/2 1/2	mineral soil
	0 6	tion Hole # " Texture	Depth of organ	Color	re mineral soil  Mottling	Obs	serva 2	Texture  VFSC	Depth of organ	Test Pit ic horizon above Color 10 Y /2 2 / 2	mineral soil
	0 6 2 8	tion Hole #  " Texture  VFSL	Depth of organ	Color  /OYR3/3	Mottling  I OYE 4/3	Obs	0 0 0 12 18 18	ation Hole # Texture	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2/2	mineral soil
	0 6 22	tion Hole #  Texture  VFSL	Depth of organ	Color	Mottling  Hove 4/3	Obs	Serva 2 0 6	Texture  VFSC	Depth of organ	Test Pit ic horizon above Color 10 Y /2 2 / 2	mineral soil
	0 6 22	tion Hole #  Texture  VFS4	Depth of organ	Color  /OYR3/3	Mottling  I OYE 4/3	Obs	0 6 12 18 24 24	Texture  VFSC	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2 / 2	mineral soil
	0 6 22 2 88	tion Hole #  Texture  VFSL	Depth of organ	Color  /OYR3/3	Mottling  I OYE 4/3	Obs	0 0 0 12 18 18	Texture  VFSC	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2 / 2	mineral soil
	0 6 22 2 88	tion Hole #  Texture  VFSL	Depth of organ Consistency Frable	Color  /OYR3/3	Mottling  I OYE 4/3	Obs	0 6 12 18 24 24	Texture  VFSC	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2 / 2	mineral soil
Depth below mineral soil surface (inches)	0 6 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	tion Hole #  Texture  VFSL	Depth of organ	Color  /OYR3/3	Mottling  I OYE 4/3	Obs	0 6 12 18 24 30 -	Texture  VFSC	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2 / 2	mineral soil
	0 6 22 88	tion Hole #  " Texture  VFSL	Depth of organ Consistency Frable	Color  /OYR3/3	Mottling  I OYE 4/3		0 6 12 18 24 30	Texture  VFSC	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2 / 2	mineral soil
Deptin below mineral soil surface (inches)	0 6 2 2 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tion Hole #  Texture  VFSL	Depth of organ Consistency Frable	Color  /OYR3/3	Mottling  I OYE 4/3	Obs	0 0 6 12 18 24 18 30 136 42 142	Texture  VESL	Depth of organ  Consistency	Test Pit ic horizon above Color 10 y 12 2 / 2	mineral soil
Depth below mineral soil surface (inches)		tion Hole #  " Texture  VFSL	Depth of organ Consistency Frable	Color  10 Y R 3/3  10 Y R 4/ Y	Mottling  ### ### ############################	Obs	0 6 12 18 30 36 42 48	Texture  VESL	Depth of organ  Consistency	Test Pit ic horizon above Color 109/22/2 1439/43/3	mineral soil
Depth below mineral soil surface (inches)	2 0 6 6 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	tion Hole #  " Texture  VFSL  Soil Classification of the Condition of the	Depth of organ Consistency Frable  Frable  ation Slope	Color  / O Y R 3/3  I O Y R 4/ Y  I O Y R 5/L  Limiting Factor  "	Mottling  B  I OYK 4/3  F, F	Obs	0 0 6 12 18 30 36 42 48 48	Texture  VEST  Soil Classification	Depth of organ  Consistency  Co	Test Pit ic horizon above Color IOY/22/2 ILOY/23/3 7.59/49/9  Limiting Factor	Mottling  Mottling  Groundwater  Restrictive Layer
Series 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 6 2 8 8 8 Pro Name	Texture  VFSL  Soil Classification Conditions	Depth of organ Consistency France	Color  / O Y R 3/3  I D Y R 4/ Y  I D Y R 5/L  Limiting Factor  "	Mottling  Howard Soil  Mottling  Howard Soil  Mottling  Groundwater  Restrictive Layer	Depth below mineral soil surface (inches)	0 0 6 12 18 18 24 48 PP	Texture  VFSL  Soil Classification Condition	Depth of organ  Consistency  Consistency  Consistency  And Consistency  An	Test Pit ic horizon above Color IOY/22/2 ILOY/23/3 7.59/4.9/9 IOY/29/9 Limiting Factor	mineral soil  Mottling
(sequal) and an animetral soil surface (inches)	0 6 2 8 8 8 Pro Name	tion Hole #  " Texture  VFSL  Soil Classification of the Condition of the	Depth of organ Consistency France	Color  Co	Mottling  Howard Soil  Mottling  Howard Soil  Mottling  Groundwater  Restrictive Layer	Depth below mineral soil surface (inches)	0 0 6 12 18 18 24 48 PP	Texture  VFSL  Soil Classification for the Condition of t	Depth of organ  Consistency  Co	Color	Mottling  Mottling  Groundwater  Restrictive Layer

Date

Texture Consistency Color Mottling  Texture Consistency Color Mott			Dee	antation				De	et, Road,	1 55	ion <i>E</i> ×	 P			Owne	r or Appli	cant Name		• •
Depth of organic horizon above mineral soil  Consistency Color Motiling  VEST FUZE 1	SC	IL	PROI	FILE DI	ESCRII	PTION	AND C	LASS	SIFICAT	ION				(Locati	ion of	Observ	ation Hole	s Sh	own Above
Texture   Consistency   Color   Mottling	Ol	se	rvatio							- 1	OI			Hole 7	# _/	h/	☑ Test P	Pit	Boring
				-	1		1	n above	e mineral	soil			2	-"	Dept	h of orga	nic horizon a	bove	mineral soil
VFSL   VFST			0		Cons	sistency		lor	Mot	tling		0	Te	exture	Co	nsistency	Color	r	Mottling
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Dept	ŝ			5 L	FULL	16	The same of the sa	10001100000000000000000000000000000000	*		_	_		2 S L	-	is lie	Inva	3/2	
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Dept	g S		6				10716	> 3/ 3 			Jes.	6						- /	
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Profile   Condition   Percent   Depth   Profile   Co	Ë	1	,				INVE	ulu			j.	,					10×23	73	
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth	face	1					1 2 7 10	- 47			e	12			-	<del></del>	2,016,000,000 minutes in the contract of the c	ensemble services	
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth	sur	1	8						-		L stra		Onell	1651			AMMOSS CONTROL TO THE CONTROL OF THE	With the second second	
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth	Soil		STR	vellu	200			gary-100,000 Meterograph		Crescondininis	Sig	,18	606	oles/			HON N. Y	<u> </u>	ON-EST ON A METER SERVICE SERVICE SERVICES
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Profile   Condition   Percent   Depth   Profile   Co	ā	24	8 622	SJ			LOY	n5/3			3 8	04	5 100	<u> </u>			3 4 4	. 19	** 60 td . a 2
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth	nine						-		Red	lax	ner	24	Vf	54			4/575	13	29/6
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth	≥	30	) <del> </del>	· · · · · · · · · · · · · · · · · · ·							Ē	30	Veins	945					***
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Bedrock	pelc												~	<i>\$</i>					
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Bedrock	ott.	36	·						<del> </del>		l d	36	******						
Soil Classification   Stope   Limiting Factor   Groundwater   Groundwa	<u>P</u>	40			-						) ept								
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Bedrock		42		A record	1, 4						"				<del> </del>				
Soil Classification   Slope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth   Bedrock		48		26 /	_								EOL	60					
Profile Condition Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Profile Condition   Percent Depth   Bedrock   Profile Condition   Percent Depth   Profile Condition   Percent Depth   Profile			Soil	Classifi	cation	Slope	Limiting Fa	actor [	☐ Groundwa	iter		48 L	Soil	Classifi	cation	Close			
Disservation Hole # Test Pit					.					Layer				Olassiii	cation	Siope	Limiting Factor		14
Disservation Hole # Test Pit	oil Se	ies l		Cond	ition	Percent			] Bedrock					Condi	tion	Percent	Depth		•
Depth of organic horizon above mineral soil  Texture Consistency Color Mottling  Texture Consistency C			Non	12000	1		, i y ai ologic i	Group				ries Na	2020						
Depth of organic horizon above mineral soil  Texture Consistency Color Mottling  Texture Consistency C				. Balan Pala	K						3011 36	Sc	e fra	a for			Hydrologic Gro	oup	
Depth of organic horizon above mineral soil  Texture Consistency Color Mottling  Texture Consistency C					<u> </u>						3011 36	Sc	ter	ate			Hydrologic Gro	oup	
Texture Consistency Color Mottling  Texture Consistency Color Mott	 Dbs						7 Test F	Pit l	□ Bor	ina		Sc	chr						
Series Name    Soil   Classification   Stope   Limiting Factor   Groundwater   Profile   Condition   Percent   Depth	Obs									_		Sc	chr	lole #			Test Pit	Ξ [	Boring
48 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock	Obs	erv	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil		Sc	ation H	lole#	Depth	of organi	Test Pit	ove m	_
48 Soil Classification Slope Limiting Factor Groundwater Soile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Soile Classification Slope Limiting Factor Groundwater G	)bs	erv	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil		Serva	ation H	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Series Name Slope Hydrologic Group Slope Hydrologic Group Soil Scrice Name Slope Hydrologic Group Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Scries Scries Scries Name Slope Sc		erv 0	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	Serva	ation H	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock		erv 0	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	Serva of	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Series Name Slope Hydrologic Group Slope Hydrologic Group Slope Series Name Slope Hydrologic Group Slope Slope Slope Soil Socies Name Slope S		erv 0	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	Serva of	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Soile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Soile Classification Slope Limiting Factor Groundwater G		erv 0	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	Serva of 6	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock		0 6	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12 12	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Soile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Soile Classification Slope Limiting Factor Groundwater G		0 6	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12 12	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Soile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Soile Classification Slope Limiting Factor Groundwater G		0 6 12	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Soile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Soile Classification Slope Limiting Factor Groundwater G		0 6 12	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Series Name Slope Hydrologic Group Slope Hydrologic Group Soil Scrice Name Slope Hydrologic Group Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Scries Scries Scries Name Slope Sc		0 6 12 18	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12 18 24 24 1	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Soile Condition Percent Depth Bedrock  Series Name  A2 Soil Classification Slope Limiting Factor Groundwater Soile Classification Slope Limiting Factor Groundwater G		0 6 12 18	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12 18 24 24 1	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Series Name Slope Hydrologic Group Slope Hydrologic Group Soil Scrice Name Slope Hydrologic Group Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Scries Name Slope Hydrologic Group Slope Scries Name Slope Scries Scries Scries Name Slope Sc		0 6 12 18	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 C C C C C C C C C C C C C C C C C C C	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
48 Soil Classification Slope Limiting Factor Groundwater Profile Condition Percent Depth Bedrock  Series Name  48 Soil Classification Slope Limiting Factor Groundwater Profile Condition Percent Depth Bedrock  Self Soil Classification Slope Limiting Factor Groundwater Profile Condition Percent Depth Bedrock  Self Soil Classification Percent Depth Bedrock		0 6 12 18	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 C C C C C C C C C C C C C C C C C C C	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
Soil Classification Slope Limiting Factor Groundwater Profile Condition Percent Depth Bedrock  Series Name  48  Soil Classification Slope Limiting Factor Groundwater  Profile Condition Percent Depth Bedrock  Soil Classification Slope Limiting Factor Groundwater  Profile Condition Percent Depth Bedrock  Soil Soile Classification Percent Depth Bedrock	Deptin below mineral soil surface (inches)	0 6 12 18 24	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12 18 24 30 36 36	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
Soil Classification Slope Limiting Factor Groundwater Profile Condition Percent Depth Bedrock  Series Name  Limiting Factor Groundwater Restrictive Layer Profile Condition Percent Depth Bedrock  Soil Classification Slope Limiting Factor Groundwater Profile Condition Percent Depth Bedrock	Deptin below mineral soil surface (inches)	0 6 12 18 24	/ation	Hole #	Depth o	f organic	horizon a	above r	mineral so	oil	Obs	0 6 12 18 24 30 36 36	ation F	lole#	Depth	of organi	Test Pit	ove m	ineral soil
Profile Condition Percent Depth Bedrock Profile Condition Percent Depth Bedrock  Series Name Hydrologic Group Soil Sories Name Soil Sories Name	Deptin below mineral soil surface (inches)	0 6 12 18 30	/ation	Hole #	Depth o Consis	f organic	horizon a	above r	mineral so	oil	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42	ation H	lole#	Depth	of organi	Test Pit	ove m	ineral soil
Series Name Hydrologic Group Soil Series Name Condition Percent Depth Bedrock	Deput below mineral soil surface (inches)	0 6 12 18 30	/ation	Hole #	Depth o Consis	f organic stency	Color Color	above r	Mottlii  Mottlii	pil ng	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48	Text	Hole #	Depth	of organi	Test Pit c horizon abo Color		Mottling
1 sydrologic Group	Deput below mineral soil surface (inches)	0 6 12 18 30 - 36 - 42 - 48	/ation Te	Hole # " xture  Classifica	Depth o Consis	f organic stency	Color Color Limiting Fact	above r	Mottlii  Mottlii  Groundwate	pil ng	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48	stion F	dole #	Depth	of organi sistency	Test Pit c horizon abo Color  Limiting Factor	□ G □ R	Mottling  Mottling  iroundwater estrictive Layer
	Deput below mineral soil surface (inches)	0 6 12 18 30 - 336 - 412 - 48	/ation Te	Hole # " xture  Classifica	Depth o Consis	f organic stency	Limiting Fact	above r	Mottlii  Mottlii  Groundwate	pil ng	Depth below mineral soil surface (inches)	0   6   12   18   24   30   36   42   48   P	stion F	dole #	Depth	of organi sistency	Test Pit c horizon abo Color  Limiting Factor Depth	□ G G R □ B B	Mottling  Mottling  Froundwater estrictive Layer
Soil Scientist/Site Evaluator Signature  ME 215  CSS/LSE#  Date	Deput below mineral soil surface (inches)	0 6 12 18 30 - 336 - 412 - 48	/ation Te	Hole # " xture  Classifica	Depth o Consis	f organic stency	Limiting Fact	above r	Mottlii  Mottlii  Groundwate	pil ng	Depth below mineral soil surface (inches)	0   6   12   18   24   30   36   42   48   P	stion F	dole #	Depth	of organi sistency	Test Pit c horizon abo Color  Limiting Factor Depth	□ G G R □ B B	Mottling  Mottling  Froundwater estrictive Layer



	SOIL SURVEY OVERVIEW	
Date: 02.02.15	Project No.: 21812.204	Scale: 1"=100'





No.	Document/Draft Name	Ini.	Date
1	C:\Npass\DWG\NP_Frank_Scobie_Deer_SOIL_020215	JCB	02.02.15

SHEET 1 OF 1



A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Rockingham County, New Hampshire



## **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# **Contents**

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Rockingham County, New Hampshire	
43C—Canton gravelly fine sandy loam, 8 to 15 percent slopes, very	10
stony	13
44B—Montauk fine sandy loam, 3 to 8 percent slopes	
44C—Montauk fine sandy loam, 8 to 15 percent slopes	
45C—Montauk fine sandy loam, 8 to 15 percent slopes, very stony	
45D—Montauk fine sandy loam, 15 to 25 percent slopes, very stony	
97—Greenwood and Ossipee soils, ponded	
	10
140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very	10
stony	19
140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very	00
stony	
295—Greenwood mucky peat	
447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony	
495—Ossipee mucky peat	
547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	27
657B—Ridgebury very fine sandy loam, 3 to 8 percent slopes, very	
stony	
799—Urban land-Canton complex, 3 to 15 percent slopes	29
References	31

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

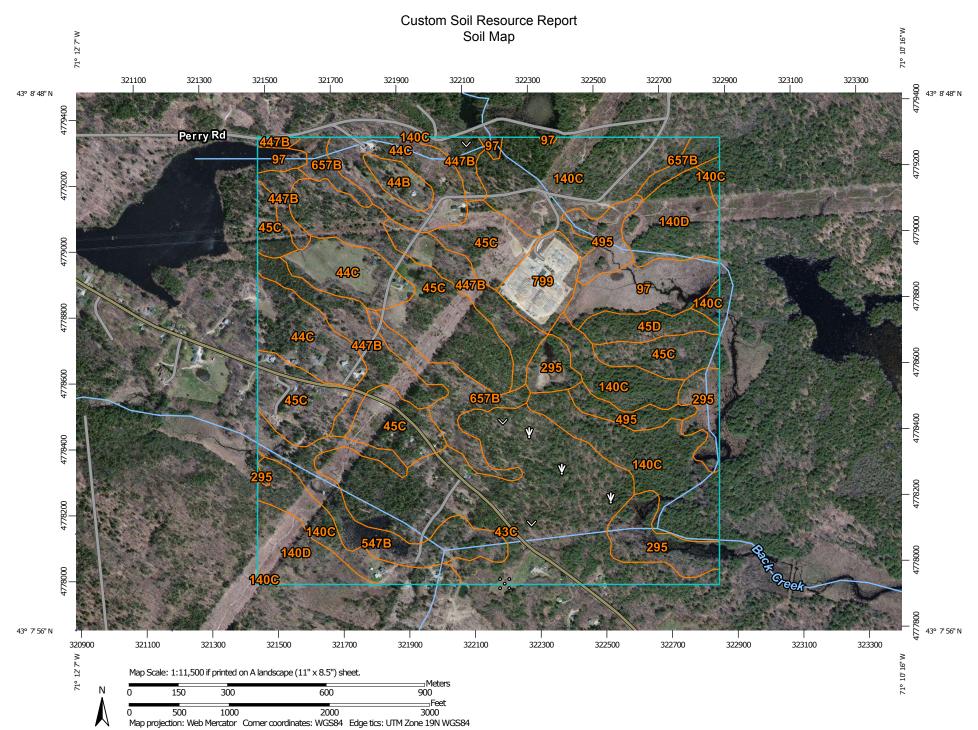
Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.


While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons



Soil Map Unit Lines



Soil Map Unit Points

#### **Special Point Features**

Blowout



Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area



Stony Spot Very Stony Spot



Wet Spot Other



Special Line Features

#### **Water Features**

Streams and Canals

#### Transportation

+++ Rails

Interstate Highways



US Routes



Major Roads



Local Roads

#### Background

100

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 15, Dec 31, 2013

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 8, 2011—May 1, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## **Map Unit Legend**

Rockingham County, New Hampshire (NH015)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
43C	Canton gravelly fine sandy loam, 8 to 15 percent slopes, very stony	77.6	16.4%	
44B	Montauk fine sandy loam, 3 to 8 percent slopes	4.7	1.0%	
44C	Montauk fine sandy loam, 8 to 15 percent slopes	44.5	9.4%	
45C	Montauk fine sandy loam, 8 to 15 percent slopes, very stony	79.3	16.7%	
45D	Montauk fine sandy loam, 15 to 25 percent slopes, very stony	7.6	1.6%	
97	Greenwood and Ossipee soils, ponded	18.6	3.9%	
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony	complex, 8 to 15 percent		
140D	Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony	27.5	5.8%	
295 Greenwood mucky peat		23.2	4.9%	
447B	Scituate-Newfields complex, 3 to 8 percent slopes, very stony	38.2	8.1%	
495 Ossipee mucky peat		12.7	2.7%	
547B Walpole very fine sandy loam, 3 to 8 percent slopes, very stony		21.6	4.6%	
Ridgebury very fine sandy loam, 3 to 8 percent slopes, very stony		21.5	4.5%	
799 Urban land-Canton complex, 3 to 15 percent slopes		11.5	2.4%	
Totals for Area of Interest		473.7	100.0%	

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability

of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and

relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### **Rockingham County, New Hampshire**

#### 43C—Canton gravelly fine sandy loam, 8 to 15 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 1,000 feet

Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 120 to 200 days

#### **Map Unit Composition**

Canton and similar soils: 80 percent Minor components: 20 percent

#### **Description of Canton**

#### Setting

Parent material: Till

#### **Properties and qualities**

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.3 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: B

#### Typical profile

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam

21 to 60 inches: Loamy sand

#### **Minor Components**

#### Montauk

Percent of map unit: 5 percent

#### Slope inclusion

Percent of map unit: 5 percent

#### Chatfield

Percent of map unit: 5 percent

#### **Newfields**

Percent of map unit: 5 percent

#### 44B—Montauk fine sandy loam, 3 to 8 percent slopes

#### **Map Unit Setting**

Elevation: 0 to 1,000 feet

Mean annual precipitation: 42 to 46 inches Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 120 to 160 days

#### **Map Unit Composition**

Montauk and similar soils: 80 percent Minor components: 20 percent

#### **Description of Montauk**

#### Setting

Parent material: Basal melt-out till derived from granite and gneiss and/or basal meltout till derived from schist

#### Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.9 inches)

#### Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e Hydrologic Soil Group: C

#### Typical profile

0 to 1 inches: Fine sandy loam

1 to 30 inches: Cobbly fine sandy loam 30 to 61 inches: Fine sandy loam

#### **Minor Components**

#### Canton

Percent of map unit: 10 percent

#### **Scituate**

Percent of map unit: 10 percent

#### 44C—Montauk fine sandy loam, 8 to 15 percent slopes

#### **Map Unit Setting**

Elevation: 0 to 1,000 feet

Mean annual precipitation: 42 to 46 inches Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 120 to 160 days

#### **Map Unit Composition**

Montauk and similar soils: 80 percent Minor components: 20 percent

#### **Description of Montauk**

#### Setting

Parent material: Basal melt-out till derived from granite and gneiss and/or basal melt-

out till derived from schist

#### Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.9 inches)

#### Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: C

#### **Typical profile**

0 to 1 inches: Fine sandy loam

1 to 30 inches: Cobbly fine sandy loam 30 to 61 inches: Fine sandy loam

#### **Minor Components**

#### Canton

Percent of map unit: 10 percent

#### **Scituate**

Percent of map unit: 8 percent

#### Not named

Percent of map unit: 2 percent

#### 45C—Montauk fine sandy loam, 8 to 15 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 1,000 feet

Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 120 to 200 days

#### **Map Unit Composition**

Montauk and similar soils: 80 percent Minor components: 20 percent

#### **Description of Montauk**

#### Setting

Parent material: Basal melt-out till derived from granite and gneiss and/or basal meltout till derived from schist

#### Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.9 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: C

#### Typical profile

0 to 1 inches: Fine sandy loam

1 to 30 inches: Cobbly fine sandy loam 30 to 61 inches: Fine sandy loam

#### **Minor Components**

#### Canton

Percent of map unit: 10 percent

#### **Scituate**

Percent of map unit: 8 percent

#### Not named

Percent of map unit: 2 percent

#### 45D—Montauk fine sandy loam, 15 to 25 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 1,000 feet

Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 120 to 200 days

#### **Map Unit Composition**

Montauk and similar soils: 85 percent Minor components: 15 percent

#### **Description of Montauk**

#### Setting

Parent material: Basal melt-out till derived from granite and gneiss and/or basal meltout till derived from schist

#### Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 24 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.9 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: C

#### Typical profile

0 to 1 inches: Fine sandy loam

1 to 30 inches: Cobbly fine sandy loam 30 to 61 inches: Fine sandy loam

#### **Minor Components**

#### Canton

Percent of map unit: 10 percent

#### Not named

Percent of map unit: 5 percent

#### 97—Greenwood and Ossipee soils, ponded

#### **Map Unit Setting**

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 45 inches Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 60 to 195 days

#### **Map Unit Composition**

Greenwood and similar soils: 38 percent Ossipee and similar soils: 37 percent Minor components: 25 percent

#### **Description of Greenwood**

#### Setting

Landform: Marshes

Parent material: Herbaceous organic material and/or woody organic material

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: Very high (about 31.7 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7w

Hydrologic Soil Group: D

#### Typical profile

0 to 60 inches: Mucky peat

#### **Description of Ossipee**

#### Setting

Landform: Marshes

Parent material: Organic material over till

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: Very high (about 18.9 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 8w

Hydrologic Soil Group: D

#### **Typical profile**

0 to 20 inches: Mucky peat 20 to 26 inches: Mucky peat 26 to 60 inches: Clay loam

#### **Minor Components**

#### Scarboro

Percent of map unit: 5 percent

Landform: Marshes

#### Maybid

Percent of map unit: 4 percent

Landform: Marshes

#### Ridgebury

Percent of map unit: 4 percent

Landform: Marshes

#### **Scitico**

Percent of map unit: 4 percent

Landform: Marshes

#### Squamscott

Percent of map unit: 4 percent

Landform: Marshes

#### Walpole

Percent of map unit: 4 percent

Landform: Marshes

# 140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 46 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 60 to 195 days

#### **Map Unit Composition**

Chatfield and similar soils: 35 percent

Canton and similar soils: 20 percent Hollis and similar soils: 20 percent Minor components: 25 percent

#### **Description of Chatfield**

Setting

Parent material: Till

#### Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.5 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: B

#### **Typical profile**

0 to 20 inches: Fine sandy loam

20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

#### **Description of Hollis**

#### **Setting**

Parent material: Till

#### Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.6 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: D

#### **Typical profile**

0 to 2 inches: Fine sandy loam

2 to 13 inches: Cobbly fine sandy loam 13 to 17 inches: Unweathered bedrock

#### **Description of Canton**

#### Setting

Parent material: Till

#### **Properties and qualities**

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.3 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: B

#### **Typical profile**

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam

21 to 60 inches: Loamy sand

#### **Minor Components**

#### Not named

Percent of map unit: 7 percent

#### Ossipee and greenwood

Percent of map unit: 5 percent

Landform: Bogs

#### **Newfields**

Percent of map unit: 5 percent

#### **Scarboro**

Percent of map unit: 3 percent Landform: Depressions

#### Walpole

Percent of map unit: 3 percent Landform: Depressions

#### **Rock outcrop**

Percent of map unit: 2 percent

# 140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 56 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 60 to 200 days

#### **Map Unit Composition**

Chatfield and similar soils: 35 percent Canton and similar soils: 20 percent Hollis and similar soils: 20 percent Minor components: 25 percent

#### **Description of Chatfield**

#### Setting

Parent material: Till

#### Properties and qualities

Slope: 15 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.5 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: B

#### **Typical profile**

0 to 20 inches: Fine sandy loam

20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

#### **Description of Hollis**

#### Setting

Parent material: Till

#### **Properties and qualities**

Slope: 15 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.6 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: D

#### **Typical profile**

0 to 2 inches: Fine sandy loam

2 to 13 inches: Cobbly fine sandy loam 13 to 17 inches: Unweathered bedrock

#### **Description of Canton**

#### Setting

Parent material: Till

#### Properties and qualities

Slope: 15 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.3 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: B

#### **Typical profile**

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam

21 to 60 inches: Loamy sand

#### **Minor Components**

#### **Montauk**

Percent of map unit: 7 percent

#### Not named

Percent of map unit: 5 percent

#### Ossipee and greenwood

Percent of map unit: 5 percent

Landform: Bogs

Scarboro

Percent of map unit: 3 percent Landform: Depressions

Walpole

Percent of map unit: 3 percent Landform: Depressions

**Rock outcrop** 

Percent of map unit: 2 percent

#### 295—Greenwood mucky peat

#### **Map Unit Setting**

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 45 inches Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 60 to 195 days

#### **Map Unit Composition**

Greenwood and similar soils: 80 percent

Minor components: 20 percent

#### **Description of Greenwood**

#### Setting

Landform: Bogs

Parent material: Herbaceous organic material and/or woody organic material

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: Very high (about 31.7 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7w

Hydrologic Soil Group: D

#### **Typical profile**

0 to 60 inches: Mucky peat

#### **Minor Components**

#### Chocorua

Percent of map unit: 8 percent

Landform: Bogs

#### Ossipee

Percent of map unit: 8 percent

Landform: Bogs

#### Scarboro

Percent of map unit: 4 percent

Landform: Swamps

#### 447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 1,000 feet

Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F

Frost-free period: 120 to 200 days

#### **Map Unit Composition**

Scituate and similar soils: 50 percent Newfields and similar soils: 25 percent

Minor components: 25 percent

#### **Description of Scituate**

#### Properties and qualities

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.2 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

#### Typical profile

0 to 8 inches: Fine sandy loam

8 to 32 inches: Cobbly fine sandy loam 32 to 60 inches: Gravelly loamy sand

#### **Description of Newfields**

#### Setting

Parent material: Till

#### Properties and qualities

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 24 to 48 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.4 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: B

#### **Typical profile**

0 to 9 inches: Fine sandy loam 9 to 35 inches: Fine sandy loam 35 to 64 inches: Gravelly loamy sand

#### **Minor Components**

#### Canton

Percent of map unit: 5 percent

#### **Montauk**

Percent of map unit: 5 percent

#### Not named

Percent of map unit: 5 percent

#### Ridgebury

Percent of map unit: 5 percent Landform: Depressions

#### Walpole

Percent of map unit: 5 percent Landform: Depressions

#### 495—Ossipee mucky peat

#### **Map Unit Setting**

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 45 inches

Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 100 to 195 days

#### **Map Unit Composition**

Ossipee and similar soils: 90 percent *Minor components*: 10 percent

#### **Description of Ossipee**

#### Setting

Landform: Bogs

Parent material: Organic material over till

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: Very high (about 18.9 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 8w

Hydrologic Soil Group: D

#### **Typical profile**

0 to 20 inches: Mucky peat 20 to 26 inches: Mucky peat 26 to 60 inches: Clay loam

#### **Minor Components**

#### Scarboro

Percent of map unit: 4 percent Landform: Depressions

#### Walpole

Percent of map unit: 4 percent Landform: Ground moraines

#### Maybid

Percent of map unit: 2 percent Landform: Marine terraces

#### 547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony

#### **Map Unit Setting**

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 45 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 100 to 195 days

#### **Map Unit Composition**

Walpole and similar soils: 80 percent Minor components: 20 percent

#### **Description of Walpole**

#### Setting

Landform: Depressions

#### **Properties and qualities**

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.6 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: C

#### **Typical profile**

0 to 7 inches: Very fine sandy loam 7 to 16 inches: Sandy loam

16 to 60 inches: Gravelly loamy sand

#### **Minor Components**

#### Scarboro

Percent of map unit: 10 percent

Landform: Depressions

#### Squamscott

Percent of map unit: 5 percent Landform: Marine terraces

#### **Newfields**

Percent of map unit: 5 percent

#### 657B—Ridgebury very fine sandy loam, 3 to 8 percent slopes, very stony

#### **Map Unit Composition**

Ridgebury and similar soils: 85 percent

Minor components: 15 percent

#### **Description of Ridgebury**

#### Setting

Landform: Depressions

Parent material: Basal lodgement till derived from granite and gneiss and/or basal

lodgement till derived from schist

#### **Properties and qualities**

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 10 to 39 inches to densic material

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.7 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: C

#### **Typical profile**

0 to 8 inches: Very fine sandy loam 8 to 21 inches: Gravelly fine sandy loam 21 to 61 inches: Gravelly fine sandy loam

#### **Minor Components**

#### Woodbridge

Percent of map unit: 10 percent

#### Not named

Percent of map unit: 5 percent

#### 799—Urban land-Canton complex, 3 to 15 percent slopes

#### Map Unit Setting

Elevation: 0 to 1,000 feet

Mean annual precipitation: 42 to 46 inches Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 120 to 160 days

#### **Map Unit Composition**

Urban land: 55 percent

Canton and similar soils: 20 percent Minor components: 25 percent

#### **Description of Canton**

#### Setting

Parent material: Till

#### **Properties and qualities**

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.3 inches)

#### Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: B

#### **Typical profile**

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam

21 to 60 inches: Loamy sand

#### **Minor Components**

#### **Udorthents**

Percent of map unit: 5 percent

#### **Boxford and eldridge**

Percent of map unit: 4 percent

#### Scituate and newfields

Percent of map unit: 4 percent

#### Squamscott and scitico

Percent of map unit: 4 percent Landform: Marine terraces

#### Walpole

Percent of map unit: 4 percent Landform: Depressions

#### Chatfield

Percent of map unit: 4 percent

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/landuse/forestry/pub/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf



# INFILTRATION FEASIBILITY REPORT

# Deerfield Substation Expansion Deerfield, NH January 13, 2017

# TABLE OF CONTENTS:

- I. Location of the practice
- II. Existing topography at the location of the practice
- III. Test pit or boring locations
- IV. Seasonal high water table (SHWT) and bedrock elevations
- V. Profile descriptions
- VI. Soil plan in the area of the proposed practice
- VII. Summary of Field Testing data used to determine the infiltration rate

The project proposes one system that requires infiltration to function property. This system is identified on the plans as Infiltration Basin IF-1.

