

Stormwater Management Study

Northern Pass Transmission, LLC

Transition Station #1Project No. 58466

RE-ISSUED FOR PERMITTING January 13, 2017

Stormwater Management Study

prepared for

Northern Pass Transmission, LLC

Transition Station #1
Old Canaan Road, Pittsburg, NH 03592

Project No. 58466

RE-ISSUED FOR PERMITTING January 13, 2017

prepared by

Burns & McDonnell Engineering Company, Inc.

COPYRIGHT © 2015 BURNS & McDONNELL ENGINEERING COMPANY, INC.

INDEX AND CERTIFICATION

Northern Pass Transmission, LLC Stormwater Management Study Transition Station #1 – Project No. 58466 RE-ISSUED FOR PERMITTING– January 13, 2017

Report Index

Section	·	Number
Number	Section Title	of Pages
1.0	Project Overview	5
2.0	Hydrology & Hydraulics	8
3.0	Best Management Practices	3
4.0	Conclusion	1
Appendix A	Pre- and Post-Development Watershed Maps	
Appendix B	Hydrology Model (Pondpack)	
Appendix C	Hydraulic and Stability Calculations	
Appendix D	NH DES Worksheets	
Appendix E	Inspection and Maintenance Plan	
Appendix J	Pollutant Loading Calculations	

Certification

I hereby certify, as a Professional Engineer in the State of New Hampshire, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Northern Pass Transmission, LLC or others without specific verification or adaptation by the Engineer.

Robbyn Reed, P.E. Date

Additional reference information provided by others and not certified by the above sealing Engineer.

Section Number	Section Title
Appendix F	FEMA Flood Insurance Rate Map
Appendix G	Soil Survey Reports (By Others)
Appendix H	Geotechinical Report (By Others)
Appendix I	Wetlands Deliniation Report (By Others)

Northern Pass i Burns & McDonnell

TABLE OF CONTENTS

DJECT OVERVIEW	
S .	
Receiving Surface Waters	
Pre-Development Site Conditions	
Post-Development Site Conditions	1-5
PROLOGY AND HYDRAULICS	2-1
Methodology and Design Criteria	2-1
2.1.1 Rainfall Data	2-1
2.1.2 Runoff Data	2-1
Stormwater Modeling Results	2-3
Detention Basin Design	
Stormwater Swales	2-4
Treatment Swale Design	2-5
Basin Spillway	2-6
Storm Drainage System	2-6
Culverts	2-7
Outlet Protection	2-8
ST MANAGEMENT PRACTICES	3-1
e · · · · · · · · · · · · · · · · · · ·	
<u>C</u>	
3.3.5 Flood Protection Analysis	
Antidegredation	
2	
	Location and Project Summary. Existing Conditions Survey Information Geotechnical Investigations Soils

APPENDIX E - INSPECTION AND MAINTENANCE PLAN

APPENDIX F – FEMA FLOOD INSURANCE RATE MAP

APPENDIX G - SOIL SURVEY REPORTS (BY OTHERS)

APPENDIX H – GEOTECHNICAL REPORT (BY OTHERS)

APPENDIX I – WETLAND DELINEATION REPORT (BY OTHERS)

APPENDIX J – POLLUTANT LOADING CALCULATIONS

LIST OF TABLES

		<u>Page No.</u>
Table 1-1:	Soil Types	1-4
Table 2-1:	24-Hour Type II Rainfall Data	2-1
Table 2-2:	Standard SCS Runoff Curve Numbers	
Table 2-3:	Pre-Developed Model Data	2-2
Table 2-4:	Post-Developed Model Data	
Table 2-5:	Manning's Roughness Coefficients	2-2
Table 2-6:	Outlet-1 Flow	
Table 2-7:	Detention Basin Storage Volume	
Table 2-8:	Detention Basin Water Surface Elevation	2-4
Table 2-9:	Stormwater Swale Summary	2-5
Table 2-10:	Stormwater Swale Stability	2-5
Table 2-11:	Basin Spillway Summary & Stability	2-6
	Culverts	
Table 2-13:	Outlet Protection	2-8

LIST OF FIGURES

		Page No.
Figure 1-1:	USGS Site Location Map	1-2

LIST OF ABBREVIATIONS

Abbreviation Term/Phrase/Name

BMcD Burns & McDonnell

BMP Best Management Practice
CFS Cubic Feet per Second

E&S Erosion and Sedimentation Control

FPS Feet per Second

FT Feet

LF Linear Feet

LiDAR Light Detection and Ranging

NAD North American Datum

NAVD North American Vertical Datum

NH DES New Hampshire Department of Environmental Services

ORW Outstanding Resource Water

ROW Right-of-way

TMDL Total Maximum Daily Loads

TN Total Nitrogen
TP Total Phosphorus

TSS Total Suspended Solids WQF Water Quality Flow WQV Water Quality Volume

Northern Pass i Burns & McDonnell

1.0 PROJECT OVERVIEW

1.1 Location and Project Summary

Northern Pass Transmission, LLC (NPT) plans to construct Transition Station #1 (Project), a new transition station located on Eversource owned property on Old Canaan Road, Pittsburg, NH 03592 N45°01'20.61" latitude and –W71°27'55.63" longitude) in Pittsburg, Coos County, NH (Site). Refer to

Figure 1-1: USGS Site Location Map.

The Site is bounded by wooded terrain to the north and west and Old Canaan Road to the east and south. The Site is located within the surface watershed of the Connecticut River.

Pre-development conditions primarily consist of undeveloped woodland areas. Stormwater runoff in existing conditions generally sheet flows overland from north to south to a roadside ditch which flows toward a culvert that crosses Old Canaan Road at the south end of the site.

The post-development conditions of the Site include construction of a transition station associated with the Northern Pass Transmission (NPT) project. The NPT project is an approximately 200-mile AC and DC transmission line route extending from the United States/Canadian border in Pittsburg, NH to Deerfield, NH. The station development consists of a gravel pad approximately 86-ft by 139-ft with a perimeter fence and access gates. A paved access drive is also proposed. The post-development conditions will increase the peak stormwater runoff rate and as a result, stormwater attenuation systems will be implemented. Wherever possible, the pre-development drainage and grading patterns were maintained in the post-development conditions.

A hydrologic model was developed to evaluate the pre- and post-development drainage conditions on the Site for the 2-, 10-, and 50-year design frequency storm events. The results of the analysis indicate that there is no increase in peak discharge rates in post-development conditions from pre-development conditions. The analyses summary, results, and model output are located in further sections.

The Project Site property area is 82.67 acres. The Project will result in approximately 3.04-acres of disturbance of which 2.10-acres is on-site, 0.87-acres off-site in Eversource Right-of-Way (ROW) and 0.07-acres off-site in roadways. The additional impervious cover within the property line as a result of the project is 0.64 acres. The total undisturbed cover of the Site, within the property line, is 80.57 acres.

Northern Pass 1-1 Burns & McDonnell

PROJECT SITE COPYRIGHT @ 2014 BURNS & McDONNELL ENGINEERING COMPANY, INC. NEW HAMPSHIRE VERMONT SOURCE: PITTSBURG, NH 2012 USGS MAP LEGEND PROJECT SITE THE MORTHERN PASS 4000 2000 SCALE IN FEET project **TRANSITION STATION #1** 58466 **ILDÖNNELL** GENERAL VICINITY MAP fle name NPTT1-FIG1-VMAP OLD CANAAN ROAD 12/17/14 PITTSBURG, NEW HAMPSHIRE drawing FIGURE 1 F. PASCERI

Figure 1-1: USGS Site Location Map

Northern Pass 1-2 Burns & McDonnell

1.2 Existing Conditions Survey Information

An Existing Conditions Plan with topography was prepared for the Project and was used as a base throughout the analysis and design of the Site Development Plans and Stormwater Management Study. In the instance where the watershed areas extended outside the survey topography limits, State published LiDAR was obtained from the New Hampshire GRANIT Statewide GIS Clearinghouse and used to determine the watershed limits.

<u>Horizontal Datum:</u> The survey references the New Hampshire State Plane Coordinate System, NAD 83. The Site Development Plans are drawn in the same state plane coordinate system.

<u>Vertical Datum:</u> North American Vertical Datum of 1988 (NAVD88). The proposed elevations referenced within the Site Development Plans refer to the same vertical datum.

1.3 Geotechnical Investigations

A Geotechnical Engineering Report has been prepared for NPT.

• "Geotechnical Engineering Report, Transition Station #1 Project, Northern Pass Transmission Line, Pittsburg, New Hampshire" by Quanta Subsurface.

The geotechnical investigation report can be found in Appendix H.

1.4 Soils

National Resource Conservation Service (NRCS) Web Soil Survey describes the soil at the Project Site as Tunbridge, Lyman and Plaisted silt loams with rock outcrop. The soils were classified as hydrologic soil group C. Two soil types are present on and in the vicinity of the Project Site according to the US Department of Agriculture Soil Conservation Service Soil Survey for Coos County, New Hampshire. The NRCS Web Soil Survey information is located in Appendix G

There is also a survey report for the site entitled "Northern Pass Transmission Project, Soil Survey Report for Transition Stations, Substation Expansions, and Converter Terminal" by Normandeau Environmental Consultants, dated February 6, 2015 describes six types of soils that are present at the Project Site.

Tunbridge fine sandy loam and Lyman loam are bedrock controlled soils. Tunbridge soils are moderately deep with bedrock within 40 inches of the soil surface. Lyman soils are shallow with bedrock within 20 inches of the soil surface. Bedrock outcrops were mapped within the vicinity of this map unit.

Northern Pass 1-3 Burns & McDonnell

Plaisted silt loam is well drained with a seasonal water table greater than 40 inches from the soil surface. Chesuncook silt loam is moderately well drained with a seasonal water table within 15 to 40 inches of the soil surface. Telos silt loam is somewhat poorly drained with a seasonal water table within 15 inches of the soil surface due to the presence of dense lodgement till. Cabot, very stony, silt loam is poorly drained with dense lodgement till in the substratum. Free water is commonly at or near the surface to result in hydric conditions. Most of the soils were classified as hydrologic soil group C with one classified as hydrologic group D. The soil survey report is located in Appendix G.

Table 1-1 below lists the soil types and hydrologic soil groups.

Table 1-1: Soil Types

Map Legend	Soil Type	Hydrologic Soil Group
90B	Turnbridge – Lyman Complex, slopes 1 to 8 percent	С
123B	Telos, very stony, slopes 3 to 8 percent	С
123C	Telos, very stony, slopes 8 to 15 percent	С
126C	Chesuncook, very stony, slopes 8 to 15 percent	С
126D	Chesuncook, very stony, slopes 15 to 25 percent	С
126E	Chesuncook, very stony, 25 to 45 percent	С
399/RK	Rock Outcrop, slopes 1 to 45 percent	Unknown
564D	Plaisted very fine sandy loam, very stony, slopes 15 to 25 percent	С
590B/P	Cabot gravelly silt loam, very stony, slopes 1 to 8 percent	D
561C	Turnbridge–Plaisted–Lyman Complex, very stony, slopes 8 to 15 percent	С
61D	Turnbridge – Lyman Rock Outcrop complex, slopes 25 to 35 percent	С

Northern Pass 1-4 Burns & McDonnell

This soil series has an erosion factor K that is not rated, however nearby soil has a K-Factor of 0.20. The erosion factor K, with values ranging from 0.02 to 0.69, signifies how susceptible a soil is to erosion. The larger the K value the more susceptible the soil is to erosion by water. The K factor for the Project site indicates that the soils are moderately susceptible to erosion by water. The susceptibility of the soils to moderate erosion will be resolved by the site stabilization with rock and native vegetation.

1.5 Wetlands, Rivers, Streams and Vernal Pools

A report entitled "Wetlands, Rivers, Streams and Vernal Pools Resource Report and Impact Analysis" by Normandeau Environmental Consultants, dated October 1, 2015 has been prepared for the NPT Project. Environmentally sensitive areas were found within the Project Site. A stream located on the north side of the site will be impacted during earthwork activities. This stream will be intercepted and collected by a new drainage swale north of the transition station pad. Refer to Appendix I for a copy of this report.

1.6 Floodplain

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Map No.33007C0215D for Coos County, New Hampshire, Effective Date February 20, 2013, the Project Site is located within Zone X. Areas determined to be outside the 0.2% annual chance floodplain. The FIRM Map is located in Appendix F.

1.7 Receiving Surface Waters

The Site is within the Connecticut River Watershed. The site and onsite streams are tributary to the Connecticut River.

1.8 Pre-Development Site Conditions

The Pre-Developed site consists of a heavy forested rolling hill terrain that drains to the east toward Old Canaan Road. There is only one discharge point from this site which is a culvert under Old Canaan Road.

1.9 Post-Development Site Conditions

Pre-developed stormwater drainage patterns are mimicked in post-developed conditions and utilize the same aforementioned Site discharge point as pre-development. Pre- and Post-development watershed maps are located in Appendix A. The post-development peak stormwater discharge rates are the same or below pre-development rates. No new water or septic/sanitary sewer services are required for the Project.

No proposed improvements are located within a FEMA 100-year flood plain, there are no adverse impacts to properties as a result.

Northern Pass 1-5 Burns & McDonnell

2.0 HYDROLOGY AND HYDRAULICS

The stormwater management for the Project has been developed to minimize the downstream effects of development at the Site. The stormwater requirements set forth by the New Hampshire Department of Environmental Services Stormwater Manual Volumes 1, 2, & 3, dated December 2008 and the New Hampshire Department of Transportation Manual on Design for Highways, Revision Date April 1998 were followed to the maximum extent practical for the design of the Site Development Plans and this Report.

The development of the Site results in the need to attenuate stormwater onsite. One above-ground detention basin is proposed and is discussed in further detail below. The following is the data used in the stormwater management analysis.

2.1 Methodology and Design Criteria

2.1.1 Rainfall Data

Type II 24-hour rainfall depths for the site location were obtained from the Northeast Regional Climate Center – http://precip.eas.cornell.edu/.

Return Frequency	24 Hour Depth (in)
2	2.20
10	3.08
50	4.31

Table 2-1: 24-Hour Type II Rainfall Data

2.1.2 Runoff Data

The stormwater runoff calculations were completed using the USDA NRCS/SCS TR-55 runoff curve number method in Bentley's PondPack V8i modeling software. Refer to Appendix B for the inputs and generated outputs. The input values that were used in the PondPack model are shown in the tables below.

Maximum sheet flow length for unpaved areas according to the NH DES Stormwater Manual is 100-ft. Below are the standard SCS runoff curve numbers used in the hydrology modeling and the predevelopment and post-development watershed cover data used in the hydrology modeling.

Northern Pass 2-1 Burns & McDonnell

Table 2-2: Standard SCS Runoff Curve Numbers

Land Type	Hydrologic Soil Group	Curve Number
Woods	С	70
Woods	D	77
Meadow	С	71
Meadow	D	78
Gravel	С	89
Gravel	D	91
Impervious (Asphalt Pavement, Water, Structures, Foundations)	-	98

Table 2-3: Pre-Developed Model Data

Subarea	Area (ac)	Curve Number	Time of Concentration (Minutes)
A	31.993	71	25.9

Table 2-4: Post-Developed Model Data

Subarea	Area (ac)	Composite Curve Number	Time of Concentration (Minutes)
A	10.714	71	26.8
В	0.402	88	5.0
С	0.515	87	6.4
D	0.073	78	5.0
Е	9.51	70	22.7
F	10.501	70	24.1
G	0.278	89	5.0
Total	31.993	-	-

The below table summarizes the Manning's roughness coefficients used in the analysis.

Table 2-5: Manning's Roughness Coefficients

Surface Description	Manning's n
Grass, Dense grasses (sheet)	0.240
Woods, Dense underbrush (sheet)	0.800
Smooth Surface Gravel/Pavement (sheet)	0.100
Woods, Light underbrush (sheet)	0.400
Concrete/RCP	0.013
PVC	0.010
HDPE	0.012
Grass w/ NAG Stabilization	0.045
Riprap (D50 = 6")	0.069
Riprap (D50 = 12")	0.078

Northern Pass 2-2 Burns & McDonnell

2.2 Stormwater Modeling Results

For the proposed Project, a new detention basin is proposed to be constructed on the southeast side of the Site. Runoff from the hill area northwest of the site will collect into Swale A which will intercept Drainline A. Runoff from the transition station pad will collect in Swale B, which will intercept the catch basin on Drainline A. Drainline A discharges to the detention basin. Runoff from the western portion of the hill area northwest of the site will collect into Swale E which intercepts Drainline B which will convey the runoff under the new access road. Runoff from the area below the detention pond will be collected in Swale C and intercept the runoff conveyed through Drainline B. This runoff will be discharged through a treatment swale and then drain to the existing Pre-Development Outlet-1 through the existing roadside swale. Runoff from the cut area east of the transition station pad will be collected in Swale D which daylights near the southeast corner of the pad. The detention basin includes a concrete outlet control structure to control the runoff rate from the basin and an emergency spillway to manage storm events larger than the 50 year storm event.

The proposed detention basin was analyzed to mitigate the impacts of stormwater runoff from changes in drainage patterns that would result from the construction of this project. The hydrology model was analyzed assuming no infiltration. The concrete outlet control structure will control the rate of runoff to below the pre-development runoff as shown by the modeling results. The following tables summarize flow conditions for the Project and the reduction of flow achieved by the detention basin.

There is only one Analysis Point for the Site located at the existing Outlet-1. The tables below summarize the pre- and post-developed peak discharge runoff rates from the analysis point. Refer to Appendix A for the Pre-Developed and Post-Developed Watershed Maps. Modeling results and output can be found in Appendix B.

Table 2-6: Outlet-1 Flow

Return Frequency (yr)	Pre-Developed Flow (cfs)	Post-Developed Flow (cfs)
2	7.35	5.39
10	20.96	17.09
50	45.73	37.18

2.3 Detention Basin Design

The detention basin, Basin 'A', was designed and analyzed to provide long term stormwater attenuation, water quality treatment, and infiltration once the Project has been constructed. The basin has been designed to meet the requirements in the NH DES Stormwater Manual. The detention basin contains storm events up to and including the 50-year design storm with a minimum 1-ft freeboard above the emergency spillway crest elevation. The detention basin has been designed as to not require a State Dam permit. The below tables summarize the detention basin storage volumes and water surface elevations respect to the design storm events.

Cumulative Storage Elevation (feet-NAVD88) Surface Area (ac) Volume (Acre-ft) 1,155.61 0.037 1,157.00 0.052 0.06 1,158.00 0.077 0.13 1.159.00 0.101 0.22 1,160.00 0.146 0.34 1,161.00 0.170 0.50 1,162.00 0.196 0.68 1.162.60 0.211 0.80

Table 2-7: Detention Basin Storage Volume

Table 2-8: Detention Basin Water Surface Elevation

Return Frequency (yr)	Maximum Water Surface Elevation (ft)
2	1,159.32
10	1,159.91
50	1,160.92

2.4 Stormwater Swales

The Stormwater swales are designed for the 10-year storm event with a minimum of one foot of freeboard. In addition, all open swales are expected to convey the 100-year storm event without overtopping. The open swales will be lined with erosion control blankets and vegetated or lined with riprap as specified in the Site Development Plans. The following table summarizes the design criteria as well as the proposed lining for the proposed open swales. The results show that the swale will be stable for storms up to the 10 year flow.

Northern Pass 2-4 Burns & McDonnell

10 Year 100 Year 100 10 Year Side Year Max. Max. Swale Swale Velocity Slopes **Swale** Slope (%) Width (ft) Velocity **Flow Flow** Depth (ft) (ft/s) (H:V ft) (cfs) (cfs) (ft/s) 2.41 20.09 3.19 1.0 - 4.76.92 2.0 2.0 3:1 A В 1.15 1.15 2.19 1.38 2.0 2.0 3:1 0.80 $\overline{\mathbf{C}}$ 2.79 3.41 1.38 2.65 2.0 2.0 3:1 8.7 D 0.13 0.77 0.30 1.04 2.0 2.0 3:1 2.0 E 6.27 2.98 18.48 3.97 2.0 2.0 3:1 9.0 F 7.65 0.99 22.59 1.44 2.0 8.0 3:1 0.0 G 0.83 0.81 1.55 0.92 0.1 0.0 1000:1 0.33 Н 1.86 1.31 5.57 1.72 1.2 0.0 3:1 & 8:1 1.0 1.86 0.73 5.57 0.96 1.2 0.0 3:1 & 8:1 0.5

Table 2-9: Stormwater Swale Summary

Refer to Appendix C for the FlowMaster model results for the Swales.

The table below summarizes the stormwater swale stabilization types. The calculations can be found in Appendix C.

Swale	Stabilization Type	10 Yr. Design Discharge (cfs)	Allowable Shear Stress (psf)	Calculated Shear Stress (psf)
A	12" Riprap	6.92	4.8*	2.05
В	NAG SC250	1.15	8**	0.16
С	NAG SC250	1.38	8**	1.03
D	NAG SC250	0.13	8**	0.10
Е	12" Riprap	6.27	4.8*	3.20
F	NAG SC250	7.65	8**	0.09
G	6" Riprap	0.83	2.4*	0.62
Н	NAG SC250	1.86	8**	0.32
I	6" Riprap	1.86	2.4*	0.21

Table 2-10: Stormwater Swale Stability

2.5 Treatment Swale Design

The steep terrain on the site requires the use of an access road that exceeds a five percent longitudinal slope. Eversource standards require that the access road be paved if this slope is exceeded. Due to the steeply sloping terrain it is not possible to route all the runoff from the impervious pavement areas through the detention basin. Runoff from the area west of the access road, turnaround and pad flows to the south through Drainline B and is joined by the runoff from a small portion of the turnaround pad, access road and the swale located east of the access road. These areas are located below the elevation of the inlet to the detention basin and must be treated with another BMP. The terrain in this area slopes steeply upward from the roadside ditch which makes it infeasible to install a small stormwater pond, such

Northern Pass 2-5 Burns & McDonnell

^{*}From Table 2.3 Federal Highway Administration Hydraulic Engineering Circular No. 15, Third Edition

^{**} Manufacturer's maximum permissible shear stress

as a pocket pond for treatment. In addition, stormwater wetland BMPs are also not feasible due to the lack of available space between the roadside ditch and steep terrain. Infiltration and filtering BMPs would not function well in the roadside ditch adjacent to a steep slope due to possible slope instability caused by seepage and the extra maintenance that would be required to keep the BMP clean and functioning properly within the road right-of-way. Lower infiltration rates of the soil would also reduce the effectiveness of infiltration and filtration BMPs.

The most feasible BMP for treatment is a treatment swale, which is designed to promote sedimentation by providing a minimum hydraulic residence time within the channel under water quality flow conditions. The existing roadside ditch north of Old Canaan Road will be excavated and widened to meet the hydraulic residence time requirements. This conflicts with the guidelines that state that portions of the treatment swale cannot include a roadside ditch. Therefore, a variance is requested due to the steep slopes at the site that prevent all the runoff from the impervious paved areas from being treated in the detention basin and the infeasibility of constructing another type BMPs in the roadside ditch. The treatment swale will be graded with a 8' flat bottom width a distance of 109' with a slope of 0.2 percent, see the design calculations in Appendix D.

2.6 Basin Spillway

The detention basin is designed to contain the 100-year storm event without overtopping; the spillway is designed to provide for emergency flow for events higher than the 100-year storm. The spillway was modeled with a headwater elevation 2 inches (0.17') higher than the crest for modeling purposes. The basin spillway will be lined with riprap as specified in the Site Development Plans.

100 Year 100 Year **Spillway** Side Allowable Calculated Downstream Max. Flow (weir) Slopes **Shear Stress** Shear Velocity Slope (%) Width (ft) (H:V ft) (cfs) (ft/s) (psf) **Stress** 1.98 1.06 11.0 3:1 50 6 5.20

Table 2-11: Basin Spillway Summary & Stability

Refer to Appendix C for the spillway and shear flow calculations.

2.7 Storm Drainage System

Storm drainage collection system is modeled using Bentley Culvert Master. A series of perforated underdrains are proposed around the transition station and the turnaround area to relieve stormwater by acting as curtain drains and aid in surface drainage. Underdrains were not modeled for the design, standard 6 inch diameter underdrains are specified, which should be adequate for subsurface drainage.

Northern Pass 2-6 Burns & McDonnell

Riprap outlet protection is provided at all pipe discharge locations refer to Section 2.9 for further information.