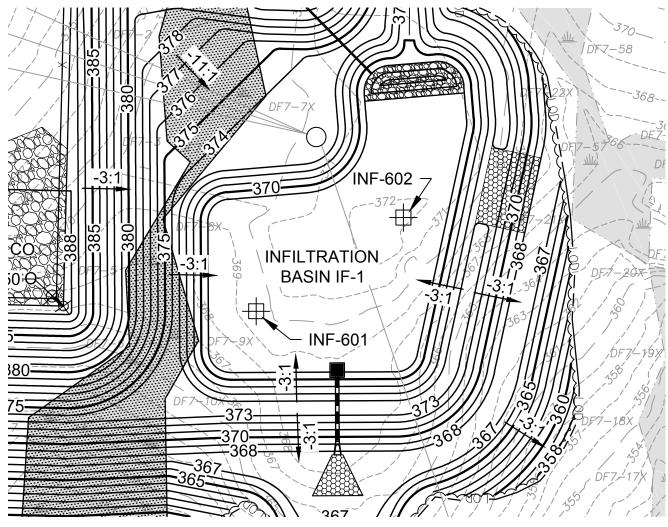
# I. Location of the practice

Infiltration Basin IF-1 is located on the east side of the substation yard expansion.

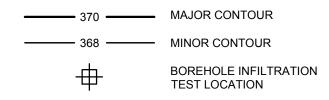
# II. Existing topography at the location of the practice

The existing topography within the area of the infiltration basin is relatively flat with forested cover. A portion of the basin (east side) is forested and sloped at approximately 3H:1V.

# **III.** Test pit or boring locations


In accordance with Env-Wq 1504.13(c), NHDES requires that a minimum number of test pits or borings be dug or drilled in the location of the system, depending on the size of the proposed system.

Infiltration Basin IF-1 is 9,140 square feet in area. Two borehole infiltration tests were performed in the location of this practice. The test locations, identified as INF-601 and INF-602, are shown on the attached boring location plan.




# DEERFIELD SUBSTATION INFILTRATION BASIN IF-1 BORING LOCATION PLAN





#### PROPOSED LEGEND:



#### **EXISTING LEGEND:**





#### NOTES:

- BACKGROUND INFORMATION TAKEN FROM "EXISTING CONDITIONS PLAN" FOR DEERFIELD STATION, OFF CATE ROAD, DEERFIELD, NH. PREPARED BY CHA, CONSULTING, INC. DATED DECEMBER 2, 2013. LAST REVISED SEPTEMBER 23, 2014. WETLAND FLAGS SHOWN ARE BASED ON LOCATIONS PROVIDED BY NORMANDEAU, WETLAND FLAGS WERE DELINEATED BY NORMANDEAU IN 2010.
- 2. NEW HAMPSHIRE STATE PLANE COORDINATE SYSTEM HORIZONTAL DATUM NAD83 VERTICAL DATUM NAVD88
- 3. PROPOSED CONTOURS AND SPOT ELEVATIONS INDICATED REFER TO TOP OF FINISH SURFACE.
- 4. ALL FILL AND CUT SLOPES ARE 3-FT HORIZONTAL TO 1-FT VERTICAL (3:1) UNLESS NOTED OTHERWISE.

# IV. Seasonal high water table (SHWT) and bedrock elevations

The following borehole test data was collected on November 16-17, 2016.

# Infiltration Basin IF-1:

Bottom of Basin Elevation = 369.0

INF-601: Existing Surface Elevation of Borehole = 369.6

SHWT = 366.0

BEDROCK = not found

Deepest Elevation of Borehole = 361.6

INF-602: Existing Surface Elevation of Borehole = 372.0

SHWT = 366.0

BEDROCK = not found

Deepest Elevation of Borehole = 362.0

# V. Profile descriptions

Refer to attached boring logs for soil profile descriptions at INF-601 and INF-602 boreholes.



# **BORING NUMBER INF 601**

PAGE 1 OF 1

PROJECT NUMBER 16004

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

PROJECT LOCATION Deerfield, New Hampshire

DATE STARTED 11/17/16

COMPLETED 11/17/16

GROUND ELEVATION 369.6 ft

HOLE SIZE 6"

LATITUDE 43.14044444

LONGITUDE -71.18598611

DRILLING METHOD Hollow Stem Auger

DRILLING EQUIPMENT Mobile B-53

SPT HAMMER Manual - Safety

LOGGED BY L. Gschwind

CHECKED BY J.T. McGinnis

NOTES AT END OF DRILLING Not Encountered

ELEV (ft)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	FINES CONTENT (%)	REMARKS
		SPT 1	38	2-4-4-9 (8)		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TOPSOIL: Silty SAND (SM), little organics, trace fine gravel, dark reddish brown, moist, loose, fine to medium grained sand, subangular				Infiltration test casing installed in an adjacent borehole to a
-		<b>▲</b>		,			TILL: Silty SAND (SM), little fine to coarse gravel, moderate reddish brown, moist, medium dense to				depth of approximately 4
		SPT 2 67 11-27-29-24 (56)			very dense, fine to medium grained sand, subangular, oxidized zones				feet. The ESHWT is at		
365_	5	SPT 3	67	20-26-25- 28 (51)			Silty SAND (SM), little fine to coarse gravel, grayish orange, moist, very dense, fine grained sand, subangular	7.6		33.8	an approximate depth of 4 feet.
		SPT 4	79	31-31-31- 34 (62)			Silty SAND (SM), little fine to coarse gravel, pale reddish brown, moist, very dense, fine to medium grained sand, subangular, oxidized zones				

Bottom of Borehole at 8.0 feet

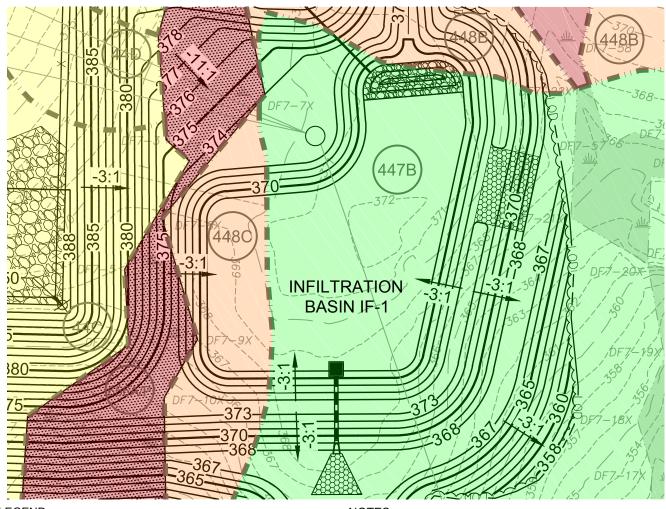
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:\USERS\MRUNION\DOCUMENTS\16004\16004 NORTHERN PASS DEERFIELD SS.GPJ



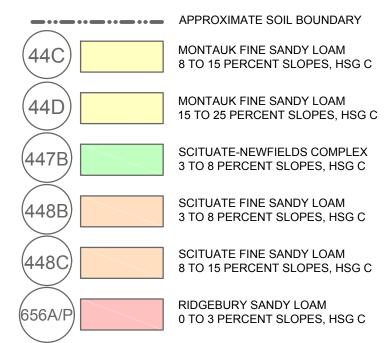
# **BORING NUMBER INF 602**

PAGE 1 OF 1

**CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Deerfield Substation **PROJECT NUMBER** 16004 PROJECT LOCATION Deerfield, New Hampshire COMPLETED 11/16/16 GROUND ELEVATION 372.0 ft HOLE SIZE 6" DATE STARTED 11/16/16 **DRILLING CONTRACTOR** New England Boring Contractor **LATITUDE** 43.14064444 LONGITUDE -71.18597222 DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety DRILLING METHOD Hollow Stem Auger LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES** AT END OF DRILLING Not Encountered ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX ELEV (ft) LIQUID  $\equiv$ MATERIAL DESCRIPTION **REMARKS** Infiltration test TOPSOIL: Silty SAND (SM), little organics, trace casing installed in fine to coarse gravel, moderate reddish brown, 1-2-4-6 SPT an adjacent moist, loose 21 (6) borehole to a TILL: Silty SAND (SM), little fine to coarse gravel, depth of moderate reddish orange, moist, loose, fine to 370 approximately 7 coarse grained sand, subangular feet. Silty SAND with gravel (SM), grayish pink, moist, GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C.USERSIMRUNION/DOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GP. 17-21-20-SPT dense, fine to coarse grained gravel, fine to coarse 54 26 Auger refusal was grained sand, subangular (41)encountered at 4 - boulders encountered at 4 feet feet. The bore Silty SAND (SM), little fine to coarse gravel, light hole was offset 4 brown, moist, dense, fine to coarse grained sand, feet to the East 26-26-24 SPT and redrilled. subangular 67 22 (50)The ESHWT is at an approximate Silty SAND (SM), moderate reddish orange, moist, depth of 6 feet. very dense, fine to medium grained sand, 21-34-34-365 SPT subangular, oxidized, stratified zones 40.6 67 39 10.2 (68)26-34-35 SPT 63 61 - light brown and oxidized zones from 9 to 10 feet (69)Bottom of Borehole at 10.0 feet


# VI. Soil plan in the area of the proposed practice

Refer to attached plan for a delineation of soil series near Infiltration Basin IF-1, as determined by a soil survey report prepared by Normandeau Associates, Inc. The report is entitled "Northern Pass Transmission Project, Soil Survey Report for Transition Stations, Substation Expansions and Converter Terminal" dated February 6, 2015.




# DEERFIELD SUBSTATION INFILTRATION BASIN IF-1 SOIL SERIES PLAN





SOIL LEGEND: NOTES:



- SOIL INFORMATION TAKEN FROM "NORTHERN PASS

  TRANSMISSION PROJECT COMPUTER PROPERTY.
  - TRANSMISSION PROJECT, SOIL SURVEY REPORT FOR TRANSITION STATIONS, SUBSTATION EXPANSIONS, AND CONVERTER TERMINAL" PREPARED BY NORMANDEAU ENVIRONMENTAL CONSULTANTS, DATED FEBRUARY 6, 2015.
- 2. NEW HAMPSHIRE STATE PLANE COORDINATE SYSTEM HORIZONTAL DATUM NAD83 VERTICAL DATUM NAVD88
- 3. PROPOSED CONTOURS AND SPOT ELEVATIONS INDICATED REFER TO TOP OF FINISH SURFACE.
- 4. ALL FILL AND CUT SLOPES ARE 3-FT HORIZONTAL TO 1-FT VERTICAL (3:1) UNLESS NOTED OTHERWISE.



# VII. Summary of Field Testing data used to determine the infiltration rate

The infiltration rate for Infiltration Basin IF-1 was determined using the Field Measurement method described in Env-Wq 1504.13.

The Ksat was measured with a Borehole Infiltration Test.

INF-601: The average Ksat of the tests was 18.45 inches per hour.

INF-602: The average Ksat of the tests was  $\frac{2.52 \text{ inches per hour.}}{2.52 \text{ inches per hour.}}$ 

After applying a factor of safety, the design rate used in the drainage analysis is <u>1.25 inches per hour.</u>

Refer to attached field infiltration test results for additional information.



# **FIELD INFILTRATION TEST RESULTS**

Project Name:	Northern Pass TL - Deerfield Substation	Test Date:	11/18/16	
Project Number:	16004	Tested By:	L. Gschwind	
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis	
Test Location:	Infiltration Boring INF 601			

# **FIELD TEST DATA**

Run #1 Time Elapsed	Time: 11:05 Depth to Water	Run #2 Time Elapsed	Time: 12:07 Depth to Water	Run #3 Time Elapsed	Time: 13:17 Depth to Water	Run #4 Time Elapsed	Time: 14:22 Depth to Water
(min)	(ft)	(min)	(ft)	(min)	(ft)	(min)	(ft)
0	3.23	0	3.23	0	3.12	0	3.16
1	3.78	1	3.6	1	3.52	1	3.67
2	4.01	2	3.76	2	3.64	2	3.81
3	4.15	3	3.91	3		3	
4	4.29	4	4.02	4		4	
5	4.32	5	4.06	5		5	
6	4.35	6		6		6	
7	4.38	7		7		7	
8	4.42	8		8		8	
9	4.46	9		9		9	
10	4.48	10	4.25	10		10	
15	4.5	15	4.28	15	4.21	15	4.17
20	4.57	20		20		20	
25	4.62	25		25		25	
30	4.79	30	4.51	30	4.45	30	4.39
45	4.87	45		45		45	
60	4.96	60	4.71	60	4.67	60	4.55
(ft/hr)	1.73	(ft/hr)	1.48	(ft/hr)	1.55	(ft/hr)	1.39
(in/hr)	20.76	(in/hr)	17.76	(in/hr)	18.60	(in/hr)	16.68

# **TEST SUMMARY**

Average Infiltration Rate (in/hr)	18.45			
Pre-Soak Performed on 11/17/2016 at 10:45				
Hole Depth from Top of Casing (ft)	5.2			
Casing Stickup from Ground Surface (ft)	1.1			
Pre-Infiltration Test Water Depth (ft)	Dry			

#### Notes:

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.



# FIELD INFILTRATION TEST RESULTS

Project Name:	Northern Pass TL - Deerfield Substation	Test Date:	11/18/16	
Project Number:	16004	Tested By:	L. Gschwind	
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis	
Test Location:	Infiltration Boring INE 602			

# **FIELD TEST DATA**

Run #1	Time: 11:26	Run #2	Time: 12:36	Run #3	Time: 13:45	Run #4	Time: 14:58
Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water
(min)	(ft)	(min)	(ft)	(min)	(ft)	(min)	(ft)
0	6.33	0	6.52	0	6.17	0	6.42
1	6.33	1	6.54	1	6.17	1	6.43
2	6.33	2	6.55	2	6.17	2	6.43
3	6.33	3	6.56	3		3	
4	6.33	4	6.56	4		4	
5	6.33	5	6.58	5		5	
6	6.34	6		6		6	
7	6.34	7		7		7	
8	6.34	8		8		8	
9	6.34	9		9		9	
10	6.35	10	6.60	10		10	
15	6.37	15	6.61	15	6.25	15	6.48
20	6.38	20		20		20	
25	6.40	25		25		25	
30	6.42	30	6.63	30	6.31	30	6.51
45	6.46	45		45		45	
60	6.51	60	6.74	60	6.41	60	6.62
(ft/hr)	0.18	(ft/hr)	0.22	(ft/hr)	0.24	(ft/hr)	0.20
(, (, )	2.12	<i>(, t, )</i>			2.00	(1. (1. )	2.0
(in/hr)	2.16	(in/hr)	2.64	(in/hr)	2.88	(in/hr)	2.40

# **TEST SUMMARY**

1231 3011111111111				
Average Infiltration Rate (in/hr)	2.52			
Pre-Soak Performed on 11/17/2016 at 10:50				
Hole Depth from Top of Casing (ft)	8.3			
Casing Stickup from Ground Surface (ft)	1.5			
Pre-Infiltration Test Water Depth (ft)	Dry			

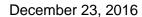
#### Notes:

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.

# **Geotechnical Engineering Report**

# Deerfield Substation Project Northern Pass Transmission Line Deerfield, New Hampshire

December 23, 2016 QS Project No. 16004


# Prepared for:

PAR Electrical Contractors, Inc. 60 Fuller Road Chicopee, Massachusetts 01020

# Prepared by:

Quanta Subsurface 307 W. Main Street Radford, Virginia 24141







PAR Electrical Contractors, Inc. 60 Fuller Road Chicopee, Massachusetts 01020

Attention: Ms. Stephanie Labbe

**Project Manager** 

Re: Geotechnical Engineering Report

Deerfield Substation - Northern Pass Transmission Line

Deerfield, New Hampshire QS Project No. 16004

Dear Ms. Labbe,

The purpose of this report is to present the results of the subsurface exploration program and geotechnical engineering analyses undertaken by Quanta Subsurface (QS) associated with the above referenced project. Our services were provided in general accordance with QS's proposal dated August 22, 2016 as approved by PAR Electrical Contractors' (PAR) Limited Notice to Proceed (LNTP) #4 dated August 26, 2016. The attached report presents our understanding of the project, the findings of the subsurface exploration program, and our geotechnical conclusions and recommendations.

Sincerely,

**Quanta Subsurface** 

Sean Kearney, P.G.

Gant. Verry

**Project Engineering Geologist** 

NEW HAMOST T.

NO. 14656

NO. 14656

NO. 14656

NO. 14656

NO. 14656

J.T. McGinnis, P.E. Geotechnical Department Manager



# **TABLE OF CONTENTS**

1.0 F	PROJECT INFORMATION	1
2.0 F	PROVIDED DOCUMENTS AND PREVIOUS EXPLORATION DATA	1
3.0 F	PURPOSE AND SCOPE OF SERVICE	2
4.0 E	XPLORATION AND TESTING PROCEDURES	2
4.1 4.2 4.3 5.0	SUBSURFACE EXPLORATIONLABORATORY TESTINGFIELD INFILTRATION TESTING	4 5
5.1 5.2 5.3 6.0	GENERAL  REGIONAL GEOLOGY  SITE SUBSURFACE CONDITIONS  DESIGN AND CONSTRUCTION RECOMMENDATIONS	5 5
6.1 6.2 6.3 6.4 6.4.	GENERAL SITE PREPARATION CONTROLLED STRUCTURAL FILL SLOPE STABILITY 1 General	10 10 11
6.4.	2 New Slope Stability	11
6.5 6.5.		
6.5.	2 Infiltration/Detention Basin Estimated Seasonal High Water Table (ESHWT)	12
6.6 6.7 6.7.	GEOTECHNICAL DESIGN STRENGTH PARAMETERS BUS SUPPORT STRUCTURE/POLE FOUNDATION DESIGN AND CONSTRUCTION  1 General	13
6.7.	2 Drilled Shaft Foundations	13
6.7.	3 Drilled Shaft Construction	15
6.8 6.8.		
6.8.	2 Single-Story Equipment Structures	16
6.8.	3 Shrink-Swell and Frost Depth Considerations	16
6.8.	4 Shallow Foundation Construction	16
6.9 6.9.	EARTHQUAKE CONSIDERATIONS	
6.9.	2 Liquefaction	17
6.10 6.11 6.12 7.0 L	KARST GEOLOGY  CORROSION CONSIDERATIONS  EXCAVATION CONDITIONS  IMITATIONS	17 18
	REFERENCES	



# **FIGURES**

Figure 1 Site Vicinity Map
Figure 2 Site Location Map
Figure 3 Boring Location Plan
Figure 4 Surficial Geologic Map

# **APPENDICES**

Appendix A QS Boring Logs

Appendix B QS Rock Core Photographs Appendix C QS Laboratory Test Results Appendix D Infiltration Field Test Results

Appendix E Summary Geotechnical Design Parameters

Appendix F SLIDE 7.0 Stability Outputs



# **EXECUTIVE SUMMARY**

This Executive Summary is provided as a brief overview of our geotechnical engineering conclusions and recommendations for the project and is not intended to replace more detailed information contained elsewhere in this report. As an overview, this summary inherently omits details that could be very important to the proper application of the provided geotechnical design recommendations. This report should be read in its entirety.

- QS's geotechnical field exploration program consisted of nineteen (19) Standard Penetration Test (SPT) borings, drilled to a maximum depth of approximately 50 feet, and associate laboratory testing at the Deerfield Substation site.
- Five infiltration (INF) test borings were conducted to characterize the subsurface conditions to a depth of approximately 5 feet below the planned basin bottom. Following completion of each INF test boring, field infiltration tests were performed at each location.
- The subsurface conditions encountered in the test borings generally included a layer of topsoil underlain by a layer of alluvium and/or glacial till over bedrock.
- Very dense till materials were encountered above the planned finished elevations. Thus, difficult excavation to achieve planned finished grades is anticipated; however, the need for blasting is not anticipated.
- Groundwater was only encountered in three borings within or directly above hard till.
   The encountered groundwater is representative of a perched condition within or directly above the hard till.
- Due to shallow, dense materials, drilled shafts are recommended for support of planned bus support and pole structures.
- Controlled structural fill and/or the onsite soils will provide suitable support for the transformer pads design to transmit an approximate uniform bearing pressure of up to 500 psf and structures supported by shallow foundation designed with a maximum allowable bearing pressure of 3,000 psf.
- Frost depth should be anticipated to be 4 feet below the lowest adjacent grade.
- A Seismic Site Class Definition of "D" is recommended for design.
- Laboratory corrosivity testing performed on samples collected from the site indicated that the soils are non-aggressive.
- We anticipate that the planned cut and fill slopes will exhibit a factor of safety (FoS) of
   1.5 or greater for global stability.



# 1.0 PROJECT INFORMATION

The Northern Pass project consists of a 192-mile long transmission line that will convey 1,090 megawatts of energy from hydroelectric facilities in Canada to New England via a corridor than traverses north-to-south through New Hampshire (see Site Vicinity Map – Figure 1). In addition to construction of new transmission line, the project also includes the construction of three (3) new substations and six (6) new transition stations along the corridor. In general, the new transition stations (designated Transition Stations #1 through #6) are located along the northern and central portions of the corridor while the three new substations (designated Franklin Converter Station, Deerfield Substation and Scobie Pond Substation) located along the southern portion of the corridor. The information presented herein is for the Deerfield Substation located approximately 1.6 miles east-southeast of Deerfield, New Hampshire (see Site Location Map - Figure 2).

The Deerfield Substation site is currently an undeveloped and wooded parcel situated immediately southwest of an existing substation facility. The proposed substation pad will have an approximate 420-foot by 380-foot footprint. Within the substation footprint, the ground surface elevations generally range from approximately 369 feet to 403 feet. Maximum cuts and fills of about 20 feet and 30 feet, respectively, will be required to develop the planned finished grade of about 386 feet to 388 feet. Development will include construction of cut slopes along the west side of the site and a combination of cut and fill slopes along the south, east, and north sides of the site. Two detention basins are planned between the new substation pad and the existing substation. A gravel-covered access road will provide access to the substation pad from the existing substation. All slopes are currently designed with a 3 (Horizontal) to 1 (Vertical) configuration. No retaining walls are planned.

New structures within the substation footprint are anticipated to consist of various transformer pads, bus support structures, tubular steel poles and single-story structures designed to house electrical equipment. Quanta Subsurface (QS) has assumed the following regarding loading and foundation support of the new structures: 1) bus structure support and tubular steel poles will require deep foundation support to resist shear and overturning loads, 2) transformer pads will consist of slab-on-grade support designed for a maximum bearing pressure of 500 psf, and 3) single-story structures designed to house equipment will be lightly loaded with shallow foundation support.

# 2.0 PROVIDED DOCUMENTS AND PREVIOUS EXPLORATION DATA

Multiple documents were provided to QS by PAR Electrical Contractors (PAR) for consideration during our geotechnical exploration and engineering evaluation. The provided geotechnical report documents were developed by others and presented information at various locations along the transmission line corridor. Upon review of the provided data, one document provided GIS information containing general surficial and bedrock geology information in the area of the Deerfield Substation site. The specific documents included as reference by QS herein are listed below.

• Terracon Consultants Inc.; Report of Expected Geotechnical Conditions: Northern Pass Project; July 10, 2015.



Although not specifically used in development of the recommendations presented in Section 6.0 of this report, other selected information from the one document noted above was used as reference in support of the site specific data obtained by QS. Specific citations are noted below.

### 3.0 PURPOSE AND SCOPE OF SERVICE

QS's scope of work was developed based on information provided by PAR that included requested field investigations for civil works from Burns & McDonnell (*Subsurface Exploration and Geotechnical Engineering Report: Technical Guidelines*; Northern Pass Transmission Stations, New Hampshire, provided to QS on July 11, 2016) as well as requested investigations for planned structures from others. The purpose of our involvement on the Deerfield Substation phase of the project were as follows: 1) provide general descriptions of the subsurface conditions encountered at the substation site; 2) provide geotechnical design parameters for use by others in analysis and design of site grading and permanent slopes; 3) provide geotechnical foundation design recommendations for support of the substation structures; and 4) comment on geotechnical aspects of the proposed construction. In order to accomplish the above objectives, QS undertook the following scope of services:

- 1) reviewed available subsurface and geologic information relative to the project site;
- 2) supervised a subsurface exploration program consisting of nineteen (19) geotechnical test borings within the area of the proposed substation;
- 3) performed field infiltration testing at five (5) locations within the proposed basin areas;
- 4) supervised a laboratory testing program on selected soil and rock samples obtained during the drilling program;
- 5) evaluated the findings of the test borings and laboratory tests relative to foundation support of planned structures and other geotechnical aspects of the project;
- 6) and prepared this written report summarizing our services for the project, providing descriptions of the subsurface conditions encountered, laboratory test results, and design recommendations, as well as geotechnical considerations for construction. Copies of the test boring logs, rock core photographs, laboratory test results, infiltration test results, summary of geotechnical design parameters and results of the slope stability analysis are provided in Appendices A through F.

QS's scope of services did not include a survey of boring locations and elevations, quantity estimates, preparation of plans or specifications, pavement design, infiltration/retention basin design, blasting recommendations, identification of environmental impacts or aspects related to the project and/or site, or other services not specified above.

# 4.0 EXPLORATION AND TESTING PROCEDURES

#### 4.1 SUBSURFACE EXPLORATION

QS's geotechnical field exploration program consisted of nineteen (19) Standard Penetration Test (SPT) borings performed at the approximate locations shown on the attached Boring Location Plan (see Figure 4) and summarized in Table 1 below. The test boring locations were staked in



the field by others using surveying methods; ground surface elevations at the boring locations were derived from topographic data included within an ACAD site plan document (labeled *NPTT604-C101 Geotech.dwg*) using latitude and longitude data provided by PAR.

Table 1 - As-Drilled SPT Borehole Depths and Coordinates

Boring Designation	Total Depth (ft)	Ground Surface Elevation (ft)	Latitude	Longitude
BH 601	49.0	395.0	43.14011944	-71.18830278
BH 602	27.5	405.6	43.14068889	-71.18803333
BH 603	14.6	399.6	43.14096667	-71.18744444
BH 604	20.0	380.7	43.13978056	-71.18766111
BH 605	20.0	390.6	43.14015556	-71.18723611
BH 606	10.0	380.3	43.14092222	-71.18681944
BH 607	50.0	370.6	43.13942778	-71.18703056
BH 608	50.0	367.7	43.14026389	-71.18618889
BH 609	13.0	368.7	43.13959444	-71.18640833
BH 610	29.0	356.2	43.14012222	-71.18586111
BH 611	31.0	401.1	43.14021111	-71.18772500
BH 612	29.0	396.3	43.14050833	-71.18743333
BH 613	29.5	389.7	43.14057778	-71.18705556
BH 614	30.5	379.8	43.14035556	-71.18662222
INF 601	8.0	369.6	43.14044444	-71.18598611
INF 602	10.0	372.0	43.14064444	-71.18597222
INF 603	5.0	387.9	43.14108611	-71.18716667
INF 604	8.0	384.9	43.14119444	-71.18706667
INF 605	6.9	384.9	43.14140833	-71.18688333

Note: Elevations information is NAVD88

Test borings were performed by New England Boring Contractors utilizing a Mobile B-53 drill rig equipped with a 140-lb safety hammer falling 30 inches. The drilling methods utilized for this investigation consisted of hollow stem augers and rotary drive and wash (wet rotary). Standard penetration testing was performed in general accordance with ASTM D1586. The number of hammer blows required to advance the sampler for successive 6-inch intervals is recorded, and the total number of blows required to drive the sampler from 6 to 18 inches is referred to as the SPT "N-value". The N-value provides a general indication of in-situ soil density/consistency and has been correlated with certain engineering properties of soils. Soil samples were collected with a standard split-spoon sampler (2-in OD) and in bulk samples from auger cuttings for laboratory testing.

In some soils it is not always practical to drive a split-spoon sampler the full four consecutive 6-inch increments. Whenever more than 100 blows are required to drive the sampler over a 6-inch increment, or the sampler is observed not to penetrate after 100 blows, the condition is



referred to as split-spoon refusal. The SPT N-value for split-spoon refusal conditions is typically estimated as greater than 100 blows per foot (bpf). Where the sampler is observed not to penetrate after 100 blows, the N-value is reported as 100/0. Otherwise, the depth of penetration after 100 blows is reported in inches (i.e. 100/5, 100/2, etc.).

The test borings were extended to the planned termination depth or auger refusal, whichever was encountered first. At select locations, the boring was advanced beyond auger refusal using double tube rock-coring techniques in accordance with ASTM D2113.

The subsurface materials encountered at each boring location were visually classified by QS personnel in the field. Soil samples were visually classified in accordance with ASTM D2488. Rock cores were visually classified for lithology and parameters were collected for weathering, intact rock strength, rock mass discontinuities, core recovery, and Rock Quality Designation (RQD) for each run. In addition to visual classification of the materials in the field, the boring logs incorporate both driller and field inspector observations and comments as well as modifications based on laboratory test results. QS's boring logs and associated rock core photographs are presented in Appendix A and B, respectively. SPT samples were collected in Ziploc bags and bulk samples were collected in 5-gallon buckets. The rock core samples were placed in wood core boxes and photographed.

#### 4.2 LABORATORY TESTING

QS selected various bulk, SPT, and rock core samples for laboratory testing. Laboratory testing on soil samples was performed by S.W. Cole in their Deerfield and Manchester laboratories or via subcontract with Absolute Resource Associates (sulfate and chloride testing). Laboratory testing on rock core samples was performed by GeoTesting Express in their Acton, Massachusetts laboratory. Table 2 provides a summary of the laboratory testing performed for the Deerfield Substation site. A summary of the laboratory testing results and accompanying laboratory test data reports are provided in Appendix C.

Table 2 – Laboratory Test Summary

Test	ASTM	No. of Test Performed
Moisture Content	D2216	19
Sieve Analysis	D422	4
Percent Passing No. 200 Sieve	D1140	12
Atterberg Limits	D4318	4
Modified Proctor	D1557	3
Unconfined Comp. Strength of Rock	D7102	3
pH of Soil	G51	2
Soluble Chloride		2
Soluble Sulfate		2
Resistivity	G187	2



#### 4.3 FIELD INFILTRATION TESTING

Five infiltration (INF) test borings were conducted (designated INF 601 through INF 605) to characterize the subsurface conditions to a depth of approximately 5 feet below the planned basin bottom. Each boring was sampled continuously (every 2 feet) from ground surface to termination depth. Following completion of each INF test boring, an offset borehole was drilled and PVC casing was installed to a depth of approximately 2 feet below the bottom of the basin for field infiltration testing. At some time following completion of drilling, field infiltration tests were performed by QS. The results the field infiltration tests are provided in Appendix D. The installation, preparation, and testing procedures followed were in general accordance with Table 2-3 of the New Hampshire Department of Environmental Services Stormwater Manual, Volume 2 (2008).

# 5.0 GEOLOGY AND SUBSURFACE CONDITIONS

#### 5.1 GENERAL

The overburden soils at the project site are derived from several episodes of advancing and retreating glacial ice. Subsurface materials encountered within the borings are consistent with the geologic setting of the area. The following sections describe the regional geology and site specific subsurface conditions.

#### 5.2 REGIONAL GEOLOGY

The surficial geology in New Hampshire is derived from the erosional and depositional processes of the continental and mountain glaciers of the Wisconsin Glacial Episode during the late Pleistocene Epoch. The dominant glacial soils that are found in this region are glacial till, glaciofluvial/outwash deposits, and glacio-lacustrine deposits. Younger post glacial deposits formed from the numerous rivers, streams, and lakes that dominate the landscape; these include alluvium and stream terrace deposits. The overburden soils at the site are derived from several episodes of advancing and retreating glacial ice. The surficial soil in the area of the Deerfield Substation is mapped as glacial ablation till as shown in Figure 4 (Surficial Geologic Map). Based on Terracon Exhibit A2-2 (Bedrock Geology Map), the bedrock underlying the Deerfield Substation site is mapped as migmatite (Terracon, 2015).

#### 5.3 SITE SUBSURFACE CONDITIONS

The subsurface conditions encountered in the test borings generally included a layer of topsoil underlain by a layer of alluvium and/or glacial till over bedrock. A summary of the subsurface conditions encountered in the exploration described herein is provided below and in Table 3, and specific data are shown on the test boring logs provided in Appendix A.

#### Topsoil

Material described as topsoil was encountered at each of the test boring locations except for BH 602 and BH 603. The thickness of the topsoil ranged from 0.5 to 1.5 feet where encountered. The sampled topsoil was described as silty SAND (SM) with trace organics and varying amounts



of gravel. Laboratory testing was not performed to determine the organic content or horticultural properties of the topsoil. Therefore, the term "topsoil" is not intended to indicate suitability for landscaping and/or other purposes.

#### Alluvium

Alluvium is formed by eroded sediments, reshaped by water, and redeposited in a non-marine setting. The alluvium is often variable in both particle size and layer thickness. Alluvium materials were encountered in borings BH 604 through BH 614 and were generally described as poorly graded SAND with silt (SP-SM) and silty SAND (SM). Isolated lenses of SILT (ML) were also encountered. Field N-values obtained within the alluvium material ranged from 2 to greater than 50 blows per foot with a typical N-value of greater than 10 bpf.

#### Glacial Till

Glacial till deposits consist of material that has been transported and deposited by glacial ice. The glacial till encountered was characterized as ablation till (melt-out till) indicating the material was carried on or near the surface of the glacier. Till was encountered in each test boring and was generally encountered below a topsoil layer and/or alluvium. Boulders of varying size are common within till deposits. Sampled till was generally described as poorly graded SAND with silt (SP-SM), silty SAND (SM), or SILT (ML) with varying amounts of sand. Field N-values obtained within the glacial till material ranged from 4 bpf to greater than 100 blows per foot with a typical N-value of greater than 30 bpf.

#### **Bedrock**

Bedrock and/or auger refusal was encountered in fourteen (14) test boring locations; bedrock was not encountered in borings BH 604, BH 605, BH 611, INF 601, INF 602. Auger refusal occurs when materials are encountered that cannot be penetrated by a soil auger or roller bit and is normally indicative of hard or very dense material, such as debris within fill, boulders, rock lenses, pinnacles, or the bedrock surface. Where bedrock was not sampled but auger refusal was encountered (i.e. BH 603, BH 606, BH 609, INF 603, INF 604, and INF 605), QS anticipates that the refusal conditions are most likely due the bedrock.

The site is underlain by a suite of metamorphosed granitic rocks containing mafic intrusive bodies. Four different rock types were identified in the test borings: 1) medium to coarse grained PEGMATITE, 2) medium grained GRANITE, 3) fine to medium grained GNEISS, and 4) fine grained DIABASE DIKES. The first bedrock unit was described as slightly to completely weathered, medium to coarse grained, very weak to very strong, PEGMATITE. The second unit was described as fresh to highly weathered, medium grained, very weak to very strong, GRANITE. The third unit was described as fresh to highly weathered, fine to medium grained, very weak to very strong, GNEISS. The fourth unit was an intrusive described as slightly to moderately weathered, fine grained, strong, DIABASE DIKE. All four units exhibited a weathered zone transitioning from completely or highly weathered to fresh or slightly weathered. Where encountered, the thickness of the upper completely or highly weathered bedrock zone generally ranged from 1 to 5 feet thick.



# Groundwater

Groundwater was only encountered in three borings (BH 610, BH 614 and INF 605) within or directly above hard till. We anticipate that the groundwater measured in these borings is representative of a perched condition directly above the hard till. Fluctuations in subsurface water levels and soil moisture should be anticipated with changes in precipitation, run-off and moisture.

**Table 3 – Encountered Subsurface Conditions Summary** 

Boring No.	Ground Elevation (ft)	Depth to Groundwater ¹ (ft)	Boring Termination Condition	Depth (ft)	Material Origin	Encountered Material	Field N-Value ²
				0 - 0.5	Topsoil	SM	-
				0.5 - 2	-	SM	11
				2 - 4	Till	SP-SM	40
BH 601	395.0	N.E.	СТ	4 - 39		SM, SP-SM	96 - 100/2"
				39 - 44		HW Pegmatite	-
				44 - 49	Bedrock	SW to MW Pegmatite	-
				0 - 2		SM	8
				2 - 8	Till	SM, ML	25 - 53
BH 602	405.6	N.E.	СТ	8 - 17		SM	92 - 100/4"
				17 - 18	Bedrock	HW Granite	100/0"
				18 - 27.5	Dedlock	F Granite	-
				0 - 2		SM	8
BH 603	399.6	.6 N.E.	AR	2 - 6	Till	SM	35 – 42
				6 - 14.6		SM	100+
				0 - 0.5	Topsoil	SM	-
	380.7			0.5 - 2	Alluvium	SM	3
BH 604		N.E.	ВТ	2 - 4	Alluvium	SM	33
				4 - 17	Till	SP, ML, SM	55 - 100+
				17 - 20	1 111	SM	100/4"
				0 - 0.5	Topsoil	SM	-
BH 605	390.6	N.E.	ВТ	0.5 - 2	Alluvium	SM	6
DH 603	390.6	IN.⊑.	ы	2 - 4	Till	SP-SM	44
				4 - 20	1 111	SP-SM, SM, ML	75 - 100/4"
				0 – 0.5	Topsoil	SM	-
BH 606	200.2	N. E	AD	0.5 - 2	Alluvium	SM	6
מטט חמ	380.3	80.3 N.E.	AR	2 - 6	Alluviuiii	SM	47 - 55
				6 - 10	Till	SM	81 - 100/3"



Table 3 – Encountered Subsurface Conditions Summary (cont)

Boring No.	Ground Elevation (ft)	Depth to Groundwater ¹ (ft)	Boring Termination Condition	Depth (ft)	Material Origin	Encountered Material	Field N-Value ²
				0 - 0.5	Topsoil	SM	-
				0.5 - 2	A.II	SM	2
				2 - 6	Alluvium	SM	31 - 69
BH 607	370.6	N.E.	СТ	6 - 44	Till	SM	100+ - 100/1"
				44 - 45	Bedrock	HW Gneiss	100/5"
				45 - 50	Dedlock	F Gneiss	-
				0 - 0.5	Topsoil	SM	-
				0.5 - 2	Alluvium	SM	6
				2 - 8	Alluvium	SP-SM, SM	53 - 67
BH 608	367.7	N.E.	СТ	8 - 27.5	Till	SM	81 - 100/4"
BI1 000	307.7	IN.E.	Ci	27.5 - 28.5		HW Granite	-
				28 - 37.5	Bedrock	F to SW Granite/ Pegmatite	-
		N.E.	AR	0 - 0.5	Topsoil	SM	-
DILCOO	200 7			0.5 - 2	Alluvium	SM	8
BH 609	368.7			2 - 8	T:II	SM, SP-SM	46 - 78
				8 - 13	Till	SP-SM	100/5"
				0 - 1.5	Topsoil	ML	10
				1.5 - 11	Alluvium	SP-SM, SM	35 - 50
DULGAG	0500	2.5	0.7	11 - 18	Till	SM	100/0"
BH 610	356.2	9.5	СТ	18 - 20		HW to F Gneiss	-
				20 - 25	Bedrock	F Pegmatite	-
				25 - 29		F Gneiss	-
				0 - 0.5	Topsoil	SM	-
				0.5 - 2		SM	4
BH 611	401.1	N.E.	ВТ	2 - 4	Alluvium	SM	17
DITOTI	401.1	IN.L.	ы	4 - 8		SM	61
				8 - 31	Till	SP-SM, SM	100+ - 100/4"
				0 - 0.5	Topsoil	SM	-
				0.5 - 3	Alluvium	SM	5
				3 - 6		SP-SM	58
BH 612	396.3	6.3 N.E.	ст	6 - 18	Till	SM	100+ - 100/5"
				18 - 22	Podraek	HW to SW Granite	-
				22 - 29	Bedrock	SW to MW Diabase	-

Page 8



Table 3 – Encountered Subsurface Conditions Summary (cont)

Boring No.	Ground Elevation (ft)	Depth to Groundwater ¹ (ft)	Boring Termination Condition	Depth (ft)	Material Origin	Encountered Material	Field N-Value ²
				0 - 0.5	Topsoil	SM	-
				0.5 - 4	Alluvium	SM	7
BH 613	389.7	N.E.	СТ	4 - 17	Till	SM	64 - 100+
211010	000.1		01	17 - 19.5		HW Granite	-
				19.5 - 29.5	Bedrock	SW to F Granite	-
				0 - 0.5	Topsoil	SM	-
				0.5 - 4	Alluvium	SM	11
BH 614	379.8	8.7	СТ	4 - 7	Alluviuiti	SM	76
БП 014	3/9.0	0.7	CI	7 - 20.5	Till	ML	100+ - 100/2"
				20.5 - 30.5	Bedrock	SW Diabase	-
INF 601	369.6	N.E.	ВТ	0 - 1.5	Topsoil	SM	11
IINF OUT	309.0	IN.⊏.	ы	1.5 - 8	Till	SM	51 - 62
		N.E.	ВТ	0 - 0.5	Topsoil	SM	-
INF 602	372.0			0.5 - 2	Till	SM	6
				2 - 10	1 111	SM	41 - 69
				0 - 1	Topsoil	SM	-
INF 603	387.9	N.E.	AR	1 - 2		SM	6
INF 603	367.9	IN.⊏.	AK	2 - 4	Till	SM	68
				4 - 5		SP-SM	100/2"
				0 - 0.5	Topsoil	SM	-
INIT COA	204.0	N. E	AD	0.5 - 2		SM	6
INF 604	384.9	N.E.	AR	2 - 6	Till	SM, ML	40 - 53
				6 - 8		SM	100/1"
				0 - 0.5	Topsoil	SM	-
INIT COT	204.0	N.F	AR	0.5 - 2		SM	4
INF 605	384.9	N.E.		2 - 6	Till	SM	35 - 53
				6 - 6.9		SM	100/4"

¹ Reported groundwater levels were measured at completion of drilling.
2 Field N-Value is an uncorrected blow count value measured in the field BT = Boring Termination (at or near the planned depth)
AR = Auger or Roller Bit Refusal
CT = Rock Coring Termination



# 6.0 DESIGN AND CONSTRUCTION RECOMMENDATIONS

#### 6.1 GENERAL

The following sections present our geotechnical recommendations for design and construction of the substation. In general, the subsurface conditions encountered at the site are suitable for the proposed construction with considerations presented in the following subsections.

#### 6.2 SITE PREPARATION

Before proceeding with construction, any topsoil, roots, foundation remnants, pavements, and any other deleterious non-soil materials should be stripped or removed from the proposed construction area. During the clearing and stripping operations, positive surface drainage should be maintained to prevent the accumulation of water.

After stripping, areas intended to support new fill, gravel roadways, slabs, and foundations should be carefully evaluated by an experienced geotechnical engineer or engineering geologist. Based on the boring data, the top 2 feet of existing material (topsoil and loose soil) should be removed and replaced with controlled structural fill prior to at-grade construction in the area of the following test borings: BH 604 through BH 608, BH 611, and BH 612. Where noted on the borings logs and where located within 3 to 4 feet of new fill, roadways, slabs, and foundations, soils that exhibit SPT N-values of 6 bpf or less should be removed and replaced with controlled structural fill placed in accordance with recommendations presented in Section 6.3. The geotechnical engineer/geologist may also require scarification and compaction (per Section 6.3) of the upper 6 inches of the exposed surface and/or proofrolling of the subgrade with a 20- to 30-ton loaded dump truck or other pneumatic tired vehicle of similar size and weight. Proofrolling should be performed during a time of good weather and not while the site is wet, frozen, or severely desiccated. The purpose of the proofrolling is to locate soft, weak, or excessively wet soils present at the time of construction and provide an opportunity for the geotechnical engineer/geologist to locate inconsistencies intermediate of the boring locations.

Depending on how the near surface materials respond during proofrolling operations, some inplace densification, undercutting, or in-place stabilization may be required. The extent of densification, undercutting and/or in-place stabilization required across the site can best be determined by a geotechnical engineer/geologist at the time of construction. Once the areas where new fill placement is planned have been properly prepared, at-grade construction may proceed.

#### 6.3 CONTROLLED STRUCTURAL FILL

Where required, controlled structural fill may consist of the non-organic, on-site soils (including alluvium and till soils). Based on laboratory testing on bulk samples obtained from other transition station and substation sites along the transmission line corridor, we anticipate that off-site borrow material will consist of sandy silt, silty sand or sand with a USCS classification of ML, SM, or SP. Other materials may be suitable for use as controlled structural fill and should be individually evaluated by the geotechnical engineer; in general the structural fill should have a USCS



classification of CL, ML, SP, SM, or SC. Controlled structural fill should be free of boulders, organic matter, debris, or other deleterious materials and should have a maximum particle size no greater than 3 inches.

Fill materials should be placed in horizontal lifts with a maximum height of 8 inches loose measure. New fill should be adequately keyed into stripped and scarified subgrade soils and should, where applicable, be benched into the existing slopes. During fill operations, positive surface drainage should be maintained to prevent the accumulation of water. We recommend that structural fill (soil and crushed stone) be compacted to a minimum of 95 percent of the maximum dry density and within two (2) percentage points of the optimum moisture content determined by the modified Proctor density test (ASTM D1557). In confined areas such as utility trenches, portable compaction equipment and thin lifts of 3 to 4 inches may be required to achieve specified degrees of compaction. Each lift of fill should be tested in order to confirm that the recommended degree of compaction is attained.

#### 6.4 SLOPE STABILITY

#### 6.4.1 General

We recommend that cut and fill slopes have a minimum factor of safety of 1.3 for global stability. Proposed structures on the Deerfield site should be located a minimum distance of 10 feet and 15 feet from the crest and toe of slopes, respectively. In addition, we recommend that roadways be designed with a minimum setback of 5 feet from both the crest and toe of slopes.

Drainage from nearby structures and/or surface runoff should be directed away from the crest and toe of both planned cut and fill slopes. We note that diversion of surface water away from the slope crest and face is critical to reducing the potential of surface erosion and shallow failures. For erosion protection, a protective cover of grass or other vegetation should be established on permanent soil slopes as soon as possible.

#### 6.4.2 New Slope Stability

New slopes constructed to develop the planned finished grade of the substation will generally consist of cut and fill slopes up to 20 feet and 33 feet high, respectively. All slopes will have a configuration of 3 (Horizontal) to 1 (Vertical).

Using the computer program SLIDE 7.0 (RocScience), stability analysis was performed on a cut slope in the area of BH 601, BH 602, and BH 603 assuming a height of 20 feet. Additionally, stability analysis was performed on a fill slope in the area of BH 608 and BH 610 assuming a height of 33 feet. Based on the results of the SLIDE analyses (see Appendix F – Outputs 1 and 2), we anticipate that planned 3(H) to 1(V) cut and fill slopes will exhibit a factor of safety (FoS) of 1.5 or greater for global stability.



#### 6.5 GROUNDWATER CONDITIONS

# 6.5.1 General

Based on the data obtained during our exploration program, we anticipate that groundwater will not be encountered in excavations that are less than 5 feet below the existing site grades. Excavation greater than 5 feet in depth are expected to encounter groundwater perched on hard/dense till soil.

# 6.5.2 Infiltration/Detention Basin Estimated Seasonal High Water Table (ESHWT)

Borings INF 601 through INF 605 were performed to characterize the subsurface conditions to a depth of approximately 5 feet below the planned infiltration basin bottom and provide information necessary to estimate the seasonal high water table within the basin footprint. Subsurface data recorded in the infiltration test borings are shown on the respective logs included in Appendix A, and the results of infiltration test performed immediately adjacent to each boring are provided in Appendix D. Table 4 below presents a summary of the interpreted ESHWT at each infiltration test location as well as pertinent information required for design of the basins.

Table 4 - Infiltration Basin Summary Information

Description	Boring INF 601	Boring INF 602	Boring INF 603	Boring INF 604	Boring INF 605
Infiltration Planned Bottom Elev. (ft)	368	368	380	380	380
Encountered Very Dense/Very Hard Soil Elev. (ft)	367	366	385	381	382
Encountered Bedrock Elev. (ft)	N.E.	N.E.	383	377	378
Encountered Groundwater Elev. (ft)	N.E.	N.E.	N.E.	N.E.	379
Elevation of Observed Redoximorphic Features	366	366	385	383	383
USDA Textural Class (with 5 ft of Basin Bottom)	Fine Sandy Loam	Fine Sandy Loam	Fine Sandy Loam	Fine Sandy Loam	Fine Sandy Loam
Estimated Seasonal High Water Table (ESHWT) Elev. (ft)	366	366	385	383	383
Infiltration Test Elevation (ft)	366	365	383	378	378
Average Infiltration Rate at Test Elevation (in/hr)	18.5	2.5	4.9	0.7	0.9

#### Notes:

- Borings generally extended about 5 feet below the planned depth of each respective basin unless where refusal and/or bedrock was encountered.
- 2) N.E. = Not Encountered
- 3) Very Dense/Very Hard Soil is defined as material exhibiting an SPT N-Value of greater than 50 blows per foot (bpf).
- 4) Auger refusal that was encountered in INF 603 through INF 605 is anticipated on possible bedrock.
- 5) The infiltration test elevation at INF 603 corresponds to the depth where auger refusal was encountered.
- 6) Noted elevations are estimates and should be considered approximate.
- 7) The average infiltration rate presented is based on field measurements; a factor of safety has not been applied.



#### 6.6 GEOTECHNICAL DESIGN STRENGTH PARAMETERS

Recommended geotechnical strength parameters are provided for the subsurface conditions encountered in each test boring (not including infiltration test borings) in Appendix E. The recommended strength parameters for soil and completely or highly weathered bedrock (CWR or HWR) were developed based on consideration of lab test results and established correlations with SPT data.

For bedrock described as moderately weathered or better, parameters in the form of equivalent Mohr-Coulomb parameters were developed and are recommended for strength properties of the rock mass. The equivalent Mohr-Coulomb strength properties were developed based on fitting an average linear relationship to the curve generated by solving for the Generalized Hoek-Brown failure criterion over an estimated range of minor principal stress values (Hoek et. al, 2002). The range of minor principal stresses was assumed as that common to a typical slope of up to 25 feet in height. The computer program RocLab (developed by Rocscience Inc.) was used to the estimate rock mass equivalent Mohr-Coulomb strength properties provided in Appendix E.

#### 6.7 BUS SUPPORT STRUCTURE/POLE FOUNDATION DESIGN AND CONSTRUCTION

#### 6.7.1 General

Foundation support for the bus support structures and tubular steel poles is anticipated to require deep foundations to resist shear and overturning loads. Driven pile, helical pile, and drilled shaft foundation options were considered for deep foundation support. However, we anticipate that very dense/hard soil and cobbles/boulders encountered at shallow depths at the site will result in inadequate pile embedment and possible damage during installation of both driven and helical piles; pre-drilling would be required to facilitate installation of driven and helical piles. Therefore, considering the planned excavation required to develop a pad elevation of 387 feet and relatively shallow very dense/hard soils encountered in borings BH 605 and BH 611 through BH 614, we recommend that support for the bus and pole structures consist of drilled shafts at the Deerfield Substation site.

#### 6.7.2 Drilled Shaft Foundations

Based on the subsurface conditions encountered in the area of borings BH 605 and BH 611 through BH 614, a top of finished grade elevation of about 387 feet, and the general site preparation recommendations presented in previous sections of this report, we recommend the allowable axial values and the associated LPILE (lateral) parameters shown in Tables 5 through 8 be used for design of drilled shaft foundations. Tables 5 and 6 are applicable to foundations on the western portion of the pad where limited cuts with no new fill will be required to develop the planned finished grade. Tables 7 and 8 are applicable to foundations on the eastern portion of the pad where about 10 feet of new controlled fill is expected. Total settlement of drilled shaft foundations designed per the recommendations provided below is estimated to be less than 1 inch.



Table 5 – Recommended Drilled Shaft Axial Design Parameters (West Side)

Sublayer Description	Sublayer Depth (ft) Top Bottom		Material USCS Description	Allowable Skin Friction (Comp.) (psf)	Allowable Skin Friction (Uplift) (psf)	Allowable End Bearing (psf)
	0	4		I	GNORE	
Till	4	10	SM	900	750	20,000
	10+	-	SM/HWR	1,650	1,375	20,000

#### Notes:

- Cut of 3 to 11 feet is anticipated to developed the planned finished grade of 387 feet in the areas of borings bh 605 and BH 611 through BH 613. Subgrade in these areas is anticipated to consist of very dense till soils at or near elevation 387 feet.
- Ultimate skin friction and end bearing capacities determined per methods prescribed in FHWA GEC 10: Drilled Shaft: Construction Procedures and LRFD Design Methods (2010).
- 3) Allowable capacities for skin (comp), skin (uplift), and end-bearing determined by applying a factor of safety of 2.5, 3.0 and 3.0, respectively.

Table 6 – Recommended Drilled Shaft Lateral (LPILE) Design Parameters (West Side)

Sublayer Description	De	ayer pth t) Bot.	Material USCS Description	Effective Unit Weight (pcf)	Effective Friction Angle (deg)	Soil Modulus Constant (k) (pci)	Unconfined Comp. Strength (psi)	m _i	Poisson's Ratio	Geologic Strength Index (GSI)	Rock Mass Modulus (psi)
T:0	0	10	SM	135	41	284	-	-	-	-	-
Till	10+	-	SM	140	43	338	-	-	-	-	-

#### Note:

1) Use of the Reese (Sand) constitutive model is recommended.

# Table 7 – Recommended Drilled Shaft Axial Design Parameters (East Side-BH 614)

Sublayer Description	Sublayer Depth (ft)		Depth (ft)		Material Skin USCS Friction Description (Comp.)		Allowable Skin Friction (Uplift)	Allowable End Bearing (psf)	
	Тор	Bottom		(psf)	(psf)	(þ31)			
Fill	0	4		IGNORE					
FIII	4	10	SM	250	210	-			
Alluvium	10	13	SM	300	250	-			
Till	13	17	SP-SM	1,450	1,200	20,000			
1 1111	17	31	SM	2,050	1,700	20,000			
Bedrock	31+	-	SW Diabase	9,000	7,500	60,000			

#### Notes:

- 1) About 10 feet of fill soil will be added in the south portion of the pad in the vicinity of boring BH 614.
- 2) Ultimate skin friction and end bearing capacities determined per methods prescribed in FHWA GEC 10: *Drilled Shaft: Construction Procedures and LRFD Design Methods* (2010).
- 3) Allowable capacities for skin (comp), skin (uplift), and end-bearing determined by applying a factor of safety of 2.5, 3.0 and 3.0, respectively.



Table 8 – Recommended Drilled Shaft Lateral (LPILE) Design Parameters (East Side-BH 614)

Sublayer Description	De	ayer pth t)	Material USCS Description	Effective Unit Weight	Effective Friction Angle	Soil Modulus Constant	Unconfined Comp. Strength	m _i	Poisson's Ratio	Geologic Strength Index	Rock Mass Modulus
	Тор	Bot.	Description	(pcf)	(deg)	(k) (pci)	(psi)			(GSI)	(psi)
Fill	0	10	SM	125	30	48	-	-	-	-	-
Alluvium	10	13	SM	110	30	48	-	-	-	-	-
Till	13	17	SP-SM	135	42	310	-	-	-	-	-
1111	17	31	SM	140	43	338	-	-	-	-	-
Bedrock	31+	-	SW Diabase	165	-	-	10,000	15	0.25	25	194,500

#### Note:

- 1) Use of the Reese (Sand) constitutive model is recommended.
- 2) Use of the Massive Rock constitutive model is recommended.

#### Additional Drilled Shaft Design Recommendations

- Due to strain incompatibilities, drilled shaft design based entirely on skin friction or end bearing is recommended.
- A minimum shaft length (below the ground surface) of 10 feet and 15 feet is recommended
  to adequately resist uplift created due to adfreeze forces within the frost zone for shafts
  on the west and east sides, respectively.
- A minimum shaft diameter of 30 inches is recommended.
- Should multiple shaft foundations be required, the minimum center-to-center spacing should be three (3) times the shaft diameter.

#### 6.7.3 Drilled Shaft Construction

The use of temporary casing may be required to prevent loss of sidewall support. The use of slurry for side wall support is not recommended. We recommend that the proposed drilled shaft construction equipment, methods, procedures, and planned quality control testing, and inspection during construction be reviewed by a qualified geotechnical engineer prior to the start of shaft construction.

The ability of a drilled shaft to provide the end bearing resistances and associated settlements described herein is directly related to the construction methods and procedures used to provide a clean shaft bottom condition. Drilled shaft excavation and clean out methods shall result in bases/bottoms that are free of loose, soft, or disturbed material. Cleaning of the shaft excavations shall result in a maximum of 1 inch of loose, soft, or disturbed material on the shaft bottom at the time of concrete placement. Should concrete placement within the shaft not occur immediately following excavation and clean out, the condition of the excavation bottom shall be verified to confirm that no more than 1 inch of loose, soft, or disturbed material is present in the bottom of the excavation prior to concrete placement. Inspection of the installation methods and materials by an individual qualified and experienced in drilled shaft construction is recommended.



Placement of concrete via free-fall methods is acceptable assuming placement is directed vertically downward avoiding impact with reinforcement and that the height of groundwater on the bottom of the shaft does not exceed 3 inches at the time of placement. Should the level of water at the bottom of the excavation not be maintained at less than 3 inches, concrete placement via tremmie methods will be required.

#### 6.8 SHALLOW FOUNDATION DESIGN AND CONSTRUCTION

#### 6.8.1 Transformer Pads

We anticipate that transformer pads will be supported on very dense glacial till. An approved subgrade consisting of very dense glacial till will provide suitable support for transformer pads design to impart an approximate uniform bearing pressure of up to 500 pounds per square foot (psf). The soils encountered at the site should react elastically to structure loads; settlements induced by foundation loads should occur soon after the load is applied. Maximum total settlement induced by the transformer slab loads are anticipated to be negligible.

#### 6.8.2 Single-Story Equipment Structures

Should single-story buildings be required to house equipment operated at the substation, they may be supported on shallow foundations bearing on approved very dense glacial till or on new controlled structural fill material placed in accordance with recommendations provided herein. We recommend that building foundations be designed for a maximum allowable bearing pressure of 3,000 psf for foundations bearing on approved subgrades. To reduce the possibility of localized shear failures, spread and strip footings should be a minimum of 3 feet and 1.5 feet wide, respectively.

For single-story structures designed for a maximum allowable bearing pressure of 3,000 psf on approved glacial till or new controlled structural fill, total settlements of about ½ inch with differential settlements of 1/2 to 2/3 the total estimated settlement are anticipated. As stated previously, settlements induced by foundation loads should occur soon after the load is applied.

#### 6.8.3 Shrink-Swell and Frost Depth Considerations

Based on the soil materials observed in the test boring samples and the laboratory test results, the on-site soils will generally have a low shrink-swell potential. Accordingly, we do not recommend any foundation design modifications relative to the potential for shrink-swell soils.

Frost depth should be anticipated to be 4 feet below the lowest adjacent grade. Therefore, utilities that are susceptible to frost action and building foundations should bear a minimum of 4 feet below adjacent grades.

#### 6.8.4 Shallow Foundation Construction

All foundation subgrades should be observed, evaluated, and verified for the design bearing pressure by a representative of the geotechnical engineer after excavation and prior to reinforcement steel placement. If low density/consistency soils are encountered at the foundation subgrade during construction, localized undercutting and/or in-place stabilization of foundation



subgrades may be required. The actual need for, and extent of, undercutting or in-place stabilization should be based on field observations made by a representative of the geotechnical engineer at the time of construction.

Excavations for footings should be made in such a way as to provide bearing surfaces that are firm and free of loose, soft, wet, or otherwise disturbed soils. Foundation concrete should not be placed on frozen or saturated subgrades. If such materials are allowed to remain below foundations, settlements will increase. Foundation excavations should be concreted as soon as practical after they are excavated. If an excavation is left open for an extended period, a thin mat of lean concrete should be placed over the bottom of the excavation to minimize damage to the bearing surface from weather or construction activities. Water should not be allowed to pond in any excavation.

#### 6.9 EARTHQUAKE CONSIDERATIONS

#### 6.9.1 Seismic Site Class Definition

The following recommendations are based Chapter 20 of the ASCE 7-10. ASCE 7-10 provides a methodology for interpretation of SPT resistance values (N-values) to determine a Site Class Definition; however, this method requires averaging N-values over the top 100 feet of the subsurface profile. We note that the test borings for this project were extended to a maximum depth of about 50 feet below existing site grades.

The available subsurface data from our exploration indicates an N-value range of about 2 to greater than 100 bpf within the upper 50 feet below existing site grades. In general accordance with ASCE 7-10 and considering the boring data and planned grading, we recommend that a Site Class Definition "D" be used for design.

#### 6.9.2 Liquefaction

Liquefaction of saturated, fine grained sands and silty sands is not anticipated to be a design concern for the Deerfield Substation site.

#### 6.10 KARST GEOLOGY

Karst topography occurs from the dissolution of soluble bedrock (such as limestone, dolomite, or gypsum) which creates karst features (sinkholes and caves) within the subsurface. Karst conditions were not encountered during the exploration reported herein. Karst features/conditions are not anticipated to be a design or construction concern for the Deerfield Substation site.

#### 6.11 CORROSION CONSIDERATIONS

Two bulk samples obtained in borings BH 603 and BH 605 were tested in the laboratory to determine pH, water soluble sulfate and chloride, and resistivity. The results of the lab tests are summarized in Table 9 below.



Table 9 – Laboratory Corrosivity Test Results

Boring No.	Sample Type & Depth (ft)	рН	Chloride (ug/g)	Sulfate (ug/g)	Electrical Resistivity (ohm-cm)
BH 603	BULK (2 - 10)	5.3	< 5.1	31	9,700
BH 605	BULK (2 - 10)	5.2	< 5.1	35	9,600

In general, soils that exhibit a resistivity of greater than 5,000 ohm-cm are considered non-aggressive (FHWA, 2010). Therefore, based on the results of the laboratory tests performed on samples collected from the Deerfield Substation site, the onsite soil should be considered as non-aggressive. The majority of laboratory tests performed on samples collected at other transition and substation sites to date have yielded similar non-aggressive results. However, a few tests at other sites have yielded results indicating materials with aggressive corrosion potential. Should the borrow material used to develop the Deerfield Substation site originate from an offsite location, corrosivity testing on representative soil samples from the source is recommended prior to onsite delivery to confirm that the soil is non-aggressive.

#### 6.12 EXCAVATION CONDITIONS

Based on the test boring data and planned finished grades, difficult excavation conditions (i.e. excavation of very dense/very hard soil) will be encountered during the site development. Table 10 below provides a summary of locations where very dense till was encountered near or above the planned finished grades. Based on the summary information presented in Table 8, excavation into very dense till should be anticipated in the area of the following borings: BH 601, BH 603, BH 605, BH 611, BH 612 and BH 613. Bedrock was not encountered above the planned finished grades at any of the boring locations; therefore, the need for blasting to achieve planned finished grades is not anticipated.

Table 10 – Boring Locations Where Rock Was Encountered
Near or Above the Planned Finished Elevation

Boring No.	Boring Elevation	Planned Finished Elevation (ft)	Min. Excavation Depth (ft)	Depth To Very Dense Till (ft)	Depth to Bedrock (ft)
BH 601	395.0	387	8	4	39
BH 602	405.6	404	2	6	17
BH 603	399.6	388	12	6	15
BH 605	390.6	387	4	4	-
BH 611	401.1	387	14	4	=
BH 612	396.3	387	9	3	18
BH 613	389.7	387	3	3	17



# 7.0 LIMITATIONS

This report has been prepared for the exclusive use of PAR Electrical Contractors, Inc. or their agent, for specific application to the Deerfield Substation site near Deerfield, New Hampshire. The conclusions and recommendations presented herein are based on design information furnished to us, the data obtained from the previously described subsurface exploration programs, and generally accepted geotechnical engineering practice. The conclusions and recommendations do not reflect variations in subsurface conditions which could exist intermediate of the boring locations or in unexplored areas of the site. Should such variations become apparent during construction, it will be necessary to re-evaluate our conclusions and recommendations based upon on-site observations of the conditions.

The soil and rock descriptions/classifications and the strata breaks shown on the boring logs attached to this report are based primarily on visual observation and should be considered approximate. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. Therefore, experienced geotechnical engineers or engineering geologists should evaluate earthwork and foundation construction to verify that the conditions anticipated in design actually exist.

In the event that changes are made in the design or location of the project, the recommendations presented in the report shall not be considered valid unless the changes are reviewed by Quanta Subsurface and conclusions of this report modified and/or verified in writing. If this report is copied or transmitted to a third party, it must be copied or transmitted in its entirety, including text, attachments, and enclosures. Interpretations based on only a part of this report may not be valid.

#### 8.0 REFERENCES

- American Society of Civil Engineers: Minimum Design Loads for Buildings and Other Structures; ASCE/SEI 7-10; 2010.
- Hoek, E, Carranza-Torres, C. and B. Corkum; Hoek-Brown Failure Criteria 2002 Edition; 2002.
- New Hampshire Department of Environmental Services: New Hampshire Stormwater Manual; Post-Construction Best Management Practices Selection & Design; Volume 2; December 2008.
- New Hampshire Department of Resources and Economic Development, Surficial Geologic Map of the Northwood Quadrangle, Rockingham and Strafford Counties, New Hampshire, Plate 1; Scale 1:24,000; 2004.
- New Hampshire Department of Transportation; Standard Specifications for Road and Bridge Construction; Section 209 Granular Backfill; 2016
- Terracon Consultants' Inc.; Report of Expected Geotechnical Conditions: Northern Pass Project; July 10, 2015.