2.8 Culverts

In accordance with the New Hampshire Department of Transportation Manual on Drainage Design for Highways, all culverts are designed for the 10-year storm event. They are expected to convey the 25-year and 100-year design storm events without overtopping as they are an integral part of the stormwater system. Drainline A1 conveys runoff from the northern portion of the site and outlets into the Detention Basin, Drainline A2 adds the runoff from the transition station pad and the swale south of the pad to the Drainline A1 runoff via a drop inlet. Drainline B conveys the runoff from the west portion of the site under the access road. Drainline C drains the detention basin. The culverts have been designed as to not be considered a dam. Below is a summary of the proposed culverts and design criteria. The culvert calculations for culverts A1, A2, B and C were performed using Bentley CulvertMaster and are located in Appendix C. The culvert calculations for culvert C were performed by Bentley PondPack and are located in Appendix B.

Table 2-12: Culverts

Culvert	Size	Material	Roughness Coefficient	Length (ft)	Slope (%)	10-Year Design Discharge (cfs)	25-Year Design Discharge (cfs)	100-Year Design Discharge (cfs)
A1	24"	HDPE	0.012	43	1.00	6.92	11.01	20.09
A2	24"	HDPE	0.012	38.4	1.00	8.07	12.51	22.28
В	24"	HDPE	0.012	96	1.00	6.27	10.09	18.48
С	18"	HDPE	0.012	25	1.00	3.21	6.59	15.75

Northern Pass 2-7 Burns & McDonnell

2.9 Outlet Protection

Outlet protection is designed for the 25-year frequency design storm as required by the NH DES Stormwater Manual. Calculations for riprap apron protection are located in Appendix C.

Table 2-13: Outlet Protection

Outlet No.	Length (ft)	Depth (ft)	Width at Culvert (ft)	Width at End of Apron (ft)	Median Stone Size (in)	25-Year Flow (cfs)	25-Year Velocity (fps)
A	28	1.5	6	17	6	12.51	7.48
В	21	2.25	10	27	9	10.09	7.38
С	18	1.5	4.5	22	6	6.59	6.39

* * * * *

Northern Pass 2-8 Burns & McDonnell

3.0 BEST MANAGEMENT PRACTICES

The proposed Stormwater Management System contains Best Management Practices (BMPs) that will, if maintained properly, provide treatment of Site generated stormwater runoff. The proposed BMPs are described below.

3.1 Groundwater Recharge Volume & Water Quality Volume

There are two locations that will treat the runoff from the impervious areas of the site. The first area is the storm water pond that will treat the runoff from a portion of the paved turnaround pad and the structure and foundations on the transition station pad. The Water Quality Volume (WQV) that is required to be treated from these areas is 3,113 cubic feet. The storm water pond has a permanent pool volume of 7,749 cubic feet which is above the minimum required. The second area is a treatment swale that will treat the runoff from the remaining portion of the turnaround pad that does not flow into the stormwater pond and all of the asphalt access road. The WQV that is required to be treated is 3,194 cubic feet. The Water Quality Flow (WQF) is 0.36 cfs and the treatment swale will have a residence time of 11 minutes. The Groundwater Recharge Volume (GRV) that is needed due to the impervious cover is 142 cubic feet, this volume will infiltrate slowly through the soil under the permanent pool in the detention basin. The worksheets for the stormwater pond and the treatment swale are located in Appendix D.

3.2 Temporary Erosion Controls

During construction of the proposed station, the Contractor will be responsible for installation, implementation, and maintenance of temporary erosion and sedimentation control measures, that if implemented and maintained properly, will help to prevent off-site tracking and conveyance of waterborne loss of sediment and debris. The specific measures proposed are located in the Site Development Plans, which are under separate cover.

Temporary erosion and sedimentation controls shall not be removed until construction is complete and site stabilization is achieved.

3.3 Permanent Erosion Controls

Upon completion of construction, the Site shall be stabilized by one or more of the following measures in accordance with the Site Development Plans (under separate cover):

3.3.1 Crushed Rock/Paving

Crushed rock will be installed on the station pad area and the access road and turnaround area will be paved with asphalt.

Northern Pass 3-1 Burns & McDonnell

3.3.2 Seeding

Any disturbed area not proposed as an impervious or gravel surface will be restored to natural meadow vegetation over 4" of topsoil. Planting and mulching of permanent seed will occur as soon as practical after final grading, placement of topsoil, and soil preparation has been completed. Seeding should occur during the growing season.

3.3.3 Stormwater Swale Lining

Stormwater swales will be lined with permanent riprap or vegetated as to help prevent erosion.

3.3.4 Outlet Protection

Pipe outlets implement riprap outlet protection to help prevent scouring and erosion.

3.3.5 Flood Protection Analysis

Flood protection has been implemented for the detention basin as follows:

- Swales have been designed to convey the 10-year, 24-hour storm event with minimum 1.0 ft of freeboard:
- Swales have been designed to convey the 100-year, 24-hour storm event;
- Detention Basin will detain the 2-year through 50-year, 24-hour storm event;
- An emergency spillway will be used to convey storm events larger than the 50-year storm, 24-hour event.

3.4 Antidegredation

There is no greater than 10% effective impervious cover (EIC) and no less than 65% undisturbed cover within the property boundary of the Site, therefore the Site satisfies the NHDES 1065 Rule. Refer to the Site Cover Plan located in Appendix A.

The Site stormwater runoff discharges to an Outstanding Resource Water (ORW) according to the New Hampshire Department of Environmental Services (NH DES) OneStop GIS mapper. As a result, pollutant loading calculations were performed using the NH DES standard Simple Method worksheet to demonstrate that there is no increase in Total Suspended Solids (TSS), Total Phosphorus (TP), and Total Nitrogen (TN) resulting from the Project. The pollutant loading calculations and other supporting information are located in Appendix J. Also, an impervious area summary table has been prepared to outline the impervious areas draining to the proposed BMP, refer to Appendix D.

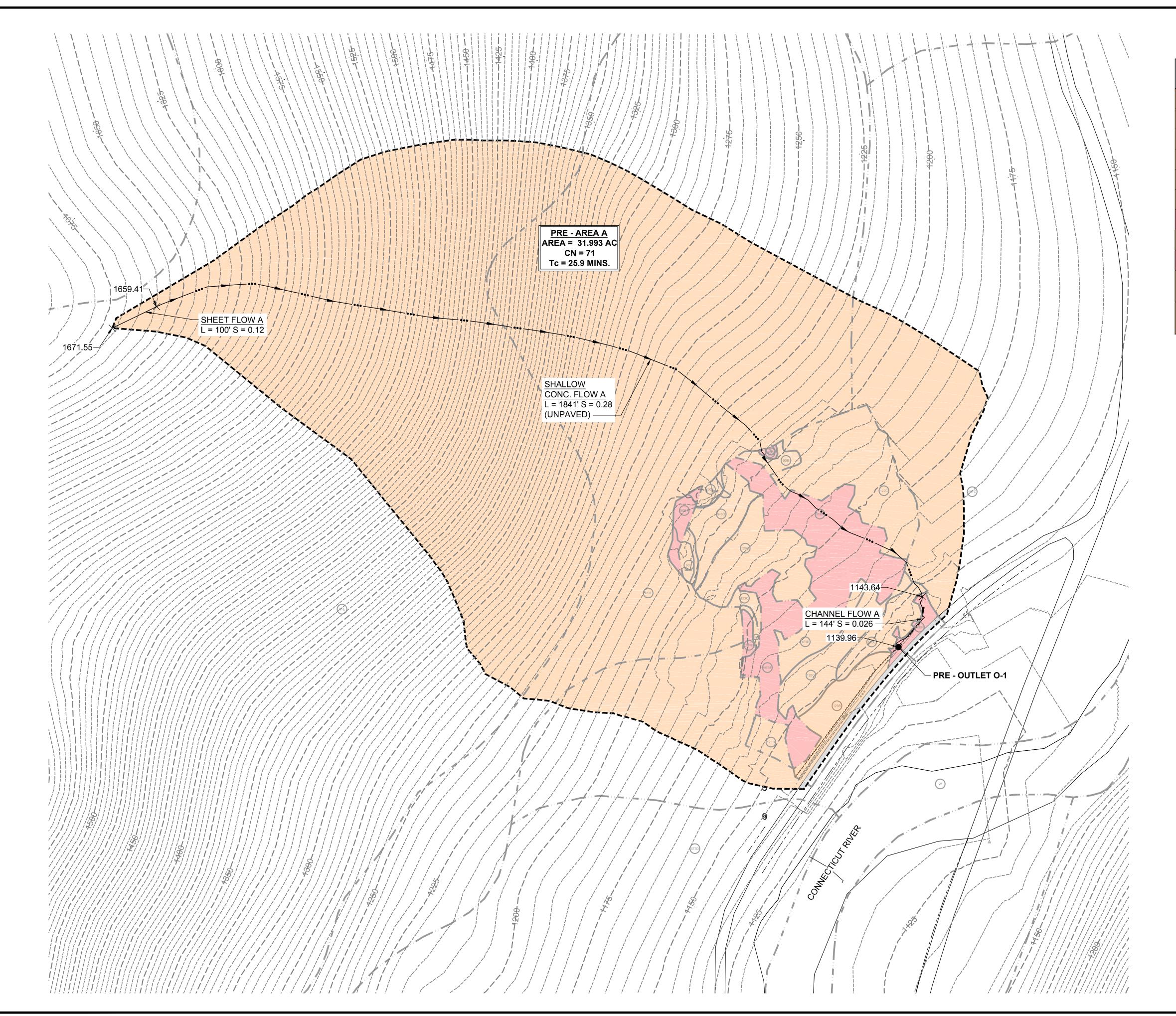
Northern Pass 3-2 Burns & McDonnell

The Simple Method generates pollutant loads based on the pre- and post- drainage areas indicated on the Watershed Maps located in Appendix A. The proposed BMP is designed to remove a percentage of the pollutants. Sub-watershed Post-Areas C and F are considered disconnected impervious area because they drain continuously through a vegetated swale or filter strip to the property line or to a treatment BMP. The disconnected impervious credit and the treatment BMP provides water quality and limits post-development pollutant levels to less than the pre-development condition.

The Site lies within the NE Regional Mercury Total Maximum Daily Load (TMDL) according to EPA 2010 Waterbody Report for the Connecticut River. The Project is not anticipated to produce mercury byproducts, thus restrictions from the NE Regional Mercury TMDL are not applicable.

* * * * *

Northern Pass 3-3 Burns & McDonnell


4.0 CONCLUSION

In order to mitigate the impacts of stormwater runoff caused by the addition of the substation, several BMPs were implemented. Those BMPs include the addition of vegetated swales, riprap lined swales and a detention basin. The detention basin will also reduce the post-developed peak discharge rates below that of the pre-developed flows for the 2-year through the 50-year storm events. The detention basin utilizes one outlet control structure and emergency spillway. The outlet control structure will control up to and including the 50-year storm event. The storm events larger than the 50-year storm event will discharge through the emergency spillway. The on-site BMPs have been designed in accordance with the New Hampshire Department of Environmental Services Stormwater Manual Volumes 1, 2, & 3.

* * * * *

Northern Pass 4-1 Burns & McDonnell

SOIL TYPE LEGEND

Map Legend	Legend Soil Type			
90B	Turnbridge – Lyman Complex, slopes 1 to 8 percent	С		
123B	Telos, very stony, slopes 3 to 8 percent	С		
123C	Telos, very stony, slopes 8 to 15 percent	С		
126C	Chesuncook, very stony, slopes 8 to 15 percent	С		
126D	Chesuncook, very stony, slopes 15 to 25 percent	С		
126E	Chesuncook, very stony, 25 to 45 percent	С		
399/RK	Rock Outcrop, slopes 1 to 45 percent	Unknown (D)		
564D	Plaisted very fine sandy loam, very stony, slopes 15 to 25 percent	С		
590B/P	Cabot gravelly silt loam, very stony, slopes 1 to 8 percent	D		
561C	Turnbridge – Plaisted – Lyman Complex, very stony, slopes 8 to 15 percent	С		
61D	Turnbridge – Lyman Rock Outcrop complex, slopes 25 to 35 percent	С		

HSG TOTAL AREA IN ACRES							
HSG	AREA A	TOTAL					
А		<u>-</u>					
В	<u>-</u>	-					
С	29.990	29.990					
D	1.893	1.893					
WATER		<u>-</u>					
IMPERVIOUS	0.110	0.110					
TOTAL	31.993	31.993					

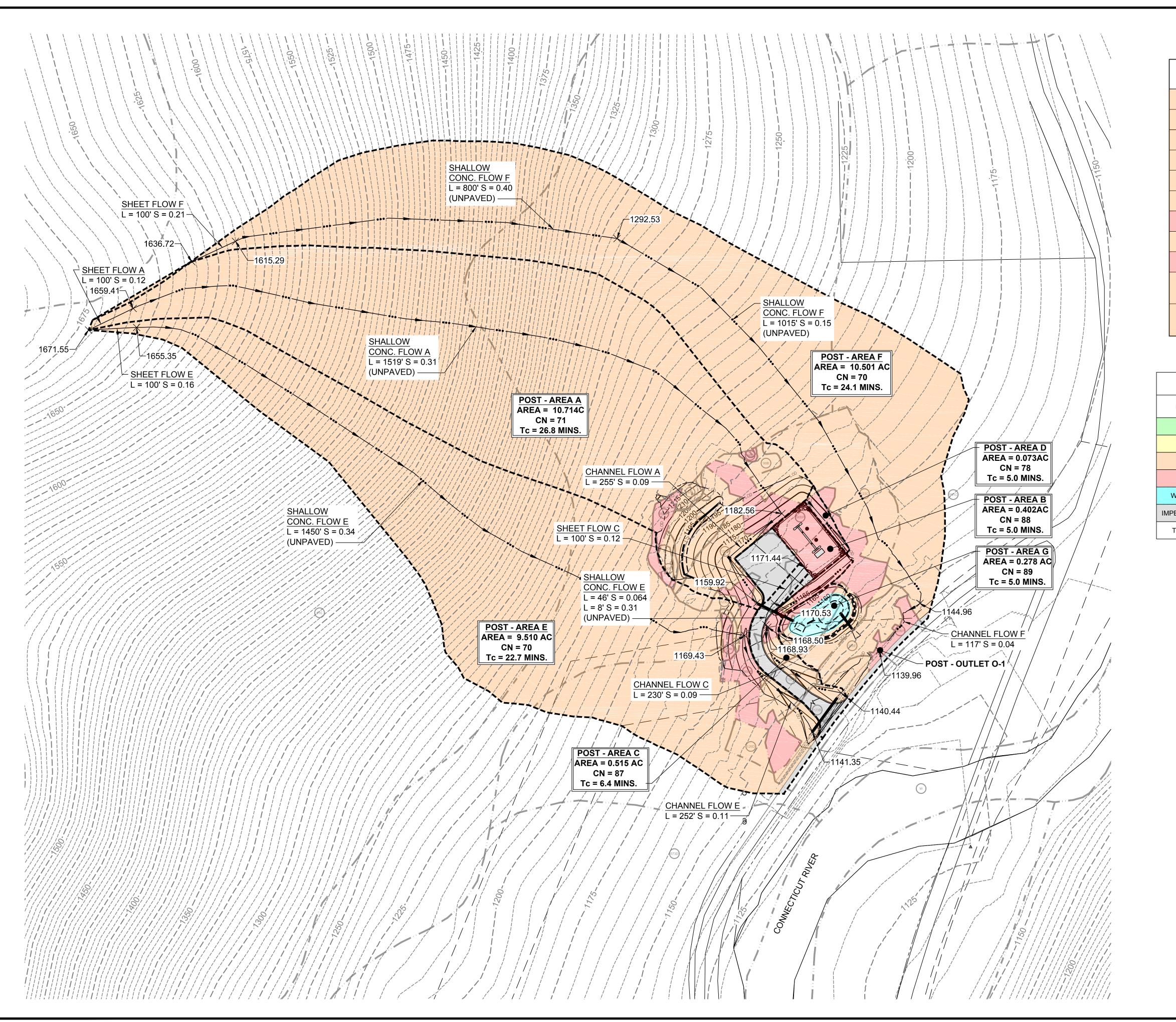
LEGEND

PRE-DEVELOPMENT SUB-AREA BOUNDARY

NRCS WEB SOIL APPROX. SURVEY SOIL BOUNDARY

TIME OF CONCENTRATION

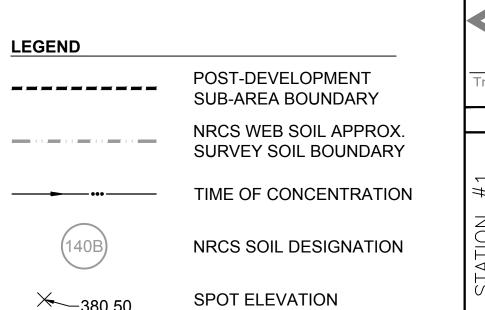
NRCS SOIL DESIGNATION SPOT ELEVATION

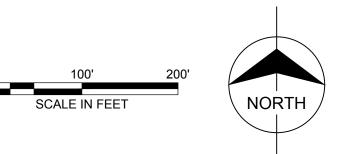

FOR PERMITTING **PURPOSES ONLY**

NOT FOR CONSTRUCTION

NPTT1-WSPRE

RANSMISSION LINE

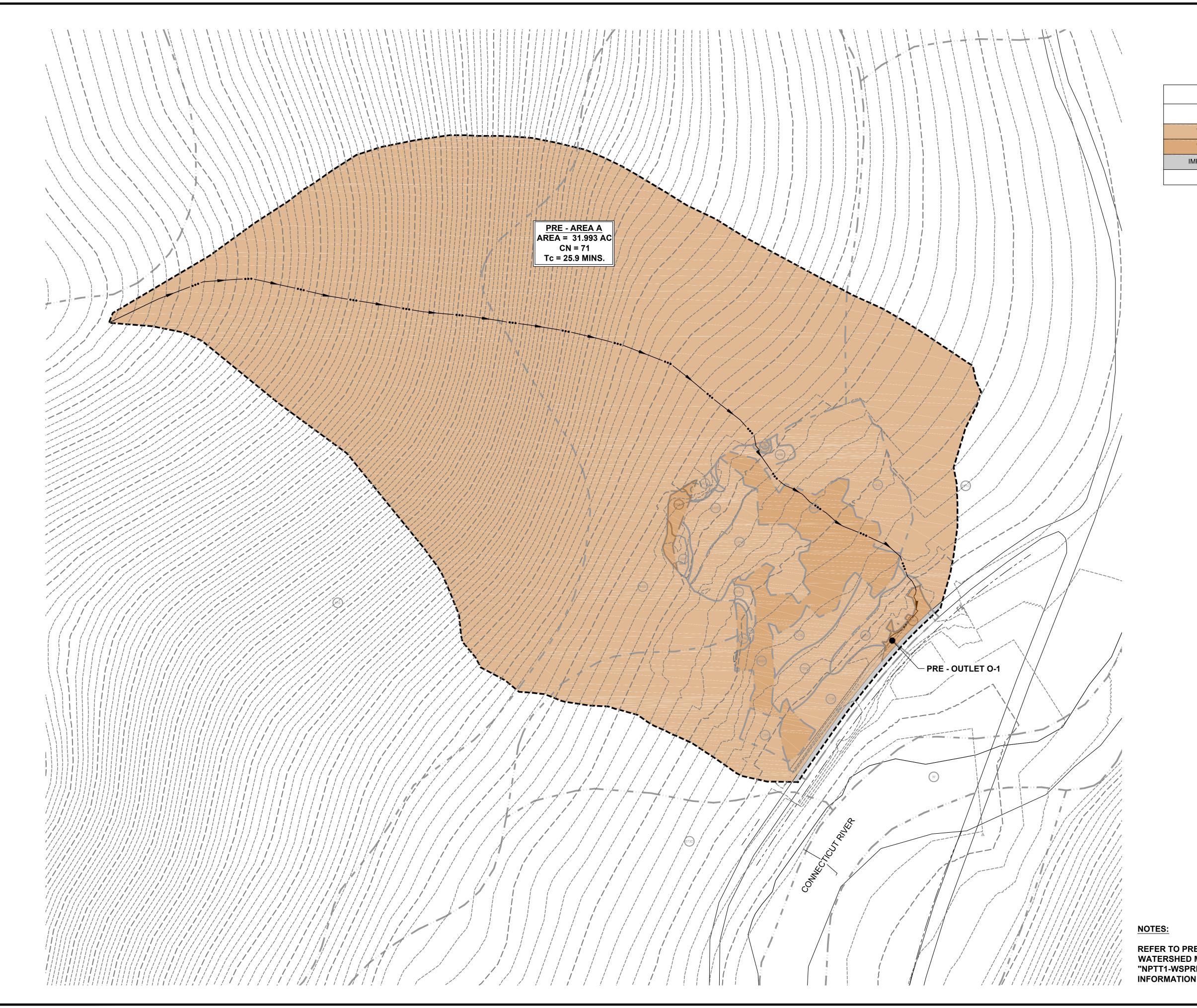

MILE NO:
SHEET 1 OF 2



SOIL TYPE LEGEND

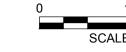
Map Legend	Soil Type	Hydrologic Soil Group
90B	Turnbridge – Lyman Complex, slopes 1 to 8 percent	С
123B	Telos, very stony, slopes 3 to 8 percent	С
123C	Telos, very stony, slopes 8 to 15 percent	С
126C	Chesuncook, very stony, slopes 8 to 15 percent	С
126D	Chesuncook, very stony, slopes 15 to 25 percent	С
126E	Chesuncook, very stony, 25 to 45 percent	С
399/RK	Rock Outcrop, slopes 1 to 45 percent	Unknown (D)
564D	Plaisted very fine sandy loam, very stony, slopes 15 to 25 percent	С
590B/P	Cabot gravelly silt loam, very stony, slopes 1 to 8 percent	D
561C	Turnbridge – Plaisted – Lyman Complex, very stony, slopes 8 to 15 percent	С
61D	Turnbridge – Lyman Rock Outcrop complex, slopes 25 to 35 percent	С

HSG TOTAL AREA IN ACRES										
HSG	AREA A	AREA B	AREA C	AREA D	AREA E	AREA F	AREA G	TOTAL		
А	-	-	-	-	-	-	-	-		
В	-	-	-	-	-	-	-	-		
С	10.069	0.016	0.181	0.005	9.040	10.113	0.052	29.476		
D	0.411	0.359	0.043	0.068	0.440	0.333	0.055	1.709		
WATER		-	ı	<u>-</u>	1	-	0.171	0.171		
IMPERVIOUS	0.234	0.027	0.291		0.030	0.055	-	0.637		
TOTAL	10.714	0.402	0.515	0.073	9.510	10.501	0.278	31.993		