- U.S Department of Transportation Federal Highway Administration (FHWA); *Drilled Shafts: Construction Procedures and LRFD Design Methods*; FHWA-NHI-10-016; May 2010.
- McGregor, J and J.M. Duncan; Virginia Polytechnic Institute and State University Center for Geotechnical Practice and Research; Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice; October 1998



### **Figures**

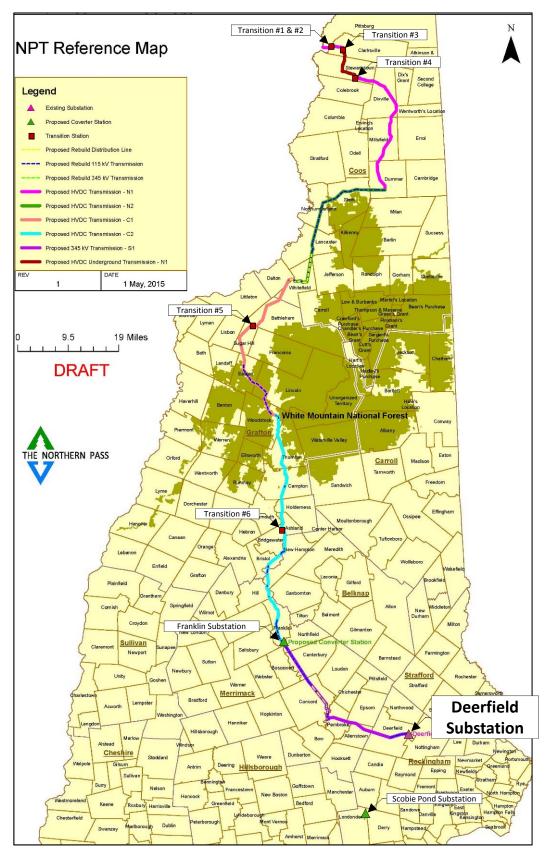
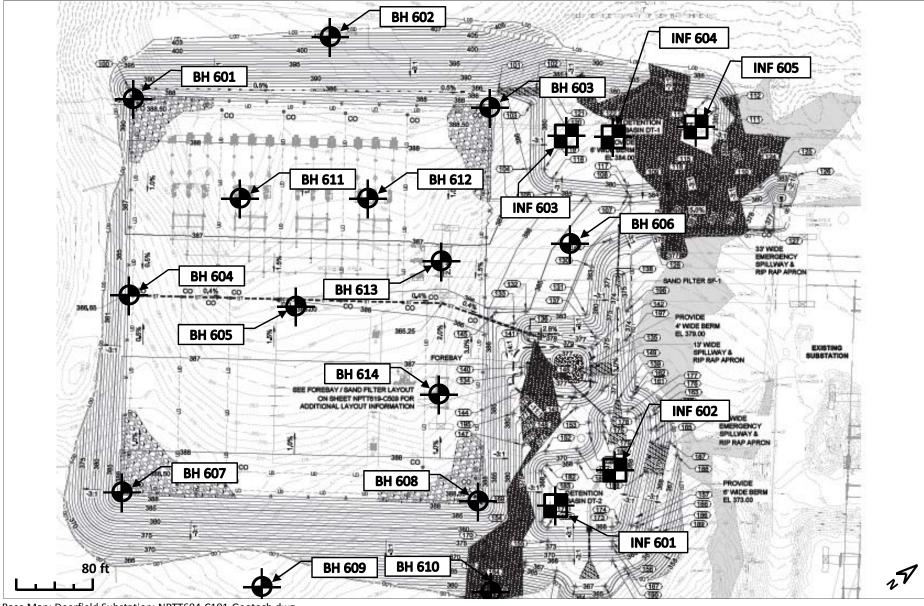



Figure 1
Site Vicinity Plan







Base Map: Google Earth, 2016.

# Figure 2 Site Location Map

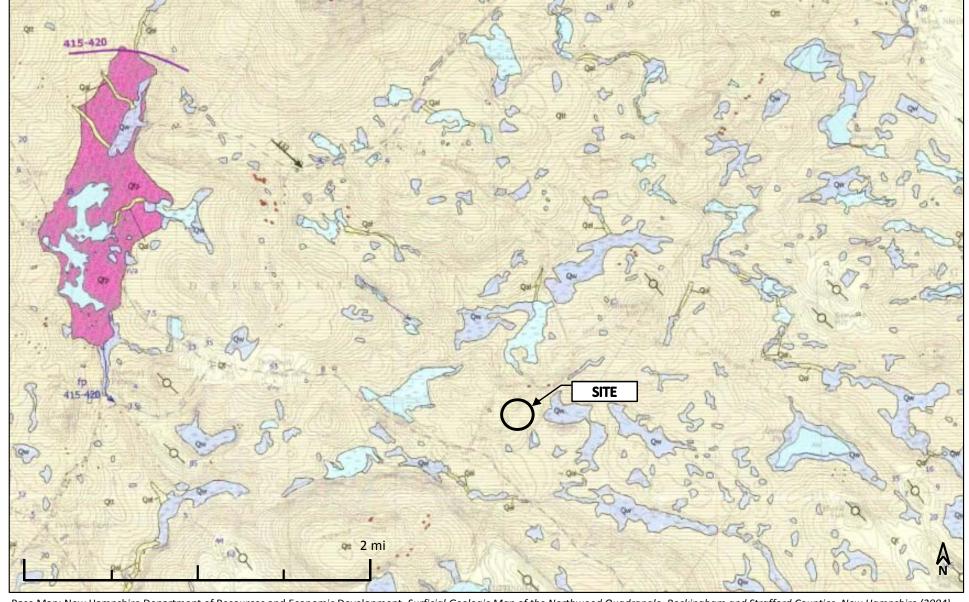








**Quanta Subsurface Boring Location, August/September 2016** 




Quanta Subsurface Infiltration Location, August/September 2016

Figure 3

QS Boring Location Plan





Base Map: New Hampshire Department of Resources and Economic Development, Surficial Geologic Map of the Northwood Quadrangle, Rockingham and Strafford Counties, New Hampshire (2004)

Legend: Qal Alluvium	Qt Till
Qw Swamp Deposit	Qt Thin Till
<b>Qfp</b> Glaciofluvial Deposit	

Figure 4 Surficial Geologic Map





# Appendix A QS Boring Logs

### BORING NUMBER BH 601 PAGE 1 OF 3 QUANTA

DAT DRII DRII	ENT PA DJECT N E STAR LLING O LLING N GGED B	RTED_CONTR	ER_1 11/1 RACTOD_H	al Con 16004 7/16 TOR_ Hollow wind	New Engla v Stem Auç	nd Bo ger/We	ring C		PROJECT NAME Northern Pass PROJECT LOCATION Deerfield GROUND ELEVATION 395.0 ft LATITUDE 43.14011944 DRILLING EQUIPMENT Mobile GROUND WATER LEVEL:	, New B-53	Hamp HOI LOI SP1	DISHIP OF THE SIZE	ZE <u>6"</u> IDE <u>-</u> : IMER	71.18830278
>(±) 395		SAMPLE TYPE	NOMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG		RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY SI INDEX	FINES CONTENT (%)	REMARKS
-	<u>-</u> -		PT 1	50	2-3-8-15 (11)	-		red, moist, loose, subangular TILL: Silty SAND red, moist, mediui	AND (SM), trace organics, dusky fine to medium grained sand, (SM), trace organics, moderate m dense, fine to coarse grained dium grained sand, subangular	12.5				A bulk sample was obtained from 2 to
ERFIELD SS.GPJ	- - -		PT 2	63	21-19-21- 20 (40)	-		Poorly Graded SA coarse gravel, gra	ND with silt (SP-SM), little fine to lyish orange, moist, dense to very d sand, subangular, some	9.1				10 feet.
HERN PASS DEF	5		PT 3	50	27-56-40- 37 (96)				ND (CD) little fire to account					
004/16004 NORTH			PT 4	75	34-47-61- 61 (108)			gravel, trace silt, I	ND (SP), little fine to coarse ight brown, moist, very dense, ained sand, subangular, slightly					
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:USERSIMRUNIONIDOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GPJ  REFIELD SS.GPJ  S.GPJ  OB 12/22/16 09:19 - C:USERSIMRUNIONIDOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GPJ	10		PT   5	64	46-100/5"			Poorly Graded SA gravel, light brown medium grained s	ND with silt (SP-SM), trace fine n, moist, very dense, fine to and, subangular					Wet rotary (roller bit) drilling method used below 9 feet.
PF STD US LAB E-M.GDT - 12/22/16 09:19.	15		PT 6 <i>J</i>	80	100/5"				trace fine gravel, light brown, , fine to medium grained sand, oxidation					
GEOTECH BH COLUMNS - D	20	SI	PT 7	71	39-89- 100/5"	_		fine and coarse gi	ravel (SM), light brown, moist, rained gravel, fine to medium jular, granitic fragments					

PAGE 2 OF 3

QUANTA SUBSURFACE Engineering - Construction

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

**PROJECT LOCATION** Deerfield. New Hampshire

PROJI	ECT N	UMBER_	16004	ļ <u> </u>			PROJECT LOCATION Deerfield	, New	Hamp	shire		
ELEV (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	ATTER LIM DIM LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
370	  25	SPT 8	50	35-35-56- 54 (91)			Silty SAND with gravel (SM), light brown, moist, fine and coarse grained gravel, fine to medium grained sand, angular, granitic fragments (continued)					
365	30	SPT 9		100/0"			- boulder was encountered at 29 feet					
360	35 	SPT 10	58	36-68-73- 89 (141)			Silty SAND (SM), little fine gravel, brownish gray, moist, very dense, fine to medium grained sand, subangular					
355	40	SPT 11	(100)	100/2"		**************************************	BEDROCK: Highly weathered (IV), pale yellowish green, very weak (R1), very poor, PEGMATITE, coarse grained	-				
350	 45					x+ <u>x</u> x + x + 1 + x + x x+ <u>x</u> x + x + 1	Roller Bit Refusal at 44 feet Begin Coring at 44 feet					



PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

(t) (t) 350	(tt) (tt)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
		RC 1	72 (0)			X+X+XX+XXX+XXXXXXXXXXXXXXXXXXXXXXXXXXX	Slightly weathered (II) to moderately weathered (III), pale yellowish green, medium strong (R3) to strong (R4), very poor, PEGMATITE, coarse grained, composed of quartz, plag, orthoclase, muscovite, trace biotite, strong oxidation along fractured surfaces  - core loss from 46.7 to 48.1 feet				

Bottom of Borehole at 49.0 feet

### BORING NUMBER BH 602 PAGE 1 OF 2 QUANTA SLIRSURFACE Quanta Subsurface

	En	gineering + Cor		Quanta Oc	iboui id	.00							
1				ontractors				PROJECT NAME Northern Pas				bstatio	on
PRO.	JECT N	UMBER	1600	4				PROJECT LOCATION Deerfield	d, New	Hamp	shire		
DATE	STAR	TED 11	/17/16	<u> </u>	СОМІ	PLETI	ED 11/17/16	GROUND ELEVATION 405.6 ft		HO	LE SIZ	ZE <u>6"</u>	
			-	New Engla	nd Bo	ring C	ontractor	<b>LATITUDE</b> <u>43.14068889</u>					71.18803333
		IETHOD		•	CUEC	.VED	DV IT McCinnia	DRILLING EQUIPMENT Mobile	B-53	SP	T HAN	IMER _.	Manual - Safety
NOTI		L. Gso	chwina	<u> </u>	CHEC	,KED	BY J.T. McGinnis	GROUND WATER LEVEL: $\sqrt{2}$ AT TIME OF DRILLING N	ot enc	ounter	ed		
										ı	RBERG	  -	
	_	F F F	% \ \	, s <del>(</del>	ËN.	೨			RE (%)	LIN	IITS -	LEN	
ELEV (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY 9	BLOW COUNTS (N VALUE)	POCKET PEN (tsf)	GRAPHIC LOG	MATER	RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
	0	SA	H		PO				28		PLA	III	
405		SPT 1	. 54	1-3-5-10 (8)				(SM), little fine to coarse gravel, ht brown, moist, loose, fine to and, subangular					
	- - 	SPT 2	. 71	15-13-12-9 (25)	)		Silty SAND (SM), moist, medium de sand, subangular,	trace fine gravel, grayish orange, nse, fine to medium grained oxidation					
400	<u>5</u> 	SPT 3	58	8-15-15-15 (30)	-		Sandy SII T (MI)	trace fine gravel, grayish orange,	15.7			43.6	
	-   	SPT 4	96	16-24-29- 32 (53)				o medium grained sand,					
OCUMENTALIAL	10	SPT 5	54	23-41-51- 60 (92)			Silty SAND (SM), grayish orange, m	trace fine to coarse gravel, noist, very dense, fine to coarse	_				
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	-  						graniou cana, cas	angulai					
	-  						- light brown from	13 to 17 feet					
390	15	SPT 6	56	34-41- 100/4"									
010 US LAD	- - 	SPT	-	100/0"	 		BEDROCK: Highl	y weathered (IV), very light gray,					
<u>.</u>	-	7		_			grained	ery poor, GRÀNITE, medium	-				
	20						Beg Fresh (I), very ligh	Bit Refusal at 18 feet gin Coring at 18 feet at gray, strong (R4) to very strong NITE, medium grained,					
385		RC 1	96 (84)				- slightly oxidized	zone at 20.3 feet					UCS at 20.5 feet = 14,485 psi



PAGE 2 OF 2

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

ELEV (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	PLASTICITY STIE STIE STIE STIE STIE STIE STIE STIE	FINES CONTENT (%)	REMARKS
380		RC 2	100 (52)				Fresh (I), very light gray, strong (R4) to very strong (R5), good, GRANITE, medium grained, biotite-muscovite (continued)  - fair from 23 to 27.5 feet  - slightly to moderately weathered, medium strong (R3) to strong (R4), oxidized fracture zone				

Bottom of Borehole at 27.5 feet

### QUANTA SUBSURFACE Quanta Subsurface

#### **BORING NUMBER BH 603**

PAGE 1 OF 1

PROJECT NUMBER 16004

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

DATE STARTED 11/17/16 COMPLETED 11/17/16 GROUND ELEVATION 399.6 ft HOLE SIZE 6"

DRILLING CONTRACTOR New England Boring Contractor LATITUDE 43.14096667 LONGITUDE -71.18744444

DRILLING METHOD Hollow Stem Auger DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety

LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL:

NOTES GROUND WATER LEVEL:

□ AT TIME OF DRILLING Not encountered

Ī	ELEV (ft)	O DEPTH (ft)	CAMBI E TVBE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
			X	SPT 1	58	2-3-5-6 (8)			TILL: Silty SAND (SM), little fine to coarse gravel, trace organics, moderate red, dry, loose, fine to coarse grained sand, subangular					A bulk sample was
FIELD SS.GPJ			Y	SPT 2	75	14-18-24- 23 (42)			Silty SAND (SM), little fine to coarse gravel, moderate orange, dry, dense, fine to coarse grained sand, subangular					obtained from 2 to 10 feet. w% = 11.7% LL = NP; PI = NP % fines = 40.6% Resistivity = 9,700
ERN PASS DEERF	395	5	X	SPT 3	54	22-20-15- 17 (35)			- micaceous from 4 to 6 feet					ohm-cm pH = 5.3
14/16004 NORTHE	. –		X	SPT 4	17	27-32-71- 80 (103)			- very dense from 6 to 14.6 feet					
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:USERS\MRUNION\DOCUMENTS\16004\16004 NORTHERN PASS DEERFIELD SS.GPJ	390	10	X	SPT 5	63	25-50-60- 66 (110)			- light brown with oxidation from 8 to 14.6 feet.					
SERS/MRUNION/		_												
22/16 09:19 - C:\U		   												
.GDT - 12/;	385			SPT 6		100/0"	<u> </u>		Auger Refusal at 14.6 feet Bottom of Borehole at 14.6 feet					
JS LAB E-M														
S - DF STD I														
BH COLUMN														
GEOTECH														

#### **BORING NUMBER BH 604** QUANTA PAGE 1 OF 1 Quanta Subsurface PROJECT NAME Northern Pass TL - Deerfield Substation **CLIENT** PAR Electrical Contractors **PROJECT NUMBER** 16004 PROJECT LOCATION Deerfield, New Hampshire COMPLETED 11/17/16 DATE STARTED 11/17/16 GROUND ELEVATION 380.7 ft HOLE SIZE 6" **DRILLING CONTRACTOR** New England Boring Contractor **LATITUDE** 43.13978056 **LONGITUDE** -71.18766111 DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety DRILLING METHOD Hollow Stem Auger LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **☐** AT TIME OF DRILLING Not encountered **NOTES** ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG PLASTICITY INDEX DEPTH LIQUID MATERIAL DESCRIPTION TOPSOIL: Silty SAND with gravel (SM), little organics, dusky red, 380 moist, very loose, fine to medium grained sand, subangular 1-1-2-6 17 ALLUVIUM: Silty SAND (SM), little fine to coarse gravel, trace organics, (3)moderate vellowish brown, moist, loose to dense, fine to medium grained sand, subrounded, with cobbles GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:USERS/MRUNION/DOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GP. SPT 8-15-18-23 50 (33)TILL: Poorly Graded SAND (SP), little fine to coarse gravel, grayish orange, moist, very dense, fine grained sand, subangular, slight 51-67-77 SPT oxidation 50 90 (144)375 - cobbles encountered at 6 feet 94-93-61 Silty SAND with gravel (SM), pale orange, moist, very dense, fine to SPT 83 60 medium grained sand, subangular (154) 27-41-50 SPT 65 25 - boulders and cobbles encountered at 9 feet (91)10 370

Silty SAND (SM), little fine to coarse gravel, pale brown, moist, very dense, fine to medium grained sand, subangular

63.5

Sandy SILT (ML), little fine gravel, light brown, moist, hard, fine to

medium grained sand, subangular, weakly stratified

16-28-27

32

(55)

64-100/4

15

365

SPT

33

Bottom of Borehole at 20.0 feet

#### QUANTA SUBSURFACE Engineering + Construction

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C.USERSIMRUNION/DOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GP.

#### **BORING NUMBER BH 605**

PAGE 1 OF 1

PROJECT NAME Northern Pass TL - Deerfield Substation **CLIENT** PAR Electrical Contractors PROJECT NUMBER 16004 PROJECT LOCATION Deerfield, New Hampshire COMPLETED 11/3/16 GROUND ELEVATION 390.6 ft HOLE SIZE 6" DATE STARTED 11/3/16 DRILLING CONTRACTOR New England Boring Contractor **LATITUDE** 43.14015556 **LONGITUDE** -71.18723611 DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety DRILLING METHOD Hollow Stem Auger LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES** AT END OF DRILLING Not Encountered ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) GRAPHIC DEPTH PLASTICITY INDEX ELEV (#) LIQUID Œ MATERIAL DESCRIPTION **REMARKS** 0 TOPSOIL: Silty SAND (SM), trace organics, duskyred, moist, very loose, fine to medium grained sand 390 1-2-4-5 SPT 54 ALLUVIUM: Silty SAND (SM), trace fine gravel, (6) trace organics, dark yellowish orange, moist, loose, A bulk sample was fine to medium grained sand, subangular obtained from 2 to TILL: Poorly Graded SAND with silt (SP-SM), trace 10 feet. fine gravel, pale orange, moist, dense to very 10-19-25w% = 9.5%SPT dense, fine grained sand, subangular 63 27 LL = NP; PI = NP (44)% fines = 28.3% Resistivity = 9,600 ohm-cm pH = 5.221-34-41 SPT 54 25 (75) 385 15-32-76-Sandy SILT (ML), trace fine to coarse gravel, light SPT 96 84 brown, moist, very hard, fine to medium grained (108)sand, subangular Silty SAND with gravel (SM), light brown, moist, very dense, fine to coarse grained gravel, fine to 47-87-70 SPT medium grained sand, subangular 54 59 (157)10 380 SPT 65-100/4" 15 375 73 77-100/5' Bottom of Borehole at 20.0 feet



### **BORING NUMBER BH 606**

PAGE 1 OF 1

1	CLIENT PAR Electrical Contractors           PROJECT NUMBER 16004           DATE STARTED 11/10/16         COMPLETED 11/10/16							PROJECT NAME Northern Pass TL - D PROJECT LOCATION Deerfield, New H		station			
DAT DRIL DRIL LOG	E STAR LING C	TED 11	/10/16 CTOR_ Hollov	New Engla	and Bo ger	oring C		GROUND ELEVATION 380.3 ft  LATITUDE 43.14092222  DRILLING EQUIPMENT Mobile B-53	HOLE SIZE LONGITUE SPT HAMN	DE71			ety
ELEV (ft)	0	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GR		MATERIAL DESCRIPTION		MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	J III
380	-  -  -	SPT 1	63	1-2-4-7 (6)			very loose ALLUVIUM: Silty	SAND (SM), trace organics, dark reddish brown SAND (SM), little fine to coarse gravel, tracrange, moist, loose, fine to medium grained kly stratified	ce organics,				
IELD SS.GPJ	- - 	SPT 2	67	14-23-24- 33 (47)			TILL: Silty SAND dense to very loc stratified - cobbles encour				34.7		
RN PASS DEERF	5	SPT 3	71	22-29-26- 27 (55)			cobbles cheddi	itered at 5.0 reet					
04/16004 NORTHE	-[ -	SPT 4	67	34-47-34- 32 (81)			- moderate yello	wish brown from 6 to 9.8 feet					
OCUMENTS/160	- 	SPT 5	71	23-18-18- 100/3"									
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:USERS/MRUNION/DOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GPJ								Auger Refusal at 9.8 feet Bottom of Borehole at 9.8 feet					



## BORING NUMBER BH 606A PAGE 1 OF 1

CLIENT PAR Electrical Contractors	PROJECT NAME Northern Pass TL - Deerfield Substation							
PROJECT NUMBER 16004	PROJECT LOCATION Deerfield, New I	Hampshire						
<b>DATE STARTED</b> 11/10/16 <b>COMPLETED</b> 11/10/16	GROUND ELEVATION 380.3 ft	HOLE SIZE 6"						
DRILLING CONTRACTOR New England Boring Contractor	LATITUDE 43.14092222	LONGITUDE -71.18681944						
DRILLING METHOD Hollow Stem Auger	DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - S							
LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis	GROUND WATER LEVEL:							
NOTES	AT END OF DRILLING Not Encountered							
		477500500 L						

(#) A=T=	0	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY 대표 SA INDEX	FINES CONTENT (%)	REMARKS
NDOCUMENTS/16004/16004 NOR HERN PASS DEERHELD SS.GPJ							Auger Probe No Samples Obtained  Auger Refusal at 10.0 feet					Boring offset 8 feet NE of original location.

Auger Refusal at 10.0 feet Bottom of Borehole at 10.0 feet

## QUANTA SUBSURFACE Quanta Subsurface

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:\USERS\MRUNION\DOCUMENTS\16004\16004 NORTHERN PASS DEERFIELD SS.GPJ

## BORING NUMBER BH 607 PAGE 1 OF 3

>	En	gineering + Con	struction	Quarita Ou	200110								
				ntractors				PROJECT NAME Northern Pass				bstatic	on
PROJ	ECT N	UMBER	16004	4				PROJECT LOCATION Deerfield	l, New	Hamp	shire		
DATE	STAR	TED 11	/8/16		COMI	PLET	ED 11/9/16	GROUND ELEVATION 370.6 ft		НОІ	LE SIZ	ZE <u>6"</u>	
			_		nd Bo	ring C	ontractor	<b>LATITUDE</b> 43.13942778					
		IETHOD.		-	01156			DRILLING EQUIPMENT Mobile	B-53	SP1	HAM	IMER_	Manual - Safety
NOTE		L. GSC	hwind		CHEC	KED	BY J.T. McGinnis	GROUND WATER LEVEL: $\sqrt{2}$ AT TIME OF DRILLING N	ot Enc	ountai	-od		
NOIL								- AT TIME OF DIVIDENCE			RBERG	<b>—</b>	
	_	SAMPLE TYPE NUMBER	% }	ွတ္သ	POCKET PEN. (tsf)	೨			MOISTURE CONTENT (%)	LIM	ITS	CONTENT (%)	
ELEV (#)	DEPTH (ft)	LET		BLOW COUNTS (N VALUE)	(tsf)	GRAPHIC LOG	MATER	RIAL DESCRIPTION	STE	₽⊨	ĒΥ	00 (%)	REMARKS
Ш	ā	AMP	RECOVERY 9 (RQD)		ÖCK	A.			o N N N N	LIQUID	PLASTICITY INDEX	FINES	
	0	S	<u>~</u>		Δ.	31			0		٦	툽	
370		SPT		1-1-1-2			red, moist, very lo	AND (SM), trace organics, dusky ose, fine grained sand	1				
	_	1	8	(2)			trace organics, da	SAND (SM), trace fine gravel, rk yellowish orange, moist, very					
		8_					loose, fine to med	ium grained sand, subangular trace fine gravel, trace organics,					
-		SPT		3-13-18-20			dark yellowish ora	nge, moist, dense to very dense, ained sand, subangular					
		2	54	(31)			ine to medium gra	ameu sanu, subangulai					
	-				_								
	5	SPT	25	19-30-39- 39			:						
365		3	23	(69)			- cobbles encount	ered at 5 feet					
-		SPT	83	38-49-64- 100								20.8	
		4		(113)			orange, moist, ver	(SM), little fine gravel, grayish y dense, fine to coarse grained				20.0	
	-				_		sand, subangular,	stratified zones					
_		SPT 5	50	64-75-84- 80			i	0 to 40 foot					
	10			(159)			- light brown from	9 to 13 feet					
360	10												
							- cobbles encount	ered at 10.5 feet					
-													
								ND with silt (SP-SM), trace fine ange, moist, very dense, fine to					
	-							and, subangular, silt lenses					
							:						
	4.5	OPT		36-60-99-									
355	_ 15	SPT 6	67	91 (159)									
333				(100)	-								
	-	-											
	-	-											
_	_	SPT 7	0	100/1"			- cobbles encount	ered from 19 to 20.5 feet					
-	20	'-	1										
350			1			ыН	4						

PAGE 2 OF 3

QUANTA SUBSURFACE Engineering + Construction

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PRO	DJECT	NUMBER	16004	1			PROJECT LOCATION Deerfield	d, New	Hamp	shire		
ELEV (#)	DEPTH	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
-	-	- SPT	60	100/5"	_		Silty SAND (SM), little fine to coarse gravel, dark yellowish brown, moist, very dense, fine to medium grained sand, subrounded					
SIMRUNIONIDOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GPJ		SPT 9	55	73-100/5"			- light olive gray from 27 to 32 feet					
6.09:19 - C:\USERS\MRUNION\DOCUMENTS\16004\16	- - - - - - - - - - - - - - - - - - -	SPT 10	100	100/5"			Sandy SILT (ML), little fine gravel, light olive gray, moist, hard, fine to coarse grained sand, subangular					
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:\USER	40	SPT 11	77	81-89-90- 100/4"	_							
GEOTECH BH CC	45	SPT 12	100	100/5"	_		BEDROCK: Highly weathered (IV), dark gray, fine, very weak (R1), very poor, GNEISS, medium  (Continued Next Page)					

PAGE 3 OF 3

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

ELEV (ft)	(t) (t)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	TIMIT LIMIT	PLASTICITY STEED S	FINES CONTENT (%)	REMARKS
325		RC 1	98 (87)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						UCS at 47.5 feet = 10,539 psi
1							Dettern of Develop at 50 0 feet					

Bottom of Borehole at 50.0 feet

### BORING NUMBER BH 608 PAGE 1 OF 2 QUANTA SUBSURFACE Quanta Subsurface

		R E		cal Co	ntractors				PROJECT NAME Northern Pass PROJECT LOCATION Deerfield				bstatio	n
DATE DRILI	STAR	RTE ON	D <u>11/</u> ITRAC	17/16 CTOR_	New Engla			ED _11/17/16 ontractor	GROUND ELEVATION 367.7 ft LATITUDE 43.14026389 DRILLING EQUIPMENT Mobile		HOI	LE SIZ NGITU	DE7	71.18618889 Manual - Safety
LOGO NOTE		Y_L	Gscl	hwind		CHEC	KED	BY J.T. McGinnis	GROUND WATER LEVEL: $\overline{Y}$ AT TIME OF DRILLING N	o grou	ndwat	er data	a	
ELEV (ff)	O DEPTH (ft)	İ	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG		IAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
	- -	X	SPT 1	50	1-2-4-5 (6)		<u>14 1</u>	gravel, little organi moist, loose, fine t subangular ALLUVIUM: Siltv S	AND (SM), little fine to coarse ics, moderate reddish brown, o medium grained sand,  SAND (SM), little fine to coarse	_				
365	 	V A	SPT 2	67	22-27-26- 21 (53)			gravel, moderate r to medium grained Silty SAND (SM), I moderate reddish	eddish orange, moist, loose, fined sand, subangular little fine to coarse gravel, orange, moist, very dense, fined sand, subangular, slight					
	5	X	SPT 3	58	22-28-34- 37 (62)			Poorly Graded SA coarse gravel, ligh	ND with silt (SP-SM), little fine to t brown, moist, very dense, fine d sand, subangular					
360		V A	SPT 4	67	36-35-32- 47 (67)			TILL: Silty SAND ( light brown, moist, grained sand, sub	SM), little fine to coarse gravel, very dense, fine to medium angular				36.4	
	10		SPT 5	58	37-37-44- 44 (81)									
355	 							- dusky yellowish t	prown from 12 to 17 feet					
	15	X	SPT 6	56	62-90- 100/4"									
350	 							Silty SAND (SM), moist, very dense, subangular	little fine gravel, light olive gray, fine to medium grained sand,					
	20	X	SPT 7	78	56-61-81- 100/5"									



PAGE 2 OF 2

 CLIENT
 PAR Electrical Contractors
 PROJECT NAME
 Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004 PROJECT LOCATION Deerfield, New Hampshire

ELEV (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
345	 						Silty SAND (SM), little fine gravel, light olive gray, moist, very dense, fine to medium grained sand, subangular (continued)					
		SPT 8	64	68-100/5"								
340					20,2000		BEDROCK: Highly weathered (IV), very light gray, very weak (R1), very poor, GRANITE					
335	30	RC 1	86 (52)		\``````````````````````\``\`\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Roller Bit Refusal at 28.5 feet Begin Coring at 28.5 feet Fresh (I) to slightly weathered (II), very light gray, strong (R4) to very strong (R5), fair, GRANITE, medium grained, biotite-muscovite, quartz zones, oxidized zones BEDROCK: Slightly weathered (II), pale yellowish green, strong (R4) to very strong (R5), fair, PEGMATITE, medium to coarse grained, oxidized zones Slightly weathered (II), very light gray, strong (R4), fair, GRANITE, medium grained					UCS at 31 feet = 15,736 psi  Core loss from 32.7 to 33.5
330	35	RC 2	100 (64)		<u> </u>	(T. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Slightly weathered (II) to moderately weathered (III), pale yellowish green, medium strong (R3) to strong (R4), fair, PEGMATITE, medium to coarse responsible to the strong (R4), fair, GRANITE, medium grained Slightly weathered (II), very light gray, Slightly weathered (II) to moderately weathered (III), pale yellowish green, medium strong (R3), fair, PEGMATITE, medium to coarse grained Fresh (I), very light gray, strong (R4), fair, GRANITE, medium grained, muscovite and biotite zones					
					^·		Bottom of Borehole at 38.5 feet					

## QUANTA SUBSURFACE Quanta Subsurface

## BORING NUMBER BH 609 PAGE 1 OF 1

CLIENT PAR Electrical Contractors		PROJECT NAME Northern Pass TL - [	Deerfield Substation
PROJECT NUMBER 16004		PROJECT LOCATION Deerfield, New	Hampshire
<b>DATE STARTED</b> 11/10/16	COMPLETED 11/10/16	GROUND ELEVATION 368.7 ft	HOLE SIZE 6"
DRILLING CONTRACTOR New Eng	land Boring Contractor	<b>LATITUDE</b> 43.13959444	LONGITUDE71.18640833
DRILLING METHOD Hollow Stem A	uger	DRILLING EQUIPMENT Mobile B-53	SPT HAMMER Manual - Safety
LOGGED BY L. Gschwind	CHECKED BY J.T. McGinnis	GROUND WATER LEVEL:	
NOTES		AT END OF DRILLING Not Enco	ountered

ELEV (ft)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)
		SPT 1	38	1-4-4-5 (8)		7. 7.	TOPSOIL: Silty SAND (SM), trace organics, moderate reddish brown, moist, very loose, fine to medium grained sand  ALLUVIUM: Silty SAND (SM), little fine to coarse gravel, trace organics, light brown, moist, loose, fine to medium grained sand	15.0			
365 365	   	SPT 2	63	39-41-36- 27 (77)			Silty SAND (SM), little fine to coarse gravel, grayish orange, very dense, fine to medium grained sand, with cobbles	5.1			23.5
EKN PASS DEEK	5	SPT 3	46	18-20-26- 47 (46)			TILL: Poorly Graded SAND with silt (SP-SM), little fine to coarse gravel, grayish orange, moist, dense to very dense, fine grained sand				
04/16004 NOK IH	- - - - -	SPT 4	67	47-37-41- 60 (78)							
300   -12/22/16 09:19 - C: OUSERS/MIXUMOND/OCCIMENT   SN 18004/16/04 NOR HERN PASS DEERFIELD SS, GFD   98   98   98   98   98   98   98   9	10	SPT 5	64	76-100/5"			- cobbles encountered at 10 feet				
16 09:19 - C:\USEKS\M							Auger Refusal at 13.0 feet Bottom of Borehole at 13.0 feet				
GEOLECH BH COLUMNS - DF SID US LAB E-M											
GEOIEC											

## QUANTA SUBSURFACE Quanta Subsurface

## BORING NUMBER BH 610 PAGE 1 OF 2

	-	girieer	ing + Cons	truction											
CLIEN	<b>NT</b> PA	RE	Electric	cal Co	ntractors					PROJECT NAME_Northern Pass TL - D	Deerfield Subs	station			
PROJ	ECT N	UN	IBER_	16004	1					PROJECT LOCATION Deerfield, New	Hampshire				
1					New Engla				3/16	GROUND ELEVATION 356.2 ft  LATITUDE 43.14012222	HOLE SIZE		.18586	6111	
DRILI	ING N	IET	HOD	Wet R	Rotary					DRILLING EQUIPMENT Mobile B-53					ety
1	SED B					CHE	CKED	BY J.T.	McGinnis	GROUND WATER LEVEL:					
NOTE										$\overline{Y}$ AT TIME OF DRILLING 9.5ft / Ele	ev 346.7ft				
													ATTER	RBERG	  -
ELEV (ft)	O DEPTH (ft)	i i	SAMPLE IYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC			MATERIAL DESCRIPTION		MOISTURE CONTENT (%)	LIQUID	PLASTICITY STORY INDEX	FINES CONTENT (%)
355		Y	SPT 1	21	4-6-4-8 (10)		711/ 711/	orga sand	inics, modera d, subangulai		grained				
										rly Graded SAND with silt (SP-SM), little fir wish brown, moist, dense, fine to medium					
	<u> </u>	X	SPT 2	63	20-24-26- 32 (50)				d, subangulai		gramou				
350	5	V A	SPT 3	0	22-22-15- 16 (37)			Silty mois	SAND (SM) st, dense, fine	, little fine to coarse gravel, moderate redd e to medium grained sand, subangular	ish orange,				
	_	X	SPT 4	75	36-21-14- 21 (35)	-				AND with silt (SP-SM), little fine gravel, monoist, dense, fine grained sand, subangula					
	10		SPT 5	67	15-18-18- 24 (36)			[:  -  -  -  -  -  -							
-															
345	 		LODT		07.400/01			TILL very zone	dense, fine t	(SM), some fine to coarse gravel, light bro to medium grained sand, subangular, some	own, moist, e oxidized				
340	15	-	SPT 6	0	97-100/0"										
	- -	_					1-1-		k (R1) to very	ly weathered (IV), white and moderate dar y strong (R5), very poor, GNEISS, fine to n		_			
	20							Fres (R5)	sh (I), white a	nd moderate dark gray, strong (R4) to very SNEISS, fine to medium grained, felsic, oxi					
-							<u>\</u>	feet		Roller Bit Refusal at 19 feet Begin Coring at 19 feet					



PAGE 2 OF 2

 CLIENT PAR Electrical Contractors
 PROJECT NAME Northern Pass TL - Deerfield Substation

 PROJECT NUMBER 16004
 PROJECT LOCATION Deerfield, New Hampshire

(tt) (tt)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
		RC 1	98 (90)			x++x x++x x++x x++x x++x x+x x+x x+x x+	Fresh (I), pale yellowish green and moderate gray, strong (R4) to very strong (R5), excellent, PEGMATITE, coarse grained, occasional biotite bands (continued)				
0 DEEKTIELD 00.GPJ	 	RC 2	98 (98)				Fresh (I), white and moderate dark gray, strong (R4) to very strong (R5), excellent, GNEISS, fine to medium grained, quartz vein at 27.5 feet				

Bottom of Borehole at 29.0 feet

## QUANTA SUBSURFACE Quanta Subsurface BORING NUMBER BH 611 PAGE 1 OF 2

	Eng	ineering +	Const	ruction	Quanta Su	bsuria	Ce							
					ntractors				ME Northern Pass TL - D		tation			
PROJ	ECT N	UMB	ER_	16004	1			PROJECT LO	DCATION Deerfield, New I	Hampshire				
DATE	STAR	TED_	11/1	17/16		СОМІ	PLET	D 11/17/16 GROUND ELI	EVATION 401.1 ft	HOLE SIZE	6"			
DRILI	ING C	ONTF	RAC	TOR_	New Engla	nd Bo	ring C	ontractor LATITUDE 43	3.14021111	LONGITUD	E71	.1877	25	
DRILI	ING M	ETHC	DD_\	Wet R	otary			DRILLING EC	QUIPMENT Mobile B-53	SPT HAMM	ER_M	anual	- Safe	ety
LOG	ED BY	<u>L. C</u>	Ssch	wind		CHEC	KED	BY J.T. McGinnis GROUND WA	TER LEVEL:					
NOTE	:s							$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	E OF DRILLING Not enco	untered				
		Ш		%		l_ <u>:</u>							RBERG	þ
_	ェ	Ϋ́	צ	Α Υ.	>CE)	POCKET PEN. (tsf)	일				MOISTURE CONTENT (%)			FINES CONTENT (%)
ELEV (ft)	DEPTH (ft)	Ë Ë	M M	NSE NSE	BLOW COUNTS (N VALUE)	(ET	GRAPHIC LOG	MATERIAL I	DESCRIPTION		STL	≘⊨	들监	000
ш	□	SAMPLE TYF	2	RECOVERY (RQD)	a O Z	Ò	GR L				MO	LIQUID	PLASTICITY INDEX	ES
	0	Ś		œ		۵					Ö	_	7	듶
		V					7/1/	TOPSOIL: Silty SAND (SM), little	organics, dusky red, mois	t, loose, fine				
400		S	PT	38	1-2-2-4 (4)			ALLUVIUM: Silty SAND (SM), tra			13.5			
			'		(4)			moderate yellowish brown, moist, sand, subangular, weakly cement	, very loose, fine to mediur					
	-							Sand, Subangular, Weakly Comen	icu					
		V s	PT	54	8-8-9-17			- grayish orange			9.6			22.6
			2	34	(17)						9.0			22.0
	-					1		TILL: Silty SAND (SM), trace fine	graval light brown yarv	once fine to				
	5		ρТ		23-32-29-			medium grained sand, subangula		ense, inte to				
	_ 5		PT   3	50	34 (61)						10.0			
395					(01)									
								Poorly Graded SAND with silt and	d gravel (SP-SM), light bro	wn, moist,				
	_							very dense, fine to coarse grained subangular, oxidized	d gravel, fine to medium gi	ained sand,				
			PT	50	57-100/6"			<b>0</b> ,						
	10		4			1								
000														
390_	_													
								Silty SAND (SM), trace fine grave grained sand, subangular, stratific	el, light brown, moist, very ed with oxidized zones	dense, fine				
								, , ,						
		<b>V</b> 。	РТ		46-79-									
	15		5	53	100/5"									
						-								
385														
	_							Silty SAND with gravel (SM), light coarse grained gravel, fine to me	t olive gray, moist, very de	nse, fine to				
								coaise grained graver, line to me	ululli grailleu sallu, suball	guiai				
	-													
	20	<b>y</b> s	PT	50	71-100/4"									



PAGE 2 OF 2

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

ELEV (f)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	ATTEF LIM LIMIT LIMIT	PLASTICITY STAN	FINES CONTENT (%)
375		SPT 7	58	97-100/6"			Silty SAND with gravel (SM), light olive gray, moist, very dense, fine to coarse grained gravel, fine to medium grained sand, subangular (continued)				
4 NOKI HEKN PASS DEEKHELD SS.G.D		SPT 8	54	76-89-84- 93 (173)			Datter of Davids at 24 2 feet				

Bottom of Borehole at 31.0 feet

PAGE 1 OF 2

QUANTA SUBSURFACE Engineering - Construction

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:USERSIMRUNION/DOCUMENTSI 16004 NORTHERN PASS DEERFIELD SS.GPJ

PROJECT NAME Northern Pass TL - Deerfield Substation **CLIENT** PAR Electrical Contractors **PROJECT NUMBER** 16004 PROJECT LOCATION Deerfield, New Hampshire **COMPLETED** 11/9/16 DATE STARTED 11/8/16 GROUND ELEVATION 396.3 ft HOLE SIZE 6" **DRILLING CONTRACTOR** New England Boring Contractor **LATITUDE** 43.14050833 **LONGITUDE** -71.18743333 DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety DRILLING METHOD Wet Rotary LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: ☐ AT TIME OF DRILLING Not Encountered **NOTES** ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) GRAPHIC DEPTH PLASTICITY INDEX MATERIAL DESCRIPTION LIQUID **REMARKS** LIMIT TOPSOIL: Silty SAND (SM), some organics, dusky red, moist, loose, fine to medium grained sand 2-2-3-3 38 ALLUVIUM: Silty SAND (SM), trace fine gravel, 24.0 395 (5) trace organics, moderate vellowish brown, moist, A bulk sample was loose, fine to medium grained sand, subangular obtained from 2 to 10 feet. w% = 22.6%LL = NP; PI = NP TILL: Poorly Graded SAND with silt (SP-SM), trace % fines = 28.3%fine gravel, grayish orange, moist, very dense, fine grained sand, subangular, weakly stratified 23-36-22 50 12.7 17 (58)Silty SAND (SM), little fine gravel, reddish brown, moist, very dense, fine to medium grained sand, 390 subangular, slight oxidation - encountered cobbles at 7.8 feet 40-48-60-67 62 (108)- gravelly zone at 10.5 feet 385 - encountered a boulder from 11.5 to 13.0 feet 65-100/5 oxidized zone at 14.5 feet 15 380 BEDROCK: Highly weathered (IV), very light gray, SPT 100/0" very weak (R1), very poor, GRANITE, medium grained Roller Bit Refusal at 19 feet Begin Coring at 19 feet Slightly weathered (II), very light gray, strong (R4), very poor, GRANITE, medium grained,

(Continued Next Page)

biotite-muscovite



PAGE 2 OF 2

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

ELEV (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	ATTEFLIN	PLASTICITY SLIBBERG INDEX	FINES CONTENT (%)	REMARKS
<u>375</u> -	- - -	RC 1	82 (0)				- core loss from 21.1 to 22 feet  Slightly weathered (II) to moderately weathered (III), moderate dark gray, strong (R4), very poor, DIABASE DIKE, fine grained, intrusion along core, slightly oxidized					
SS DEERFIELD SS.GPJ	25	RC 2	100 (0)				- oxidized from 25.4 to 26 feet					

Bottom of Borehole at 29.0 feet

### QUANTA SUBSURFACE Quanta Subsurface BORING NUMBER BH 613 PAGE 1 OF 2

	SI	JBSURF	ACE	Quanta Su	bsurfa	ce							PAGE 1 OF 2
CLIEN	NT PA	R Electric	cal Co	ntractors				PROJECT NAME_Northern Pass	s TL - I	Deerfie	eld Su	bstatio	on l
		UMBER						PROJECT LOCATION Deerfield					
DATE	STAR	<b>TED</b> 11/	17/16		СОМ	PLFTF	<b>:D</b> 11/17/16	GROUND ELEVATION 389.7 ft		НΟΙ	LE SIZ	<b>'E</b> 6"	
				New Engla				LATITUDE 43.14057778		-			71.18705556
		ETHOD_	_					DRILLING EQUIPMENT Mobile	B-53	_			
LOG	SED BY	L. Gsc	nwind		CHEC	KED	BY J.T. McGinnis	GROUND WATER LEVEL:					
NOTE	:s							$\sqrt{2}$ at time of drilling <u>N</u>	o grou	ndwat	er data	a	
		PE	%		z Z				(%	ATTER LIM	RBERG IITS	TNE	
ELEV (ft)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN (tsf)	GRAPHIC LOG	MATEI	RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTE	REMARKS
		V				71 1/2 7/2	i oi ooil. oiity o	AND (SM), dusky red, moist, dium grained sand					
		SPT 1	58	2-3-4-6 (7)	_		ALLUVIUM: Silty gravel, trace orga	SAND (SM), little fine to coarse anics, light brown, moist, loose, rained sand, subangular	15.2				
385	5	SPT 2	58	27-35-29- 22 (64)			yellowish brown,	with gravel (SM), moderate moist, very dense, fine to coarse ne to medium grained sand, t oxidation	15.2			37.4	
380	_ 10	SPT 3	54	26-41-38- 42 (79)			yellowish brown,	trace fine gravel, moderate moist, very dense, fine to medium pangular, some oxidized zones					
375		SPT 4	58	63-84-58- 52 (142)			- dark yellowish b	brown from 12 to 16 feet					
		SPT		0/0"	-	W/////////////////////////////////////	BEDROCK: Highl very weak (R1), v grained	ly weathered (IV), very light gray, very poor, GRANITE, medium					Core loss from
370	20	5					Advance	ed wet rotary to 19.5 feet					19.5 to 20.1 feet.



PAGE 2 OF 2

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

EI EV	(H)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
-		 	RC 1	88 (29)				Fresh (I) to slightly weathered (II), very light gray, medium, strong (R4) to very strong (R5), poor, GRANITE, medium grained, biotite-muscovite, localized foliated zones (continued)					Core loss from
_	-		RC 2	96 (46)				- oxidized zone  - slightly to moderately weathered and oxidized zones from 26.4 to 27 feet					24.5 to 24.7 feet.
RN PASS DEERFIELD SS.GPJ	_							- duartz vein at 29.2 feet					

Bottom of Borehole at 29.5 feet

### QUANTA SUBSURFACE Quanta Subsurface BORING NUMBER BH 614 PAGE 1 OF 2

PROJECT NAME Northern Pass TL - Deerfield Substation **CLIENT** PAR Electrical Contractors **PROJECT NUMBER** 16004 PROJECT LOCATION Deerfield, New Hampshire COMPLETED 11/17/16 GROUND ELEVATION 379.8 ft HOLE SIZE 6" DATE STARTED 11/17/16 **DRILLING CONTRACTOR** New England Boring Contractor **LATITUDE** 43.14035556 LONGITUDE -71.18662222 DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety DRILLING METHOD Wet Rotary LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES**  $\sqrt{2}$  AT TIME OF DRILLING 8.7ft / Elev 371.1ft ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION **REMARKS** TOPSOIL: Silty SAND (SM), little organics, moderate reddish brown, moist, loose, fine to 1-2-9-7 medium grained sand, subangular 25 (11)ALLUVIUM: Silty SAND (SM), little fine to coarse gravel, trace organics, dark yellowish orange, moist, medium dense, fine to medium grained sand, subangular Silty SAND (SM), little fine to coarse gravel, grayish orange, moist, very dense, fine to medium grained 375 21-29-47 SPT sand, subangular 58 30 (76) - encountered cobbles at 5.5 feet and an oxidized zone at 5.8 feet TILL: Sandy SILT (ML), little fine to coarse gravel, light brown, moist, very dense, fine to medium grained sand, subangular, occasional oxidized sandy lenses <u>37</u>0 50-78-84-SPT 71 37.6 82 (162)- pale brown from 12 to 20 feet 52-78-365 76 100/5" cobbles encountered at 17.8 - becomes pale red from 18 to 20 feet 75 71-100/2 360 Core loss from 20.5 to 20.8 70 Roller Bit Refusal at 20.5 feet



PAGE 2 OF 2

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Deerfield Substation

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

L														
	ELEV (ft)	ОЕРТН (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY STIE STIE STIE STIE STIE STIE STIE STIE	FINES CONTENT (%)	REMARKS	
-	355	   25	RC 2	95 (0)				Begin Coring at 20.5 feet BEDROCK: Slightly weathered (II), light greenish gray, medium strong (R3), very poor, DIABASE DIKE, fine to medium grained, subvertical veins containing diopside crystals, occasional styllolites, moderately to highly fractured					Core loss from 21.5 to 21.7	
ERFIELD SS.GPJ		 	RC 3	80 (0)									25.5 to 26	
DRTHERN PASS DEERFIELD SS.GPJ	350	30	RC 4	100 (0)				Dallace (Deceleded 2005 (est						

Bottom of Borehole at 30.5 feet

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:USERSIMRUNIONIDOCUMENTS/16004/16004 NOF



#### **BORING NUMBER INF 601**

PAGE 1 OF 1

PROJECT NUMBER 16004

PROJECT NUMBER 16004

PROJECT LOCATION Deerfield, New Hampshire

PROJECT LOCATION Deerfield, New Hampshire

DATE STARTED 11/17/16

COMPLETED 11/17/16

GROUND ELEVATION 369.6 ft

HOLE SIZE 6"

LATITUDE 43.14044444

LONGITUDE -71.18598611

DRILLING METHOD Hollow Stem Auger

DRILLING EQUIPMENT Mobile B-53

SPT HAMMER Manual - Safety

LOGGED BY L. Gschwind

CHECKED BY J.T. McGinnis

NOTES

AT END OF DRILLING Not Encountered

ELEV (ft)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID		FINES CONTENT (%)	REMARKS
		SPT 1	38	2-4-4-9 (8)		7 7 7 7	TOPSOIL: Silty SAND (SM), little organics, trace fine gravel, dark reddish brown, moist, loose, fine to medium grained sand, subangular					Infiltration test casing installed in an adjacent borehole to a
-		<b>∆</b>					TILL: Silty SAND (SM), little fine to coarse gravel, moderate reddish brown, moist, medium dense to very dense, fine to medium grained sand, subangular, oxidized zones			3		depth of approximately 4 feet.  The ESHWT is at an approximate depth of 4 feet.
		SPT 2	67	11-27-29- 24 (56)								
365	5	SPT 3	67	20-26-25- 28 (51)			Silty SAND (SM), little fine to coarse gravel, grayish orange, moist, very dense, fine grained sand, subangular	7.6			33.8	
		SPT 79 31-31-31-34 (62)			Silty SAND (SM), little fine to coarse gravel, pale reddish brown, moist, very dense, fine to medium grained sand, subangular, oxidized zones							

Bottom of Borehole at 8.0 feet



#### **BORING NUMBER INF 602**

PAGE 1 OF 1

**CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Deerfield Substation **PROJECT NUMBER** 16004 PROJECT LOCATION Deerfield, New Hampshire COMPLETED 11/16/16 GROUND ELEVATION 372.0 ft HOLE SIZE 6" DATE STARTED 11/16/16 **DRILLING CONTRACTOR** New England Boring Contractor **LATITUDE** 43.14064444 LONGITUDE -71.18597222 DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Safety DRILLING METHOD Hollow Stem Auger LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES** AT END OF DRILLING Not Encountered ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX ELEV (ft) LIQUID  $\equiv$ MATERIAL DESCRIPTION **REMARKS** Infiltration test TOPSOIL: Silty SAND (SM), little organics, trace casing installed in fine to coarse gravel, moderate reddish brown, 1-2-4-6 SPT an adjacent moist, loose 21 (6) borehole to a TILL: Silty SAND (SM), little fine to coarse gravel, depth of moderate reddish orange, moist, loose, fine to 370 approximately 7 coarse grained sand, subangular feet. Silty SAND with gravel (SM), grayish pink, moist, GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C.USERSIMRUNION/DOCUMENTS/16004/16004 NORTHERN PASS DEERFIELD SS.GP. 17-21-20-SPT dense, fine to coarse grained gravel, fine to coarse 54 26 Auger refusal was grained sand, subangular (41)encountered at 4 - boulders encountered at 4 feet feet. The bore Silty SAND (SM), little fine to coarse gravel, light hole was offset 4 brown, moist, dense, fine to coarse grained sand, feet to the East 26-26-24 SPT and redrilled. subangular 67 22 (50)The ESHWT is at an approximate Silty SAND (SM), moderate reddish orange, moist, depth of 6 feet. very dense, fine to medium grained sand, 21-34-34-365 SPT subangular, oxidized, stratified zones 40.6 67 39 10.2 (68)26-34-35 SPT 63 61 - light brown and oxidized zones from 9 to 10 feet (69)Bottom of Borehole at 10.0 feet



#### **BORING NUMBER INF 603**

PAGE 1 OF 1

 
 CLIENT
 PAR Electrical Contractors
 PROJECT NAME
 Northern Pass TL - Deerfield Substation
 PROJECT NUMBER 16004 PROJECT LOCATION_Deerfield, New Hampshire DATE STARTED 11/11/16 COMPLETED 11/11/16 GROUND ELEVATION 387.9 ft HOLE SIZE 6" DRILLING CONTRACTOR New England Boring Contractor LATITUDE 43.14108611 LONGITUDE -71.18716667 DRILLING METHOD_Hollow Stem Auger DRILLING EQUIPMENT_Mobile B-53 SPT HAMMER_Manual - Safety LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis GROUND WATER LEVEL: NOTES _____ AT END OF DRILLING Not Encountered

					_			_				
(#)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID LIMIT		FINES CONTENT (%)	REMARKS
_		SPT 1	21	1-2-4-14 (6)		7 77	TOPSOIL: Silty SAND (SM), little organics, moderate reddish brown, moist, loose, fine to coarse grained sand, subangular  TILL: Silty SAND (SM), little fine to coarse gravel, moderate reddish orange, moist, medium dense to					Infiltration test casing installed in an adjacent borehole to a depth of approximately 5
85_	_	SPT 2	63	17-31-37- 39 (68)			very dense, fine to medium grained sand, subangular - cobbles encountered from 1.8 to 2 feet - grayish orange pink with slight oxidation below 3 feet					feet.  The ESHWT is at
_	5	SPT 3	63	29-100/2"			Poorly Graded SAND with silt (SP-SM), trace fine gravel, pale orange, moist, very dense, fine grained sand, subangular  Auger Refusal at 5.0 feet					an approximate depth of 3 feet.
	-,	0   85 	HLATE TALE TALE TALE TALE TALE TALE TALE	SAMPLE TYFE NUMBER S SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TYFE SAMPLE TY	(#)  HL4(#)  O  SPT 21 1-2-4-14 (6)  SPT 21 17-31-37-39 (68)  SPT 3 63 29-100/2"	(#)  O  DEPTH  NUMBER TYPE  NUMBER TYPE  NUMBER TYPE  NUMBER TYPE  SAMPLE TYPE  NUMBER TYPE  (RQD)  SPT 21 1-2-4-14  (QDN)  SPT 3 17-31-37-39  (68)  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"	(#)  HT (#)  O  SAMPLE TYRE  NUMBER TO SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  (ROD)  SECOVERY  SECOVERY  (ROD)  SECOVERY   MATERIAL DESCRIPTION    Harmonic   MATERIAL DESCRIPTION    Hand   MATERIAL DESCRIPTION  SPT 21 1-2-4-14 (6)  SPT 2 63 39 (68)  SPT 3 63 29-100/2"  SPT 4 63 29-100/2"  SPT 4 63 29-100/2"  SPT 5 63 29-100/2"  SPT 6 63 29-100/2"  SPT 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	MATERIAL DESCRIPTION  SPT 21 1-2-4-14 (6)  SPT 2 63 39 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 3 (68)  SPT 4 (68)  SPT 4 (68)  SPT 5 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 7 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 6 (68)  SPT 7 (68)  SPT 6 (68)  SPT 7 (68)  SPT 7 (68)  SPT 7 (68)  SPT 7	MATERIAL DESCRIPTION  SPT 21 1-2-4-14 (6)  SPT 2 63 17-31-37- 39 (68)  SPT 2 63 29-100/2"  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"  SPT 3 63 29-100/2"  SPT 63 29-100/2"  SPT 3 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 63 29-100/2"  SPT 64 29-100/2"  SPT 65 29-100/2"  SPT 65 29-100/2"  SPT 65 29-100/2"  SPT 65 29-100/2"  SPT 67 29-100/2"  SPT 67 29-100/2"  SPT 68 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100/2"  SPT 69 29-100			

Bottom of Borehole at 5.0 feet



## BORING NUMBER INF 604 PAGE 1 OF 1

	Engl	ineering + Cons	truction										
CLIEN	NT PAF	R Electric	cal Co	ntractors				PROJECT NAME Northern Pass	s TL - I	Deerfie	eld Su	bstatio	on
PROJ	ECT N	JMBER_	16004	1				PROJECT LOCATION Deerfield	l, New	Hamp	shire		
DATE	STAR	<b>TED</b> 11/	11/16		СОМІ	PLETE	ED 11/11/16	<b>GROUND ELEVATION</b> 384.9 ft		ноі	LE SIZ	<b>'E</b> 6"	
				New Engla	nd Bo	rina Co	ontractor	<b>LATITUDE</b> 43.14119444			NGITU	DE -	71.18706667
1			_	v Stem Aug				DRILLING EQUIPMENT Mobile B-53 SPT HAMMER Manual - Sat					
LOGGED BY L. Gschwind CHECKED BY J.T. McGinnis						GROUND WATER LEVEL:							
NOTE			·······		00		<b>21</b> <u>0.11 WOOMING</u>	AT END OF DRILLING No	nt Enco	nunter	he		
11011				I			Ι	AT END OF BRICEING NO.	LIICC	1		l .	Ι
ELEV (ft)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)			RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY STAN	FINES CONTENT (%)	
	-	SPT 1	63	1-2-4-8 (6)			moderate reddish medium grained s TILL: Silty SAND organics, dark yel	(SM), trace fine gravel, trace llowish orange, moist, loose, fine					Infiltration test casing installed in an adjacent borehole to a depth of approximately 7
		SPT 2	63	19-19-21- 26 (40)			Silty SAND (SM),	d sand, subangular					feet. The ESHWT is at
380	. 5	SPT 3	75	30-28-25- 33 (53)	-		Sandy SILT (ML), moist, very hard, subangular	trace fine gravel, light brown, fine to medium grained sand,					an approximate depth of 2 feet.
		SPT 4	74	64-29-30- 100/1"	-		Silty SAND (SM), pink, moist, very	little fine to coarse gravel, grayish dense, fine to medium grained , oxidized zones with silt lenses				35.4	
-						<u>15 15 15 </u>		er Refusal at 8.0 feet					

Bottom of Borehole at 8.0 feet

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C:\USERS\MRUNION\DOCUMENTS\16004\16004 NORTHERN PASS DEERFIELD SS.GPJ



## BORING NUMBER INF 605 PAGE 1 OF 1

CLIEN	NT PAR Electrical Contractors		PROJECT NAME Northern Pass TL - I	Deerfield Substation			
PROJ	JECT NUMBER_16004		PROJECT LOCATION Deerfield, New Hampshire				
DATE	STARTED 11/11/16	COMPLETED_11/11/16	GROUND ELEVATION 384.9 ft	HOLE SIZE 6"			
DRILL	LING CONTRACTOR New Eng	gland Boring Contractor	<b>LATITUDE</b> 43.14140833	LONGITUDE71.18688333			
DRILL	LING METHOD Hollow Stem A	auger	DRILLING EQUIPMENT Mobile B-53	SPT HAMMER Manual - Safety			
LOGG	GED BY L. Gschwind	CHECKED BY J.T. McGinnis	GROUND WATER LEVEL:				
NOTE	ES		Ţ AFTER DRILLING 6.1ft / Elev 378.8ft				
				ATTERBERG			

ELEV (ff)	O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	TIMIT TIMIT	FINES CONTENT (%)	REMARKS
-	- - -	SPT 1	58	1-2-2-6 (4)		7. 7	moderate reddish brown, moist, very loose, fine to medium grained sand, subangular  TILL: Silty SAND (SM), trace fine gravel, trace roots, pale reddish brown, moist, loose, fine to				Infiltration test casing installed in an adjacent borehole to a depth of approximately 7
TELD SS.GPJ		SPT 2	54	16-27-27- 31 (54)			medium grained sand, subangular, slight oxidation Silty SAND (SM), trace fine to coarse gravel, pale orange, moist, very dense to dense, fine grained sand, subangular, oxidized zones				feet.  The ESHWT is at
380 380	5	SPT 3	75	14-17-18- 24 (35)			- oxidized (orange) and reduced (light gray) mottling from 4 to 5.5 feet  Silty SAND (SM), trace fine to coarse gravel, light				an approximate depth of 2 feet.
NOK H		SPT 4	100	11-100/4"			▶ brown, wet, very dense, fine to medium grained sand, subangular  Auger Refusal at 6.9 feet	16.8		37.0	

Bottom of Borehole at 6.9 feet

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/22/16 09:19 - C.:USERS/MRUNION/DOCUMENTS/1600416004 NORTHERN PASS DEERFIELD SS.GP.J



# Appendix B QS Rock Core Photographs



#### **BH 601 Rock Core Photos**



#### **BH 602 Rock Core Photos**

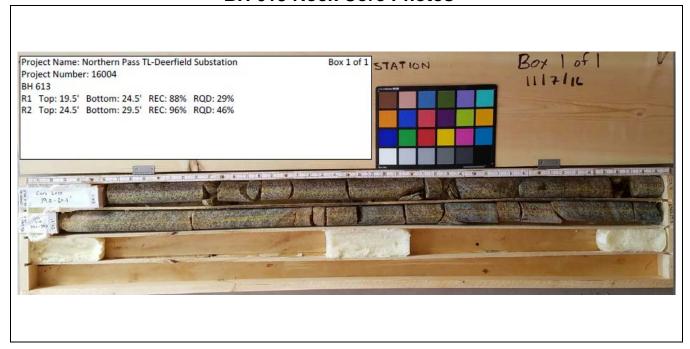




#### **BH 607 Rock Core Photos**



#### **BH 608 Rock Core Photos**






#### **BH 612 Rock Core Photos**




#### **BH 613 Rock Core Photos**





#### **BH 614 Rock Core Photos**





# Appendix C QS Laboratory Test Results



#### **SUMMARY OF LAB TESTING RESULTS**

#### NORTHERN PASS TRANSMISSION LINE PROJECT

DEERFIELD SUBSTATION PROJECT NO.: 16004

SA	MPLE INFORMATIO	N										LAB TEST	RESULTS						
BOREHOLE	FIELD SAMPLE	DEPTH (ft)	MOISTURE CONTENT (ASTM D2216)	ORGANIC CONTENT OF SOIL	Si	eve Analysis	(ASTM D42	22)	% PASSING NO. 200		ERBERG LII STM D431			PROCTOR D1557)	UNCONFINED COMPRESSIVE		SOIL CH	EMISTRY	
No.	ID	DEPTH (IL)	(%)	(ASTM D2794) (%)	% Gravel	% Sand	% Silt	% Clay	SEIVE (ASTM D1140)	LL	PL	PI	Max. Dry Density (pcf)	Optimum Moisture Content (%)	STRENGTH OF ROCK (ASTM D7102) (psi)	SO₄ (ASTM D516)	CHLORIDE (ASTM D512)	pH (ASTM G51)	RESISTIVITY (AASHTO T288) (ohm-cm)
BH 601	S1	0-2	12.5																
BH 601	S2	2-4	9.1																
BH 602	S3	4-6	15.7						43.6										
BH 603	BULK	2-10	11.7						40.6	NP	NP	NP	129.5 ^C	8.8 ^C		31 ^A	< 5.1 ^A	5.3	9,700
BH 605	BULK	2-10	9.5						28.3	NP	NP	NP	121.0 ^C	9.6 ^c		35 ^A	< 5.1 ^A	5.2	9,600
BH 611	S1	0-2	13.5																
BH 611	S2	2-4	9.6						22.6	NP	NP	NP							
BH 611	S3	4-6	10.0																
BH 602	S8	18-23													14,485 ^B				
BH 604	S6	14-16							63.5										
BH 606	S2	2-4							34.7										
BH 607	S4	6-8							20.8										
BH 607	R1	45-50													10,539 ^B				
BH 608	S4	6-8							36.4										
BH 608	S9	R1													15,736 ⁸				
BH 609	S1	0-2	15.0																
BH 609	S2	2-4	5.1						23.5										
BH 612	S1	0-2	24.0																
BH 612	BULK	2 - 10	22.6						21.4	NP	NP	NP	113.7 ^C	12.0 ^c					
BH 612	S2	4-6	12.7																
BH 613	S1	0-2	15.2																
BH 613	S2	4-6	15.2						37.4										
BH 614	S3	9-11							37.6										
INF 601	S3	4-6	7.6		4.4	61.8	25.5	8.3							_				
INF 602	S4	6-8	10.2		6.1	53.3	28.9	11.7											
INF 604	S4	6-7.6	10.5		7.6	57.0	29.9	5.5							_				
INF 605	S4	6-6.6	16.8		2.6	60.4	32.9	4.1											

#### NOTES:

General - Testing performed by S.W. Cole unless otherwise noted.