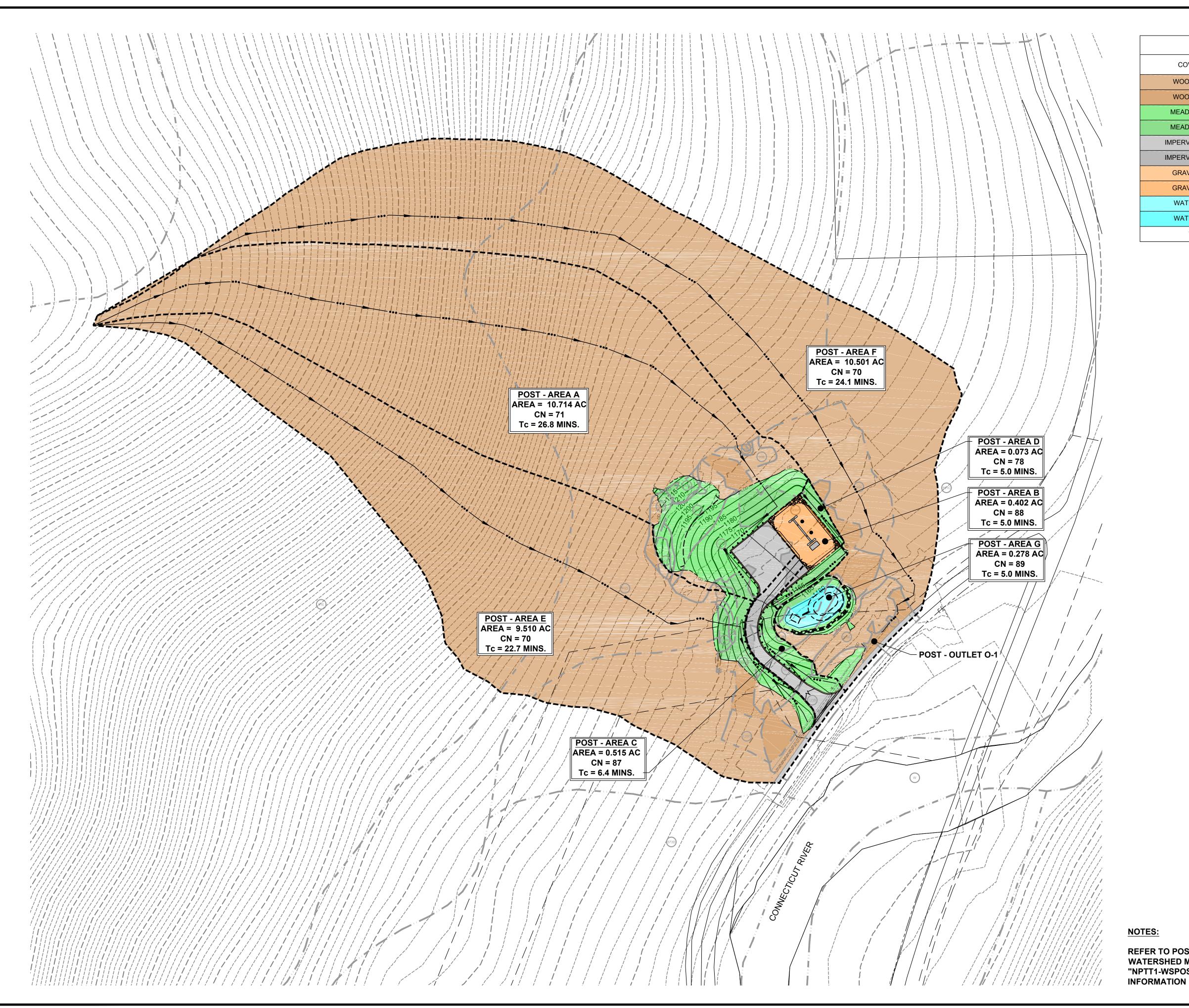
FOR PERMITTING
PURPOSES ONLY
NOT FOR CONSTRUCTION

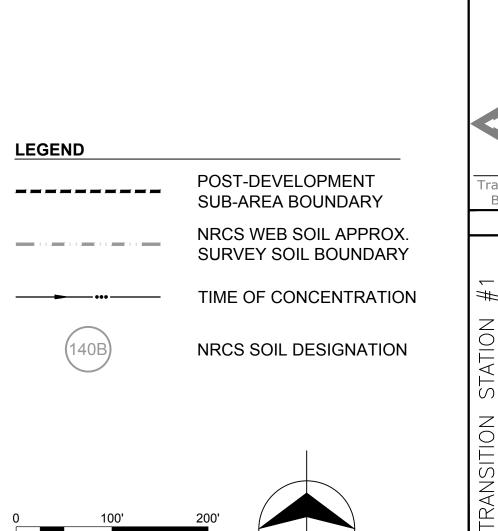
MILE NO:
SHEET 2 OF 2


NPTT1-WSPOS

RANSMISSION LINE

COVER TYPE TOTAL AREA IN ACRES									
COVER TYPE AREA A TOTAL									
WOODS (HSG C)	29.990	29.990							
WOODS (HSG D)	1.893	1.893							
IMPERVIOUS (HSG C)	0.110	0.110							
TOTAL 31.993 31.993									


GEND	
	PRE-DEVELOPMENT SUB-AREA BOUNDARY
	NRCS WEB SOIL APPROX. SURVEY SOIL BOUNDARY
•••	TIME OF CONCENTRATION
(140B)	NRCS SOIL DESIGNATION


REFER TO PRE-DEVELOPMENT WATERSHED MAP DRAWING "NPTT1-WSPRE" FOR FURTHER

FOR PERMITTING **PURPOSES ONLY** NOT FOR CONSTRUCTION

MILE NO:
SHEET 1 OF 2

COVER TYPE TOTAL AREA IN ACRES										
COVER TYPE	AREA A	AREA B	AREA C	AREA D	AREA E	AREA F	AREA G	TOTAL		
WOODS (HSG C)	9.252	<u>-</u>	<u>-</u>	-	8.850	10.004	-	28.106		
WOODS (HSG D)	0.140		- -	-	0.270	0.329	-	0.739		
MEADOW (HSG C)	0.809	-0.012	0.170	0.005	0.180	0.109	0.052	1.337		
MEADOW (HSG D)	0.268	0.096	0.039	0.068	0.164	0.004	0.055	0.694		
IMPERVIOUS (HSG C)	0.211	0.002	0.204	-	0.030	0.055	-	0.502		
IMPERVIOUS (HSG D)	0.023	0.025	0.087	-	<u>-</u>	-	-	0.135		
GRAVEL (HSG C)	0.008	0.004	-0.011	-	0.010	-	-	0.033		
GRAVEL (HSG D)	0.003	-0.263	0.004	-	0.006	-	-	0.276		
WATER (HSG C)			<u>-</u>	-	-	-	0.120	0.120		
WATER (HSG D)		<u>-</u>		<u>-</u>	-	_	0.051	0.051		
TOTAL	10.714	0.402	0.515	0.073	9.510	10.501	0.278	31.993		

REFER TO POST-DEVELOPMENT
WATERSHED MAP DRAWING
"NPTT1-WSPOST" FOR FURTHER
INFORMATION

FOR PERMITTING
PURPOSES ONLY
NOT FOR CONSTRUCTION

NPTT1-WSPOST-COVE

MILE NO: SHEET 2 OF 2

RANSMISSION LINE

LEGEND

EI - EXISITING IMPERVIOUS AREA UDC - UNDISTURBED COVER PI - PROPOSED IMPERVIOUS AREA DIA - PROPOSED DISCONNECTED IMPERVIOUS AREA

EXISTING PARCEL LINE

DISTURBANCE LINE (LOD)

PROPOSED LIMIT OF

MAP REFERENCES:

1. 2011 ORTHOIMAGERY OBTAINED IN .SID FORMAT FROM NH STATEWIDE GIS CLEARINGHOUSE WEBSITE AT www.granit.unh.edu. TILES USED: 1035009150 & 1035009200

SITE COVER AREA									
ITEM	DESCRIPTION	AREA (SF)	AREA (AC)						
PS	PARCEL SIZE	3,601,217	82.67						
El	EXISTING IMPERVIOUS	0	0.00						
PI	PROPOSED IMPERVIOUS	27,945	0.64						
PDA	PROPOSED DISTURBED AREA	91,472	2.10						
UDC	UNDISTURBED COVER	3,509,770	80.57						
DIA	PROPOSED DISCONNECTED IMPERVIOUS AREA	10,758	0.25						

	SITE COVER TABULATION		
ITEM	DESCRIPTION	FORMULA	TOTAL
TIC	TOTAL IMPERVIOUS COVER (ACRES)	EI + PI	0.64 AC
EIC	EFFECTIVE IMPERVIOUS COVER (ACRES)	TIC - DIA	0.39 AC
EIC %	EIC PERCENTAGE	EIC / PS	0.5%
UDC %	UDC PERCENTAGE	UDC / PS	97.5%

FOR PERMITTING **PURPOSES ONLY** NOT FOR CONSTRUCTION

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New Hampshire

Location

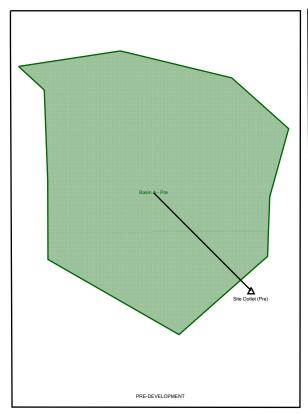
Longitude71.422 degrees WestLatitude45.011 degrees NorthElevationUnknown/Unavailable

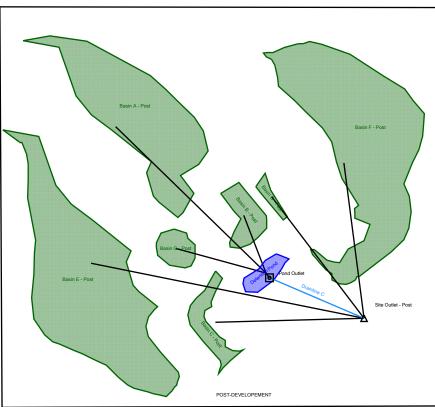
Date/Time Wed, 17 Dec 2014 12:20:43 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.68	0.85	1.04	1yr	0.73	0.97	1.17	1.39	1.62	1.88	2.20	1yr	1.67	2.12	2.53	3.13	3.74	1yr
2yr	0.29	0.45	0.56	0.74	0.93	1.15	2yr	0.80	1.05	1.30	1.57	1.87	2.21	2.55	2yr	1.95	2.45	2.95	3.64	4.26	2yr
5yr	0.34	0.53	0.67	0.89	1.14	1.42	5yr	0.98	1.27	1.61	1.93	2.28	2.67	3.10	5yr	2.36	2.98	3.54	4.28	4.96	5yr
10yr	0.38	0.60	0.75	1.03	1.34	1.67	10yr	1.15	1.47	1.90	2.27	2.66	3.09	3.59	10yr	2.73	3.45	4.06	4.84	5.57	10yr
25yr	0.44	0.71	0.90	1.24	1.65	2.07	25yr	1.43	1.79	2.36	2.80	3.26	3.74	4.36	25yr	3.31	4.19	4.87	5.71	6.50	25yr
50yr	0.50	0.80	1.03	1.44	1.94	2.44	50yr	1.68	2.07	2.78	3.29	3.81	4.32	5.05	50yr	3.82	4.85	5.60	6.48	7.31	50yr
100yr	0.57	0.92	1.19	1.68	2.28	2.88	100yr	1.97	2.41	3.28	3.86	4.43	5.00	5.86	100yr	4.43	5.63	6.44	7.35	8.23	100yr
200yr	0.64	1.05	1.36	1.95	2.69	3.41	200yr	2.32	2.80	3.87	4.54	5.17	5.79	6.80	200yr	5.12	6.53	7.41	8.35	9.26	200yr
500yr	0.77	1.26	1.64	2.39	3.35	4.24	500yr	2.89	3.42	4.81	5.60	6.34	7.03	8.28	500yr	6.22	7.96	8.93	9.89	10.85	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.22	0.34	0.41	0.56	0.68	0.88	1yr	0.59	0.86	0.88	1.12	1.49	1.65	1.99	1yr	1.46	1.92	2.24	2.80	3.32	1yr
2yr	0.28	0.43	0.53	0.72	0.88	1.03	2yr	0.76	1.01	1.14	1.38	1.72	2.13	2.47	2yr	1.89	2.38	2.86	3.53	4.15	2yr
5yr	0.31	0.48	0.59	0.81	1.03	1.19	5yr	0.89	1.17	1.32	1.65	1.98	2.47	2.86	5yr	2.18	2.75	3.28	3.99	4.65	5yr
10yr	0.33	0.51	0.63	0.88	1.14	1.33	10yr	0.98	1.30	1.48	1.86	2.21	2.73	3.17	10yr	2.42	3.05	3.62	4.35	5.04	10yr
25yr	0.36	0.55	0.68	0.98	1.29	1.54	25yr	1.11	1.51	1.73	2.11	2.54	3.13	3.61	25yr	2.77	3.47	4.10	4.85	5.57	25yr
50yr	0.38	0.58	0.72	1.03	1.39	1.72	50yr	1.20	1.68	1.94	2.29	2.81	3.45	3.98	50yr	3.05	3.82	4.48	5.26	5.97	50yr
100yr	0.40	0.61	0.76	1.10	1.51	1.92	100yr	1.30	1.88	2.17	2.49	3.12	3.80	4.36	100yr	3.36	4.19	4.89	5.67	6.40	100yr
200yr	0.43	0.64	0.81	1.18	1.64	2.16	200yr	1.42	2.11	2.44	2.68	3.44	4.17	4.77	200yr	3.69	4.58	5.32	6.11	6.83	200yr
500yr	0.46	0.68	0.88	1.27	1.81	2.52	500yr	1.56	2.47	2.85	2.98	3.91	4.69	5.32	500yr	4.15	5.12	5.90	6.69	7.35	500yr


Upper Confidence Limits

_																					
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.46	0.57	0.76	0.94	1.09	1yr	0.81	1.06	1.21	1.49	1.77	2.06	2.44	1yr	1.82	2.34	2.78	3.40	4.04	1yr
2yr	0.30	0.47	0.58	0.78	0.96	1.12	2yr	0.83	1.10	1.25	1.56	1.83	2.28	2.66	2yr	2.02	2.55	3.06	3.75	4.40	2yr
5yr	0.36	0.56	0.70	0.96	1.22	1.37	5yr	1.05	1.34	1.53	1.88	2.36	2.88	3.33	5yr	2.55	3.21	3.80	4.57	5.26	5yr
10yr	0.42	0.65	0.81	1.13	1.46	1.64	10yr	1.26	1.60	1.84	2.26	2.72	3.45	3.99	10yr	3.05	3.84	4.49	5.32	6.08	10yr
25yr	0.53	0.81	1.01	1.44	1.89	2.09	25yr	1.63	2.04	2.36	2.93	3.43	4.37	5.08	25yr	3.87	4.88	5.64	6.54	7.37	25yr
50yr	0.62	0.95	1.18	1.70	2.29	2.49	50yr	1.98	2.44	2.85	3.58	4.10	5.23	6.09	50yr	4.63	5.85	6.70	7.66	8.54	50yr
100yr	0.74	1.12	1.41	2.03	2.79	2.98	100yr	2.41	2.92	3.43	4.38	4.92	6.27	7.31	100yr	5.55	7.03	7.97	8.98	9.91	100yr
200yr	0.89	1.34	1.70	2.45	3.42	3.56	200yr	2.95	3.48	4.15	5.35	5.88	7.51	8.78	200yr	6.64	8.44	9.48	10.54	11.51	200yr
500yr	1.13	1.68	2.16	3.15	4.47	4.53	500yr	3.86	4.43	5.33	6.96	7.48	9.54	11.19	500yr	8.44	10.76	11.95	13.05	14.04	500yr

Scenario: Post-Development 2 year

Project Summary		
Title	Northern Pass Transition Station #1	
Engineer	Robbyn Reed	
Company	Burns & McDonnell	
Date	1/5/2017	

Notes

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Basin A - Pre	2 year	2	0.923	12.200	7.35
Basin A - Pre	10 year	10	2.132	12.200	20.96
Basin A - Pre	50 year	50	4.261	12.150	45.73
Basin A - Pre	100 year	100	5.582	12.150	60.96
Basin A - Post	2 year	2	0.309	12.200	2.40
Basin A - Post	10 year	10	0.714	12.200	6.92
Basin A - Post	50 year	50	1.427	12.150	15.05
Basin A - Post	100 year	100	1.870	12.150	20.09
Basin B - Post	2 year	2	0.038	11.900	0.68
Basin B - Post	10 year	10	0.063	11.900	1.15
Basin B - Post	50 year	50	0.101	11.900	1.82
Basin B - Post	100 year	100	0.122	11.900	2.19
Basin C - Post	2 year	2	0.046	11.950	0.82
Basin C - Post	10 year	10	0.078	11.950	1.38
Basin C - Post	50 year	50	0.125	11.950	2.20
Basin C - Post	100 year	100	0.153	11.950	2.65
Basin D - Post	2 year	2	0.004	11.950	0.06
Basin D - Post	10 year	10	0.007	11.950	0.13
Basin D - Post	50 year	50	0.013	11.950	0.23
Basin D - Post	100 year	100	0.016	11.900	0.30
Basin E - Post	2 year	2	0.251	12.200	2.04
Basin E - Post	10 year	10	0.597	12.150	6.27
Basin E - Post	50 year	50	1.213	12.150	13.82
Basin E - Post	100 year	100	1.598	12.100	18.48
Basin F - Post	2 year	2	0.277	12.200	2.19
Basin F - Post	10 year	10	0.658	12.150	6.68
Basin F - Post	50 year	50	1.338	12.150	14.88
Basin F - Post	100 year	100	1.763	12.150	19.94
Basin G - Post	2 year	2	0.028	11.900	0.50
Basin G - Post	10 year	10	0.046	11.900	0.83
Basin G - Post	50 year	50	0.072	11.900	1.29
Basin G - Post	100 year	100	0.087	11.900	1.55

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Site Outlet (Pre)	2 year	2	0.923	12.200	7.35
Site Outlet (Pre)	10 year	10	2.132	12.200	20.96
Site Outlet (Pre)	50 year	50	4.261	12.150	45.73
Site Outlet (Pre)	100 year	100	5.582	12.150	60.96
Site Outlet - Post	2 year	2	0.936	12.250	5.39
Site Outlet - Post	10 year	10	2.133	12.200	17.09
Site Outlet - Post	50 year	50	4.246	12.150	37.18
Site Outlet - Post	100 year	100	5.562	12.150	51.96

Pond Summary

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Detention Pond (IN)	2 year	2	0.374	12.200	2.60	(N/A)	(N/A)
Detention Pond (OUT)	2 year	2	0.358	12.450	1.72	1,159.32	0.252
Detention Pond (IN)	10 year	10	0.823	12.200	7.22	(N/A)	(N/A)
Detention Pond (OUT)	10 year	10	0.792	12.350	5.21	1,159.91	0.327
Detention Pond (IN)	50 year	50	1.600	12.150	15.60	(N/A)	(N/A)
Detention Pond (OUT)	50 year	50	1.557	12.350	11.48	1,160.92	0.486
Detention Pond (IN)	100 year	100	2.079	12.150	20.74	(N/A)	(N/A)
Detention Pond (OUT)	100 year	100	2.032	12.300	17.11	1,161.25	0.542

Subsection: Time-Depth Curve Return Event: 10 years

Label: TS #1 Storm Event: 10 Year Storm

Time-Depth Curve: 10 Year Storm					
Label	10 Year Storm				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	10 years				

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.3	0.3	0.3	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.4	0.4
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.4	0.4	0.4	0.4
9.000	0.5	0.5	0.5	0.5	0.5
9.500	0.5	0.5	0.5	0.5	0.5
10.000	0.6	0.6	0.6	0.6	0.6
10.500	0.6	0.6	0.7	0.7	0.7
11.000	0.7	0.7	8.0	0.8	0.8
11.500	0.9	0.9	1.1	1.3	1.7
12.000	2.0	2.1	2.2	2.2	2.2
12.500	2.3	2.3	2.3	2.3	2.4
13.000	2.4	2.4	2.4	2.4	2.4
13.500	2.5	2.5	2.5	2.5	2.5
14.000	2.5	2.5	2.5	2.6	2.6
14.500	2.6	2.6	2.6	2.6	2.6
15.000	2.6	2.6	2.6	2.7	2.7
15.500	2.7	2.7	2.7	2.7	2.7
16.000	2.7	2.7	2.7	2.7	2.7
16.500	2.7	2.8	2.8	2.8	2.8
17.000	2.8	2.8	2.8	2.8	2.8
17.500	2.8	2.8 2.8	2.8	2.8	2.8
18.000	2.8		2.8	2.9	2.9
18.500	2.9	2.9	2.9	2.9	2.9
19.000	2.9	2.9	2.9	2.9	2.9
19.500	2.9 2.9	2.9 2.9	2.9 2.9	2.9	2.9
20.000 20.500			3.0	2.9	2.9
	3.0	3.0		3.0	3.0
21.000	3.0	3.0	3.0	3.0	3.0

Subsection: Time-Depth Curve Return Event: 10 years Label: TS #1 Storm Event: 10 Year Storm

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
21.500	3.0	3.0	3.0	3.0	3.0
22.000	3.0	3.0	3.0	3.0	3.0
22.500	3.0	3.0	3.0	3.0	3.0
23.000	3.0	3.0	3.1	3.1	3.1
23.500	3.1	3.1	3.1	3.1	3.1
24.000	3.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 100 years

Label: TS #1 Storm Event: 100 Year Storm

Time-Depth Curve: 100 Year Storm						
Label	100 Year Storm					
Start Time	0.000 hours					
Increment	0.100 hours					
End Time	24.000 hours					
Return Event	100 years					

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.1	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.2	0.2	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.3	0.3	0.3
4.500	0.3	0.3	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.4	0.4	0.4	0.4	0.4
6.000	0.4	0.4	0.4	0.4	0.4
6.500	0.4	0.5	0.5	0.5	0.5
7.000	0.5	0.5	0.5	0.5	0.5
7.500	0.5	0.6	0.6	0.6	0.6
8.000	0.6	0.6	0.6	0.6	0.6
8.500	0.7	0.7	0.7	0.7	0.7
9.000	0.7	0.7	0.8	8.0	0.8
9.500	0.8	0.8	0.8	0.9	0.9
10.000	0.9	0.9	0.9	1.0	1.0
10.500	1.0	1.0	1.1	1.1	1.1
11.000	1.2	1.2	1.3	1.3	1.4
11.500	1.4	1.5	1.8	2.1	2.8
12.000	3.3	3.4	3.5	3.6	3.6
12.500	3.7	3.7	3.7	3.8	3.8
13.000	3.9	3.9	3.9	3.9	4.0
13.500	4.0	4.0	4.0	4.1	4.1
14.000	4.1	4.1	4.1	4.1	4.2
14.500	4.2	4.2	4.2	4.2	4.2
15.000	4.3	4.3	4.3	4.3	4.3
15.500	4.3	4.3	4.4	4.4	4.4
16.000	4.4	4.4	4.4	4.4	4.4
16.500 17.000	4.4	4.5	4.5	4.5	4.5
	4.5 4.5	4.5	4.5	4.5	4.5
17.500		4.6	4.6	4.6	4.6
18.000	4.6 4.6	4.6 4.6	4.6 4.7	4.6 4.7	4.6 4.7
18.500 19.000	4.6	4.6	4. <i>1</i> 4.7	4.7 4.7	4.7
19.500	4.7 4.8	4.7 4.8	4.7 4.8	4.7 4.8	4.7 4.8
20.000 20.500	4.8	4.8	4.8	4.8	4.8
			4.8		4.8
21.000	4.8	4.8	4.8	4.8	4.8

Subsection: Time-Depth Curve Return Event: 100 years Label: TS #1 Storm Event: 100 Year Storm

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
21.500	4.8	4.9	4.9	4.9	4.9
22.000	4.9	4.9	4.9	4.9	4.9
22.500	4.9	4.9	4.9	4.9	4.9
23.000	4.9	4.9	4.9	5.0	5.0
23.500	5.0	5.0	5.0	5.0	5.0
24.000	5.0	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 2 years
Label: TS #1 Storm Event: 2 Year Storm

Time-Depth Curve: 2 Year Storm

Label 2 Year Storm

Start Time 0.000 hours
Increment 0.100 hours
End Time 24.000 hours
Return Event 2 years

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.0	0.0	0.0	0.0
2.000	0.0	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.1	0.1
4.500	0.1	0.1	0.1	0.1	0.1
5.000	0.1	0.1	0.1	0.1	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.2
6.500	0.2	0.2	0.2	0.2	0.2
7.000	0.2	0.2	0.2	0.2	0.2
7.500	0.2	0.2	0.2	0.3	0.3
8.000	0.3	0.3	0.3	0.3	0.3
8.500	0.3	0.3	0.3	0.3	0.3
9.000	0.3	0.3	0.3	0.3	0.4
9.500	0.4	0.4	0.4	0.4	0.4
10.000	0.4	0.4	0.4	0.4	0.4
10.500	0.4	0.5	0.5	0.5	0.5
11.000	0.5	0.5	0.6	0.6	0.6
11.500	0.6	0.7	8.0	0.9	1.2
12.000	1.5	1.5	1.5	1.6	1.6
12.500	1.6	1.6	1.7	1.7	1.7
13.000	1.7	1.7	1.7	1.7	1.7
13.500	1.8	1.8	1.8	1.8	1.8
14.000	1.8	1.8	1.8	1.8	1.8
14.500	1.8	1.9	1.9	1.9	1.9
15.000	1.9	1.9	1.9	1.9	1.9
15.500	1.9 1.9	1.9 1.9	1.9 1.9	1.9	1.9
16.000 16.500	2.0	2.0	2.0	2.0 2.0	2.0 2.0
17.000	2.0	2.0	2.0	2.0	2.0
17.500	2.0	2.0	2.0	2.0	2.0
18.000	2.0	2.0	2.0	2.0	2.0
18.500	2.0	2.0	2.0	2.0	2.0
19.000	2.0	2.0	2.1	2.1	2.1
19.500	2.1	2.1	2.1	2.1	2.1
20.000	2.1	2.1	2.1	2.1	2.1
20.500	2.1	2.1	2.1	2.1	2.1
21.000		2.1	2.1	2.1	2.1
21.000	2.1	2.1	2.1	2.1	2.1

Subsection: Time-Depth Curve Return Event: 2 years
Label: TS #1 Storm Event: 2 Year Storm

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
21.500	2.1	2.1	2.1	2.1	2.1
22.000	2.1	2.2	2.2	2.2	2.2
22.500	2.2	2.2	2.2	2.2	2.2
23.000	2.2	2.2	2.2	2.2	2.2
23.500	2.2	2.2	2.2	2.2	2.2
24.000	2.2	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50 years

Label: TS #1 Storm Event: 50 Year Storm

Time-Depth Curve: 50 Year Storm					
Label	50 Year Storm				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	50 years				