- A Testing performed by Absolute Resource Associates as a subcontractor to S.W. Cole.
- $\ensuremath{\mathsf{B}}$  Testing performed by GeoTesting.
- C Reported maximum dry density and optimum moisture based on corrected values.



## Report of Moisture Content of Soil and Rock

ASTM D2216-10

Project Name: Northern Pass Transmission Line

Project Location: Various, NH
Client: Quanta Subsurface

Material Description: Multiple

Material Source: Deerfield Substation

 Project Number:
 16-0600

 Lab ID:
 1566M-1571M

 Date Received:
 11/07/16

Date Received: 11/07/16

Date Completed: 11/17/16

Tested By: A. Michaud

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
1566M	3/8"	BH-601, S1, 0'-2' (SM)	12.5%
1567M	3/8"	BH-601, S2, 2'-4" (SM)	9.1%
1568M	3/8"	B-602, S3, 4'-6' (SM)	15.7%
1569M	3/8"	BH-611, S1, 0'-2' (SM)	13.5%
1570M	3/8"	B-611, S-2, 2'-4' (SM)	9.6%
1571M	3/8"	BH-611, S-3, 4'-6' (SM)	10.0%
15309S	3/8"	BH-603, BULK, 2-10'	11.7%
15310S	3/8"	BH-605, BULK, 2-10'	9.5%

Comments:

Reviewed By:



## Report of Moisture Content of Soil and Rock

ASTM D2216-10

Project Name: Northern Pass
Project Location: Various, NH
Client: Quanta Subsurface

Material Description:VariousMaterial Source:Deerfield SS

Project Number: 16-0600

Lab ID: Multiple

Date Received: 11/22/16

Date Completed: 11/28/16

Tested By: MRB

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
1629M	3/8"	BH-609, S1, 0'-2'	15.0%
1630M	3/8"	BH-609, S2, 2'-4'	5.1%
1631M	3/8"	BH612, S1, 0'-2'	24.0%
1633M	3/8"	BH-612, S2, 4'-6'	12.7%
1634M	3/8"	BH-613, S1, 0'-2'	15.2%
1635M	3/8"	BH-613,S2, 4'-6'	15.2%
1632M	3/8"	B-612, 2'-10' (BULK)	22.6%
1637M	3/8"	INF-601, S3, 4'-6'	7.6%
1638M	3/8"	INF-602, S4, 6'-8'	10.2%
1639M	3/8"	INF-604, S4, 6'-7.6'	10.5%
1640M	3/8"	INF-605, S4, 6'-6.6'	16.8%

Comments:

Reviewed By:	CBM	



Project Number:

Project Name:

### Percent Finer than No. 200 ASTM D1140

Sample ID:	15309S			
Sample Source:	BH-603, BULK, 2-10	0'		
Client Sample Description:	SM			
% Pas	sing # 200:	40.6	_	
% Pas	sing # 200:	40.6	_	
% Pas  Sample ID:	15310S	40.6	_	
Sample ID:	15310S		_	
Sample ID:			_	

16-0600

Northern Pass - Deerfield Substation



16-0600

Project Number:

#### Percent Finer than No. 200 ASTM D1140

ject Name:	Iorthern Pass - Dee	rfield Substation	ı	
Sample ID:	1568M			
Sample Source:	BH-602, S-3, 4'-6'	<u> </u>		
Client Sample Description:	SM	<u> </u>		
Commis ID:	157014			
Sample ID:	1570M			
Sample ID:	1570M BH-611, S-2, 2'-4' SM			
Sample Source:	BH-611, S-2, 2'-4'	22.6		



Project Number:

16-0600

### Percent Finer than No. 200 ASTM D1140

Project Name:	Northern Pass Trans	nsmission - Deerfield Substation
Sample ID:	1625M	
Sample Source:	BH-604, S6, 14'-16	<u>.6'</u>
Client Sample Description:	ML	<u>—</u>
% Pas	ssing # 200:	63.5
Sample ID:	1626M	
-	BH-606, S2, 2'-4'	<u>I'</u>
Client Sample Description:		<del>_</del>
% Pas	ssing # 200:	34.7
Sample ID:	1627M	
	BH-607, S4, 6'-8'	3'
Client Sample Description:		<u> </u>
% Pas	ssing # 200:	20.8
Sample ID:	1632M	
Sample Source:	BH-612, 2'10 (BUL	LK)
Client Sample Description:	SM	
% Pas	ssing # 200:	21.4
Sample ID:	1635M	
Sample Source:	BH-613, S2, 4'-6'	<del></del>
Client Sample Description:	SM	<u></u>
% Pas	ssing # 200:	37.4



16-0600

Project Number:

### Percent Finer than No. 200 ASTM D1140

oject Name:	Northern Pass Trans	nsmission - Deerfield Substation
Sample ID:	1636M	
Sample Source:	BH-614, S3, 9'-11	1'
Client Sample Description:	SM	<u> </u>
% Pass	ing # 200:	37.6
Sample ID:	1628M	<u> </u>
Sample Source:	BH-608, S4, 6-8'	
Client Sample Description:	SM	<del></del>
% Pass	ing # 200:	36.4
	1.5001.1	
Sample ID:	1630M	
Sample ID: _ Sample Source:	1630M BH-609, S2, 2'-4'	<del>.'</del>



ASTM D422-63 (07)

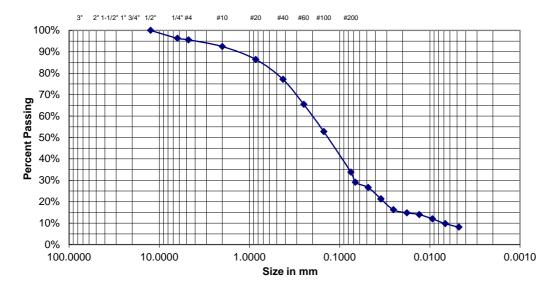
CRW

Project Name: Northern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

Material Description: SM

Material Source: INF-601, S3, 4-6'

 Project Number:
 16-0600


 Lab ID:
 1637M

 Date Received:
 11/22/2016

 Date Completed:
 11/29/2016

Tested By:

	Sieve .	Analysis	Hydrometer Analysis				
Sieve Size	Standard Designation	Amount Passing (%)	Specification (name)		Particle Size (mm)	Amount Passing (%)	
3"	(mm) 76	100	(Hallie)		0.06695	29.1	
•	_					_	
2"	50	100			0.04831	26.6	
1½"	38.1	100			0.03483	21.3	
1"	25	100			0.03483	21.3	
3/4"	19	100			0.02537	16.3	
1/2"	12.5	100			0.01794	14.8	
1/4"	6.3	96			0.01310	14.0	
No. 4	4.75	96			0.00936	12.0	
No. 10	2	92			0.00674	9.8	
No. 20	0.85	86			0.00476	8.1	
No. 40	0.425	77			0.00337	7.9	
No. 60	0.25	65			0.00241	7.7	
No. 100	0.15	53			0.00136	7.1	
No. 200	0.075	33.8					



 Particle Distribution:
 Gravel (3" - No. 4)
 4.4%
 Fines (0.074 -0.005)
 25.5%

 Sand (No. 4 - No. 200)
 61.8%
 Clay (<0.005)</td>
 8.3%

Comments:

Reviewed By

13 Delta Drive, Unit 8, Londonderry, NH 03053 ● P: (603) 716.2111 ● F: (603) 716.2112 ● E: infomanchester@swcole.com



ASTM D422-63 (07)

CRW

Project Name: Northern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

Material Description: SM

Material Source: INF-602, S4, 6'-8'

No. 100

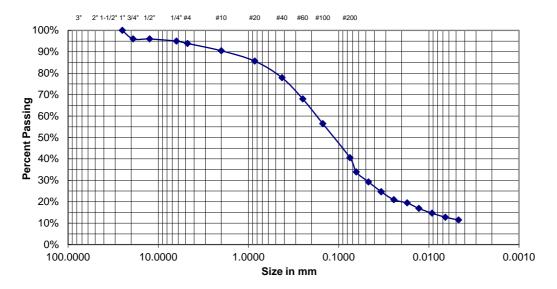
No. 200

0.15

0.075

Project Number: 16-0600

Lab ID: 1638M


Date Received: 11/22/2016

Date Completed: 11/29/2016

Tested By:

7.0

	Sieve	Analysis		Hydrom	eter Analysis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)	Particle Size (mm)	Amount Passing (%)
3"	76	100		0.06384	33.9
2"	50	100		0.04675	29.3
1½"	38.1	100		0.03375	24.6
1"	25	100		0.03375	24.6
3/4"	19	96		0.02444	20.9
1/2"	12.5	96		0.01742	19.4
1/4"	6.3	95		0.01286	16.9
No. 4	4.75	94		0.00920	14.6
No. 10	2	90		0.00655	12.8
No. 20	0.85	86		0.00468	11.5
No. 40	0.425	78		0.00333	9.6
No. 60	0.25	68		0.00238	8.0



 Particle Distribution:
 Gravel (3" - No. 4)
 6.1%
 Fines (0.074 -0.005)
 28.9%

 Sand (No. 4 - No. 200)
 53.3%
 Clay (<0.005)</td>
 11.7%

56

40.6

Comments:

Reviewed By

13 Delta Drive, Unit 8, Londonderry, NH 03053 ● P: (603) 716.2111 ● F: (603) 716.2112 ● E: infomanchester@swcole.com

0.00136



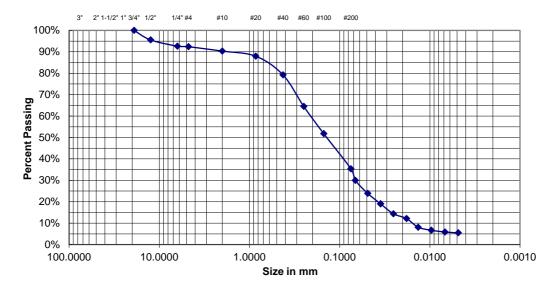
ASTM D422-63 (07)

Project Name: Northern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

Material Description: SM

**Material Source:** INF-604, S4, 6'-7.6'

 Project Number:
 16-0600


 Lab ID:
 1639M

 Date Received:
 11/22/2016

 Date Completed:
 11/29/2016

Tested By: CRW

	Sieve	Analysis			Hydrom	eter Analy	/sis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)	F	Particle Size (mm)	Amount (%	J
3"	76	100			0.06695	30	.0
2"	50	100			0.04888	23	.9
1½"	38.1	100			0.03523	19	.1
1"	25	100			0.03523	19	.1
3/4"	19	100			0.02537	14	.4
1/2"	12.5	96			0.01813	12	2
1/4"	6.3	93			0.01347	8.	.1
No. 4	4.75	92			0.00962	6.	7
No. 10	2	90			0.00681	5.	9
No. 20	0.85	88			0.00484	5.	.5
No. 40	0.425	79			0.00343	4.	.3
No. 60	0.25	65			0.00242	3.	9
No. 100	0.15	52			0.00138	3.	2
No. 200	0.075	35.4					



 Particle Distribution:
 Gravel (3" - No. 4)
 7.6%
 Fines (0.074 -0.005)
 29.9%

Sand (No. 4 - No. 200) **57.0%** Clay (<0.005) **5.5%** 

Comments:

Reviewed By

CBM

13 Delta Drive, Unit 8, Londonderry, NH 03053 ● P: (603) 716.2111 ● F: (603) 716.2112 ● E: infomanchester@swcole.com



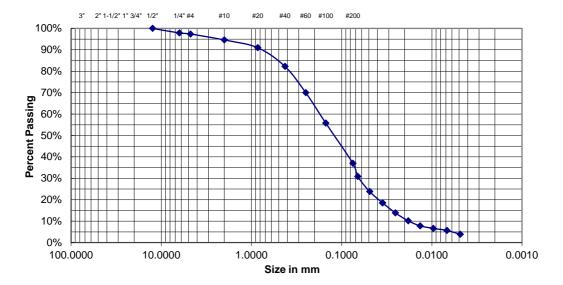
ASTM D422-63 (07)

Project Name: Northern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

Material Description: SM

**Material Source:** INF-605, S4, 6'-6.6'

Project Number: 16-0600


Lab ID: 1640M

Date Received: 11/22/2016

Date Completed: 11/29/2016

Tested By: CRW

		Analysis			Hydrom	eter Analysis
Sieve Size	Standard Designation	Amount	Specification			Amount Passing
	(mm)	Passing (%)	(name)		(mm)	(%)
3"	76	100		•	0.06612	30.8
2"	50	100			0.04888	23.8
1½"	38.1	100			0.03523	18.5
1"	25	100			0.03523	18.5
3/4"	19	100			0.02537	13.9
1/2"	12.5	100			0.01826	10.2
1/4"	6.3	98			0.01347	7.8
No. 4	4.75	97			0.00962	6.6
No. 10	2	95			0.00681	5.7
No. 20	0.85	91			0.00484	3.9
No. 40	0.425	82			0.00346	3.3
No. 60	0.25	70			0.00245	2.0
No. 100	0.15	56			0.00138	2.9
No. 200	0.075	37.0				



 Particle Distribution:
 Gravel (3" - No. 4)
 2.6%
 Fines (0.074 -0.005)
 32.9%

 Sand (No. 4 - No. 200)
 60.4%
 Clay (<0.005)</td>
 4.1%

Comments:

CBM

Reviewed By

13 Delta Drive, Unit 8, Londonderry, NH 03053 ● P: (603) 716.2111 ● F: (603) 716.2112 ● E: infomanchester@swcole.com



ASTM D4318-10 - Method A

Project Name: Nothern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

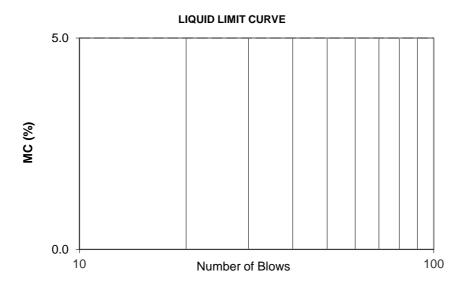
Material Description: SM

Material Source: BH-603, BULK, 2-10'

 Project Number:
 16-0600

 Lab ID:
 15309S

 Date Received:
 11/07/16


 Date Completed:
 11/17/16

Tested By: BG

Liquid Limit Granular

Plastic Limit Non-plastic

Plasticity Index N/A



As-received Moisture Content: 11.7%

Comments:

Reviewed By:

10 Centre Road, Somersworth, NH 03878-2926 ● P: (603) 692.0088 ● F: (603) 692.0044 ● E: infosomersworth@swcole.com



ASTM D4318-10 - Method A

Project Name: Nothern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

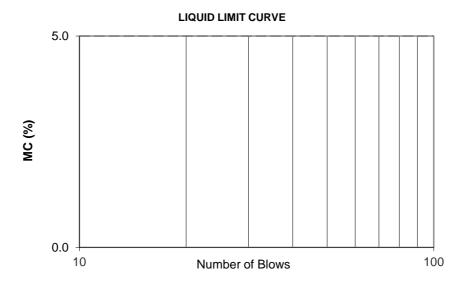
Material Description: SN

Material Source: BH-605, BULK, 2-10'

 Project Number:
 16-0600

 Lab ID:
 15310S

 Date Received:
 11/07/16


 Date Completed:
 11/17/16

Tested By: BG

Liquid Limit Granular

Plastic Limit Non-plastic

Plasticity Index N/A



As-received Moisture Content: 9.5%

Comments:

CBM
Reviewed By:

10 Centre Road, Somersworth, NH 03878-2926 ● P: (603) 692.0088 ● F: (603) 692.0044 ● E: infosomersworth@swcole.com



ASTM D4318-10 - Method A

Project Name: Nothern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

Material Description: SN

**Material Source:** B-611, S-2, 2'-4'

 Project Number:
 16-0600

 Lab ID:
 1570M

 Date Received:
 11/07/16


 Date Completed:
 11/17/16

Tested By: A. Michaud

Liquid Limit Granular

Plastic Limit Non-plastic

Plasticity Index N/A



As-received Moisture Content: 9.6%

Comments:

Reviewed By:

13 Delta Drive, Unit 8, Londonderry, NH 03053 • P: (603) 716.2111 • F: (603) 716.2112 • E: infomanchester@swcole.com



ASTM D4318-10 - Method A

Project Name: Northern Pass
Project Location: Deerfield, NH
Client: Quanta Subsurface

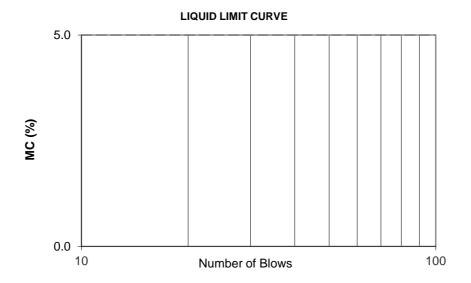
Material Description: SM

Material Source: BH-612, 2'-10' (bulk)

 Project Number:
 16-0600

 Lab ID:
 1632M

 Date Received:
 11/22/16


 Date Completed:
 12/02/16

Tested By: MB

Liquid Limit Granular

Plastic Limit Non-Plastic

#### **Plasticity Index**



Material Retained On the No. 40 Sieve: N/A

As-received Moisture Content: 22.6%

Comments:

CBM Reviewed By:

13 Delta Drive, Unit 8, Londonderry, NH 03053 • P: (603) 716.2111 • F: (603) 716.2112 • E: infomanchester@swcole.com



## Report of Moisture-Density

Method ASTM D-1557 MODIFIED

Procedure A

Project Name

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

LABORATORY TESTING SERVICES

Client

SWCOLE EXPLORATIONS, LLC

Material Type

Material Source BH-603, BULK, 2-10'

**Project Number** 

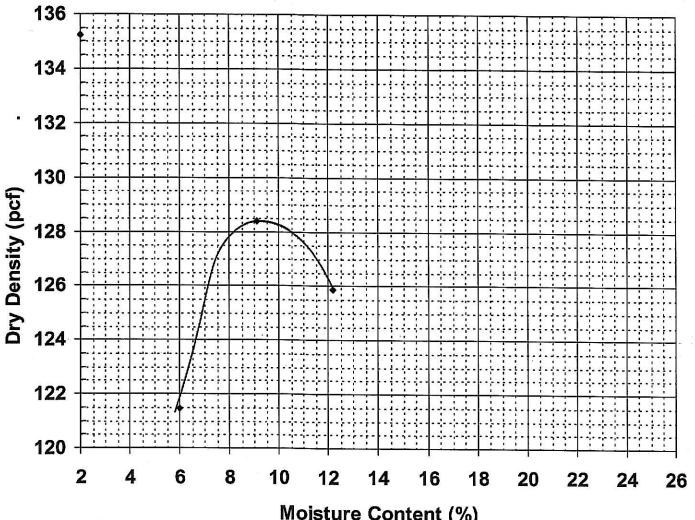
16-0600

Lab ID

15309S

Date Received

11/8/2016


**Date Completed** 

11/22/2016

**Tested By** 

STEPHEN PORTER

#### **Moisture-Density Relationship Curve**



**Moisture Content (%)** 

Maximum Dry Density (pcf) 128.4 Optimum Moisture Content (%)

9.1 4.6% Corrected Dry Density (pcf)

129.5

Corrected Moisture Content (%)

8.8

Comments

Percent Oversized



## Report of Moisture-Density

Method ASTM D-1557 MODIFIED

Procedure A

**Project Name** 

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

LABORATORY TESTING SERVICES

Client

SWCOLE EXPLORATIONS, LLC

Material Type

SM

Material Source

BH-605, BULK, 2-10'

**Project Number** 

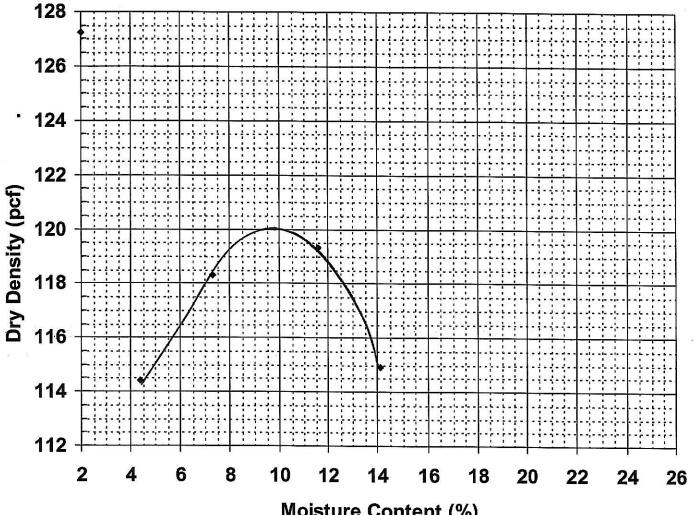
16-0600

Lab ID

15310S

**Date Received** 

11/8/2016


**Date Completed** 

11/22/2016

Tested By

STEPHEN PORTER

#### **Moisture-Density Relationship Curve**



**Moisture Content (%)** 

Maximum Dry Density (pcf) 120.1 Optimum Moisture Content (%) 9.9 Percent Oversized 3.2%

Corrected Dry Density (pcf)

121

Corrected Moisture Content (%)

9.6

Comments

10 Centre Road, Somersworth, NH 03878-2926 • Tel (603) 692-0088 • Fax (603) 692-0044 • www.swcole.com



## Report of Moisture-Density

Method ASTM D-1557 MODIFIED

Procedure B

Project Name

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

LABORATORY TESTING SERVICES

Client

SWCOLE EXPLORATIONS, LLC

Material Type

SM

Material Source BH-612, 2'-10' (BULK)

**Project Number** 

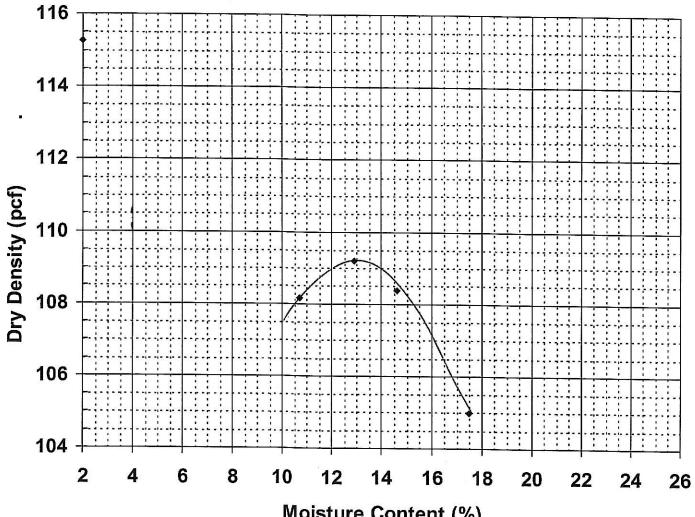
16-0600

Lab ID

1632M

Date Received

11/22/2016


**Date Completed** 

12/8/2016

Tested By

MARK BENNETT

## **Moisture-Density Relationship Curve**



**Moisture Content (%)** 

Maximum Dry Density (pcf)

109.5

Optimum Moisture Content (%)

12.9

Percent Oversized

8.0%

Corrected Dry Density (pcf)

113.7

Corrected Moisture Content (%)

12.0

Comments

13 Delta Drive, Unit 8, Londonderry, NH 03053-2329 • Tel (603) 716-2111 • Fax (603) 716-2112 • www.swcole.com



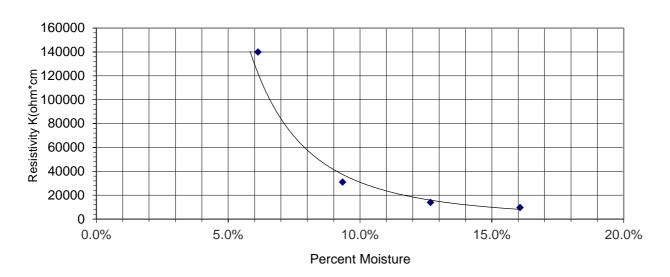
#### **Report of Soil Resistivity**

**AASHTO T288** 

15309S

Project Name: Northern Pass Transmission Line Project Number: 16-0600

Project Location: Various, NH Lab ID:


Client: SWCOLE Explorations, LLC Date Received: 11/08/16

Material Description:Silty SandDate Completed:11/18/16

Material Source: BH-603, BULK, 2-10' Tested By: BLG

#### Minimum Soil Resistivity 9,700 ohm-cm

Soil Temperature 20.5 °C



Comments:

10 Centre Road, Somersworth, NH 03878-2926 ● P: (603) 692.0088 ● F: (603) 692.0044 ● E: infosomersworth@swcole.com



#### **Report of Soil Resistivity**

AASHTO T288

**Date Received:** 

Lab ID:

Project Name: Northern Pass Transmission Line

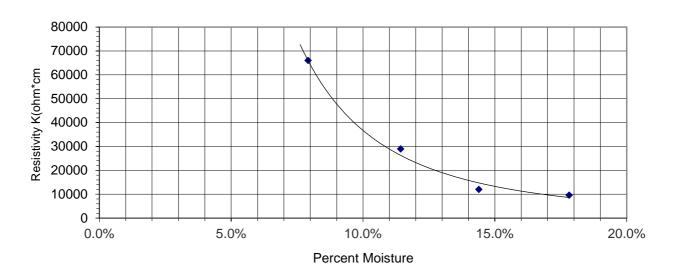
Project Location: Various, NH

Client: SWCOLE Explorations, LLC

Material Description: Silty Sand

Material Source: BH-605, BULK, 2-10'

Date Completed: 11/18/16
Tested By: BLG


Project Number: 16-0600

15310S

11/08/16

Minimum Soil Resistivity 9,600 ohm-cm

Soil Temperature 20.5 °C



Comments:

	CBM	
Reviewed By:		

**Project ID:** NPT 16-1 **Job ID:** 38596

**Sample#:** 38596-001 **Sample ID:** BH-603 2-10'

Matrix: Solid Percent Dry: 98.1% Results expressed on a dry weight basis.

Sampled: 11/21/16 8:00		Reporting		Instr Dil'n		Prep		Analy	sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Chloride	< 5.1	5.1	ug/g	1	JZL		1603239	11/21/16	11:22	E300.0A
Sulfate	31	5.1	ug/g	1	JZL		1603239	11/21/16	11:22	E300.0A
рН	5.3		рΗ	1	AAG		1603238	11/22/16	9:22	SW9045C

**Sample#:** 38596-002 **Sample ID:** BH-605 2-10'

Matrix: Solid Percent Dry: 98.6% Results expressed on a dry weight basis.

Sampled: 11/21/16 8:00		Reporting		Instr Dil'n		Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Chloride	< 5.1	5.1	ug/g	1	JZL		1603239	11/21/16	11:55	E300.0A
Sulfate	35	5.1	ug/g	1	JZL		1603239	11/21/16	11:55	E300.0A
рН	5.2		рΗ	1	AAG		1603238	11/22/16	9:32	SW9045C



Composite (C) JO Grab (G) □ YES NO Time (1933) Time Time P, RECEIVED ON ICE Subcontract: 🗆 Grain Size 🗀 Herbicides 🗆 Formaldehyde 38596 PAGE 11/2/14 TEMPERATURE Date Date ☐ TCLP Metals ☐ TCLP VOC ☐ TCLP SVOC ☐ TCLP Pesticide Comosivity ☐ Reactive CN ☐ Reactive S- ☐ Ignitibility/FP Bromide ☐ Nitrite ☐ Chloride ☐ Sulfate ☐ Bromide ☐ Fluoride □ Cyanide □ Sulfide □ Nitrate + Nitrite □ Ortho P ANALYSIS REQUEST T-Phosphorus ☐ Phenols ☐ Bacteria P/A ☐ Bacteria MPN □ Ammonia □ COD □ TKN □ TN □ TON □ TOC :jsil-slateM bevlossiQ -CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST Total Metals-list: eardnests 🗆 Priority Pollutant Metals 🗆 TAL Metals 🗆 Hardnes 7 5406  $\Box$  128  $\Box$  108  $\Box$  17  $\Box$  178  $\Box$  Alkalinity Turbidity ☐ Conductivity □ 800 ☐ 0&G 1664 ☐ Mineral 0&G SM5520F Received by kaporaton □ 8082 PCB □ 8081 Pesticides □ 608 Pest/PCB CMICHANO SUICOLE, COM BO3 □ 625 □ NBA0728 □ HA90728 □ THY 🗆 DRO 8015 🗆 MEDRO 🗀 EPH MADEP 🗆 TPH Fingerprint Received by: Received by □ VOC 524.2 □ VOC 524.2 NH List □ Gases-List: □ VPH MADEP □ MEGRO □ GRO 8015 □ 1,4-Dioxane □ VOC 624 □ VOC BTEX □ MtBE, only □ VOC 8021VT □ ΛΟC 8500 WADEP ☐ AOC 8500 NHDE2 □ AOC 8500 Time Time Time 9:36 CEN CEN Other SAMPLER NH Reimbursement

Pricing OTHER NPDES absoluteresourceassociates.com 00. 124 Heritage Avenue #16 Sampling TIME 8.00 11/21/16 Portsmouth, NH 03801 Project Location: (H) MA ME NHDES à SDWA GW-1 Date Date EPA DW Other SPECIAL INSTRUCTIONS 603-436-2001 Project Name: NPT 2 3TA0 3 PDF (e-mail address). RCRA QAPP Project #: |6-MCP Preservation Method **HO9M** Reporting Limits: NaOH Protocol: Quote # H⁵2O[‡] # Od ☐ FAX (FAX#) нио³ See absoluteresourceassociates.com COM HCI REPORTING INSTRUCTIONS for sample acceptance policy and current accreditation lists. **A3HTO** ☐ HARD COPY REQUIRED Matrix nvoice to Email: CMICHAUSE SUCOLE SOLID XX Relinquished by Sampler: EUCINEERIU **H**3TAW Absolute Resource` -692-0083 Relinquished by: # CONTAINERS Relinquished by: 2-10 2-10 LAIND MICHINO D □ Hard Copy Invoice Required Field CENTRE -2 BH-605 25960 BH 603 QSD-01 Revision 10/14/15 S.W. Cole Date Needed JSA CUSTODY RECORD TAT REQUESTED Company Address: Company Name: Expedited (48 hr) Standard (10 Business Days) 603 Priority (24 hr)* Sample (Lab Use Only) Lab Phone #



Client: Quanta Subsurface

Project: Northern Pass - Deerfield Substation

Location: Deerfield, NH

Boring ID: --- Sample Type: --- Tested By: rlc Sample ID: --- Test Date: 12/01/16 Checked By: jsc

GTX-305683

Project No:

Depth: --- Test Id: 399258

# Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

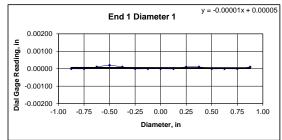
Boring ID	Sample Number	Depth, ft	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
BH 602	R1	18.95-19.32	165	14485	1	Yes	
BH 607	R1	46.45-46.80	165	10539	1	Yes	
BH 608	R2	37.92-38.35	163	15736	1	Yes	

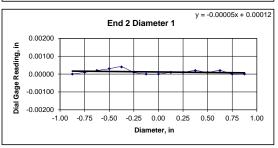
Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

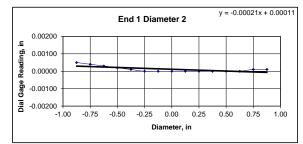
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

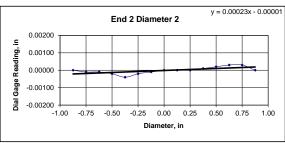
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)





Client:	Quanta Subsurface	Test Date: 11/	/30/2016
Project Name:	Northern Pass - Deerfield Station	Tested By: rlc	
Project Location:	Deerfield, NH	Checked By: jsc	
GTX #:	305683		
Boring ID:	BH 602		
Sample ID:	R1		
Depth:	18.95-19.32 ft		
Visual Description:	See photographs		· ·


#### UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.09	4.09	4.09		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.96	1.96		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	535.53				
Bulk Density, lb/ft3	165	Minimum Diameter Tolerence	e Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio Tol	erance Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00000	0.00000	0.00010	0.00020	0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010	0.00000	0.00000	0.00000	0.00010
Diameter 2, in (rotated 90°)	0.00050	0.00040	0.00030	0.00020	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010
											Difference between	en max and m	in readings, in:		
											O° =	0.00020	90° =	0.00050	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00000	0.00010	0.00020	0.00030	0.00040	0.00010	0.00000	0.00000	0.00010	0.00010	0.00020	0.00010	0.00020	0.00000	0.00000
Diameter 2, in (rotated 90°)	0.00000	-0.00010	-0.00010	-0.00020	-0.00040	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00020	0.00030	0.00030	0.00000
											Difference between	en max and m	in readings, in:		
											0° =	0.0004	90° =	0.0007	
											Maximum differe	ence must be <	0.0020 in.	Difference = $\pm$	0.00035









DIAMETER 1		
End 1:		
	Slope of Best Fit Line Angle of Best Fit Line:	0.00001 0.00057
	Angle of Best Fit Line.	0.00037
End 2:		0.00005
	Slope of Best Fit Line Angle of Best Fit Line:	0.00005 0.00286
	•	
Maximum Angi	ular Difference:	0.00229
	Parallelism Tolerance Met? Spherically Seated	YES
DIAMETER 2		
DIAMETER 2		
	Slope of Best Fit Line	0.00021
		0.00021 0.01203
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01203
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.01203
End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01203

Flatness Tolerance Met?

YES

PERPENDICULARITY (Proced END 1	lure P1) (Calculated from End Flatness Difference, Maximum and Minimum (in.)		Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be ≤ 0.25°
Diameter 1, in	0.00020	1.960	0.00010	0.006	YES	
Diameter 2, in (rotated 90°)	0.00050	1.960	0.00026	0.015	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00040	1.960	0.00020	0.012	YES	
Diameter 2, in (rotated 90°)	0.00070	1.960	0.00036	0.020	YES	



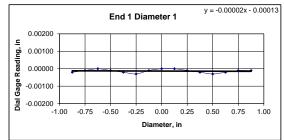
Client: Quanta Subsurface Project Name: Northern Pass - Deerfield Station Project Location: Deerfield, NH GTX #: 305683 Test Date: 12/1/2016 Tested By: rlc Checked By: jsc Boring ID: BH 602 Sample ID: R1 Depth, ft: 18.95-19.32

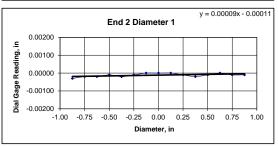


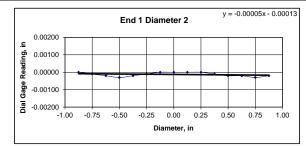
After cutting and grinding

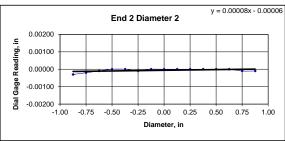


After break





Client:	Quanta Subsurface	Test Date: 11/30/2016	
Project Name:	Northern Pass - Deerfield Station	Tested By: rlc	
Project Location:	Deerfield, NH	Checked By: jsc	
GTX #:	305683		
Boring ID:	BH 607		
Sample ID:	R1		
Depth:	46.45-46.80 ft		
Visual Description:	See photographs		


#### UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY								DEVIATION FR	OM STRAIGHTN	NESS (Procedu	re S1)				
	•		:	2	Aver	age									
Specimen Length, in:	4.	15	4.	16	4.1	16			Maximum gap I	between side of	core and refere	nce surface plate	<b>:</b> :		
Specimen Diameter, in:	1.	99	1.	99	1.9	99				Is the m	naximum gap <	0.02 in.?	YES		
Specimen Mass, g:	559	.79													
Bulk Density, lb/ft3	16	5	Minimum Diar	neter Tolerenc	e Met?	YES					Maximum diffe	rence must be <	0.020 in.		
Length to Diameter Ratio:	2.	1	Length to Dia	meter Ratio To	lerance Met?	YES						Straightness T	olerance Met?	YES	
END FLATNESS AND PARAL	LELISM (Proced	lure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1 in	-0.00030	0.00010	0.00000	0.00010	0.00020	-0.00030	-0.00010	0.00000	0.00000	-0.00010	-0.00020	-U UUU3U	-0.00020	-0.00010	-0.00010

END FLATNESS AND PARALL	ELISM (Proced	iure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00020	-0.00010	0.00000	-0.00010	-0.00020	-0.00030	-0.00010	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00020	-0.00010	-0.00010
Diameter 2, in (rotated 90°)	0.00000	-0.00010	-0.00020	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00030	-0.00020
											Difference between	en max and mi	in readings, in:		
											0° =	0.00030	90° =	0.00030	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00020	-0.00020	-0.00010	-0.00020	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00010	0.00000	-0.00010	-0.00010
Diameter 2, in (rotated 90°)	-0.00030	-0.00020	-0.00010	0.00000	0.00000	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010
											Difference between	en max and mi	in readings, in:		
											0° =	0.0003	90° =	0.0003	
											Maximum differe	ence must be <	0.0020 in.	Difference = $\pm$	0.00015









DIAMETER 1			
End 1	:		
		0.00002	
	Angle of Best Fit Line:	0.00115	
End 2			
		0.00009	
	Angle of Best Fit Line:	0.00516	
Maximum Ang	jular Difference:	0.00401	
	Parallelism Tolerance Met?	VES	
	Spherically Seated	.20	
DIAMETER 2			
DIAMETER 2 End 1	Spherically Seated		
	Spherically Seated  Slope of Best Fit Line	0.00005	
	Spherically Seated  Slope of Best Fit Line		
	Spherically Seated  Slope of Best Fit Line Angle of Best Fit Line:	0.00005	
End 1	Spherically Seated  : Slope of Best Fit Line Angle of Best Fit Line:	0.00005	
End 1	Spherically Seated  : Slope of Best Fit Line Angle of Best Fit Line:	0.00005 0.00286	
End 1	Spherically Seated  Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00005 0.00286 0.00008	

Flatness Tolerance Met? YES

PERPENDICULARITY (Proced END 1	lure P1) (Calculated from End Flatness Difference, Maximum and Minimum (in.)		Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES	
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES	
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES	



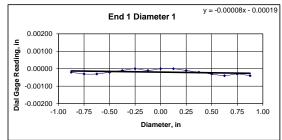
Client: Quanta Subsurface Project Name: Northern Pass - Deerfield Station Project Location: Deerfield, NH GTX #: 305683 Test Date: 12/1/2016 Tested By: rlc Checked By: jsc Boring ID: BH 607 Sample ID: R1 Depth, ft: 46.45-46.80

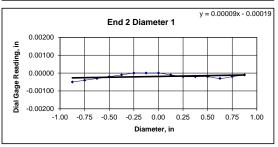


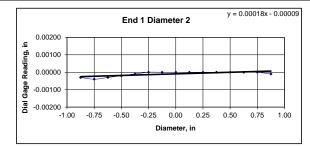
After cutting and grinding

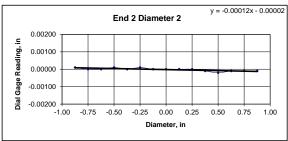


After break





Client:	Quanta Subsurface	Test Date: 12/1/2016	
Project Name:	Northern Pass - Deerfield Station	Tested By: rlc	
Project Location:	Deerfield, NH	Checked By: jsc	
GTX #:	305683		
Boring ID:	BH 608		
Sample ID:	R2		
Depth:	37.92-38.35 ft		
Visual Description:	See photographs		


#### UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.18	4.18	4.18	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	550.38			
Bulk Density, lb/ft3	163	Minimum Diameter Tolerence Met	? YES	Maximum difference must be $< 0.020$ in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio Tolerand	ce Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00020	-0.00030	-0.00030	-0.00020	-0.00010	0.00000	-0.00010	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00040	-0.00030	-0.00040
Diameter 2, in (rotated 90°)	-0.00030	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010
											Difference between	een max and m	in readings, in:		
											0° =	0.00040	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00050	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00020	-0.00030	-0.00020	-0.00010
Diameter 2, in (rotated 90°)	0.00010	0.00000	0.00000	0.00010	0.00000	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00010	-0.00010	-0.00010
											Difference between	een max and m	in readings, in:		
											0° =	0.0005	90° =	0.0003	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00025









DIAMETER 1		
End 1	:	
	Slope of Best Fit Line	0.00002
	Angle of Best Fit Line:	0.00115
End 2		
	Slope of Best Fit Line	0.00009
	Angle of Best Fit Line:	0.00516
Maximum Ang	ular Difference:	0.00401
	Parallelism Tolerance Met?	YES
	Spherically Seated	
DIAMETER 2	Spherically Seated	
DIAMETER 2 End 1	:	
	: Slope of Best Fit Line	0.00018
	:	0.00018 0.01031
	: Slope of Best Fit Line Angle of Best Fit Line:	0.01031
End 1	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01031
End 1	: Slope of Best Fit Line Angle of Best Fit Line:	0.01031
End 1	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01031
End 1	: Slope of Best Fit Line Angle of Best Fit Line: : Slope of Best Fit Line Angle of Best Fit Line:	0.01031 0.00012 0.00688

Flatness Tolerance Met?

YES

PERPENDICULARITY (Proced END 1	ure P1) (Calculated from End Flatness Difference, Maximum and Minimum (in.)		Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be ≤ 0.25°
Diameter 1, in	0.00040	1.980	0.00020	0.012	YES	
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00050	1.980	0.00025	0.014	YES	
Diameter 2, in (rotated 90°)	0.00030	1.980	0.00015	0.009	YES	



Client: Quanta Subsurface Project Name: Northern Pass - Deerfield Station Project Location: Deerfield, NH GTX #: 305683 Test Date: 12/1/2016 Tested By: rlc Checked By: jsc Boring ID: BH 608 Sample ID: R2 Depth, ft: 37.92-38.35



After cutting and grinding



After break



# Appendix D Infiltration Field Test Results



Project Name:	Northern Pass TL - Deerfield Substation	Test Date:	11/18/16
Project Number:	16004	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INF 601		

#### **FIELD TEST DATA**

Run #1 Time Elapsed	Time: 11:05 Depth to Water	Run #2 Time Elapsed	Time: 12:07 Depth to Water	Run #3 Time Elapsed	Time: 13:17 Depth to Water	Run #4 Time Elapsed	Time: 14:22 Depth to Water
(min)	(ft)	(min)	(ft)	(min)	(ft)	(min)	(ft)
0	3.23	0	3.23	0	3.12	0	3.16
1	3.78	1	3.6	1	3.52	1	3.67
2	4.01	2	3.76	2	3.64	2	3.81
3	4.15	3	3.91	3		3	
4	4.29	4	4.02	4		4	
5	4.32	5	4.06	5		5	
6	4.35	6		6		6	
7	4.38	7		7		7	
8	4.42	8		8		8	
9	4.46	9		9		9	
10	4.48	10	4.25	10		10	
15	4.5	15	4.28	15	4.21	15	4.17
20	4.57	20		20		20	
25	4.62	25		25		25	
30	4.79	30	4.51	30	4.45	30	4.39
45	4.87	45		45		45	
60	4.96	60	4.71	60	4.67	60	4.55
(ft/hr)	1.73	(ft/hr)	1.48	(ft/hr)	1.55	(ft/hr)	1.39
(in/hr)	20.76	(in/hr)	17.76	(in/hr)	18.60	(in/hr)	16.68

#### **TEST SUMMARY**

Average Infiltration Rate (in/hr)	18.45
Pre-Soak Performed on 11/17/2016 at 10:45	•
Hole Depth from Top of Casing (ft)	5.2
Casing Stickup from Ground Surface (ft)	1.1
Pre-Infiltration Test Water Depth (ft)	Dry

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.



Project Name:	Northern Pass TL - Deerfield Substation		Test Date:	11/18/16
Project Number:	16004	_	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors		Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INE 602			

#### **FIELD TEST DATA**

Run #1	Time: 11:26	Run #2	Time: 12:36	Run #3	Time: 13:45	Run #4	Time: 14:58
Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water
(min)	(ft)	(min)	(ft)	(min)	(ft)	(min)	(ft)
0	6.33	0	6.52	0	6.17	0	6.42
1	6.33	1	6.54	1	6.17	1	6.43
2	6.33	2	6.55	2	6.17	2	6.43
3	6.33	3	6.56	3		3	
4	6.33	4	6.56	4		4	
5	6.33	5	6.58	5		5	
6	6.34	6		6		6	
7	6.34	7		7		7	
8	6.34	8		8		8	
9	6.34	9		9		9	
10	6.35	10	6.60	10		10	
15	6.37	15	6.61	15	6.25	15	6.48
20	6.38	20		20		20	
25	6.40	25		25		25	
30	6.42	30	6.63	30	6.31	30	6.51
45	6.46	45		45		45	
60	6.51	60	6.74	60	6.41	60	6.62
(ft/hr)	0.18	(ft/hr)	0.22	(ft/hr)	0.24	(ft/hr)	0.20
(, (, )	2.12	<i>(, t, )</i>			2.00	(1. (1. )	2.0
(in/hr)	2.16	(in/hr)	2.64	(in/hr)	2.88	(in/hr)	2.40

#### **TEST SUMMARY**

1231 3011111111111	
Average Infiltration Rate (in/hr)	2.52
Pre-Soak Performed on 11/17/2016 at 10:50	
Hole Depth from Top of Casing (ft)	8.3
Casing Stickup from Ground Surface (ft)	1.5
Pre-Infiltration Test Water Depth (ft)	Dry

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.



Project Name:	Northern Pass TL - Deerfield Substation	Test Date:	11/16/16	
Project Number:	16004	Tested By:	L. Gschwind	
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis	
Test Location:	Infiltration Boring INF 603			

#### **FIELD TEST DATA**

Run #1 Time Elapsed (min)	Time: 08:35  Depth to Water (ft)	Run #2 Time Elapsed (min)	Time: 09:41  Depth to Water (ft)	Run #3 Time Elapsed (min)	Time: 10:45 Depth to Water (ft)	Run #4 Time Elapsed (min)	Time: 11:50  Depth to Water (ft)
0	4.25	0	4.42	0	4.16	0	4.32
1	4.27	1	4.42	1	4.16	1	4.32
2	4.3	2	4.43	2	4.16	2	4.32
3	4.32	3	4.43	3		3	
4	4.33	4	4.43	4		4	
5	4.35	5	4.45	5	4.17	5	
6	4.35	6		6		6	
7	4.36	7		7		7	
8	4.37	8		8		8	
9	4.37	9		9		9	
10	4.38	10	4.47	10	4.20	10	
15	4.42	15	4.49	15	4.23	15	4.41
20	4.46	20		20		20	
25	4.49	25		25		25	
30	4.51	30		30	4.41	30	4.50
45	4.59	45		45		45	
60	4.7	60	4.83	60	4.59	60	4.67
(ft/hr)	0.45	(ft/hr)	0.41	(ft/hr)	0.43	(ft/hr)	0.35
(in/hr)	5.40	(in/hr)	4.92	(in/hr)	5.16	(in/hr)	4.20

#### **TEST SUMMARY**

Average Infiltration Rate (in/hr)	4.92
Pre-Soak Performed on 11/15/2016 at 07:45	•
Hole Depth from Top of Casing (ft)	6.3
Casing Stickup from Ground Surface (ft)	1.3
Pre-Infiltration Test Water Depth (ft)	Dry

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.



Project Name:	Northern Pass TL - Deerfield Substation	Test Date:	11/16/16
Project Number:	16004	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INF 604		

#### **FIELD TEST DATA**

Run #1	Time: 08:35	Run #2	Time: 09:41	Run #3	Time: 10:45	Run #4	Time: 11:50
Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water
(min)	(ft)	(min)	(ft)	(min)	(ft)	(min)	(ft)
0	5.92	0	5.86	0	5.91	0	5.96
1	5.93	1	5.86	1	5.91	1	5.96
2	5.94	2	5.86	2	5.92	2	5.96
3	5.94	3	5.86	3		3	
4	5.94	4	5.86	4		4	
5	5.94	5	5.87	5		5	
6	5.94	6		6		6	
7	5.94	7		7		7	
8	5.94	8		8		8	
9	5.95	9		9		9	
10	5.95	10	5.88	10		10	
15	5.95	15	5.88	15	5.93	15	5.99
20	5.95	20		20		20	
25	5.96	25		25		25	
30	5.96	30	5.90	30	5.93	30	6.00
45	5.97	45	5.90	45		45	
60	5.98	60	5.91	60	5.95	60	6.04
(ft/hr)	0.06	(ft/hr)	0.05	(ft/hr)	0.04	(ft/hr)	0.08
						·	
(in/hr)	0.72	(in/hr)	0.60	(in/hr)	0.48	(in/hr)	0.96

#### **TEST SUMMARY**

Average Infiltration Rate (in/hr)	0.69
Pre-Soak Performed on 11/15/2016 at 07:50	•
Hole Depth from Top of Casing (ft)	7.9
Casing Stickup from Ground Surface (ft)	0.9
Pre-Infiltration Test Water Depth (ft)	Dry

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.



Project Name:	Northern Pass TL - Deerfield Substation	Test Date:	11/16/16
Project Number:	16004	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INF 605		

#### **FIELD TEST DATA**

Run #1 Time Elapsed (min)	Time: 08:35  Depth to Water (ft)	Run #2 Time Elapsed (min)	Time: 09:41  Depth to Water  (ft)	Run #3 Time Elapsed (min)	Time: 10:45  Depth to Water  (ft)	Run #4 Time Elapsed (min)	Time: 11:50  Depth to Water (ft)
0	4.15	0	4.22	0	4.06	0	4.13
1	4.15	1	4.22	1	4.06	1	4.13
2	4.15	2	4.22	2	4.06	2	4.13
3	4.15	3	4.22	3	4.06	3	4.14
4	4.15	4	4.23	4		4	
5	4.15	5	4.23	5		5	
6	4.15	6		6		6	
7	4.16	7		7		7	
8	4.16	8		8		8	
9	4.16	9		9		9	
10	4.16	10	4.24	10		10	
15	4.17	15	4.24	15	4.08	15	4.16
20	4.17	20	4.24	20		20	
25	4.18	25	4.25	25		25	
30	4.18	30	4.26	30	4.10	30	4.19
45	4.20	45	4.28	45		45	
60	4.21	60	4.29	60	4.13	60	4.22
(ft/hr)	0.06	(ft/hr)	0.07	(ft/hr)	0.07	(ft/hr)	0.09
(in/hr)	0.72	(in/hr)	0.84	(in/hr)	0.84	(in/hr)	1.08

#### **TEST SUMMARY**

Average Infiltration Rate (in/hr)	0.87
Pre-Soak Performed on 11/15/2016 at 08:00	•
Hole Depth from Top of Casing (ft)	7.8
Casing Stickup from Ground Surface (ft)	0.8
Pre-Infiltration Test Water Depth (ft)	6.1

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.



# Appendix E Summary of Geotechnical Design Parameters



# Boring BH 601

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5	F	REMOVE AN	ID REPLACE	WITH COI	NTROLLED S	TRUCTURAL F	ILL
	0.5	2	SM	11	115	30	-	-	-
Till	2	4	SP-SM	40	125	36	-	-	-
	4	39	SP-SM/SM	100+	140	43	-	-	-
Bedrock	39	44	HW Pegmatite	-	150	45	-	-	-
Deutock	44	49	SW to HW Pegmatite ¹	-	170	-	-	65	4,200

¹ Assumed UCS = 10,000 psi; GSI = 30 (poor rock)

# Boring BH 602

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
	0	2	SM	8	110	28	-	-	-
Till	2	6	SM	28	120	34	-	-	-
1 1111	6	9	SM	53	130	38	-	-	-
	9	17	SM	100+	140	43	-	-	-
Bedrock	17	18	HW Pegmatite	-	150	45	-	-	-
Dedrock	18	28	SW to F Pegmatite ¹	-	175	-	-	67	5,600

Assumed UCS = 10,000 psi; GSI = 40 (fair to good rock)

Sublayer	Sublayer Depth (ft)		Material Average		Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
	0	2	SM	8	110	28	-	-	-
Till	2	6	SM	39	125	36	-	-	-
	6	14.6	SM	100+	140	43	-	-	-



# Boring BH 604

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5		PEMOVE AN		: WITH COI	NTPOLLED S	TRUCTURAL F	11.1
Alluvium	0.5	2	'	(LIVIOVE AI)	ID INEI LAGE	. WITH COI	VINOLLED 3	INOCTORALT	ILL
	2	4	SP	33	125	35	-	-	-
Till	4	13	SM	100+	140	43	-	-	-
1 ""	13	17	ML	55	130	36	-	-	-
	17	20	SM	100+	140	43	-	-	-

# Boring BH 605

Sublayer Description	De	layer pth ft)	Material	Average N ₆₀	Effective Unit Weight (pcf)	Soil Friction Angle (deg)	Soil Undrained Strength (psf)	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)		
	Тор	Bot.	Description					Friction Angle (deg)	Cohesion (psf)	
Topsoil	0	0.5		REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL						
Alluvium	0.5	2		KLIVIOVE AIN	ID KEFLACE	. WITH COI	VIROLLED 3	INOCTORALI	ILL	
	2	4	SP-SM	44	125	37	-	-	-	
Till	4	8	SP-SM/ML	88	135	40	-	-	-	
	8	20	SM	100+	140	43	-	-	-	

Sublayer	Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)	
	0	0.5								
Till	0.5	2	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL							
	2	10	SM	55	130	38	-	-	-	



# Boring BH 607

Sublayer	De	layer pth ft)	Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5					NTDOLLED 6.	TRUCTURAL F	11.1
Alluvium	0.5	2	'	KLIVIOVE AIN	ID KEFLACE	. WITH COI	VIROLLED 3	INOCTORALI	ILL
	2	4	SM	31	125	36	-	-	-
Till	4	6	SM	69	135	42	-	-	-
	6	44	SP- SM/SM/ML	100+	140	42	-	-	-
Bedrock	44	45	HW Gneiss	100+	150	45	-	-	-
Deditock	45	50	F Gneiss ¹	-	175	-	-	68	8,300

Assumed UCS = 10,000 psi; GSI = 50 (good rock)

# Boring BH 608

Sublayer	De	layer pth t)	Material	Average N ₆₀	Effective Unit	Soil Friction Angle (deg)	Soil Undrained Strength (psf)	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description		Weight (pcf)			Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5					NTDOLLED 9	TDIICTIIDAI E	711 1
Alluvium	0.5	2	'	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL					ILL
	2	6	SM/SP-SM	58	135	40	-	-	-
Till	6	10	SM	74	135	42	-	-	-
	10	28	SM	100+	140	43	-	-	-
	28	29	HW Granite	100+	150	45	-	-	-
Bedrock	29	39	SW to F Granite/ Pegmatite ¹	-	175	-	-	67	5,600

Assumed UCS = 10,000 psi; GSI = 40 (fair rock)

Sublayer	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5	ı	REMOVE AN	ID REPLACE	WITH CO	NTROLLED S	TRUCTURAL F	ILL
Alluvium	0.5	2	SM	8	110	28	-	-	-
Till	2	8	SM/SP-SM	67	135	41	-	-	-
1111	2	9.8	SM	100+	140	43	-	-	-



# Boring BH 610

Sublayer	De	layer pth t)	Material	Averag	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
Description	Top Bot.		Description	e N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	2	R	EMOVE AN	ID REPLACE	WITH COI	NTROLLED S	TRUCTURAL F	TLL
Alluvium	2	4	SP-SM	50	130	38	-	-	-
Till	4	11	SM/SP-SM	36	125	36	-	-	-
1 1111	11	18	SM	100+	140	43	-	-	-
	18	19	HW Gneiss	-	150	45	-	-	-
Bedrock	19	26	F Pegmatite ¹	=	175	=	-	69	8,200
	26 29		F Gneiss ²	-	175	-	-	68	8,300

# Boring BH 611

Sublayer	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
Description	Top Bot.		Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5				: WITH COI	NTBOLLED 6	TRUCTURAL F	11.1
	0.5	2		KEWOVE AN	ID REPLACE	WITH COI	VIROLLED 3	IRUCTURALE	ILL
Alluvium	2	4	SM	17	115	31	-	-	-
Till	4	8	SM 61		135	41	-	-	-
1 111	8	31	SM	100+	140	43	-	-	-

Sublayer Description	De	layer pth t) Bot.	Material Description	Average N ₆₀	Effective Unit Weight (pcf)	Soil Friction Angle (deg)	Soil Undrained Strength (psf)	(Rock Mas	drock ss Equivalent bulomb Fit) Cohesion (psf)					
Topsoil	0	0.5		REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL										
Alluvium	0.5	3	'	REMOVE AND RELEASE WITH CONTROLLED STRUCTURAL FILE										
Till	3	9	SP-SM	58	130	40	-	-	-					
1 1111	9	18	SM	100+	140	43	-	-	-					
	18	19	HW Granite 100+ 150 45 -					-	-					
Bedrock	19 22		SW to MW Granite/ Diabase ¹	-	165	-	-	63	3,600					

¹ Assumed UCS = 10,000 psi; GSI = 25 (very poor rock)

¹ Assumed UCS = 10,000 psi; GSI = 50 (excellent rock) ² Assumed UCS = 10,000 psi; GSI = 50 (excellent rock)



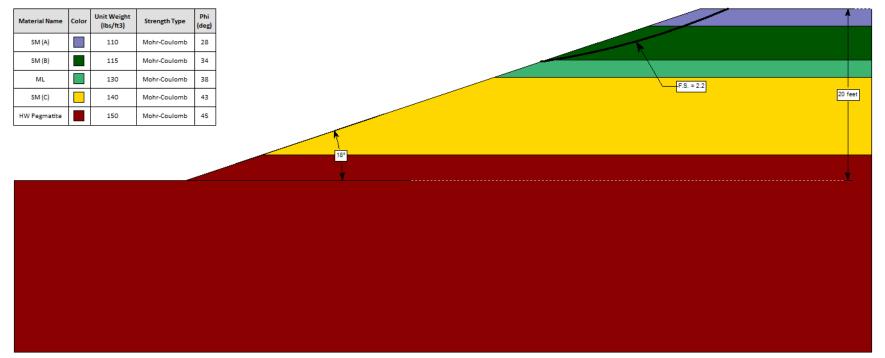
# Boring BH 613

Sublayer	De	layer pth t)	Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)			
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)			
Topsoil	0	0.5	ı		ID BEDLACE		NTDOLLED 6	TRUCTURAL E	TI 1			
Alluvium	0.5	4	,	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL								
Till	4	14	SP-SM	72	135	42	-	-	-			
1111	14	17	SM	SM 100+ 140 43								
Dodrook	17	20	HW Granite	-	-							
Bedrock	20	30	SW to F Granite	=	170	=	-	65	4,200			

¹ Assumed UCS = 10,000 psi; GSI = 30 (poor rock)

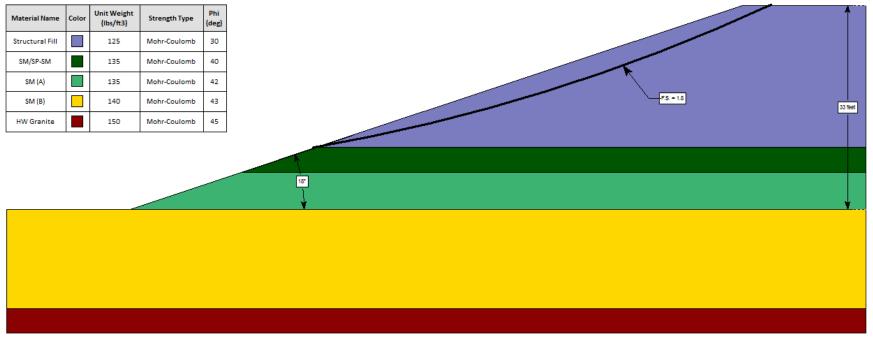
### Boring BH 614

Sublayer	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	0.5	ı	REMOVE AN	ID REPLACE	WITH COI	NTROLLED S	TRUCTURAL F	ILL
Alluvium	0.5	3	SM	11	110	30	-	-	-
Till	3	7	SP-SM	76	135	42	-	-	-
1 ""	7	21	SM	100+	140	43	-	-	-
Bedrock	21	31	SW Diabase	-	165		-	58	3,100


¹ Assumed UCS = 10,000 psi; GSI = 25 (very poor rock)

#### Controlled Structural Fill

Sublayer	De	layer pth ft)	Material	Average	Effective Unit	Soil Friction	Soil Undrained	(Rock Mas	drock ss Equivalent oulomb Fit)
Description	Top Bot.		Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Structural Fill	-	-	SM/ML	-	125	30	-	-	-

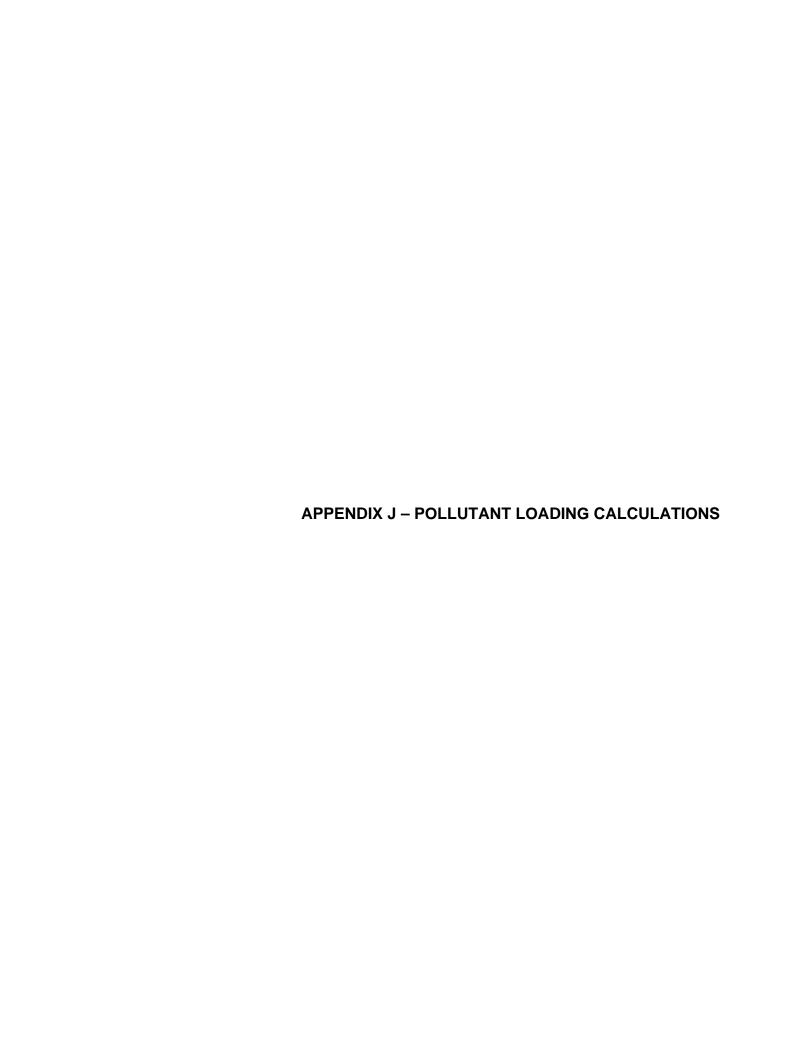



# Appendix F SLIDE 7.0 Stability Outputs



Base Map: Slide 7.0.






Base Map: Slide 7.0.