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.2	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.3	0.3
6.000	0.3	0.4	0.4	0.4	0.4
6.500	0.4	0.4	0.4	0.4	0.4
7.000	0.4	0.4	0.4	0.5	0.5
7.500	0.5	0.5	0.5	0.5	0.5
8.000	0.5	0.5	0.5	0.5	0.6
8.500	0.6	0.6	0.6	0.6	0.6
9.000	0.6	0.6	0.7	0.7	0.7
9.500	0.7	0.7	0.7	0.7	0.8
10.000	0.8	0.8	8.0	8.0	0.9
10.500	0.9	0.9	0.9	1.0	1.0
11.000	1.0	1.0	1.1	1.1	1.2
11.500	1.2	1.3	1.5	1.9	2.4
12.000	2.9	2.9	3.0	3.1	3.1
12.500	3.2	3.2	3.2	3.3	3.3
13.000	3.3	3.4	3.4	3.4	3.4
13.500	3.4	3.5	3.5	3.5	3.5
14.000	3.5	3.6	3.6	3.6	3.6
14.500	3.6	3.6	3.6	3.7	3.7
15.000	3.7	3.7	3.7	3.7	3.7
15.500	3.7	3.8	3.8	3.8	3.8
16.000	3.8	3.8	3.8	3.8	3.8
16.500	3.8	3.9	3.9	3.9	3.9
17.000	3.9	3.9	3.9	3.9	3.9
17.500	3.9	3.9	3.9	4.0	4.0
18.000	4.0	4.0	4.0	4.0	4.0
18.500	4.0	4.0	4.0	4.0	4.0
19.000	4.0	4.0	4.1	4.1	4.1
19.500	4.1	4.1	4.1	4.1	4.1
20.000	4.1	4.1	4.1	4.1	4.1
20.500	4.1	4.1	4.1	4.1	4.2
21.000	4.2	4.2	4.2	4.2	4.2

Subsection: Time-Depth Curve Return Event: 50 years
Label: TS #1 Storm Event: 50 Year Storm

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
21.500	4.2	4.2	4.2	4.2	4.2
22.000	4.2	4.2	4.2	4.2	4.2
22.500	4.2	4.2	4.2	4.3	4.3
23.000	4.3	4.3	4.3	4.3	4.3
23.500	4.3	4.3	4.3	4.3	4.3
24.000	4.3	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time of Concentration Calculations

Return Event: 2 years Storm Event: 2 Year Storm Label: Basin A - Post

Time of Concentration Results

Time of Concentration Results	
Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.800
Slope	0.120 ft/ft
2 Year 24 Hour Depth	2.2 in
Average Velocity	0.08 ft/s
Segment Time of Concentration	0.367 hours
Segment #2: TR-55 Shallow Cond	entrated Flow
Hydraulic Length	1,519.00 ft
Is Paved?	False
Slope	0.310 ft/ft
Average Velocity	8.98 ft/s
Segment Time of Concentration	0.047 hours
Segment #3: TR-55 Channel Flow	,
Flow Area	16.0 ft ²
Hydraulic Length	255.00 ft
Manning's n	0.069
Slope	0.009 ft/ft
Wetted Perimeter	14.65 ft
Average Velocity	2.17 ft/s
Segment Time of Concentration	0.033 hours
Time of Concentration (Composite)
Time of Concentration (Composite)	0.447 hours

Subsection: Time of Concentration Calculations Return Event: 2 years Label: Basin A - Post Storm Event: 2 Year Storm

==== SCS Channel Flow

R = Qa / Wp

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / nTc =

> (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet

Wp= Wetted perimeter, feet

V= Velocity, ft/sec Where:

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec

Sf= Slope, ft/ft Where:

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))

Tc= Time of concentration, hours

n= Manning's n

Lf= Flow length, feet Where:

P= 2yr, 24hr Rain depth, inches

Sf= Slope, %

Subsection: Time of Concentration Calculations

Return Event: 2 years Storm Event: 2 Year Storm Label: Basin A - Pre

Time of Concentration Desults

Time of Concentration Results					
Segment #1: TR-55 Sheet Flow					
Hydraulic Length	100.00 ft				
Manning's n	0.800				
Slope	0.120 ft/ft				
2 Year 24 Hour Depth	2.2 in				
Average Velocity	0.08 ft/s				
Segment Time of Concentration	0.367 hours				
Segment #2: TR-55 Shallow Conce	entrated Flow				
Hydraulic Length	1,841.00 ft				
Is Paved?	False				
Slope	0.280 ft/ft				
Average Velocity	8.54 ft/s				
Segment Time of Concentration	0.060 hours				
Segment #3: TR-55 Channel Flow					
Flow Area	53.0 ft²				
Hydraulic Length	144.00 ft				
Manning's n	0.030				
Slope	0.026 ft/ft				
Wetted Perimeter	40.00 ft				
Average Velocity	9.66 ft/s				
Segment Time of Concentration	0.004 hours				
Time of Concentration (Composite)					
Time of Concentration (Composite)	0.431 hours				

Subsection: Time of Concentration Calculations Return Event: 2 years Label: Basin A - Pre Storm Event: 2 Year Storm

==== SCS Channel Flow

R = Qa / Wp

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / nTc =

> (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet

> Wp= Wetted perimeter, feet

V= Velocity, ft/sec Where: Sf= Slope, ft/ft

n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))

Tc= Time of concentration, hours

n= Manning's n

Lf= Flow length, feet Where:

P= 2yr, 24hr Rain depth, inches

Sf= Slope, %

Subsection: Time of Concentration Calculations

Return Event: 2 years Label: Basin C - Post Storm Event: 2 Year Storm

Time of Concentration Posults

Time of Concentration Results	
Segment #1: TR-55 Sheet Flow	1
Hydraulic Length	100.00 ft
Manning's n	0.100
Slope	0.056 ft/ft
2 Year 24 Hour Depth	2.2 in
Average Velocity	0.29 ft/s
Segment Time of	0.094 hours
Concentration	
Segment #2: TR-55 Shallow Co	oncentrated Flow
Hydraulic Length	46.00 ft
Is Paved?	False
Slope	0.064 ft/ft
Average Velocity	4.08 ft/s
Segment Time of	0.003 hours
Concentration	
Segment #3: TR-55 Shallow Co	oncentrated Flow
Hydraulic Length	8.00 ft
Is Paved?	False
Slope	0.313 ft/ft
Average Velocity	9.03 ft/s
Segment Time of	0.000 hours
Concentration	
Segment #4: TR-55 Channel F	low
Flow Area	16.0 ft ²
Hydraulic Length	230.00 ft
Manning's n	0.069
Slope	0.086 ft/ft
Wetted Perimeter	14.60 ft
Average Velocity	6.73 ft/s
Segment Time of	0.009 hours
Concentration	
Time of Concentration (Compos	site)
Time of Concentration (Composite)	0.107 hours

Subsection: Time of Concentration Calculations Return Event: 2 years
Label: Basin C - Post Storm Event: 2 Year Storm

==== SCS Channel Flow

R = Qa / Wp

 $Tc = V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec

Where: Sf= Slope, ft/ft

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))

Tc= Time of concentration, hours

n= Manning's n

Where: Lf= Flow length, feet

P= 2yr, 24hr Rain depth, inches

Sf= Slope, %

Subsection: Time of Concentration Calculations

Return Event: 2 years Storm Event: 2 Year Storm Label: Basin E - Post

Time of Concentration Posults

Time of Concentration Results	
Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.800
Slope	0.160 ft/ft
2 Year 24 Hour Depth	2.2 in
Average Velocity	0.08 ft/s
Segment Time of Concentration	0.327 hours
Segment #2: TR-55 Shallow Conce	ntrated Flow
Hydraulic Length	1,450.00 ft
Is Paved?	False
Slope	0.340 ft/ft
Average Velocity	9.41 ft/s
Segment Time of Concentration	0.043 hours
Segment #3: TR-55 Channel Flow	
Flow Area	16.0 ft ²
Hydraulic Length	252.00 ft
Manning's n	0.069
Slope	0.110 ft/ft
Wetted Perimeter	14.65 ft
Average Velocity	7.60 ft/s
Segment Time of Concentration	0.009 hours
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.379 hours

Subsection: Time of Concentration Calculations

Return Event: 2 years

Label: Basin E - Post

Storm Event: 2 Year Storm

==== SCS Channel Flow

R = Qa / Wp

 $Tc = V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec

Where: Sf= Slope, ft/ft

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))

Tc= Time of concentration, hours

n= Manning's n

Where: Lf= Flow length, feet

P= 2yr, 24hr Rain depth, inches

Sf= Slope, %

Subsection: Time of Concentration Calculations

Return Event: 2 years Label: Basin F - Post Storm Event: 2 Year Storm

Time of Concentration Results	
Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.800
Slope	0.210 ft/ft
2 Year 24 Hour Depth	2.2 in
Average Velocity	0.09 ft/s
Segment Time of	0.293 hours
Concentration	
Segment #2: TR-55 Shallow Conce	entrated Flow
Hydraulic Length	800.00 ft
Is Paved?	False
Slope	0.400 ft/ft
Average Velocity	10.20 ft/s
Segment Time of	0.022 hours
Concentration	
Segment #3: TR-55 Channel Flow	
Flow Area	16.0 ft ²
Hydraulic Length	117.00 ft
Manning's n	0.400
Slope	0.040 ft/ft
Wetted Perimeter	14.65 ft
Average Velocity	0.79 ft/s
Segment Time of	0.041 hours
Concentration	
Segment #4: TR-55 Shallow Conce	entrated Flow
Hydraulic Length	1,015.00 ft
Is Paved?	False
Slope	0.145 ft/ft
Average Velocity	6.14 ft/s
Segment Time of	0.046 hours
Concentration	
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.402 hours
(composite)	

Subsection: Time of Concentration Calculations

Return Event: 2 years

Label: Basin F - Post

Storm Event: 2 Year Storm

==== SCS Channel Flow

R = Qa / Wp

 $Tc = V = (1.49 * (R^{**}(2/3)) * (Sf^{**}-0.5)) / n$

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Tc = Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft

Where: Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))

Tc= Time of concentration, hours

n= Manning's n

Where: Lf= Flow length, feet

P= 2yr, 24hr Rain depth, inches

Sf= Slope, %

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin A - Post Storm Event: 2 Year Storm

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	9.252	0.0	0.0	70.000
Woods - good - Soil D	77.000	0.14	0.0	0.0	77.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.809	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.268	0.0	0.0	78.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.211	0.0	0.0	98.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil D	98.000	0.023	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-of-way) - Soil C	89.000	0.008	0.0	0.0	89.000
Impervious Areas - Gravel (w/ right-ofway) - Soil D	91.000	0.003	0.0	0.0	91.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	10.714	(N/A)	(N/A)	70.999

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin A - Pre Storm Event: 2 Year Storm

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	29.99	0.0	0.0	70.000
Woods - good - Soil D	77.000	1.893	0.0	0.0	77.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.11	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	31.993	(N/A)	(N/A)	70.510

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin B - Post Storm Event: 2 Year Storm

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil C	71.000	0.012	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.096	0.0	0.0	78.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.002	0.0	0.0	98.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil D	98.000	0.025	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-of-way) - Soil C	89.000	0.004	0.0	0.0	89.000
Impervious Areas - Gravel (w/ right-of- way) - Soil D	91.000	0.263	0.0	0.0	91.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.402	(N/A)	(N/A)	87.749

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin C - Post Storm Event: 2 Year Storm

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil C	71.000	0.17	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.039	0.0	0.0	78.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.204	0.0	0.0	98.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil D	98.000	0.087	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-of-way) - Soil C	89.000	0.011	0.0	0.0	89.000
Impervious Areas - Gravel (w/ right-of- way) - Soil D	91.000	0.004	0.0	0.0	91.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.515	(N/A)	(N/A)	87.326

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin D - Post Storm Event: 2 Year Storm

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil C	71.000	0.005	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.068	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.073	(N/A)	(N/A)	77.521

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin E - Post Storm Event: 2 Year Storm

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	8.85	0.0	0.0	70.000
Woods - good - Soil D	77.000	0.27	0.0	0.0	77.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.18	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.164	0.0	0.0	78.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.03	0.0	0.0	98.000
Impervious Areas - Gravel (w/ right-of- way) - Soil C	89.000	0.01	0.0	0.0	89.000
Impervious Areas - Gravel (w/ right-of- way) - Soil D	91.000	0.006	0.0	0.0	91.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	9.51	(N/A)	(N/A)	70.477

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin F - Post Storm Event: 2 Year Storm

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Woods - good - Soil C	70.000	10.004	0.0	0.0	70.000
Woods - good - Soil D	77.000	0.329	0.0	0.0	77.000
Meadow - cont. grass (non grazed) Soil C	71.000	0.109	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.004	0.0	0.0	78.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.055	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	10.501	(N/A)	(N/A)	70.379

Subsection: Runoff CN-Area Return Event: 2 years
Label: Basin G - Post Storm Event: 2 Year Storm

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Meadow - cont. grass (non grazed) Soil C	71.000	0.052	0.0	0.0	71.000
Meadow - cont. grass (non grazed) Soil D	78.000	0.055	0.0	0.0	78.000
Water/Pond - Soil C	98.000	0.12	0.0	0.0	98.000
Water/Pond - Soil D	98.000	0.051	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.278	(N/A)	(N/A)	88.993

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin A - Post Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.447 hours
Area (User Defined)	10.714 acres
Computational Time Increment	0.060 hours
Time to Peak (Computed)	12.207 hours
Flow (Peak, Computed)	2.42 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.200 hours
Flow (Peak Interpolated Output)	2.40 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	10.714 acres
Maximum Retention	10.714 dc163
(Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.3 in
Runoff Volume (Pervious)	0.312 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	0.309 ac-ft
SCS Unit Hydrograph Paramet	ers
Time of Concentration (Composite)	0.447 hours
Computational Time Increment	0.060 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	27.18 ft ³ /s
Unit peak time, Tp	0.298 hours
Unit receding limb, Tr	1.191 hours
Total unit time, Tb	1.489 hours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin A - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.447 hours
Area (User Defined)	10.714 acres

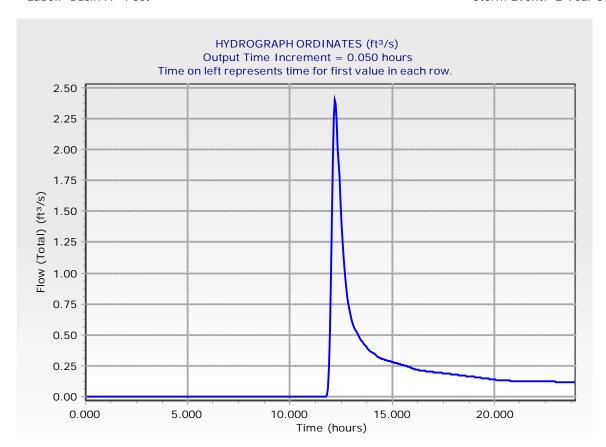
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.700	0.00	0.00	0.02	0.07	0.23
11.950	0.52	0.95	1.44	1.90	2.26
12.200	2.40	2.37	2.22	2.01	1.78
12.450	1.58	1.41	1.27	1.16	1.05
12.700	0.96	0.88	0.81	0.76	0.71
12.950	0.67	0.64	0.61	0.59	0.56
13.200	0.54	0.52	0.50	0.49	0.47
13.450	0.46	0.45	0.44	0.43	0.42
13.700	0.41	0.40	0.39	0.38	0.38
13.950	0.37	0.36	0.35	0.35	0.34
14.200	0.33	0.33	0.32	0.32	0.31
14.450	0.31	0.31	0.30	0.30	0.30
14.700	0.30	0.29	0.29	0.29	0.29
14.950	0.28	0.28	0.28	0.28	0.27
15.200	0.27	0.27	0.27	0.26	0.26
15.450	0.26	0.26	0.25	0.25	0.25
15.700	0.25	0.24	0.24	0.24	0.24
15.950	0.23	0.23	0.23	0.22	0.22
16.200	0.22	0.22	0.21	0.21	0.21
16.450	0.21	0.21	0.21	0.21	0.21
16.700	0.20	0.20	0.20	0.20	0.20
16.950	0.20	0.20	0.20	0.20	0.20
17.200	0.20	0.19	0.19	0.19	0.19
17.450	0.19	0.19	0.19	0.19	0.19
17.700	0.19	0.19	0.18	0.18	0.18
17.950	0.18	0.18	0.18	0.18	0.18
18.200	0.18	0.18	0.17	0.17	0.17
18.450	0.17	0.17	0.17	0.17	0.17
18.700	0.17	0.16	0.16	0.16	0.16
18.950	0.16	0.16	0.16	0.16	0.16
19.200	0.16	0.15	0.15	0.15	0.15
19.450	0.15	0.15	0.15	0.15	0.15
19.700	0.14	0.14	0.14	0.14	0.14
19.950	0.14	0.14	0.14	0.14	0.13
20.200	0.13	0.13	0.13	0.13	0.13
20.450	0.13	0.13	0.13	0.13	0.13
20.700	0.13	0.13	0.13	0.13	0.13
20.950	0.13	0.13	0.13	0.13	0.13
21.200	0.13	0.13	0.13	0.13	0.13
21.450	0.13	0.13	0.13	0.13	0.13
21.700	0.13	0.13	0.12	0.12	0.12
21.950	0.12	0.12	0.12	0.12	0.12

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin A - Post

Storm Event: 2 Year Storm


Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
22.200	0.12	0.12	0.12	0.12	0.12
22.450	0.12	0.12	0.12	0.12	0.12
22.700	0.12	0.12	0.12	0.12	0.12
22.950	0.12	0.12	0.12	0.12	0.12
23.200	0.12	0.12	0.12	0.12	0.12
23.450	0.12	0.12	0.12	0.12	0.12
23.700	0.12	0.12	0.12	0.12	0.12
23.950	0.12	0.12	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin A - Post

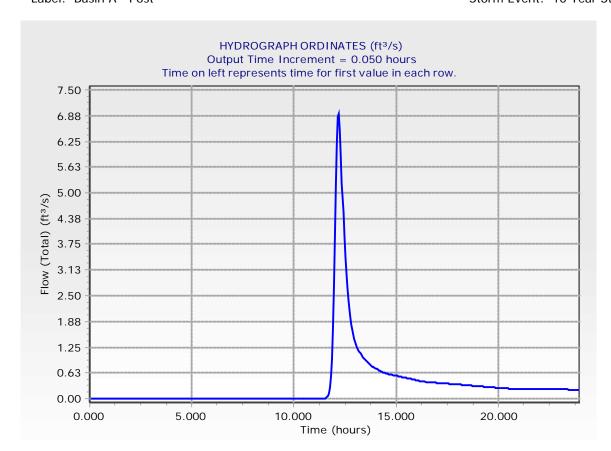
Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Basin A - Post Storm Event: 10 Year Storm

Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.447 hours
Area (User Defined)	10.714 acres
Computational Time Increment	0.060 hours
Time to Peak (Computed)	12.207 hours
Flow (Peak, Computed)	6.93 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.200 hours
Flow (Peak Interpolated Output)	6.92 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	10.714 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.8 in
Runoff Volume (Pervious)	0.720 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	0.714 ac-ft
SCS Unit Hydrograph Paramet	ters
Time of Concentration	
(Composite)	0.447 hours
	0.447 hours 0.060 hours
(Composite) Computational Time	
(Composite) Computational Time Increment Unit Hydrograph Shape	0.060 hours
(Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.060 hours 483.432
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.060 hours 483.432 0.749
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.060 hours 483.432 0.749 1.670
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.060 hours 483.432 0.749 1.670 27.18 ft ³ /s

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin A - Post Storm Event: 10 Year Storm


Storm Event 10 Year Storm
Return Event 10 years
Duration 24.000 hours
Depth 3.1 in
Time of Concentration
(Composite) 0.447 hours
Area (User Defined) 10.714 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.400	0.00	0.00	0.00	0.01	0.03
11.650	0.07	0.15	0.29	0.53	0.95
11.900	1.67	2.70	3.93	5.18	6.22
12.150	6.86	6.92	6.55	5.94	5.23
12.400	4.53	3.92	3.44	3.05	2.72
12.650	2.43	2.19	1.98	1.81	1.67
12.900	1.56	1.46	1.38	1.30	1.24
13.150	1.19	1.13	1.09	1.05	1.01
13.400	0.98	0.95	0.93	0.90	0.88
13.650	0.86	0.84	0.82	0.80	0.78
13.900	0.76	0.75	0.73	0.71	0.70
14.150	0.68	0.67	0.66	0.65	0.64
14.400	0.63	0.62	0.61	0.61	0.60
14.650	0.59	0.59	0.58	0.58	0.57
14.900	0.57	0.56	0.56	0.55	0.55
15.150	0.54	0.54	0.53	0.52	0.52
15.400	0.51	0.51	0.50	0.50	0.49
15.650	0.49	0.48	0.48	0.47	0.47
15.900	0.46	0.45	0.45	0.44	0.44
16.150	0.43	0.43	0.42	0.42	0.41
16.400	0.41	0.41	0.41	0.40	0.40
16.650	0.40	0.40	0.39	0.39	0.39
16.900	0.39	0.39	0.38	0.38	0.38
17.150	0.38	0.38	0.37	0.37	0.37
17.400	0.37	0.37	0.36	0.36	0.36
17.650	0.36	0.36	0.36	0.35	0.35
17.900	0.35	0.35	0.35	0.34	0.34
18.150	0.34	0.34	0.34	0.33	0.33
18.400	0.33	0.33	0.32	0.32	0.32
18.650	0.32	0.32	0.31	0.31	0.31
18.900	0.31	0.31	0.30	0.30	0.30
19.150	0.30	0.30	0.29	0.29	0.29
19.400	0.29	0.28	0.28	0.28	0.28
19.650	0.28	0.27	0.27	0.27	0.27
19.900	0.26	0.26	0.26	0.26	0.26
20.150	0.25	0.25	0.25	0.25	0.25
20.400	0.25	0.25	0.25	0.24	0.24
20.650	0.24	0.24	0.24	0.24	0.24
20.900	0.24	0.24	0.24	0.24	0.24
21.150	0.24	0.24	0.24	0.24	0.24
21.400	0.24	0.24	0.24	0.24	0.24
21.650	0.24	0.24	0.23	0.23	0.23

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin A - Post Storm Event: 10 Year Storm

Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)
21.900	0.23	0.23	0.23	0.23	0.23
22.150	0.23	0.23	0.23	0.23	0.23
22.400	0.23	0.23	0.23	0.23	0.23
22.650	0.23	0.23	0.23	0.23	0.23
22.900	0.23	0.23	0.23	0.22	0.22
23.150	0.22	0.22	0.22	0.22	0.22
23.400	0.22	0.22	0.22	0.22	0.22
23.650	0.22	0.22	0.22	0.22	0.22
23.900	0.22	0.22	0.22	(N/A)	(N/A)

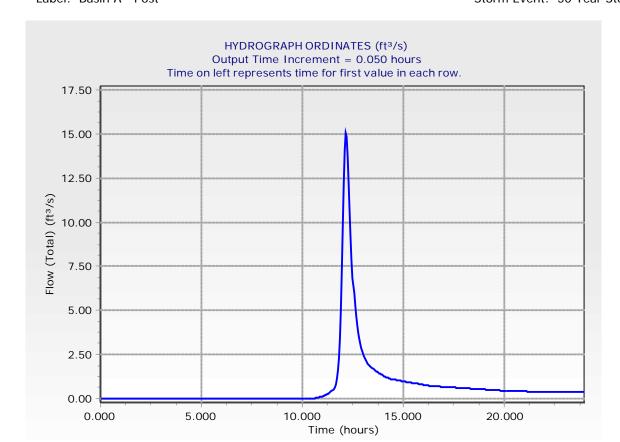
Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin A - Post Storm Event: 10 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin A - Post Storm Event: 50 Year Storm

Storm Event	50 Year Storm	
Return Event	50	years
Duration	24.000	hours
Depth	4.3	in
Time of Concentration (Composite)	0.447	hours
Area (User Defined)	10.714	acres
Computational Time Increment	0.060	hours
Time to Peak (Computed)	12.147	hours
Flow (Peak, Computed)	15.06	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	12.150	hours
Flow (Peak Interpolated Output)	15.05	ft³/s
Drainage Area		
Drainage Area		
SCS CN (Composite)	71.000	
Area (User Defined)	10.714	acres
Maximum Retention (Pervious)	4.1	in
Maximum Retention (Pervious, 20 percent)	0.8	in
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.6	in
Runoff Volume (Pervious)	1.438	ac-ft
Hydrograph Volume (Area unde	r Hydrograph o	urve)
Volume	1.427	ac-ft
SCS Unit Hydrograph Paramete	rs	
Time of Concentration (Composite)	0.447	hours
Computational Time Increment	0.060	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	27.18	ft³/s
Unit peak time, Tp	0.298	hours
Unit receding limb, Tr	1.191	hours
Total unit time, Tb	1.489	hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin A - Post Storm Event: 50 Year Storm


Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.447 hours
Area (User Defined)	10.714 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.300	0.00	0.00	0.00	0.01	0.01
10.550	0.02	0.02	0.03	0.04	0.05
10.800	0.07	0.08	0.10	0.12	0.14
11.050	0.16	0.18	0.20	0.23	0.26
11.300	0.30	0.34	0.38	0.43	0.48
11.550	0.55	0.65	0.83	1.13	1.60
11.800	2.31	3.39	5.08	7.30	9.81
12.050	12.22	14.08	15.05	14.85	13.81
12.300	12.34	10.73	9.20	7.88	6.84
12.550	6.01	5.31	4.71	4.20	3.78
12.800	3.43	3.15	2.91	2.72	2.55
13.050	2.41	2.28	2.17	2.07	1.98
13.300	1.90	1.83	1.77	1.72	1.67
13.550	1.63	1.59	1.54	1.51	1.47
13.800	1.43	1.40	1.37	1.34	1.31
14.050	1.28	1.25	1.22	1.20	1.17
14.300	1.15	1.13	1.12	1.10	1.09
14.550	1.08	1.06	1.05	1.04	1.03
14.800	1.02	1.01	1.00	0.99	0.98
15.050	0.97	0.96	0.95	0.94	0.93
15.300	0.92	0.91	0.90	0.89	0.89
15.550	0.88	0.87	0.86	0.85	0.84
15.800	0.83	0.82	0.81	0.80	0.79
16.050	0.77	0.77	0.76	0.75	0.74
16.300	0.73	0.72	0.72	0.71	0.71
16.550	0.70	0.70	0.69	0.69	0.69
16.800	0.68	0.68	0.68	0.67	0.67
17.050	0.66	0.66	0.66	0.65	0.65
17.300	0.65	0.64	0.64	0.64	0.63
17.550	0.63	0.63	0.62	0.62	0.62
17.800	0.61	0.61	0.60	0.60	0.60
18.050	0.59	0.59	0.59	0.58	0.58
18.300	0.58	0.57	0.57	0.56	0.56
18.550	0.56	0.55	0.55	0.55	0.54
18.800	0.54	0.53	0.53	0.53	0.52
19.050	0.52	0.52	0.51	0.51	0.50
19.300	0.50	0.50	0.49	0.49	0.49
19.550	0.48	0.48	0.47	0.47	0.47
19.800	0.46	0.46	0.45	0.45	0.45
20.050	0.44	0.44	0.44	0.43	0.43
20.300	0.43	0.42	0.42	0.42	0.42
20.550	0.42	0.42	0.42	0.42	0.41

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin A - Post Storm Event: 50 Year Storm

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.800	0.41	0.41	0.41	0.41	0.41
21.050	0.41	0.41	0.41	0.41	0.41
21.300	0.41	0.41	0.41	0.40	0.40
21.550	0.40	0.40	0.40	0.40	0.40
21.800	0.40	0.40	0.40	0.40	0.40
22.050	0.40	0.40	0.39	0.39	0.39
22.300	0.39	0.39	0.39	0.39	0.39
22.550	0.39	0.39	0.39	0.39	0.39
22.800	0.39	0.39	0.38	0.38	0.38
23.050	0.38	0.38	0.38	0.38	0.38
23.300	0.38	0.38	0.38	0.38	0.38
23.550	0.38	0.37	0.37	0.37	0.37
23.800	0.37	0.37	0.37	0.37	0.37

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin A - Post Storm Event: 50 Year Storm

Return Event: 100 years

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Label: Basin A - Post

Storm Event	100 Year Storm	
Return Event	100	years
Duration	24.000	hours
Depth	5.0	in
Time of Concentration (Composite)	0.447	hours
Area (User Defined)	10.714	acres
Computational Time Increment	0.060	hours
Time to Peak (Computed)	12.147	hours
Flow (Peak, Computed)	20.12	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	12.150	hours
Flow (Peak Interpolated Output)	20.09	ft³/s
Drainage Area		
SCS CN (Composite)	71.000	
Area (User Defined)	10.714	acres
Maximum Retention	4.4	
(Pervious)	4.1	ın
Maximum Retention (Pervious, 20 percent)	0.8	in
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	2.1	in
Runoff Volume (Pervious)	1.883	ac-ft
Hydrograph Volume (Area unde	er Hydrograph c	urve)
Volume	1.870	ac-ft
SCS Unit Hydrograph Paramete	ers	
Time of Concentration		
(Composite)	0.447	hours
Computational Time Increment	0.060	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	27.18	ft³/s
Unit peak time, Tp	0.298	hours
Unit receding limb, Tr	1.191	hours

Total unit time, Tb

1.489 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years

Label: Basin A - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.447 hours
Area (User Defined)	10.714 acres

HYDROGRAPH ORDINATES (ft³/s) **Output Time Increment = 0.050 hours** Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.650	0.00	0.00	0.00	0.01	0.01
9.900	0.01	0.02	0.03	0.03	0.04
10.150	0.05	0.06	0.07	0.08	0.09
10.400	0.11	0.12	0.14	0.15	0.17
10.650	0.18	0.20	0.22	0.25	0.27
10.900	0.30	0.32	0.35	0.38	0.42
11.150	0.45	0.50	0.54	0.59	0.65
11.400	0.72	0.79	0.87	0.97	1.12
11.650	1.39	1.82	2.49	3.51	5.01
11.900	7.29	10.24	13.53	16.62	18.95
12.150	20.09	19.70	18.23	16.23	14.06
12.400	12.01	10.26	8.88	7.78	6.85
12.650	6.06	5.40	4.84	4.38	4.02
12.900	3.71	3.45	3.24	3.05	2.89
13.150	2.75	2.62	2.51	2.40	2.31
13.400	2.23	2.17	2.11	2.05	2.00
13.650	1.94	1.89	1.85	1.80	1.76
13.900	1.72	1.68	1.64	1.60	1.57
14.150	1.53	1.50	1.47	1.44	1.42
14.400	1.40	1.38	1.36	1.35	1.33
14.650	1.32	1.30	1.29	1.28	1.27
14.900	1.25	1.24	1.23	1.22	1.20
15.150	1.19	1.18	1.17	1.15	1.14
15.400	1.13	1.12	1.10	1.09	1.08
15.650	1.07	1.05	1.04	1.03	1.02
15.900	1.00	0.99	0.98	0.97	0.95
16.150	0.94	0.93	0.92	0.91	0.90
16.400	0.89	0.89	0.88	0.87	0.87
16.650	0.86	0.86	0.85	0.85	0.84
16.900	0.84	0.84	0.83	0.83	0.82
17.150	0.82	0.81	0.81	0.80	0.80
17.400	0.80	0.79	0.79	0.78	0.78
17.650	0.77	0.77	0.76	0.76	0.75
17.900	0.75	0.75	0.74	0.74	0.73
18.150	0.73	0.72	0.72	0.71	0.71
18.400	0.70	0.70	0.70	0.69	0.69
18.650	0.68	0.68	0.67	0.67	0.66
18.900	0.66	0.65	0.65	0.64	0.64
19.150	0.63	0.63	0.62	0.62	0.62
19.400	0.61	0.61	0.60	0.60	0.59
19.650	0.59	0.58	0.58	0.57	0.57
19.900	0.56	0.56	0.55	0.55	0.54

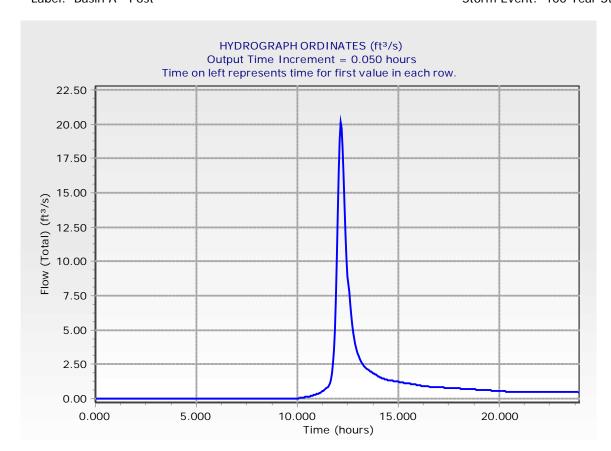
[08.11.01.56] Page 43 of 189

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin A - Post

Storm Event: 100 Year Storm


	·				
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.150	0.54	0.54	0.53	0.53	0.53
20.400	0.52	0.52	0.52	0.52	0.52
20.650	0.52	0.51	0.51	0.51	0.51
20.900	0.51	0.51	0.51	0.51	0.51
21.150	0.51	0.50	0.50	0.50	0.50
21.400	0.50	0.50	0.50	0.50	0.50
21.650	0.50	0.50	0.49	0.49	0.49
21.900	0.49	0.49	0.49	0.49	0.49
22.150	0.49	0.49	0.49	0.49	0.48
22.400	0.48	0.48	0.48	0.48	0.48
22.650	0.48	0.48	0.48	0.48	0.48
22.900	0.47	0.47	0.47	0.47	0.47
23.150	0.47	0.47	0.47	0.47	0.47
23.400	0.47	0.46	0.46	0.46	0.46
23.650	0.46	0.46	0.46	0.46	0.46
23.900	0.46	0.46	0.45	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin A - Post

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin A - Pre Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.431 hours
Area (User Defined)	31.993 acres
Computational Time Increment	0.057 hours
Time to Peak (Computed)	12.185 hours
Flow (Peak, Computed)	7.39 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.200 hours
Flow (Peak Interpolated Output)	7.35 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	31.993 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.3 in
Runoff Volume (Pervious)	0.933 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	0.923 ac-ft
Volume SCS Unit Hydrograph Parame	
SCS Unit Hydrograph Parame	ters
SCS Unit Hydrograph Parame Time of Concentration (Composite) Computational Time	oters 0.431 hours
SCS Unit Hydrograph Parame Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	0.431 hours 0.057 hours
SCS Unit Hydrograph Parame Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.431 hours 0.057 hours 483.432
SCS Unit Hydrograph Parame Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.431 hours 0.057 hours 483.432 0.749
SCS Unit Hydrograph Parame Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.431 hours 0.057 hours 483.432 0.749 1.670
SCS Unit Hydrograph Parame Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.431 hours 0.057 hours 483.432 0.749 1.670 84.09 ft ³ /s

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin A - Pre

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.431 hours
Area (User Defined)	31.993 acres

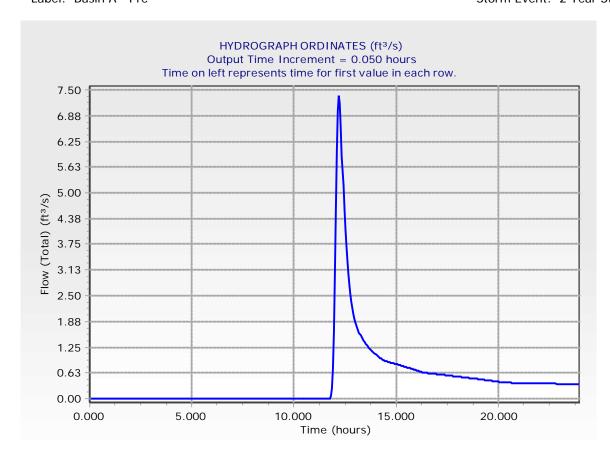
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
11.700	0.00	0.01	0.07	0.25	0.72
11.950	1.64	3.05	4.61	6.02	6.98
12.200	7.35	7.18	6.62	5.90	5.19
12.450	4.59	4.11	3.70	3.35	3.04
12.700	2.78	2.56	2.37	2.21	2.08
12.950	1.97	1.88	1.79	1.72	1.66
13.200	1.59	1.54	1.49	1.44	1.40
13.450	1.37	1.34	1.31	1.28	1.25
13.700	1.22	1.19	1.17	1.14	1.12
13.950	1.10	1.07	1.05	1.03	1.01
14.200	0.99	0.97	0.96	0.94	0.93
14.450	0.92	0.91	0.90	0.90	0.89
14.700	0.88	0.87	0.87	0.86	0.85
14.950	0.84	0.84	0.83	0.82	0.82
15.200	0.81	0.80	0.79	0.79	0.78
15.450	0.77	0.76	0.76	0.75	0.74
15.700	0.73	0.72	0.72	0.71	0.70
15.950	0.69	0.68	0.68	0.67	0.66
16.200	0.65	0.65	0.64	0.63	0.63
16.450	0.63	0.62	0.62	0.62	0.61
16.700	0.61	0.61	0.60	0.60	0.60
16.950	0.60	0.59	0.59	0.59	0.59
17.200	0.58	0.58	0.58	0.57	0.57
17.450	0.57	0.57	0.56	0.56	0.56
17.700	0.55	0.55	0.55	0.55	0.54
17.950	0.54	0.54	0.53	0.53	0.53
18.200	0.53	0.52	0.52	0.52	0.51
18.450	0.51	0.51	0.50	0.50	0.50
18.700	0.49	0.49	0.49	0.49	0.48
18.950	0.48	0.48	0.47	0.47	0.47
19.200	0.46	0.46	0.46	0.45	0.45
19.450	0.45	0.44	0.44	0.44	0.43
19.700	0.43	0.43	0.42	0.42	0.42
19.950	0.41	0.41	0.41	0.40	0.40
20.200	0.40	0.40	0.39	0.39	0.39
20.450	0.39	0.39	0.39	0.39	0.39
20.700	0.38	0.38	0.38	0.38	0.38
20.950	0.38	0.38	0.38	0.38	0.38
21.200	0.38	0.38	0.38	0.38	0.38
21.450	0.38	0.38	0.38	0.38	0.37
21.700	0.37	0.37	0.37	0.37	0.37
21.950	0.37	0.37	0.37	0.37	0.37

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin A - Pre

Storm Event: 2 Year Storm


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.200	0.37	0.37	0.37	0.37	0.37
22.450	0.37	0.37	0.37	0.36	0.36
22.700	0.36	0.36	0.36	0.36	0.36
22.950	0.36	0.36	0.36	0.36	0.36
23.200	0.36	0.36	0.36	0.36	0.36
23.450	0.36	0.35	0.35	0.35	0.35
23.700	0.35	0.35	0.35	0.35	0.35
23.950	0.35	0.35	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin A - Pre

Storm Event: 2 Year Storm

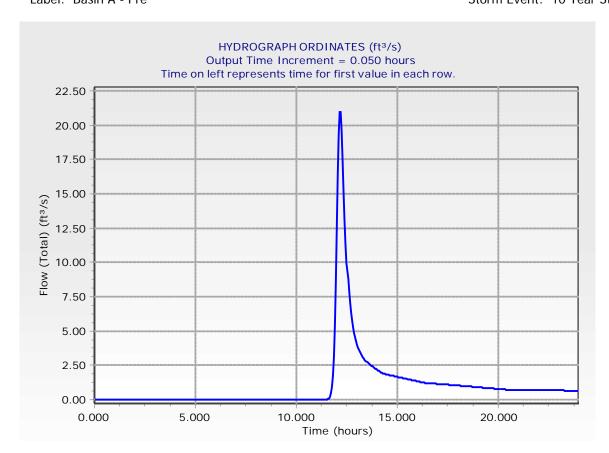
Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Basin A - Pre Storm Event: 10 Year Storm

Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.431 hours
Area (User Defined)	31.993 acres
Computational Time Increment	0.057 hours
Time to Peak (Computed)	12.185 hours
Flow (Peak, Computed)	21.32 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.200 hours
Flow (Peak Interpolated Output)	20.96 ft ³ /s
Drainage Area	
SCS CN (Composite)	71.000
Area (User Defined)	31.993 acres
Maximum Retention (Pervious)	4.1 in
Maximum Retention (Pervious, 20 percent)	0.8 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.8 in
Runoff Volume (Pervious)	2.151 ac-ft
Hydrograph Volume (Area unde	er Hydrograph curve)
Volume	2.132 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration	
(Composite)	0.431 hours
Computational Time Increment	0.057 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	84.09 ft ³ /s
Unit peak time, Tp	0.287 hours
Unit receding limb, Tr	1.149 hours
Total unit time, Tb	1.437 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years

Label: Basin A - Pre Storm Event: 10 Year Storm


Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.431 hours
Area (User Defined)	31.993 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.350	0.00	0.00	0.00	0.01	0.04
11.600	0.09	0.21	0.46	0.92	1.73
11.850	3.11	5.30	8.53	12.52	16.37
12.100	19.36	20.95	20.96	19.64	17.53
12.350	15.22	13.10	11.35	9.95	8.80
12.600	7.83	7.00	6.30	5.73	5.25
12.850	4.85	4.52	4.25	4.01	3.81
13.100	3.64	3.48	3.33	3.20	3.08
13.350	2.98	2.89	2.82	2.74	2.68
13.600	2.61	2.55	2.48	2.43	2.37
13.850	2.32	2.27	2.22	2.17	2.12
14.100	2.08	2.03	1.99	1.95	1.92
14.350	1.89	1.87	1.84	1.82	1.80
14.600	1.79	1.77	1.75	1.74	1.72
14.850	1.70	1.69	1.67	1.66	1.64
15.100	1.63	1.61	1.59	1.58	1.56
15.350	1.55	1.53	1.52	1.50	1.48
15.600	1.47	1.45	1.43	1.42	1.40
15.850	1.38	1.37	1.35	1.33	1.32
16.100	1.30	1.29	1.27	1.26	1.24
16.350	1.23	1.22	1.22	1.21	1.20
16.600	1.19	1.19	1.18	1.18	1.17
16.850	1.16	1.16	1.15	1.15	1.14
17.100	1.13	1.13	1.12	1.12	1.11
17.350	1.11	1.10	1.09	1.09	1.08
17.600	1.08	1.07	1.06	1.06	1.05
17.850	1.05	1.04	1.04	1.03	1.02
18.100	1.02	1.01	1.01	1.00	0.99
18.350	0.99	0.98	0.97	0.97	0.96
18.600	0.96	0.95	0.94	0.94	0.93
18.850	0.92	0.92	0.91	0.91	0.90
19.100	0.89	0.89	0.88	0.87	0.87
19.350	0.86	0.85	0.85	0.84	0.84
19.600	0.83	0.82	0.82	0.81	0.80
19.850	0.80	0.79	0.78	0.78	0.77
20.100	0.76	0.76	0.75	0.75	0.74
20.350	0.74	0.74	0.73	0.73	0.73
20.600	0.73	0.73	0.72	0.72	0.72
20.850	0.72	0.72	0.72	0.72	0.72
21.100	0.71	0.71	0.71	0.71	0.71
21.350	0.71	0.71	0.71	0.71	0.71
21.600	0.70	0.70	0.70	0.70	0.70

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin A - Pre Storm Event: 10 Year Storm

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
21.850	0.70	0.70	0.70	0.70	0.69
22.100	0.69	0.69	0.69	0.69	0.69
22.350	0.69	0.69	0.68	0.68	0.68
22.600	0.68	0.68	0.68	0.68	0.68
22.850	0.68	0.67	0.67	0.67	0.67
23.100	0.67	0.67	0.67	0.67	0.67
23.350	0.66	0.66	0.66	0.66	0.66
23.600	0.66	0.66	0.66	0.65	0.65
23.850	0.65	0.65	0.65	0.65	(N/A)

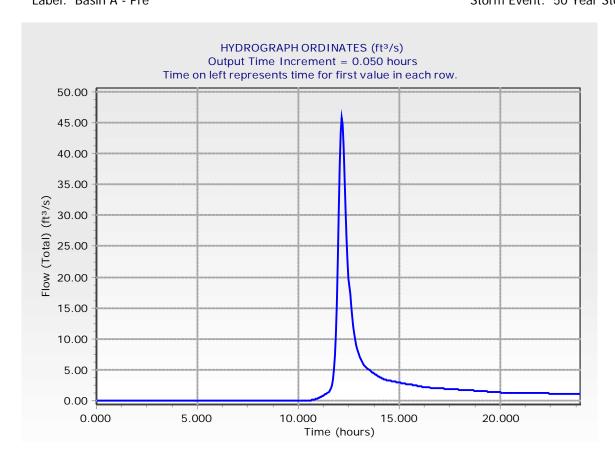
Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin A - Pre Storm Event: 10 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin A - Pre Storm Event: 50 Year Storm

Storm Event 50 Year Storm Return Event 50 years Duration 24.000 hours Depth 4.3 in Time of Concentration (Composite) 31.993 acres Computational Time Increment 0.057 hours Flow (Peak (Computed) 12.185 hours Flow (Peak, Computed) 45.76 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 45.73 ft³/s Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours Computational Time Increment 0.057 hours Increment 0.		
Duration 24,000 hours Depth 4.3 in Time of Concentration (Composite) 31.993 acres Computational Time Increment 0.057 hours Itime to Peak (Computed) 12.185 hours Flow (Peak, Computed) 45.76 ft³/s Output Increment 0.050 hours Itime to Flow (Peak Interpolated Output) 12.150 hours Iflow (Peak Interpolated Output) 12.150 hours Image Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.6 in Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Composite) 0.431 hours (Computational Time Increment 0.057 hours	Storm Event	50 Year Storm
Depth 4.3 in Time of Concentration (Composite) Area (User Defined) 31.993 acres Computational Time Increment 0.057 hours Flow (Peak (Computed) 12.185 hours Flow (Peak, Computed) 45.76 ft3/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 45.73 ft3/s Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.6 in Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Compustational Time Increment 0.057 hours Increment 0.057 hours Increment 0.749 Receding/Rising, Tr/Tp Unit Pyak, qp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Return Event	50 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor R Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Depth	4.3 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Pervious) Flow		0.431 hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Asximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp O.287 hours Unit receding limb, Tr 1.149 hours	, , ,	31.993 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.149 hours		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume A.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-49 Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.149 hours	•	0.057 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor 0.749 Receding/Rising, Tr/Tp Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	Time to Peak (Computed)	12.185 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor C Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp B4.09 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Flow (Peak, Computed)	45.76 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) A.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp B4.09 ft³/s Unit peak time, Tp O.287 hours Unit receding limb, Tr 1.149 hours	Output Increment	0.050 hours
Output) Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.6 in Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Composite) 0.057 hours Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	•	12.150 hours
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		45.73 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	-	71.000
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	•	
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	,	31.993 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		4.1 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		0.8 in
Runoff Volume (Pervious) Runoff Volume (Pervious) 4.293 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Cumulative Runoff	
Hydrograph Volume (Area under Hydrograph curve) Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Composite) Computational Time Increment 0.057 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		1.6 in
Volume 4.261 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 4.261 ac-ft 0.431 hours 4.261 ac-ft 4.261 ac-ft 0.431 hours 0.057 hours 1.670 483.432 483.432 483.432 483.432 483.432 583.432 693.432 194.670 195.670 196.790	Runoff Volume (Pervious)	4.293 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.431 hours 0.431 hours 483.432 483.432 483.432 483.432 483.432 0.749 0.749 0.247 hours 1.149 hours	Hydrograph Volume (Area und	der Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.431 hours 0.431 hours 483.432 483.432 483.432 483.432 483.432 483.432 0.749 0.749 0.287 hours 1.149 hours	Volume	4.261 ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.431 hours 0.431 hours 483.432 483.432 483.432 483.432 483.432 483.432 0.749 0.749 0.287 hours 1.149 hours	SCS Unit Hydrograph Parame	eters
Computational Time Increment 0.057 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	Time of Concentration	
Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 483.432 483.432 483.432 483.432 0.749 483.432 0.749 0.749 0.287 0.287 hours 1.149 hours	Computational Time	0.057 hours
K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	Unit Hydrograph Shape	483.432
Unit peak, qp 84.09 ft ³ /s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		0.749
Unit peak, qp 84.09 ft ³ /s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	Receding/Rising, Tr/Tp	1.670
Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		84.09 ft ³ /s
Unit receding limb, Tr 1.149 hours	* **	0.287 hours
	·	1.149 hours
	-	1.437 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin A - Pre Storm Event: 50 Year Storm


Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.431 hours
Area (User Defined)	31.993 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
10.25	50 0.00	0.00	0.00	0.01	0.02
10.50	0.03	0.05	0.08	0.10	0.13
10.79	50 0.17	0.21	0.26	0.30	0.36
11.00	0.42	0.48	0.55	0.62	0.70
11.25	50 0.80	0.91	1.03	1.16	1.31
11.50	00 1.47	1.68	2.00	2.56	3.49
11.75	50 4.99	7.32	10.85	15.96	22.93
12.00			43.52	45.73	44.75
12.25		36.23	31.08	26.48	22.72
12.50		17.26	15.22	13.48	12.05
12.75			9.11	8.44	7.89
13.00			6.67	6.36	6.07
13.25			5.40	5.24	5.09
13.50			4.70	4.58	4.47
13.75			4.15	4.06	3.97
14.00			3.71	3.63	3.55
14.25			3.37	3.32	3.28
14.50			3.17	3.14	3.10
14.75			3.01	2.98	2.96
15.00			2.87	2.84	2.81
15.25			2.72	2.69	2.67
15.50			2.58	2.55	2.52
15.75			2.43	2.40	2.37
16.00			2.28	2.25	2.22
16.25			2.16	2.14	2.12
16.50		2.09	2.08	2.07	2.06
16.75			2.03	2.01	2.00
17.00			1.97	1.96	1.95
17.25			1.92	1.91	1.90
17.50			1.87	1.86	1.84
17.75			1.81	1.80	1.79
18.00			1.76	1.75	1.74
18.25			1.70	1.69	1.68
18.50			1.65	1.64	1.63
18.75			1.59	1.58	1.57
19.00 19.25			1.54 1.48	1.53 1.47	1.51 1.46
19.23			1.48	1.47	1.40
19.50			1.42	1.41	1.34
20.00			1.37	1.30	1.34
20.00			1.31	1.30	1.26
20.23			1.27	1.26	1.24
I ∠0.50	1.25 בן טכ	1.25	1.25	1.24	1.24

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin A - Pre Storm Event: 50 Year Storm

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.750	1.24	1.24	1.23	1.23	1.23
21.000	1.23	1.22	1.22	1.22	1.22
21.250	1.22	1.21	1.21	1.21	1.21
21.500	1.21	1.20	1.20	1.20	1.20
21.750	1.20	1.19	1.19	1.19	1.19
22.000	1.19	1.18	1.18	1.18	1.18
22.250	1.17	1.17	1.17	1.17	1.17
22.500	1.16	1.16	1.16	1.16	1.16
22.750	1.15	1.15	1.15	1.15	1.15
23.000	1.14	1.14	1.14	1.14	1.13
23.250	1.13	1.13	1.13	1.13	1.12
23.500	1.12	1.12	1.12	1.12	1.11
23.750	1.11	1.11	1.11	1.10	1.10
24.000	1.10	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin A - Pre Storm Event: 50 Year Storm

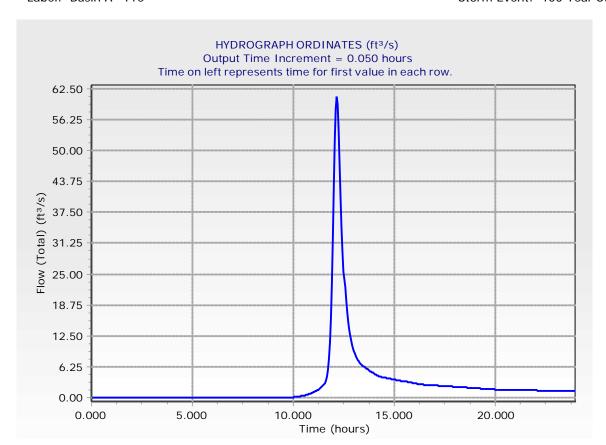
Subsection: Unit Hydrograph Summary

Return Event: 100 years Label: Basin A - Pre Storm Event: 100 Year Storm

Storm Event Return Event Duration Duration Depth Solo in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Peak (Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) ScS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor New Yours Nex		
Duration 24,000 hours Depth 5.0 in Time of Concentration (Composite) 31.993 acres Computational Time Increment 0.057 hours Time to Peak (Computed) 12.127 hours Flow (Peak, Computed) 61.12 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 60.96 ft³/s Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Computational Time Increment 0.057 hours Increment 0.	Storm Event	100 Year Storm
Depth 5.0 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.149 hours	Return Event	100 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Pervious) Tow (Pervious, 20 percent) Tow (Pervious, 20 percent) Tow (Pervious, 20 percent) Tow (Pervious) Tow (Peak Interpolated Output) Tow (Pervious, 20 percent) Tow (Peak Interpolated Output) Tow (Peak Interpolated Output) Tow (Peak Interpolated Peak I	Duration	24.000 hours
Composite Area (User Defined) 31.993 acres	Depth	5.0 in
Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor N-49 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		0.431 hours
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 12.127 hours 12.127 hours 12.127 hours 12.127 hours 12.127 hours 12.120 hours 12.150 hours 12.150 hours 12.150 hours 12.150 hours 13.993 acres 48.193 acres 48.1 in 2.1 in 2.1 in 2.1 in 3.1 in 3.2 in 3.3 in 3.4 i	Area (User Defined)	31.993 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 12.127 hours 12.127 hours 12.127 hours 12.127 hours 12.127 hours 12.120 hours 12.150 hours 12.150 hours 12.150 hours 12.150 hours 13.993 acres 48.193 acres 48.1 in 2.1 in 2.1 in 2.1 in 3.1 in 3.2 in 3.3 in 3.4 i		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Scs Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.149 hours	•	0.057 hours
Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor N-49 Receding/Rising, Tr/Tp Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	Time to Peak (Computed)	12.127 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) S.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp W4.09 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Flow (Peak, Computed)	61.12 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr SCS Unit Hydrograph Increment Unit receding limb, Tr 1.149 hours	Output Increment	0.050 hours
Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		12 150 hours
Output) Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		12.100 110413
Drainage Area SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Composite) 0.057 hours Increment 0.057 hours Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		60.96 ft ³ /s
SCS CN (Composite) 71.000 Area (User Defined) 31.993 acres Maximum Retention (Pervious) 4.1 in Maximum Retention (Pervious, 20 percent) 0.8 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Drainage Area	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	SCS CN (Composite)	71.000
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Area (User Defined)	31.993 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		4.1 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		0.8 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours	Cumulative Runoff	
Runoff Volume (Pervious) Runoff Volume (Pervious) 5.623 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.149 hours		
Hydrograph Volume (Area under Hydrograph curve) Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.431 hours (Computational Time Increment 0.057 hours Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours		2.1 in
Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 5.582 ac-ft 0.431 hours 483.432 483.432 483.432 483.432 483.432 5.582 ac-ft	Runoff Volume (Pervious)	5.623 ac-ft
Volume 5.582 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 5.582 ac-ft 0.431 hours 483.432 483.432 483.432 483.432 483.432 5.582 ac-ft	Hydrograph Volume (Area unde	er Hydrograph curve)
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding Parameters 0.431 hours 483.432 483.432 483.432 483.432 483.432 0.749 0.249 0.749 1.670 1.670 1.149 hours		, , , , , , , , , , , , , , , , , , ,
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.431 hours 483.432 483.432 483.432 483.432 483.432 0.749 0.749 0.247 hours	Volume	3.302 dc 1t
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit output 0.431 hours 483.432 483.432 186.749 483.432 186.749 483.432 0.749 186.70 1	SCS Unit Hydrograph Paramete	ers
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit peak		0.431 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Value 483.432 483.432 1.670 0.749 84.09 ft³/s 0.287 hours 1.149 hours		0.057 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 84.09 ft³/s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	,	483.432
Unit peak, qp 84.09 ft ³ /s Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	K Factor	0.749
Unit peak time, Tp 0.287 hours Unit receding limb, Tr 1.149 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 1.149 hours	Unit peak, qp	84.09 ft ³ /s
	Unit peak time, Tp	0.287 hours
Total unit time, Tb 1.437 hours	Unit receding limb, Tr	1.149 hours
	Total unit time, Tb	1.437 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years

Label: Basin A - Pre Storm Event: 100 Year Storm


Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.431 hours
Area (User Defined)	31.993 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.600	0.00	0.00	0.00	0.01	0.02
9.850	0.03	0.04	0.06	0.08	0.11
10.100	0.13	0.16	0.19	0.22	0.25
10.350	0.29	0.33	0.37	0.41	0.46
10.600	0.51	0.56	0.62	0.68	0.75
10.850	0.82	0.90	0.98	1.07	1.17
11.100	1.27	1.38	1.51	1.65	1.81
11.350	1.99	2.18	2.40	2.64	2.95
11.600	3.42	4.24	5.61	7.77	11.07
11.850	15.96	22.89	32.14	42.66	52.01
12.100	58.48	60.96	59.29	54.33	47.57
12.350	40.66	34.54	29.54	25.55	22.32
12.600	19.62	17.33	15.45	13.92	12.65
12.850	11.61	10.75	10.03	9.42	8.90
13.100	8.44	8.04	7.67	7.34	7.06
13.350	6.81	6.60	6.41	6.24	6.07
13.600	5.91	5.76	5.61	5.48	5.34
13.850	5.22	5.10	4.98	4.87	4.76
14.100	4.65	4.55	4.45	4.37	4.29
14.350	4.22	4.16	4.11	4.05	4.01
14.600	3.97	3.92	3.88	3.84	3.81
14.850	3.77	3.73	3.69	3.66	3.62
15.100	3.58	3.55	3.51	3.47	3.44
15.350	3.40	3.36	3.33	3.29	3.25
15.600	3.21	3.18	3.14	3.10	3.06
15.850	3.03	2.99	2.95	2.91	2.87
16.100	2.84	2.80	2.77	2.74	2.71
16.350	2.68	2.66	2.64	2.62	2.61
16.600	2.59	2.58	2.56	2.55	2.53
16.850	2.52	2.51	2.49	2.48	2.47
17.100	2.45	2.44	2.43	2.41	2.40
17.350	2.39	2.37	2.36	2.35	2.33
17.600	2.32	2.30	2.29	2.28	2.26
17.850	2.25	2.24	2.22	2.21	2.20
18.100	2.18	2.17	2.15	2.14	2.13
18.350	2.11	2.10	2.09	2.07	2.06 1.99
18.600	2.04	2.03	2.02	2.00	
18.850	1.97	1.96	1.95	1.93	1.92
19.100	1.90	1.89	1.88	1.86	1.85
19.350 19.600	1.83 1.76	1.82 1.75	1.81 1.73	1.79 1.72	1.78 1.71
19.850	1.69	1.68	1.66	1.65	1.63

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin A - Pre Storm Event: 100 Year Storm

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
20.100	1.62	1.61	1.59	1.58	1.57
20.350	1.57	1.56	1.55	1.55	1.54
20.600	1.54	1.54	1.53	1.53	1.53
20.850	1.52	1.52	1.52	1.52	1.51
21.100	1.51	1.51	1.51	1.50	1.50
21.350	1.50	1.50	1.49	1.49	1.49
21.600	1.48	1.48	1.48	1.48	1.47
21.850	1.47	1.47	1.47	1.46	1.46
22.100	1.46	1.46	1.45	1.45	1.45
22.350	1.45	1.44	1.44	1.44	1.43
22.600	1.43	1.43	1.43	1.42	1.42
22.850	1.42	1.42	1.41	1.41	1.41
23.100	1.41	1.40	1.40	1.40	1.39
23.350	1.39	1.39	1.39	1.38	1.38
23.600	1.38	1.38	1.37	1.37	1.37
23.850	1.36	1.36	1.36	1.35	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin A - Pre Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin B - Post Storm Event: 2 Year Storm

Storm Event 2 Year Storm Return Event 2 years Duration 24.000 hours Depth 2.2 in Time of Concentration (Composite) 0.083 hours Area (User Defined) 0.402 acres Computational Time Increment 0.011 hours Time to Peak (Computed) 11.922 hours Flow (Peak, Computed) 0.72 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.900 hours Flow (Peak Interpolated Output) 0.68 ft³/s Drainage Area SCS CN (Composite) 88.000 Area (User Defined) 0.402 acres Maximum Retention (Pervious) 1.4 in Maximum Retention (Pervious, 20 percent) 0.3 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours Computational Time Increment 0.011 hours Increment 0.012 hours Increment 0.013 hours Increment 0.014 hours Increment 0.015 hours Increment		
Duration 24.000 hours Depth 2.2 in Time of Concentration (Composite) Area (User Defined) 0.402 acres Computational Time Increment Time to Peak (Computed) 11.922 hours Flow (Peak, Computed) 0.72 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.900 hours Flow (Peak Interpolated Output) 0.68 ft³/s CUmulative Defined) 0.402 acres Maximum Retention (Pervious) 1.4 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours (Computational Time 0.011 hours Increment 0.012 hours Incr	Storm Event	2 Year Storm
Depth 2.2 in Time of Concentration (Composite) Area (User Defined) 0.402 acres Computational Time Increment 0.011 hours Flow (Peak (Computed) 11.922 hours Flow (Peak, Computed) 0.72 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.900 hours Flow (Peak Interpolated Output) 0.68 ft³/s Drainage Area SCS CN (Composite) 88.000 Area (User Defined) 0.402 acres Maximum Retention (Pervious) 0.3 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.038 hours Computational Time Increment 0.011 hours Increment 0.011 hours Increment 0.011 hours Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 5.47 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	Return Event	2 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.011 hours O.011 hours O.083 hours O.083 hours O.084 A32 Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.0222 hours	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Outpus Outpus I1.922 hours Output I1.922 hours	Depth	2.2 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Outpub Compuss Unit receding limb, Tr Outpub Composite Unit receding limb, Tr Outpub Composite Unit receding limb, Tr Outpub Composite Unit receding limb, Tr		0.083 hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp O.056 hours Unit receding limb, Tr O.222 hours		0.402 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.050 hours 11.900 h		
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output Out	•	0.011 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Oepth (Pervious) Runoff Volume (Pervious) O.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor C Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.222 hours	Time to Peak (Computed)	11.922 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 11.900 hours 11.900	Flow (Peak, Computed)	0.72 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr SCS Unit Hydrog Info O.022 hours Info O.083 hours O.083 hours O.084 hours O.0749 O.0749 O.0749 O.0749 O.0749 O.0740 O.07	Output Increment	0.050 hours
Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) 88.000 Area (User Defined) 0.402 acres Maximum Retention (Pervious) 1.4 in Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 5.47 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	•	11.900 hours
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.4 in 0.038 in 1.4 in 0.038 in 0.038 in 0.038 ac-ft 1.1 in 0.038 ac-ft 0.038 ac-ft 0.083 hours 0.083 hours 0.093 hours 0.093 hours 0.094 hours 0.011 hours	Flow (Peak Interpolated	0.68 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.222 hours	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 0.3 in 1.4 in 0.03 in 0.03 in 0.03 in 0.038 ac-ft 1.1 in 0.038 ac-ft 0.038 ac-ft 0.038 ac-ft 483.432 483.432 483.432 5.47 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours		99 000
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Maximum Retention 0.3 in 1.4 in 0.03 in 0.03 in 1.1 in 0.038 ac-ft 483.432 483.432 543.432 547 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr	•	
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.038 in O.038 in O.038 ac-ft O.038 ac-ft O.049 O.056 hours O.056 hours O.056 hours O.056 hours O.056 hours O.056 hours	,	0.402 acres
Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.038 hours 0.083 hours 0.011 hours 483.432 483.432 5.47 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	(Pervious)	1.4 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.038 ac-ft 0.083 hours 0.083 hours 0.011 hours 483.432 483.432 5.47 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr		0.3 in
Runoff Volume (Pervious) Runoff Volume (Pervious) O.038 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.038 ac-ft O.083 hours 0.083 hours 0.011 hours 1.670	Cumulative Runoff	
Hydrograph Volume (Area under Hydrograph curve) Volume 0.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours (Computational Time Increment 0.011 hours Unit Hydrograph Shape 483.432 Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 5.47 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	•	1.1 in
Volume O.038 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.038 ac-ft 0.083 hours 0.011 hours 483.432 483.432 5.47 ft³/s 0.056 hours Unit receding limb, Tr	Runoff Volume (Pervious)	0.038 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.083 hours 0.083 hours 483.432 483.432 547 ft3/49 547 ft3/5 0.056 hours Unit receding limb, Tr	Hydrograph Volume (Area und	der Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.083 hours 0.083 hours 0.011 hours 483.432 183.432 183.432 184.432 185.47 ft ³ /s 186.70	Volume	0.038 ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.083 hours 0.083 hours 0.011 hours 483.432 183.432 183.432 184.432 185.47 ft ³ /s 186.70	CCC Unit Hydrograph Darama	toro
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit notes and the shours 0.083 hours 483.432 483.432 10.749 10.7		elers
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Possible 1.670 Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit receding limb, Tr		0.083 hours
Factor K Factor 0.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.222 hours		0.011 hours
Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.670 5.47 ft³/s 0.056 hours 0.222 hours	, , , , , , , , , , , , , , , , , , ,	483.432
Unit peak, qp 5.47 ft ³ /s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	K Factor	0.749
Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 0.222 hours	Unit peak, qp	5.47 ft ³ /s
	Unit peak time, Tp	0.056 hours
T . I . II . II . T	Unit receding limb, Tr	0.222 hours
Total unit time, Tb 0.278 hours	Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin B - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.402 acres

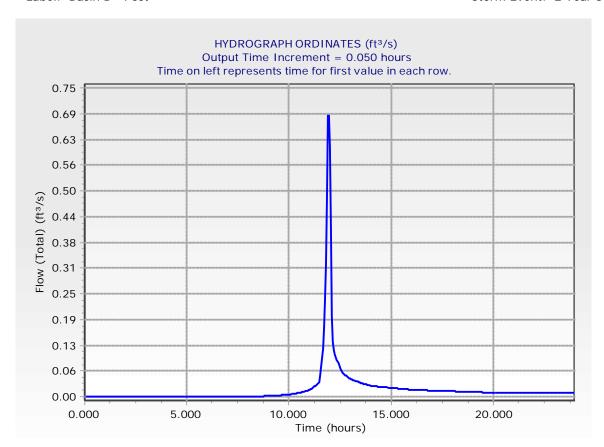
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.700	0.00	0.00	0.00	0.00	0.00
8.950	0.00	0.00	0.00	0.00	0.00
9.200	0.00	0.00	0.00	0.00	0.00
9.450	0.00	0.00	0.00	0.00	0.00
9.700	0.00	0.00	0.00	0.00	0.00
9.950	0.01	0.01	0.01	0.01	0.01
10.200	0.01	0.01	0.01	0.01	0.01
10.450	0.01	0.01	0.01	0.01	0.01
10.700	0.01	0.01	0.01	0.01	0.02
10.950	0.02	0.02	0.02	0.02	0.02
11.200	0.02	0.02	0.03	0.03	0.03
11.450	0.03	0.04	0.05	0.07	0.12
11.700	0.17	0.24	0.32	0.48	0.68
11.950	0.68	0.61	0.42	0.19	0.13
12.200	0.11	0.10	0.10	0.09	0.08
12.450	0.07	0.07	0.06	0.06	0.06
12.700	0.05	0.05	0.05	0.05	0.05
12.950	0.05	0.04	0.04	0.04	0.04
13.200	0.04	0.04	0.04	0.04	0.04
13.450	0.03	0.03	0.03	0.03	0.03
13.700	0.03	0.03	0.03	0.03	0.03
13.950	0.03	0.03	0.03	0.03	0.03
14.200	0.03	0.02	0.02	0.02	0.02
14.450	0.02	0.02	0.02	0.02	0.02
14.700	0.02	0.02	0.02	0.02	0.02
14.950	0.02	0.02	0.02	0.02	0.02
15.200	0.02	0.02	0.02	0.02	0.02
15.450	0.02	0.02	0.02	0.02	0.02
15.700	0.02	0.02	0.02	0.02	0.02
15.950	0.02	0.02	0.02	0.02	0.02
16.200	0.02	0.02	0.02	0.02	0.02
16.450	0.02	0.02	0.02	0.02	0.02
16.700	0.02	0.02	0.02	0.02	0.01
16.950	0.01	0.01	0.01	0.01	0.01
17.200	0.01	0.01	0.01	0.01	0.01
17.450	0.01	0.01	0.01	0.01	0.01
17.700	0.01	0.01	0.01	0.01	0.01
17.950	0.01	0.01	0.01	0.01	0.01
18.200	0.01	0.01	0.01	0.01	0.01
18.450	0.01	0.01	0.01	0.01	0.01
18.700	0.01	0.01	0.01	0.01	0.01
18.950	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin B - Post

Storm Event: 2 Year Storm


Time official represents time for most value in each row.					
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.200	0.01	0.01	0.01	0.01	0.01
19.450	0.01	0.01	0.01	0.01	0.01
19.700	0.01	0.01	0.01	0.01	0.01
19.950	0.01	0.01	0.01	0.01	0.01
20.200	0.01	0.01	0.01	0.01	0.01
20.450	0.01	0.01	0.01	0.01	0.01
20.700	0.01	0.01	0.01	0.01	0.01
20.950	0.01	0.01	0.01	0.01	0.01
21.200	0.01	0.01	0.01	0.01	0.01
21.450	0.01	0.01	0.01	0.01	0.01
21.700	0.01	0.01	0.01	0.01	0.01
21.950	0.01	0.01	0.01	0.01	0.01
22.200	0.01	0.01	0.01	0.01	0.01
22.450	0.01	0.01	0.01	0.01	0.01
22.700	0.01	0.01	0.01	0.01	0.01
22.950	0.01	0.01	0.01	0.01	0.01
23.200	0.01	0.01	0.01	0.01	0.01
23.450	0.01	0.01	0.01	0.01	0.01
23.700	0.01	0.01	0.01	0.01	0.01
23.950	0.01	0.01	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin B - Post

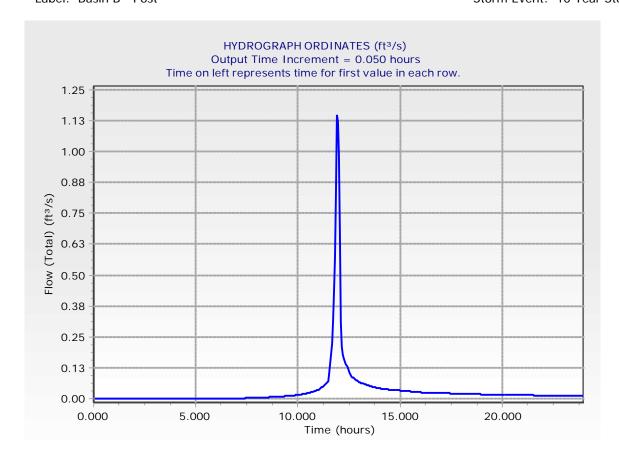
Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Basin B - Post Storm Event: 10 Year Storm

Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.402 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	1.19 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	1.15 ft ³ /s
Drainaga Araa	
Drainage Area	
SCS CN (Composite)	88.000
Area (User Defined)	0.402 acres
Maximum Retention (Pervious)	1.4 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.9 in
Runoff Volume (Pervious)	0.063 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	0.063 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	5.47 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin B - Post Storm Event: 10 Year Storm


Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.402 acres

Time (hours)	(ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
7.000	0.00	0.00	0.00	0.00	0.00
7.250	0.00	0.00	0.00	0.00	0.00
7.500	0.00	0.00	0.00	0.00	0.00
7.750	0.00	0.00	0.00	0.00	0.00
8.000	0.00	0.00	0.00	0.00	0.00
8.250	0.00	0.00	0.00	0.00	0.01
8.500	0.01	0.01	0.01	0.01	0.01
8.750	0.01	0.01	0.01	0.01	0.01
9.000	0.01	0.01	0.01	0.01	0.01
9.250	0.01	0.01	0.01	0.01	0.01
9.500	0.01	0.01	0.01	0.01	0.01
9.750	0.01	0.01	0.01	0.01	0.01
10.000	0.02	0.02	0.02	0.02	0.02
10.250	0.02	0.02	0.02	0.02	0.02
10.500	0.02	0.02	0.03	0.03	0.03
10.750	0.03	0.03	0.03	0.03	0.04
11.000	0.04	0.04	0.04	0.04	0.05
11.250	0.05	0.06	0.06	0.06	0.07
11.500	0.07	0.10	0.15	0.22	0.32
11.750	0.44	0.57	0.83	1.15	1.12
12.000	0.98	0.68	0.31	0.21	0.18
12.250	0.16	0.15	0.14	0.13	0.12
12.500	0.11	0.10	0.09	0.09	80.0
12.750	80.0	0.08	0.08	0.07	0.07
13.000	0.07	0.07	0.06	0.06	0.06
13.250	0.06	0.06	0.06	0.05	0.05
13.500	0.05	0.05	0.05	0.05	0.05
13.750	0.05	0.05	0.04	0.04	0.04
14.000 14.250	0.04 0.04	0.04 0.04	0.04 0.04	0.04 0.04	0.04 0.04
14.500	0.04	0.04	0.04	0.04	0.04
14.750	0.04	0.04	0.04	0.04	0.04
15.000	0.03	0.03	0.03	0.03	0.03
15.250	0.03	0.03	0.03	0.03	0.03
15.500	0.03	0.03	0.03	0.03	0.03
15.750	0.03	0.03	0.03	0.03	0.03
16.000	0.03	0.03	0.03	0.03	0.03
16.250	0.02	0.02	0.02	0.02	0.02
16.500	0.02	0.02	0.02	0.02	0.02
16.750	0.02	0.02	0.02	0.02	0.02
17.000	0.02	0.02	0.02	0.02	0.02
17.250	0.02	0.02	0.02	0.02	0.02