Deerfield Simple Method_12282016.xls
Pre-Dev_Sub Area Wksht

Condition	Point of Analysis (PoA) Number	Sub-Area Number	Area Description	Land Use	ВМР	Is the Impervious Area Disconnected in accordance with Chapter 6, Volume 1 of the NH Stormwater Manual or is the BMP an Infiltration BMP designed in accordance with Alteration of Terrain regulations (Env- Wq 1500)?	Pervious Undisturbed (i.e, forest, meadow, etc.)	Pervious Disturbed (i.e. lawn or other area that will be fertilized regularly)	Pervious Pavement that filters and infiltrates all stormwater (no underdrains)	Pervious Disturbed Other	Description of Pervious Disturbed Other	Pervious Total	Pervious Pavement that filters but does not infiltrate all stormwater (has underdrains)	Impervious Roof	Impervious Road	Impervious Parking and Drives	Impervious Sidewalks	Impervious Surface Water	Impervious Other	Description of Impervious Other	Impervious Total (prior to Disconnection or Infiltration BMP Credit)	Total Area	Composite % Impervious (without disconnection or Infiltration credit)	Composite % Impervious (with disconnection or Infiltration credit)
Pre-Development	Pre-1	Pre-1	Pre-Dev Watershed Map Area 1	Forest/Rural Open		NO	Acres 17.57	<b>Acres</b> 0.00	Acres 0.13	Acres 0.00		Acres 17.70	Acres 0.00	0.07	0.00	Acres 0.00	0.00	0.16	0.00		<b>Acres</b> 0.23	Acres 17.93	1.28%	1.28%
Pre-Development	Pre-2	Pre-2	Pre-Dev Watershed Map Area 2			NO	8.83	0.00	0.00	0.00		8.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	8.83	0.00%	0.00%
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del> </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del> </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del>                                     </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del>                                     </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b> </b>
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b></b> '
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b></b> '
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b></b> '
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del> </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del>                                     </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<u> </u>
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<u> </u>
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00 0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<u> </u>
Pre-Development Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		ļ
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b> </b>
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<u> </u>
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<u> </u>
Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b>_</b>
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del>                                     </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del>                                     </del>
Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<del>                                     </del>
Pre-Development Pre-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		<b></b>
						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		1

Deerfield Simple Method_12282016.xls
Post-Dev_Sub Area Wksht

12/28/2016

Condition	Point of Analysis (PoA) Number	Sub-Area Number	Area Description	Land Use	ВМР	Is the Impervious Area Disconnected in accordance with Chapter 6, Volume 1 of the NH Stormwater Manual or is the BMP an Infiltration BMP designed in accordance with Alteration of Terrain regulations (Env-Wq 1500)?	(i.e, forest, meadow, etc.)	Pervious Disturbed (i.e. lawn or other area that will be fertilized annually)	Pervious Pavement that filters and infiltrates all stormwater (no underdrains)	Pervious Disturbed Other	Description of Pervious Disturbed Other		Pervious Pavement that filters but does not infiltrate all stormwater (has underdrains)	Impervious Roof	Road	Impervious Parking and Drives	Impervious Sidewalks	Impervious Surface Water	Impervious Other	Description of Impervious Other	Impervious Total (Prior to Disconnection or Infiltration BMP Credit)	Total Area	Composite % Impervious (without disconnection n or Infiltration credit)	Composite % Impervious (with disconnectio n or Infiltration credit)
Deat Development	Dort 4	Don't 4A	Deet Deci Wetershad Mar Assa 4A	Farant/Dural Once		NO	Acres	Acres	Acres	Acres	meadow/grass, not	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres		Acres	Acres	0.000/	0.000/
Post-Development	Post-1	Post-1A	Post-Dev Watershed Map Area 1A		Sand Filter &		5.85	0.00	0.00	1.88	fertilized	7.73	0.00	0.07	0.00	0.00	0.00	0.16	0.00		0.23	7.96	2.89%	2.89%
Post-Development	Post-1	Post-1B	Post-Dev Watershed Map Area 1B	Forest/Rural Open	Infiltration Basin	YES	0.00	0.00	0.00	0.08	meadow/grass, not fertilized	0.08	3.46	0.32	0.00	0.00	0.00	0.00	0.00		3.78	3.86	97.93%	0.00%
Post-Development	Post-1	Post-1C	Post-Dev Watershed Map Area 1C	Forest/Rural Open	Sand Filter & Infiltration Basin	YES	0.00	0.00	0.00	0.12	meadow/grass, not fertilized	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.12	0.00%	0.00%
Post-Development	Post-1	Post-1D	Post-Dev Watershed Map Area 1D	Forest/Rural Open	Infiltration Basin	YES	0.00	0.00	0.00	0.56	meadow/grass, not	0.56	0.00	0.00	0.00	0.28	0.00	0.31	0.00		0.59	1.15	51.30%	0.00%
Post-Development	Post-1	Post-1E	Post-Dev Watershed Map Area 1E	Forest/Rural Open	Infiltration Basin	YES	0.00	0.00	0.00	0.05	meadow/grass, not fertilized	0.05	0.00	0.00	0.00	0.10	0.00	0.00	0.00		0.10	0.15	66.67%	0.00%
Post-Development	Post-1	Post-1F	Post-Dev Waterhsed Map Area 1F	Forest/Rural Open		NO	5.34	0.00	0.13	0.95	meadow/grass, not fertilized	6.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	6.42	0.00%	0.00%
Post-Development	Post-2	Post-2	Post-Dev Watershed Map Area 2	Forest/Rural Open		NO	6.59	0.00	0.00	0.50	meadow/grass, not fertilized	7.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	7.09	0.00%	0.00%
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		.——
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	<del></del>	
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	<del></del>	
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	<del></del>	
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		.——
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	,——-	
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	<del></del>	
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0.00		
Post-Development Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	,	
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	<del></del>	
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development Post-Development						NO NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	,	
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Post-Development						NO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		

Date (MM/DD/YYYY):	12/28/2016			
Project Name:	Deerfield Substation Expansion			
Town/City:	Deerfield, Rockingham County			
Impacted Surface Waters:	Pistataqua-Salmon Falls			
Applicant:	Northern Pass Transmission, LLC.			
DES File #:				
Average Annual Precipitation P	45.90	inches	ONLY INPUT VALUES I	N BLUE SHADED CELLS
Fraction of Annual Runoff events that produce runoff	0.90	(usually 0.9)		
Credit for Using Low Nutrient Fertilizer: If there are managed turf areas ur by providing enforceable documents (i.e., deed restrictions) requiring land own development for TP and TN in the table below. Low nutrient fertilizers must have sub-area that is managed turf that is fertilized annually.	ners to use low nutrient fertilizer. To get	low nutrient fertilizer pollutant	reductions input the proposed reduced fertilizer application rates for po	ost development
			Fertilizer Reduction Calculator	

Medium Density Residential

Urban Open

Water/Wetland

0.00

0.00

0.00%

0.00%

0.00%

			Fertilizer Reduction Calc	llator								
			TP	TN								
STANDARD FERTILIZER APPLICATION RATE	F (lhs/acre/year)		15.0	150.0								
PROPOSED REDUCED FERTILIZER APPLICATION		DEVELOPMENT (lbs/acre/year)	0.0	44.0								
INITIAL PERCENT REDUCTION			100.0%	70.7%								
PERCENT OF CITIZENS THAT WILL COMPLY	Y WITH REDUCED APPLICA	ATION RATES	50%	50%								
PERCENT OF APPLIED FERTILIZER THAT IS	S LOST TO RUNOFF OR PE	RCOLATION	10%	10%								
FINAL PERCENT FERTILIZER REDUCTION V	WITH COMPLIANCE AND R	UNOFF RATES APPLIED (%FR)	5.0%	3.5%	<b>—</b>	Used to reduce EMCs	for Post TP and Post	t TN				
MINIMUM ASSUMED EMC = $EMC_{MIN}$ (mg/L)		, ,	0.11	1.74	•	for each land use in ea	ach Sub Area depend	ling on perce				
( 6 /			<u> </u>			of area that is manage	•	• .				
PRE-DEVELOPMENT CONDITION	S		POST-DEVELOPMENT CONDITION	IS		, and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		,				
	Area	Impervious Area		Area	Impervious Area	Area Fertilized Annually						
Total Area (All Sub-Areas) (acres)	26.76	0.23		26.75	0.23	0.00						
, , , , , , , , , , , , , , , , , , , ,		Insert information for 1st sub-area be	elow									
Sub_Area_ID	Pre-1		Sub_Area_ID	Post-1A								
Point of Analysis (PoA) Number	Pre-1		Point of Analysis (PoA) Number	Post-1								
Total Area for Sub-Area (acres)	17.93	0.23	Total Area in Sub-Area (acres)	7.96	0.23	0.00						
			_									
						Percent of Area that						
Land Use	Area	la	Land Use	Total Area for each Land Use	la	is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC				
Land Use			Land Use	Land Use		is managed turf (i.e., fertilized annually)		EMC				
Land Use From HWG	Area (acres)	la (% Impervious)	Land Use From HWG		la (% Impervious)	is managed turf (i.e.,	Post-TP EMC					
				Land Use		is managed turf (i.e., fertilized annually)		EMC				
From HWG	(acres)	(% Impervious)	From HWG	Land Use (acres)	(% Impervious)	is managed turf (i.e., fertilized annually) %	mg/L	<b>EMC</b> mg/L				
From HWG Residential Roof	(acres)	(% Impervious)	From HWG Residential Roof	Land Use (acres) 0.00	(% Impervious)	is managed turf (i.e., fertilized annually)  %  0.0%	mg/L 0.11	<b>EMC</b> mg/L 1.50				
From HWG  Residential Roof  Commercial Roof	(acres) 0.00 0.00	(% Impervious) 0.00% 0.00%	From HWG Residential Roof Commercial Roof	(acres) 0.00 0.00	(% Impervious) 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0%  0.0%	mg/L 0.11 0.14	mg/L 1.50 2.10				
From HWG  Residential Roof  Commercial Roof  Commercial/Res Parking	(acres)  0.00 0.00 0.00 0.00	(% Impervious)  0.00% 0.00% 0.00%	From HWG Residential Roof Commercial Roof Commercial/Res Parking	(acres)  0.00 0.00 0.00	(% Impervious)  0.00%  0.00%  0.00%	is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%	mg/L 0.11 0.14 0.15	mg/L 1.50 2.10 1.90				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street	(acres)  0.00 0.00 0.00 0.00 0.00	(% Impervious)  0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof  Commercial Roof  Commercial/Res Parking  Residential Street	(acres)  0.00 0.00 0.00 0.00 0.00	(% Impervious)  0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0%	mg/L 0.11 0.14 0.15 0.55	mg/L 1.50 2.10 1.90 1.40				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway	(acres)  0.00 0.00 0.00 0.00 0.00 0.00	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof  Commercial Roof  Commercial/Res Parking  Residential Street  Urban Highway	(acres)  0.00 0.00 0.00 0.00 0.00 0.00	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L 0.11 0.14 0.15 0.55	mg/L  1.50 2.10 1.90 1.40 3.00				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L 0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L 0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L 0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50				
From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50				
From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40  0.37 0.33	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97				
From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.28%	From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40  0.37 0.33 0.11	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97 1.74				
From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial	(acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40  0.37 0.33	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97				

Medium Density Residential

Urban Open

Water/Wetland

0.00

0.00

0.00

0.00%

0.00%

0.00%

0.0%

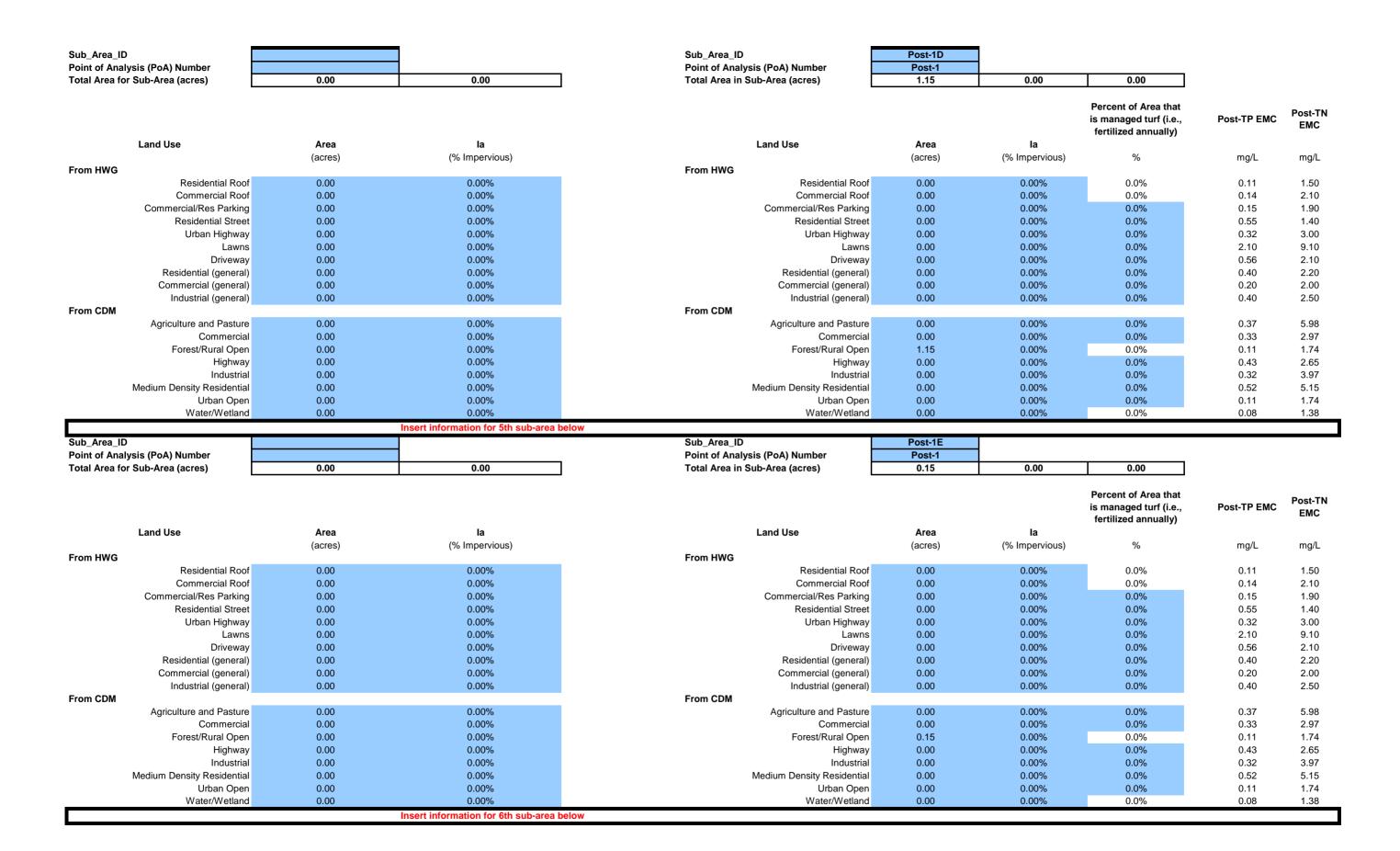
0.0%

0.0%

0.52

0.11

0.08


5.15


1.74

1.38

			Insert information for 2nd sub-area	below					
Sub_Area_II	D	Pre-2		Sub_Area_ID	Post-1B				
Point of Ana	alysis (PoA) Number	Pre-2		Point of Analysis (PoA) Number	Post-1				
	or Sub-Area (acres)	8.83	0.00	Total Area in Sub-Area (acres)	3.86	0.00	0.00		
Land Use		Area	la	Land Use	Area	la	Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
		(acres)	(% Impervious)	<del></del>	(acres)	(% Impervious)	%	mg/L	mg/L
From HWG		(33.32)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	From HWG	(44.44)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		9. =	9, =
	Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
	Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
	Commercial/Res Parking		0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
	Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
	Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
	Lawns		0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
	Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
	Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
	Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
	Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM	(3 - 1 - 1)			From CDM					
	Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
	Commercial		0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
	Forest/Rural Open	8.83	0.00%	Forest/Rural Open	3.86	0.00%	0.0%	0.11	1.74
	Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
	Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
	Medium Density Residential		0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
	Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
	Water/Wetland		0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
							0.070		
			Insert information for 3rd sub-area I	pelow	0.00	0.0070	0.070	0.00	
Sub_Area_II	D			Sub_Area_ID	Post-1C	0.0070	0.076	0.00	
	D alysis (PoA) Number					0.00%	0.070	3.00	
Point of Ana		0.00		Sub_Area_ID	Post-1C	0.00	0.00	0.00	
Point of Ana	alysis (PoA) Number or Sub-Area (acres)	0.00	Insert information for 3rd sub-area l	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)	Post-1C Post-1 0.12	0.00		Post-TP EMC	Post-TN EMC
Point of Ana	alysis (PoA) Number	0.00	Insert information for 3rd sub-area l	Sub_Area_ID Point of Analysis (PoA) Number	Post-1C Post-1 0.12	0.00	O.00  Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	EMC
Point of Ana Total Area fo	alysis (PoA) Number or Sub-Area (acres)	0.00	Insert information for 3rd sub-area l	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use	Post-1C Post-1 0.12	0.00	0.00  Percent of Area that is managed turf (i.e.,		
Point of Ana	alysis (PoA) Number or Sub-Area (acres) Land Use	O.00  Area (acres)	0.00  la (% Impervious)	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use From HWG	Post-1C Post-1 0.12  Area (acres)	0.00  la (% Impervious)	0.00  Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC mg/L	EMC mg/L
Point of Ana Total Area fo	alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof	0.00  Area (acres) 0.00	0.00  la (% Impervious)	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof	Post-1C Post-1 0.12  Area (acres)	0.00 la (% Impervious) 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  % 0.0%	Post-TP EMC mg/L 0.11	<b>EMC</b> mg/L 1.50
Point of Ana Total Area fo	alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof	0.00  Area (acres)  0.00 0.00	0.00  la (% Impervious)  0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof	Post-1C Post-1 0.12  Area (acres) 0.00 0.00	0.00 la (% Impervious) 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%	Post-TP EMC mg/L 0.11 0.14	mg/L 1.50 2.10
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking	0.00  Area (acres)  0.00 0.00 0.00 0.00	Insert information for 3rd sub-area la 0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00	0.00 la (% Impervious) 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15	mg/L 1.50 2.10 1.90
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00	0.00   Ia   (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial/Res Parking Residential Street	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00	0.00 la (% Impervious) 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55	mg/L 1.50 2.10 1.90 1.40
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00   Ia   (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00	0.00 la (% Impervious) 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32	mg/L 1.50 2.10 1.90 1.40 3.00
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00   Ia   (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 la (% Impervious) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10	mg/L  1.50 2.10 1.90 1.40 3.00 9.10
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ia (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general)	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ia (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general)	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general)	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ia (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general)	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general)	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ia (% Impervious)   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ia (% Impervious)   0.00   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20  0.40	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)  Agriculture and Pasture	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20  0.40  0.37	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)  Agriculture and Pasture Commercial	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ia (% Impervious)   0.00   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20  0.40  0.37  0.33	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) Agriculture and Pasture Commercial Forest/Rural Open	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40  0.37 0.33 0.11	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97 1.74
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) Agriculture and Pasture Commercial Forest/Rural Open Highway	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open Highway	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20  0.40  0.37  0.33  0.11  0.43	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97 1.74 2.65
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)  Agriculture and Pasture Commercial Forest/Rural Open Highway Industrial	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open Highway Industrial	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20  0.40  0.37  0.33  0.11  0.43  0.32	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97 1.74 2.65 3.97
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)  Agriculture and Pasture Commercial Forest/Rural Open Highway Industrial Medium Density Residential	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open Highway Industrial Medium Density Residential	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11 0.14 0.15 0.55 0.32 2.10 0.56 0.40 0.20 0.40  0.37 0.33 0.11 0.43 0.32 0.52	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97 1.74 2.65 3.97 5.15
Point of Ana Total Area fo	Alysis (PoA) Number or Sub-Area (acres)  Land Use  Residential Roof Commercial Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general)  Agriculture and Pasture Commercial Forest/Rural Open Highway Industrial	0.00  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Sub_Area_ID Point of Analysis (PoA) Number Total Area in Sub-Area (acres)  Land Use  From HWG  Residential Roof Commercial/Res Parking Residential Street Urban Highway Lawns Driveway Residential (general) Commercial (general) Industrial (general) From CDM  Agriculture and Pasture Commercial Forest/Rural Open Highway Industrial	Post-1C Post-1 0.12  Area (acres)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00  la (% Impervious)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00  Percent of Area that is managed turf (i.e., fertilized annually)  %  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Post-TP EMC  mg/L  0.11  0.14  0.15  0.55  0.32  2.10  0.56  0.40  0.20  0.40  0.37  0.33  0.11  0.43  0.32	mg/L  1.50 2.10 1.90 1.40 3.00 9.10 2.10 2.20 2.00 2.50  5.98 2.97 1.74 2.65 3.97

Insert information for 4th sub-area below





Tab 5 of 9

Date (MM/DD/YYYY): 12/28/2016

Project Name: Deerfield Substation Expansion Town/City: Impacted Surface Waters: Applicant: DES File #: Deerfield, Rockingham County Pistataqua-Salmon Falls Northern Pass Transmission, LLC.

ONLY CHANGE VALUES SHADED IN BLUE

PDE DEVEL OPMENT	INDUT DAD DECODIDED NO	INDUT OVER A	LL DEMOVA	
PRE DEVELOPMENT Sub-Area	INPUT BMP DESCRIPTIONS	INPUT OVERA TSS	LL REMOVA TP	L EFFICIENC TN
Sub-Area		188	IP	IN
Pre-1		0%	0%	0%
Pre-2		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%

POST DEVELOPMENT	INPUT BMP DESCRIPTIONS	INP	UT OVER	ALL REMOV	AL EFFICIEN	NCIES (%) FOR POLLUTANTS OF C	
Sub-Area			TSS	TP	TN		
						•	
Post-1A							
Post-1B	Underground Sand Filter with Underdrain & Infiltration Basin		90%	65%	60%		
Post-1C	Underground Sand Filter with Underdrain & Infiltration Basin		90%	65%	60%		
Post-1D	Infiltration Basin		90%	65%	60%		
Post-1E	Infiltration Basin		90%	65%	60%		
Post-1F			0%	0%	0%		
Post-2			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		
0.00			0%	0%	0%		

(603) 271-2304 PO Box 95, Concord, NH 03302-0095 www.des.nh.gov 2015-04-15

#### Deerfield Simple Method_12282016.xls OVERALL SUMMARY

Date (MM/DD/YYYY):

12/28/2016

Project Name: Town/City: Deerfield Substation Expansion Deerfield, Rockingham County

Impacted Surface Waters:

Pistataqua-Salmon Falls

Applicant: DES File #: Northern Pass Transmission, LLC.

TOTAL PRE -DEVELOPMENT (PRE-DEV) AREA (ACRES) =	26.76
TOTAL PRE-DEV EFFECTIVE IMPERVIOUS AREA (ACRES) =	0.23
TOTAL PRE-DEV PERCENT EFFECTIVE IMPERVIOUS (%) =	0.9%
TOTAL POST DEVELOPMENT (POST-DEV) AREA (ACRES) =	26.75
TOTAL POST-DEV EFFECTIVE IMPERVIOUS AREA (ACRES) =	0.23
TOTAL POST-DEV PERCENT EFFECTIVE IMPERVIOUS (%) =	0.9%
TOTAL POST-DEV AREA THAT IS FERTILIZED ANNUALLY (ACRES) =	0.00
TOTAL POST-DEV PERCENT OF AREA THAT IS FERTILIZED ANNUALLY (%) =	0.0%

	188	IP IP	IN
	(LBS/YR)	(LBS/YR)	(LBS/YR)
PRE DEVELOPMENT LOADS (NO BMPS)	735.7	1.6	25.1
PRE DEVELOPMENT LOADS (WITH BMPS)	735.7	1.6	25.1
PRE DEVELOPMENT LOAD REDUCTION DUE TO BMPS	0.0	0.0	0.0
PROPOSED PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	NA	5.0%	3.5%
POST DEVELOPMENT LOADS (NO BMPS)	735.4	1.6	25.1
POST DEVELOPMENT LOADS (WITH BMPS)	622.3	1.4	22.5
POST DEVELOPMENT LOAD REDUCTION DUE TO BMPS	113.1	0.2	2.6
POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE)	-113.4	-0.2	-2.6
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-15.4%	-11.1%	-10.3%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	0.0%	0.0%	0.0%

12/28/2016

Date (MM/DD/YYYY): Project Name: Town/City: Deerfield Substation Expansion Deerfield, Rockingham County Pistataqua-Salmon Falls Northern Pass Transmission, LLC. Impacted Surface Waters: Applicant: DES File #:

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (Ibs/yr)	-113.4
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-15.4%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	0.0%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	15.4%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-15.4%

#### PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-1	Pre-1	17.93	0.23	NA	TSS	NA		525.4	525.4	0.0	0.0%
PRE	Pre-2	Pre-2	8.83	0.00	NA	TSS	NA		210.2	210.2	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA	· · · · · · · · · · · · · · · · · · ·	0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA	·	0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
	•	TOTAL	26.76	0.23				TOTAL	735.7	735.7	0.0	0.0%

Date (MM/DD/YYYY): 12/28/2016

Project Name: Deerfield Substation Expansion
Town/City: Deerfield, Rockingham County
Impacted Surface Waters: Pistataqua-Salmon Falls
Applicant: Northern Pass Transmission, LLC.
DES File #:

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-113.4
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-15.4%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	0.0%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	15.4%
REMAINING REMOVAL FEEICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-15 4%

### POST-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-1A	Post-1	7.96	0.23	0.00	TSS	NA		288.1	288.1	0.0	0.0%
POST	Post-1B	Post-1	3.86	0.00	0.00	TSS	NA	Underground Sand Filter with Underdrain & Infiltration Basin	91.9	9.2	82.7	90.0%
POST	Post-1C	Post-1	0.12	0.00	0.00	TSS	NA	Underground Sand Filter with Underdrain & Infiltration Basin	2.9	0.3	2.6	90.0%
POST	Post-1D	Post-1	1.15	0.00	0.00	TSS	NA	Infiltration Basin	27.4	2.7	24.6	90.0%
POST	Post-1E	Post-1	0.15	0.00	0.00	TSS	NA	Infiltration Basin	3.6	0.4	3.2	90.0%
POST	Post-1F	Post-1F	6.42	0.00	0.00	TSS	NA		152.8	152.8	0.0	0.0%
POST	Post-2	Post-2	7.09	0.00	0.00	TSS	NA		168.8	168.8	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA	•	0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA	<u> </u>	0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA	•	0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA	•	0.0	0.0	0.0	0.0%
		TOTAL	26.75	0.23	0.00		·	TOTAL	735.4	622.3	113.1	15.4%

12/28/2016

Date (MM/DD/YYYY): Project Name: Town/City: Deerfield Substation Expansion Deerfield, Rockingham County Pistataqua-Salmon Falls Northern Pass Transmission, LLC. Impacted Surface Waters: Applicant: DES File #:

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-0.2
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-11.1%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	0.0%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	11.1%
REMAINING REMOVAL FEFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-11 1%

#### PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-1	Pre-1	17.93	0.23	NA	TP	NA		1.1	1.1	0.0	0.0%
PRE	Pre-2	Pre-2	8.83	0.00	NA	TP	NA		0.5	0.5	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA	·	0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
		TOTAL	26.76	0.23	-			TOTAL	1.6	1.6	0.0	0.0%

Date (MM/DD/YYYY): 12/28/2016

Project Name: Deerfield Substation Expansion
Town/City: Deerfield, Rockingham County
Impacted Surface Waters: Pistataqua-Salmon Falls
Applicant: Northern Pass Transmission, LLC.
DES File #:

#### POST-DEVELOPMENT

POST-DEVELO	PMENT											
PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-1A	Post-1	7.96	0.23	0.00	TP	5.0%		0.6	0.6	0.0	0.0%
POST	Post-1B	Post-1	3.86	0.00	0.00	TP	5.0%	Underground Sand Filter with Underdrain & Infiltration Basin	0.2	0.1	0.1	65.0%
POST	Post-1C	Post-1	0.12	0.00	0.00	TP	5.0%	Underground Sand Filter with Underdrain & Infiltration Basin	0.0	0.0	0.0	65.0%
POST	Post-1D	Post-1	1.15	0.00	0.00	TP	5.0%	Infiltration Basin	0.1	0.0	0.0	65.0%
POST	Post-1E	Post-1	0.15	0.00	0.00	TP	5.0%	Infiltration Basin	0.0	0.0	0.0	65.0%
POST	Post-1F	Post-1F	6.42	0.00	0.00	TP	5.0%		0.3	0.3	0.0	0.0%
POST	Post-2	Post-2	7.09	0.00	0.00	TP	5.0%		0.4	0.4	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
		TOTAL	26.75	0.23	0.00			TOTAL	1.6	1.4	0.2	11.1%

12/28/2016

Date (MM/DD/YYYY): Project Name: Deerfield Substation Expansion Town/City: Deerfield, Rockingham County Impacted Surface Waters: Pistataqua-Salmon Falls Applicant: DES File #: Northern Pass Transmission, LLC.

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (Ibs/yr)	-2.6
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-10.3%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	0.0%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	10.3%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-10.3%

#### PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-1	Pre-1	17.93	0.23	NA	TN	NA		17.9	17.9	0.0	0.0%
PRE	Pre-2	Pre-2	8.83	0.00	NA	TN	NA		7.2	7.2	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
	·	TOTAL	26.76	0.23		·		TOTAL	25.1	25.1	0.0	0.0%

12/28/2016

Date (MM/DD/YYYY): Project Name: Deerfield Substation Expansion Town/City: Deerfield, Rockingham County Impacted Surface Waters: Pistataqua-Salmon Falls Applicant: DES File #: Northern Pass Transmission, LLC.

#### POST-DEVELOPMENT

POST-DEVELOR	FINEIVI											
PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-1A	Post-1	7.96	0.23	0.00	TN	3.5%		9.8	9.8	0.0	0.0%
POST	Post-1B	Post-1	3.86	0.00	0.00	TN	3.5%	Underground Sand Filter with Underdrain & Infiltration Basin	3.1	1.3	1.9	60.0%
POST	Post-1C	Post-1	0.12	0.00	0.00	TN	3.5%	Underground Sand Filter with Underdrain & Infiltration Basin	0.1	0.0	0.1	60.0%
POST	Post-1D	Post-1	1.15	0.00	0.00	TN	3.5%	Infiltration Basin	0.9	0.4	0.6	60.0%
POST	Post-1E	Post-1	0.15	0.00	0.00	TN	3.5%	Infiltration Basin	0.1	0.0	0.1	60.0%
POST	Post-1F	Post-1F	6.42	0.00	0.00	TN	3.5%		5.2	5.2	0.0	0.0%
POST	Post-2	Post-2	7.09	0.00	0.00	TN	3.5%		5.8	5.8	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
·		TOTAL	26.75	0.23	0.00		<u> </u>	TOTAL	25.1	22.5	2.6	10.3%



http://ofmpub.epa.gov/waters10/attains_waterbody.control?p_au_id=NHRIV600030704-04&p_cycle=2008 Last updated on Tuesday, June 02, 2015

# Watershed Assessment, Tracking & Environmental ResultS

You are here: EPA Home *Water *WATERS *Water Quality Assessment and TMDL Information *Waterbody Quality Assessment Report

#### Return to home page

#### On This Page

- Water Quality **Assessment** <u>Status</u>
- Causes of <u>Impairment</u>
- Probable **Sources** Contributing to <u>Impairments</u>
- TMDLs That Apply to This W<u>aterbody</u>
- Previous Causes of Impairment Now Attaining All Uses

State: New Hampshire **Waterbody ID:** NHRIV600030704-04 Location:

010600030704, Back Creek, Unknown

**Fishery** 

**State Waterbody** 

Type: River **EPA Waterbody Type:** Rivers and

Streams

Water Size: 6.42 **Units:** miles Watershed

Name: Piscataqua-Salmon Falls

Waterbody History Report

Data are also available for these years: 2010 2006

2004 2002

### **2008 Waterbody Report for Back** • About This Database Creek



Click on the waterbody for an interactive map

#### **Features**

- (Integrated Report)
- Assessing Water Quality (Questions and Answers)
- **Integrated Reporting** Guidance
- Previous National Water Quality Reports
- EnviroMapper for Water
- **AskWATERS**
- **EPA WATERS Homepage**
- Exchange Network
- Assessment Database
- Statewide Statistical Surveys
- How's My Waterway Local Search tool
- Pollution Categories Summary Document
- Nitrogen and Phosphorus Pollution Data Access Tool (NPDAT)

# Water Quality Assessment Status for Reporting Year 2008

The overall status of this waterbody is Impaired.

#### Description of this table

<u>Designated Use</u>	<u>Designated Use Group</u>	<u>Status</u>
Aquatic Life		Impaired

	Fish, Shellfish, And Wildlife Protection And Propagation	
Drinking Water After Adequate Treatment	Public Water Supply	Good
Fish Consumption	Aquatic Life Harvesting	Impaired
Primary Contact Recreation	Recreation	Not Assessed
Secondary Contact Recreation	Recreation	Not Assessed
Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Not Assessed

# **Causes of Impairment for Reporting Year 2008**

Description of this table

Cause of Impairment	Cause of Impairment Group	Designated Use (s)	State TMDL Development Status
Mercury	Mercury	Fish Consumption	TMDL completed
11111111	pH/Acidity/Caustic Conditions	Aquatic Life	TMDL needed

# **Probable Sources Contributing to Impairment for Reporting Year 2008**

Description of this table

Probable Source	<b>Probable Source Group</b>	Cause(s) of Impairment
Atmospheric Deposition - Toxics	Atmospheric Deposition	Mercury
Source Unknown	Unknown	рН

# **TMDLs That Apply to this waterbody**

Description of this table

TMDL Document Name	TMDL Date	TMDL Pollutant Description	TMDL Pollutant Source Type	Cause(s) of Impairment Addressed
Ne Regional Mercury Tmdl	Dec-20- 2007	Mercury	Nonpoint Source	Mercury

# **Previous Causes of Impairments Now Attaining All Uses**

No causes of impairment are recorded as attaining all uses for this waterbody.



Burns & McDonnell New England Office 108 Leigus Road Wallingford, CT 06492 Phone: 203-284-8590 Fax: 203-284-3693

www.burnsmcd.com

Burns & McDonnell: Making our clients successful for more than 100 years