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin B - Post Storm Event: 10 Year Storm

rime on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
17.500	0.02	0.02	0.02	0.02	0.02
17.750	0.02	0.02	0.02	0.02	0.02
18.000	0.02	0.02	0.02	0.02	0.02
18.250	0.02	0.02	0.02	0.02	0.02
18.500	0.02	0.02	0.02	0.02	0.02
18.750	0.02	0.02	0.02	0.02	0.02
19.000	0.02	0.02	0.02	0.02	0.02
19.250	0.02	0.02	0.02	0.02	0.02
19.500	0.02	0.02	0.02	0.02	0.02
19.750	0.02	0.02	0.01	0.01	0.01
20.000	0.01	0.01	0.01	0.01	0.01
20.250	0.01	0.01	0.01	0.01	0.01
20.500	0.01	0.01	0.01	0.01	0.01
20.750	0.01	0.01	0.01	0.01	0.01
21.000	0.01	0.01	0.01	0.01	0.01
21.250	0.01	0.01	0.01	0.01	0.01
21.500	0.01	0.01	0.01	0.01	0.01
21.750	0.01	0.01	0.01	0.01	0.01
22.000	0.01	0.01	0.01	0.01	0.01
22.250	0.01	0.01	0.01	0.01	0.01
22.500	0.01	0.01	0.01	0.01	0.01
22.750	0.01	0.01	0.01	0.01	0.01
23.000	0.01	0.01	0.01	0.01	0.01
23.250	0.01	0.01	0.01	0.01	0.01
23.500	0.01	0.01	0.01	0.01	0.01
23.750	0.01	0.01	0.01	0.01	0.01
24.000	0.01	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin B - Post Storm Event: 10 Year Storm

Subsection: Unit Hydrograph Summary

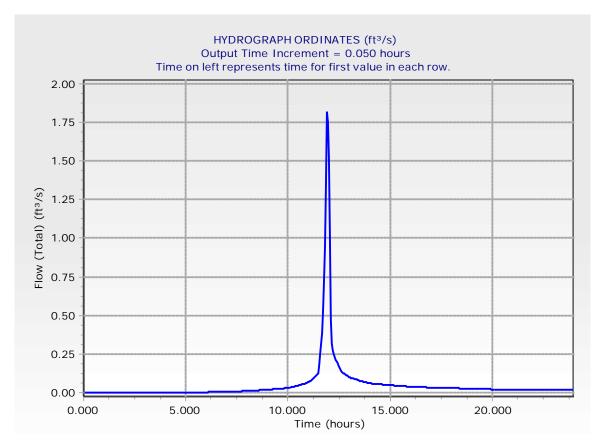
Return Event: 50 years Label: Basin B - Post Storm Event: 50 Year Storm

Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration	0.083 hours
(Composite) Area (User Defined)	0.402 acres
Computational Time	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	1.87 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated	4.00.607
Output)	1.82 ft ³ /s
Drainage Area	
SCS CN (Composite)	88.000
Area (User Defined)	0.402 acres
Maximum Retention	0.402 dcres
(Pervious)	1.4 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth	2 0 in
(Pervious)	3.0 in
Runoff Volume (Pervious)	0.101 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	0.101 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	5.47 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin B - Post Storm Event: 50 Year Storm

Storm Event 50 Year Storm
Return Event 50 years
Duration 24.000 hours
Depth 4.3 in
Time of Concentration
(Composite) 0.083 hours
Area (User Defined) 0.402 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.400	0.00	0.00	0.00	0.00	0.00
5.650	0.00	0.00	0.00	0.00	0.00
5.900	0.00	0.00	0.00	0.00	0.00
6.150	0.00	0.00	0.00	0.00	0.00
6.400	0.00	0.00	0.00	0.00	0.00
6.650	0.01	0.01	0.01	0.01	0.01
6.900	0.01	0.01	0.01	0.01	0.01
7.150	0.01	0.01	0.01	0.01	0.01
7.400	0.01	0.01	0.01	0.01	0.01
7.650	0.01	0.01	0.01	0.01	0.01
7.900	0.01	0.01	0.01	0.01	0.01
8.150	0.01	0.01	0.01	0.01	0.01
8.400	0.01	0.01	0.01	0.02	0.02
8.650	0.02	0.02	0.02	0.02	0.02
8.900	0.02	0.02	0.02	0.02	0.02
9.150	0.02	0.02	0.02	0.02	0.02
9.400	0.02	0.02	0.02	0.02	0.02
9.650	0.03	0.03	0.03	0.03	0.03
9.900	0.03	0.03	0.03	0.03	0.03
10.150	0.04	0.04	0.04	0.04	0.04
10.400	0.04	0.04	0.05	0.05	0.05
10.650	0.05	0.05	0.06	0.06	0.06
10.900	0.06	0.07	0.07	0.07	0.08
11.150	0.08	0.09	0.09	0.10	0.11
11.400	0.11	0.12	0.13	0.18	0.25
11.650	0.38	0.54	0.73	0.95	1.35
11.900	1.82	1.75	1.52	1.03	0.47
12.150	0.32	0.27	0.25	0.23	0.21
12.400 12.650	0.19 0.13	0.18 0.13	0.16 0.12	0.15 0.12	0.14 0.11
12.900	0.13	0.13	0.12	0.12	0.11
13.150	0.11	0.11	0.10	0.10	0.10
13.400	0.09	0.09	0.09	0.07	0.03
13.650	0.07	0.07	0.07	0.07	0.07
13.900	0.06	0.06	0.06	0.06	0.06
14.150	0.06	0.06	0.06	0.06	0.06
14.400	0.06	0.05	0.05	0.05	0.05
14.650	0.05	0.05	0.05	0.05	0.05
14.900	0.05	0.05	0.05	0.05	0.05
15.150	0.05	0.05	0.05	0.05	0.05
15.400	0.04	0.04	0.04	0.04	0.04
15.650	0.04	0.04	0.04	0.04	0.04


Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin B - Post Storm Event: 50 Year Storm

time of fert represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.900	0.04	0.04	0.04	0.04	0.04
16.150	0.04	0.04	0.04	0.04	0.04
16.400	0.04	0.04	0.04	0.04	0.03
16.650	0.03	0.03	0.03	0.03	0.03
16.900	0.03	0.03	0.03	0.03	0.03
17.150	0.03	0.03	0.03	0.03	0.03
17.400	0.03	0.03	0.03	0.03	0.03
17.650	0.03	0.03	0.03	0.03	0.03
17.900	0.03	0.03	0.03	0.03	0.03
18.150	0.03	0.03	0.03	0.03	0.03
18.400	0.03	0.03	0.03	0.03	0.03
18.650	0.03	0.03	0.03	0.03	0.03
18.900	0.03	0.03	0.03	0.03	0.03
19.150	0.02	0.02	0.02	0.02	0.02
19.400	0.02	0.02	0.02	0.02	0.02
19.650	0.02	0.02	0.02	0.02	0.02
19.900	0.02	0.02	0.02	0.02	0.02
20.150	0.02	0.02	0.02	0.02	0.02
20.400	0.02	0.02	0.02	0.02	0.02
20.650	0.02	0.02	0.02	0.02	0.02
20.900	0.02	0.02	0.02	0.02	0.02
21.150	0.02	0.02	0.02	0.02	0.02
21.400	0.02	0.02	0.02	0.02	0.02
21.650	0.02	0.02	0.02	0.02	0.02
21.900	0.02	0.02	0.02	0.02	0.02
22.150	0.02	0.02	0.02	0.02	0.02
22.400	0.02	0.02	0.02	0.02	0.02
22.650	0.02	0.02	0.02	0.02	0.02
22.900	0.02	0.02	0.02	0.02	0.02
23.150	0.02	0.02	0.02	0.02	0.02
23.400	0.02	0.02	0.02	0.02	0.02
23.650	0.02	0.02	0.02	0.02	0.02
23.900	0.02	0.02	0.02	(N/A)	(N/A)

Return Event: 50 years

Subsection: Unit Hydrograph (Hydrograph Table)

Label: Basin B - Post Storm Event: 50 Year Storm

Return Event: 100 years

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Label: Basin B - Post

Storm Event	100 Year Storm	
Return Event	100 years	
Duration	24.000 hours	
Depth	5.0 in	
Time of Concentration (Composite)	0.083 hours	
Area (User Defined)	0.402 acres	
Computational Time Increment	0.011 hours	
Time to Peak (Computed)	11.922 hours	
Flow (Peak, Computed)	2.25 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	11.900 hours	
Flow (Peak Interpolated Output)	2.19 ft ³ /s	
Drainage Area		
Drainage Area		
SCS CN (Composite)	88.000	
Area (User Defined)	0.402 acres	
Maximum Retention (Pervious)	1.4 in	
Maximum Retention (Pervious, 20 percent)	0.3 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	3.7 in	
Runoff Volume (Pervious)	0.123 ac-ft	
Hydrograph Volume (Area unde	or Hydrograph aurua)	_
Hydrograph Volume (Area unde		
Volume	0.122 ac-ft	
SCS Unit Hydrograph Parameter	ers	_
Time of Concentration (Composite)	0.083 hours	
Computational Time Increment	0.011 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	5.47 ft ³ /s	
Unit peak time, Tp	0.056 hours	
Unit receding limb, Tr	0.222 hours	

Total unit time, Tb

0.278 hours

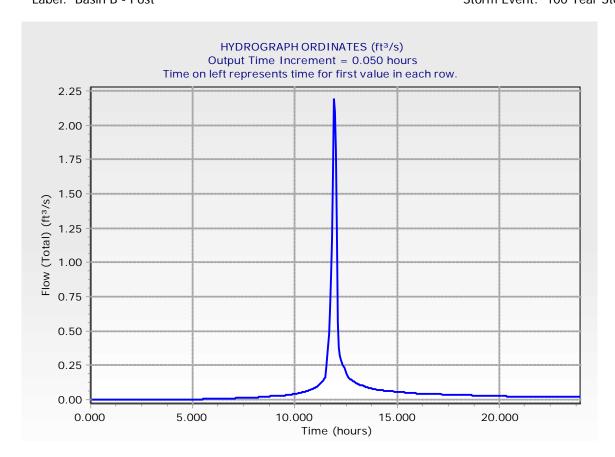
Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years

Label: Basin B - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.402 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
4.800	0.00	0.00	0.00	0.00	0.00
5.050	0.00	0.00	0.00	0.00	0.00
5.300	0.00	0.00	0.00	0.00	0.00
5.550	0.00	0.00	0.00	0.00	0.00
5.800	0.00	0.00	0.01	0.01	0.01
6.050	0.01	0.01	0.01	0.01	0.01
6.300	0.01	0.01	0.01	0.01	0.01
6.550	0.01	0.01	0.01	0.01	0.01
6.800	0.01	0.01	0.01	0.01	0.01
7.050	0.01	0.01	0.01	0.01	0.01
7.300	0.01	0.01	0.01	0.01	0.01
7.550	0.01	0.01	0.01	0.01	0.01
7.800	0.01	0.01	0.01	0.01	0.02
8.050	0.02	0.02	0.02	0.02	0.02
8.300	0.02	0.02	0.02	0.02	0.02
8.550	0.02	0.02	0.02	0.02	0.02
8.800	0.02	0.03	0.03	0.03	0.03
9.050	0.03	0.03	0.03	0.03	0.03
9.300	0.03	0.03	0.03	0.03	0.03
9.550	0.03	0.03	0.03	0.03	0.04
9.800	0.04	0.04	0.04	0.04	0.04
10.050	0.04	0.04	0.05	0.05	0.05
10.300	0.05	0.05	0.05	0.06	0.06
10.550	0.06	0.06	0.07	0.07	0.07
10.800	0.08	0.08	0.08	0.09	0.09
11.050	0.09	0.10	0.10	0.11	0.12
11.300	0.13	0.14	0.14	0.15	0.16
11.550	0.23	0.32	0.48	0.66	0.90
11.800 12.050	1.15 1.23	1.63 0.56	2.19 0.38	2.10 0.32	1.81 0.29
	0.27	0.56	0.38	0.32	0.29
12.300 12.550	0.27	0.25	0.23	0.21	0.19
12.800	0.17	0.18	0.13	0.13	0.14
13.050	0.14	0.13	0.13	0.13	0.12
13.300	0.12	0.10	0.11	0.09	0.09
13.550	0.10	0.10	0.10	0.07	0.09
13.800	0.09	0.09	0.09	0.08	0.08
14.050	0.07	0.07	0.07	0.07	0.07
14.300	0.07	0.07	0.07	0.06	0.06
14.550	0.06	0.06	0.06	0.06	0.06
14.800	0.06	0.06	0.06	0.06	0.06
15.050	0.06	0.06	0.06	0.05	0.05

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin B - Post Storm Event: 100 Year Storm


fille of fert represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.300	0.05	0.05	0.05	0.05	0.05
15.550	0.05	0.05	0.05	0.05	0.05
15.800	0.05	0.05	0.05	0.05	0.04
16.050	0.04	0.04	0.04	0.04	0.04
16.300	0.04	0.04	0.04	0.04	0.04
16.550	0.04	0.04	0.04	0.04	0.04
16.800	0.04	0.04	0.04	0.04	0.04
17.050	0.04	0.04	0.04	0.04	0.04
17.300	0.04	0.04	0.04	0.04	0.04
17.550	0.04	0.04	0.04	0.04	0.04
17.800	0.04	0.04	0.04	0.03	0.03
18.050	0.03	0.03	0.03	0.03	0.03
18.300	0.03	0.03	0.03	0.03	0.03
18.550	0.03	0.03	0.03	0.03	0.03
18.800	0.03	0.03	0.03	0.03	0.03
19.050	0.03	0.03	0.03	0.03	0.03
19.300	0.03	0.03	0.03	0.03	0.03
19.550	0.03	0.03	0.03	0.03	0.03
19.800	0.03	0.03	0.03	0.03	0.03
20.050	0.03	0.02	0.02	0.02	0.02
20.300	0.02	0.02	0.02	0.02	0.02
20.550	0.02	0.02	0.02	0.02	0.02
20.800	0.02	0.02	0.02	0.02	0.02
21.050	0.02	0.02	0.02	0.02	0.02
21.300	0.02	0.02	0.02	0.02	0.02
21.550	0.02	0.02	0.02	0.02	0.02
21.800	0.02	0.02	0.02	0.02	0.02
22.050	0.02	0.02	0.02	0.02	0.02
22.300	0.02	0.02	0.02	0.02	0.02
22.550	0.02	0.02	0.02	0.02	0.02
22.800	0.02	0.02	0.02	0.02	0.02
23.050	0.02	0.02	0.02	0.02	0.02
23.300	0.02	0.02	0.02	0.02	0.02
23.550	0.02	0.02	0.02	0.02	0.02
23.800	0.02	0.02	0.02	0.02	0.02

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin B - Post

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin C - Post Storm Event: 2 Year Storm

Storm Event 2 Year Storm Return Event 2 y Duration 24.000 h Depth 2.2 i Time of Concentration (Composite) Area (User Defined) 0.515 a	/ears
Duration 24.000 h Depth 2.2 i Time of Concentration (Composite) 0.107 h	
Depth 2.2 i Time of Concentration (Composite) 0.107 h	
Time of Concentration (Composite) 0.107 h	10urs
(Composite)	n
	nours
	acres
Computational Time Increment 0.014 h	nours
Time to Peak (Computed) 11.948 h	nours
Flow (Peak, Computed) 0.82 f	t³/s
Output Increment 0.050 h	nours
Time to Flow (Peak Interpolated Output) 11.950 h	nours
Flow (Peak Interpolated Output) 0.82 f	t³/s
Drainage Area	
-	
SCS CN (Composite) 87.000	
Area (User Defined) 0.515 a	acres
Maximum Retention 1.5 i (Pervious)	n
Maximum Retention 0.3 i (Pervious, 20 percent)	n
Cumulative Runoff	
Cumulative Runoff Depth (Pervious) 1.1 i	n
Runoff Volume (Pervious) 0.046 a	ac-ft
Hydrograph Volume (Area under Hydrograph cu	ırve)
Volume 0.046 a	ic-ft
SCS Unit Hydrograph Parameters	
Time of Concentration	
(Composite) 0.107 F	nours
Computational Time 0.014 h	nours
Unit Hydrograph Shape Factor 483.432	
K Factor 0.749	
Receding/Rising, Tr/Tp 1.670	
Unit peak, qp 5.44 f	t³/s
Unit peak time, Tp 0.071 h	nours
Unit receding limb, Tr 0.286 h	nours
Total unit time, Tb 0.357 h	nours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin C - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.107 hours
Area (User Defined)	0.515 acres

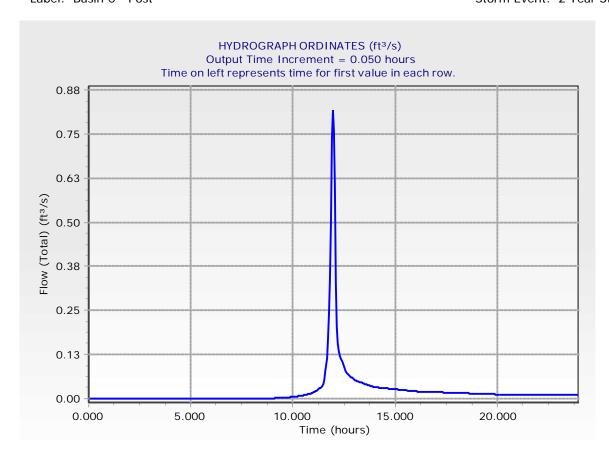
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.050	0.00	0.00	0.00	0.00	0.00
9.300	0.00	0.00	0.00	0.00	0.00
9.550	0.00	0.00	0.00	0.00	0.00
9.800	0.00	0.00	0.00	0.00	0.00
10.050	0.01	0.01	0.01	0.01	0.01
10.300	0.01	0.01	0.01	0.01	0.01
10.550	0.01	0.01	0.01	0.01	0.01
10.800	0.01	0.01	0.02	0.02	0.02
11.050	0.02	0.02	0.02	0.02	0.03
11.300	0.03	0.03	0.03	0.04	0.04
11.550	0.05	0.08	0.11	0.18	0.25
11.800	0.35	0.50	0.74	0.82	0.76
12.050	0.60	0.33	0.20	0.15	0.14
12.300	0.12	0.11	0.10	0.10	0.09
12.550	0.08	0.07	0.07	0.07	0.06
12.800	0.06	0.06	0.06	0.06	0.05
13.050	0.05	0.05	0.05	0.05	0.05
13.300	0.05	0.05	0.04	0.04	0.04
13.550	0.04	0.04	0.04	0.04	0.04
13.800	0.04	0.04	0.03	0.03	0.03
14.050	0.03	0.03	0.03	0.03	0.03
14.300	0.03	0.03	0.03	0.03	0.03
14.550	0.03	0.03	0.03	0.03	0.03
14.800	0.03	0.03	0.03	0.03	0.03
15.050	0.03	0.03	0.03	0.03	0.03
15.300	0.02	0.02	0.02	0.02	0.02
15.550	0.02	0.02	0.02	0.02	0.02
15.800	0.02	0.02	0.02	0.02	0.02
16.050	0.02	0.02	0.02	0.02	0.02
16.300	0.02	0.02	0.02	0.02	0.02
16.550	0.02	0.02	0.02	0.02	0.02
16.800	0.02	0.02	0.02	0.02	0.02
17.050	0.02	0.02	0.02	0.02	0.02
17.300	0.02	0.02	0.02	0.02	0.02
17.550	0.02	0.02	0.02	0.02	0.02
17.800	0.02	0.02	0.02	0.02	0.02
18.050	0.02	0.02	0.02	0.02	0.02
18.300	0.02	0.02	0.02	0.02	0.02
18.550	0.02	0.02	0.01	0.01	0.01
18.800	0.01	0.01	0.01	0.01	0.01
19.050	0.01	0.01	0.01	0.01	0.01
19.300	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin C - Post

Storm Event: 2 Year Storm


Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
19.550	0.01	0.01	0.01	0.01	0.01
19.800	0.01	0.01	0.01	0.01	0.01
20.050	0.01	0.01	0.01	0.01	0.01
20.300	0.01	0.01	0.01	0.01	0.01
20.550	0.01	0.01	0.01	0.01	0.01
20.800	0.01	0.01	0.01	0.01	0.01
21.050	0.01	0.01	0.01	0.01	0.01
21.300	0.01	0.01	0.01	0.01	0.01
21.550	0.01	0.01	0.01	0.01	0.01
21.800	0.01	0.01	0.01	0.01	0.01
22.050	0.01	0.01	0.01	0.01	0.01
22.300	0.01	0.01	0.01	0.01	0.01
22.550	0.01	0.01	0.01	0.01	0.01
22.800	0.01	0.01	0.01	0.01	0.01
23.050	0.01	0.01	0.01	0.01	0.01
23.300	0.01	0.01	0.01	0.01	0.01
23.550	0.01	0.01	0.01	0.01	0.01
23.800	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin C - Post

Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

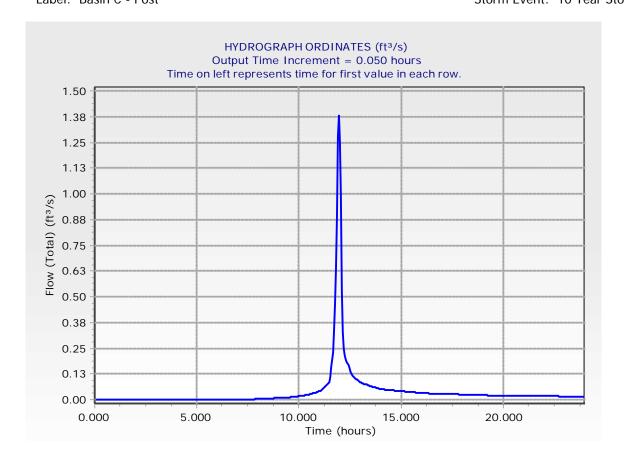
Return Event: 10 years Label: Basin C - Post Storm Event: 10 Year Storm

Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.107 hours
Area (User Defined)	0.515 acres
Computational Time Increment	0.014 hours
Time to Peak (Computed)	11.934 hours
Flow (Peak, Computed)	1.40 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	1.38 ft ³ /s
Duning and Augus	
Drainage Area	
SCS CN (Composite)	87.000
Area (User Defined)	0.515 acres
Maximum Retention (Pervious)	1.5 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.8 in
Runoff Volume (Pervious)	0.078 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	0.078 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.107 hours
Computational Time Increment	0.014 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	5.44 ft ³ /s
Unit peak time, Tp	0.071 hours
Unit receding limb, Tr	0.286 hours
Total unit time, Tb	0.357 hours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 10 years

Label: Basin C - Post Storm Event: 10 Year Storm


Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.107 hours
Area (User Defined)	0.515 acres

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
7.350	0.00	0.00	0.00	0.00	0.00
7.600	0.00	0.00	0.00	0.00	0.00
7.850	0.00	0.00	0.00	0.00	0.00
8.100	0.00	0.00	0.00	0.00	0.00
8.350	0.00	0.00	0.00	0.01	0.01
8.600	0.01	0.01	0.01	0.01	0.01
8.850	0.01	0.01	0.01	0.01	0.01
9.100	0.01	0.01	0.01	0.01	0.01
9.350	0.01	0.01	0.01	0.01	0.01
9.600	0.01	0.01	0.01	0.01	0.01
9.850	0.01	0.02	0.02	0.02	0.02
10.100	0.02	0.02	0.02	0.02	0.02
10.350	0.02	0.02	0.02	0.03	0.03
10.600	0.03	0.03	0.03	0.03	0.03
10.850	0.04	0.04	0.04	0.04	0.04
11.100	0.05	0.05	0.05	0.06	0.06
11.350	0.07	0.07	0.08	0.08	0.11
11.600	0.16	0.23	0.34	0.47	0.64
11.850	0.89	1.28	1.38	1.25	0.99
12.100	0.53 0.18	0.33 0.17	0.25 0.15	0.22 0.14	0.20
12.350 12.600	0.18	0.17	0.15	0.14	0.13 0.10
12.850	0.12	0.11	0.11	0.10	0.10
13.100	0.10	0.09	0.09	0.09	0.08
13.350	0.08	0.08	0.08	0.07	0.07
13.600	0.06	0.06	0.06	0.07	0.06
13.850	0.06	0.05	0.05	0.05	0.05
14.100	0.05	0.05	0.05	0.05	0.05
14.350	0.05	0.05	0.05	0.05	0.05
14.600	0.05	0.04	0.04	0.04	0.04
14.850	0.04	0.04	0.04	0.04	0.04
15.100	0.04	0.04	0.04	0.04	0.04
15.350	0.04	0.04	0.04	0.04	0.04
15.600	0.04	0.04	0.04	0.03	0.03
15.850	0.03	0.03	0.03	0.03	0.03
16.100	0.03	0.03	0.03	0.03	0.03
16.350	0.03	0.03	0.03	0.03	0.03
16.600	0.03	0.03	0.03	0.03	0.03
16.850	0.03	0.03	0.03	0.03	0.03
17.100	0.03	0.03	0.03	0.03	0.03
17.350	0.03	0.03	0.03	0.03	0.03
17.600	0.03	0.03	0.03	0.03	0.03

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin C - Post Storm Event: 10 Year Storm

Time of left represents time for mist value in each row.					vv.	
	Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
ı	17.850	0.03	0.03	0.03	0.03	0.02
١	18.100	0.02	0.02	0.02	0.02	0.02
١	18.350	0.02	0.02	0.02	0.02	0.02
١	18.600	0.02	0.02	0.02	0.02	0.02
١	18.850	0.02	0.02	0.02	0.02	0.02
١	19.100	0.02	0.02	0.02	0.02	0.02
١	19.350	0.02	0.02	0.02	0.02	0.02
١	19.600	0.02	0.02	0.02	0.02	0.02
١	19.850	0.02	0.02	0.02	0.02	0.02
١	20.100	0.02	0.02	0.02	0.02	0.02
١	20.350	0.02	0.02	0.02	0.02	0.02
١	20.600	0.02	0.02	0.02	0.02	0.02
١	20.850	0.02	0.02	0.02	0.02	0.02
١	21.100	0.02	0.02	0.02	0.02	0.02
١	21.350	0.02	0.02	0.02	0.02	0.02
١	21.600	0.02	0.02	0.02	0.02	0.02
١	21.850	0.02	0.02	0.02	0.02	0.02
١	22.100	0.02	0.02	0.02	0.02	0.02
١	22.350	0.02	0.02	0.02	0.02	0.02
١	22.600	0.02	0.02	0.02	0.02	0.02
١	22.850	0.02	0.02	0.02	0.02	0.02
١	23.100	0.02	0.02	0.02	0.02	0.02
١	23.350	0.02	0.02	0.02	0.02	0.02
	23.600	0.02	0.02	0.02	0.02	0.02
١	23.850	0.02	0.02	0.02	0.02	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin C - Post Storm Event: 10 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin C - Post Storm Event: 50 Year Storm

Storm Event 50 Year Storm Return Event 50 years Duration 24.000 hours Depth 4.3 in Time of Concentration (Composite) Area (User Defined) 0.515 acres Computational Time Increment 0.014 hours Time to Peak (Computed) 11.934 hours Flow (Peak, Computed) 2.23 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.950 hours Time to Flow (Peak Interpolated Output) 11.950 hours Flow (Peak Interpolated Output) 2.20 ft³/s Drainage Area SCS CN (Composite) 87.000 Area (User Defined) 0.515 acres Maximum Retention (Pervious) 1.5 in Maximum Retention (Pervious, 20 percent) 0.3 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.107 hours Computational Time Increment 0.014 hours Increment 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 5.44 ft³/s Unit peak time, Tp 0.071 hours Unit receding limb, Tr 0.286 hours Total unit time, Tb 0.357 hours		
Duration 24,000 hours Depth 4.3 in Time of Concentration (Composite) Area (User Defined) 0.515 acres Computational Time Increment 0.014 hours Time to Peak (Computed) 11.934 hours Flow (Peak, Computed) 2.23 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.950 hours Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) 2.20 ft³/s Drainage Area SCS CN (Composite) 87.000 Area (User Defined) 0.515 acres Maximum Retention (Pervious) 1.5 in Maximum Retention (Pervious, 20 percent) 0.3 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.107 hours (Composite) 0.107 hours Computational Time Increment 0.014 hours Incre	Storm Event	50 Year Storm
Depth 4.3 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours	Return Event	50 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Pervious) Tow (Pervious, 20 percent) Cumulative Runoff Cumulative	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Nove Maximum Retention O.107 hours	Depth	4.3 in
Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor N Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours		0.107 hours
Increment Time to Peak (Computed) Time to Peak, Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time to Flow (Peak Interpolated Output) 1.5 in 0.3 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.286 hours	·	0.515 acres
Increment Time to Peak (Computed) Time to Peak, Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time to Flow (Peak Interpolated Output) 1.5 in 0.3 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.286 hours		
Flow (Peak, Computed) Output Increment O.050 hours Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Note the Area of School of	•	0.014 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.286 hours	Time to Peak (Computed)	11.934 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.286 hours	Flow (Peak, Computed)	2.23 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.286 hours	Output Increment	0.050 hours
Output) Drainage Area SCS CN (Composite) 87.000 Area (User Defined) 0.515 acres Maximum Retention (Pervious) 1.5 in Maximum Retention (Pervious, 20 percent) 0.3 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 2.9 in Runoff Volume (Pervious) 0.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.107 hours (Composite) Computational Time 10.014 hours Unit Hydrograph Shape 483.432 Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 5.44 ft³/s Unit peak time, Tp 0.071 hours Unit receding limb, Tr 0.286 hours		11.950 hours
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours		2.20 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.3 in 0.3 in 0.3 in 0.3 in 0.107 in 0.125 ac-ft 0.125 ac-ft 0.125 ac-ft 0.107 hours 0.107 hours 1.5 in 0.3 in		87.000
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Cumulative Runoff Depth (Pervious) O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours	•	
Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours	Maximum Retention	1.5 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.125 ac-ft 0.125 ac-ft 0.125 ac-ft 0.107 hours 0.107 hours 0.014 hours 1.670 1.67	Maximum Retention	0.3 in
(Pervious) Runoff Volume (Pervious) Runoff Volume (Pervious) O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.286 hours	Cumulative Runoff	
Runoff Volume (Pervious) O.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.125 ac-ft 0.125 ac-ft 0.107 hours 0.107 hours 0.749 1.670 1.6		2.9 in
Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.107 hours 0.107 hours 483.432 483.432 5.44 ft³/s 0.749		0.125 ac-ft
Volume O.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.107 hours 0.107 hours 483.432 483.432 5.44 ft³/s 0.749	Hydrograph Volume (Area unde	er Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Pound Concentration 0.107 hours 483.432 483.432 1.670 1.670 0.749 1.670 0.071 hours 0.071 hours		
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Pound Concentration 0.107 hours 483.432 483.432 1.670 1.670 0.749 1.670 0.071 hours 0.071 hours		
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit only 10,017 hours Unit only 10,017 hours Unit only 10,017 hours Unit receding limb, Tr Unit only 10,017 hours	SCS Unit Hydrograph Paramete	ers
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit Polit Notes Unit Polit Notes		0.107 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr C.286 hours		0.014 hours
Receding/Rising, Tr/Tp Unit peak, qp 5.44 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.286 hours		483.432
Unit peak, qp 5.44 ft ³ /s Unit peak time, Tp 0.071 hours Unit receding limb, Tr 0.286 hours	K Factor	0.749
Unit peak, qp 5.44 ft ³ /s Unit peak time, Tp 0.071 hours Unit receding limb, Tr 0.286 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 0.286 hours	Unit peak, qp	5.44 ft ³ /s
_	Unit peak time, Tp	0.071 hours
Total unit time, Tb 0.357 hours	Unit receding limb, Tr	0.286 hours
	Total unit time, Tb	0.357 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years

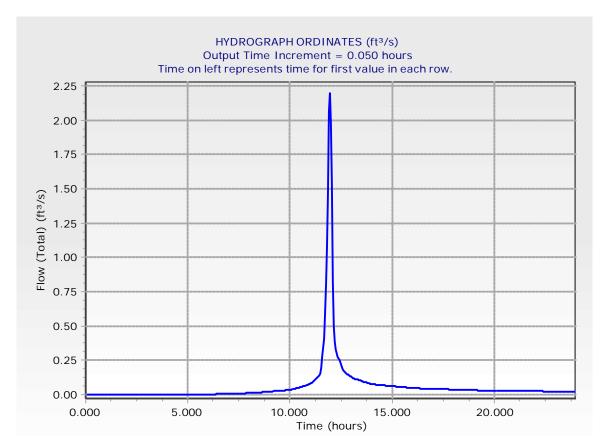
Label: Basin C - Post Storm Event: 50 Year Storm

Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.107 hours
Area (User Defined)	0.515 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.750	0.00	0.00	0.00	0.00	0.00
6.000	0.00	0.00	0.00	0.00	0.00
6.250	0.00	0.00	0.00	0.00	0.00
6.500	0.00	0.00	0.00	0.00	0.01
6.750	0.01	0.01	0.01	0.01	0.01
7.000	0.01	0.01	0.01	0.01	0.01
7.250	0.01	0.01	0.01	0.01	0.01
7.500	0.01	0.01	0.01	0.01	0.01
7.750	0.01	0.01	0.01	0.01	0.01
8.000	0.01	0.01	0.01	0.01	0.01
8.250	0.01	0.01	0.01	0.02	0.02
8.500	0.02	0.02	0.02	0.02	0.02
8.750	0.02	0.02	0.02	0.02	0.02
9.000	0.02	0.02	0.02	0.02	0.02
9.250	0.02	0.03	0.03	0.03	0.03
9.500	0.03	0.03	0.03	0.03	0.03
9.750	0.03	0.03	0.03	0.03	0.04
10.000	0.04	0.04	0.04	0.04	0.04
10.250	0.04	0.05	0.05	0.05	0.05
10.500	0.05	0.05	0.06	0.06	0.06
10.750	0.07	0.07	0.07	0.08	0.08
11.000	0.08	0.09	0.09	0.10	0.10
11.250	0.11	0.12	0.13	0.13	0.14
11.500	0.15	0.20	0.28	0.41	0.60
11.750	0.80	1.08	1.47	2.06	2.20
12.000	1.97	1.54	0.82	0.50	0.38
12.250	0.33	0.30	0.28	0.25	0.23
12.500	0.21	0.19	0.18	0.17	0.16
12.750	0.16	0.15	0.15	0.14	0.14
13.000	0.13	0.13	0.12	0.12	0.12
13.250	0.11	0.11	0.11	0.10	0.10
13.500	0.10	0.10	0.09	0.09	0.09
13.750	0.09	0.09	0.08	0.08	0.08
14.000	0.08	0.08	0.07	0.07	0.07
14.250	0.07	0.07	0.07	0.07	0.07
14.500	0.07	0.07	0.07	0.07	0.07
14.750	0.07	0.06	0.06	0.06	0.06
15.000	0.06	0.06	0.06	0.06	0.06
15.250	0.06	0.06	0.06	0.06	0.06
15.500	0.06	0.05	0.05	0.05	0.05
15.750	0.05	0.05	0.05	0.05	0.05
16.000	0.05	0.05	0.05	0.05	0.05

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years


Label: Basin C - Post

Storm Event: 50 Year Storm

	time on left represents time for first value in each row.					
	Time	Flow	Flow	Flow	Flow	Flow
	(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
	16.250	0.05	0.05	0.05	0.05	0.05
	16.500	0.04	0.04	0.04	0.04	0.04
	16.750	0.04	0.04	0.04	0.04	0.04
	17.000	0.04	0.04	0.04	0.04	0.04
	17.250	0.04	0.04	0.04	0.04	0.04
	17.500	0.04	0.04	0.04	0.04	0.04
	17.750	0.04	0.04	0.04	0.04	0.04
	18.000	0.04	0.04	0.04	0.04	0.04
	18.250	0.04	0.04	0.04	0.04	0.04
	18.500	0.03	0.03	0.03	0.03	0.03
	18.750	0.03	0.03	0.03	0.03	0.03
	19.000	0.03	0.03	0.03	0.03	0.03
	19.250	0.03	0.03	0.03	0.03	0.03
	19.500	0.03	0.03	0.03	0.03	0.03
	19.750	0.03	0.03	0.03	0.03	0.03
	20.000	0.03	0.03	0.03	0.03	0.03
	20.250	0.03	0.03	0.03	0.03	0.03
	20.500	0.03	0.03	0.03	0.03	0.03
	20.750	0.03	0.03	0.03	0.03	0.03
	21.000	0.03	0.03	0.03	0.03	0.03
	21.250	0.03	0.03	0.03	0.03	0.03
	21.500	0.03	0.03	0.03	0.03	0.03
	21.750	0.03	0.03	0.03	0.03	0.02
	22.000	0.02	0.02	0.02	0.02	0.02
	22.250	0.02	0.02	0.02	0.02	0.02
	22.500	0.02	0.02	0.02	0.02	0.02
	22.750	0.02	0.02	0.02	0.02	0.02
	23.000	0.02	0.02	0.02	0.02	0.02
	23.250	0.02	0.02	0.02	0.02	0.02
	23.500	0.02	0.02	0.02	0.02	0.02
	23.750	0.02	0.02	0.02	0.02	0.02
l	24.000	0.02	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years Label: Basin C - Post Storm Event: 50 Year Storm

Subsection: Unit Hydrograph Summary

Label: Basin C - Post

Return Event: 100 years Storm Event: 100 Year Storm

Storm Event	100 Year Storm	
Return Event	100	years
Duration	24.000	hours
Depth	5.0	in
Time of Concentration	0.107	hours
(Composite) Area (User Defined)	0.515	acros
Area (Oser Defined)	0.515	acres
Computational Time		
Increment	0.014	hours
Time to Peak (Computed)	11.934	hours
Flow (Peak, Computed)	2.69	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	11.950	hours
Flow (Peak Interpolated	2.65	ft³/s
Output)		
Drainage Area		
SCS CN (Composite)	87.000	
Area (User Defined)	0.515	acres
Maximum Retention		
(Pervious)	1.5	in
Maximum Retention (Pervious, 20 percent)	0.3	in
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	3.6	in
Runoff Volume (Pervious)	0.153	ac-ft
Lively a grown by Malaysea (Area a consider		
Hydrograph Volume (Area unde		•
Volume	0.153	ac-ft
SCS Unit Hydrograph Paramete	ers	
Time of Concentration		
(Composite)	0.107	hours
Computational Time Increment	0.014	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	5.44	ft³/s
Unit peak time, Tp	0.071	hours
Unit receding limb, Tr	0.286	hours
Total unit time, Tb	0.357	hours

Subsection: Unit Hydrograph (Hydrograph Table)

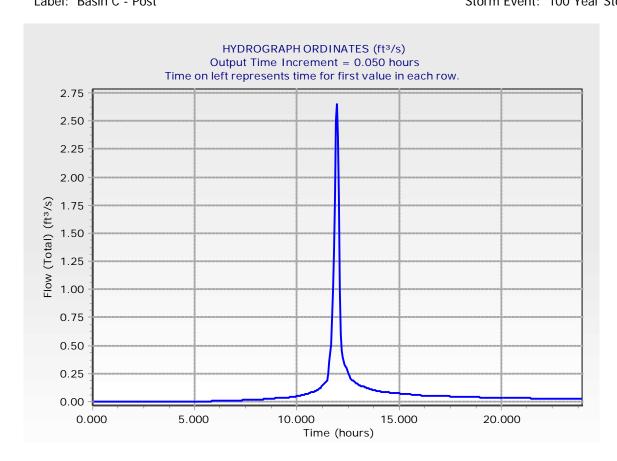
Return Event: 100 years

Label: Basin C - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.107 hours
Area (User Defined)	0.515 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.100	0.00	0.00	0.00	0.00	0.00
5.350	0.00	0.00	0.00	0.00	0.00
5.600	0.00	0.00	0.00	0.00	0.00
5.850	0.00	0.00	0.00	0.01	0.01
6.100	0.01	0.01	0.01	0.01	0.01
6.350	0.01	0.01	0.01	0.01	0.01
6.600	0.01	0.01	0.01	0.01	0.01
6.850	0.01	0.01	0.01	0.01	0.01
7.100	0.01	0.01	0.01	0.01	0.01
7.350	0.01	0.01	0.01	0.01	0.01
7.600	0.01	0.01	0.02	0.02	0.02
7.850	0.02	0.02	0.02	0.02	0.02
8.100	0.02	0.02	0.02	0.02	0.02
8.350	0.02	0.02	0.02	0.02	0.02
8.600	0.02	0.03	0.03	0.03	0.03
8.850	0.03	0.03	0.03	0.03	0.03
9.100	0.03	0.03	0.03	0.03	0.03
9.350	0.04	0.04	0.04	0.04	0.04
9.600	0.04	0.04	0.04	0.04	0.04
9.850	0.04	0.05	0.05	0.05	0.05
10.100	0.05	0.05	0.06	0.06	0.06
10.350	0.06	0.06	0.07	0.07	0.07
10.600	0.07	0.08	0.08	0.09	0.09
10.850	0.09	0.10	0.10	0.11	0.11
11.100	0.12	0.12	0.13	0.14	0.15
11.350	0.16	0.17	0.18	0.19	0.25
11.600	0.36	0.51	0.74	0.99	1.33
11.850	1.79	2.50	2.65	2.36	1.84
12.100	0.98	0.60	0.46	0.40	0.36
12.350	0.33	0.30	0.28	0.25	0.23
12.600	0.21	0.20	0.19	0.18	0.18
12.850	0.17	0.17	0.16	0.15	0.15
13.100	0.14	0.14	0.14	0.13	0.13
13.350	0.13	0.12	0.12	0.12	0.11
13.600	0.11	0.11	0.11	0.10	0.10
13.850	0.10	0.10	0.09	0.09	0.09
14.100	0.09	0.09	0.09	0.09	0.08
14.350	0.08	0.08	0.08	0.08	0.08
14.600	0.08	0.08	0.08	0.08	0.08
14.850	0.08	0.07	0.07	0.07	0.07
15.100	0.07	0.07	0.07	0.07	0.07
15.350	0.07	0.07	0.07	0.07	0.06

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin C - Post Storm Event: 100 Year Storm


rime on left represents time for first value in each row.					
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.600	0.06	0.06	0.06	0.06	0.06
15.850	0.06	0.06	0.06	0.06	0.06
16.100	0.06	0.06	0.05	0.05	0.05
16.350	0.05	0.05	0.05	0.05	0.05
16.600	0.05	0.05	0.05	0.05	0.05
16.850	0.05	0.05	0.05	0.05	0.05
17.100	0.05	0.05	0.05	0.05	0.05
17.350	0.05	0.05	0.05	0.05	0.05
17.600	0.05	0.05	0.05	0.05	0.05
17.850	0.04	0.04	0.04	0.04	0.04
18.100	0.04	0.04	0.04	0.04	0.04
18.350	0.04	0.04	0.04	0.04	0.04
18.600	0.04	0.04	0.04	0.04	0.04
18.850	0.04	0.04	0.04	0.04	0.04
19.100	0.04	0.04	0.04	0.04	0.04
19.350	0.04	0.04	0.04	0.04	0.03
19.600	0.03	0.03	0.03	0.03	0.03
19.850	0.03	0.03	0.03	0.03	0.03
20.100	0.03	0.03	0.03	0.03	0.03
20.350	0.03	0.03	0.03	0.03	0.03
20.600	0.03	0.03	0.03	0.03	0.03
20.850	0.03	0.03	0.03	0.03	0.03
21.100	0.03	0.03	0.03	0.03	0.03
21.350	0.03	0.03	0.03	0.03	0.03
21.600	0.03	0.03	0.03	0.03	0.03
21.850	0.03	0.03	0.03	0.03	0.03
22.100	0.03	0.03	0.03	0.03	0.03
22.350	0.03	0.03	0.03	0.03	0.03
22.600	0.03	0.03	0.03	0.03	0.03
22.850	0.03	0.03	0.03	0.03	0.03
23.100	0.03	0.03	0.03	0.03	0.03
23.350	0.03	0.03	0.03	0.03	0.03
23.600	0.03	0.03	0.03	0.03	0.03
23.850	0.03	0.03	0.03	0.03	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin C - Post

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin D - Post Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.073 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.933 hours
Flow (Peak, Computed)	0.06 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	0.06 ft ³ /s
Drainage Area	
SCS CN (Composite)	78.000
Area (User Defined)	0.073 acres
Maximum Retention (Pervious)	2.8 in
Maximum Retention (Pervious, 20 percent)	0.6 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.6 in
Runoff Volume (Pervious)	0.004 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Hydrograph Volume (Area unde Volume	or Hydrograph curve) 0.004 ac-ft
	0.004 ac-ft
Volume SCS Unit Hydrograph Parameter Time of Concentration	0.004 ac-ft
Volume SCS Unit Hydrograph Parameter	0.004 ac-ft
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time	0.004 ac-ft ers 0.083 hours
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	0.004 ac-ft 0.003 hours 0.011 hours
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.004 ac-ft 0.083 hours 0.011 hours 483.432
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.004 ac-ft 0.003 hours 0.011 hours 483.432 0.749
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.004 ac-ft 0.003 hours 0.011 hours 483.432 0.749 1.670
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.004 ac-ft 0.003 hours 0.011 hours 483.432 0.749 1.670 0.99 ft ³ /s

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin D - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.073 acres

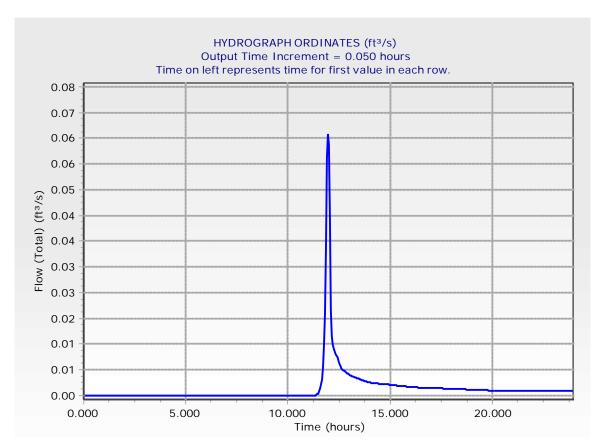
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.500	0.00	0.00	0.00	0.00	0.01
11.750	0.01	0.02	0.04	0.06	0.06
12.000	0.06	0.04	0.02	0.01	0.01
12.250	0.01	0.01	0.01	0.01	0.01
12.500	0.01	0.01	0.01	0.01	0.01
12.750	0.01	0.01	0.01	0.01	0.01
13.000	0.01	0.00	0.00	0.00	0.00
13.250	0.00	0.00	0.00	0.00	0.00
13.500	0.00	0.00	0.00	0.00	0.00
13.750	0.00	0.00	0.00	0.00	0.00
14.000	0.00	0.00	0.00	0.00	0.00
14.250	0.00	0.00	0.00	0.00	0.00
14.500	0.00	0.00	0.00	0.00	0.00
14.750	0.00	0.00	0.00	0.00	0.00
15.000	0.00	0.00	0.00	0.00	0.00
15.250	0.00	0.00	0.00	0.00	0.00
15.500	0.00	0.00	0.00	0.00	0.00
15.750	0.00	0.00	0.00	0.00	0.00
16.000	0.00	0.00	0.00	0.00	0.00
16.250	0.00	0.00	0.00	0.00	0.00
16.500	0.00	0.00	0.00	0.00	0.00
16.750	0.00	0.00	0.00	0.00	0.00
17.000	0.00	0.00	0.00	0.00	0.00
17.250	0.00	0.00	0.00	0.00	0.00
17.500	0.00	0.00	0.00	0.00	0.00
17.750	0.00	0.00	0.00	0.00	0.00
18.000	0.00	0.00	0.00	0.00	0.00
18.250	0.00	0.00	0.00	0.00	0.00
18.500	0.00	0.00	0.00	0.00	0.00
18.750	0.00	0.00	0.00	0.00	0.00
19.000	0.00	0.00	0.00	0.00	0.00
19.250	0.00	0.00	0.00	0.00	0.00
19.500	0.00	0.00	0.00	0.00	0.00
19.750	0.00	0.00	0.00	0.00	0.00
20.000	0.00	0.00	0.00	0.00	0.00
20.250	0.00	0.00	0.00	0.00	0.00
20.500	0.00	0.00	0.00	0.00	0.00
20.750	0.00	0.00	0.00	0.00	0.00
21.000	0.00	0.00	0.00	0.00	0.00
21.250	0.00	0.00	0.00	0.00	0.00
21.500	0.00	0.00	0.00	0.00	0.00
21.750	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin D - Post

Storm Event: 2 Year Storm


Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.000	0.00	0.00	0.00	0.00	0.00
22.250	0.00	0.00	0.00	0.00	0.00
22.500	0.00	0.00	0.00	0.00	0.00
22.750	0.00	0.00	0.00	0.00	0.00
23.000	0.00	0.00	0.00	0.00	0.00
23.250	0.00	0.00	0.00	0.00	0.00
23.500	0.00	0.00	0.00	0.00	0.00
23.750	0.00	0.00	0.00	0.00	0.00
24.000	0.00	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin D - Post

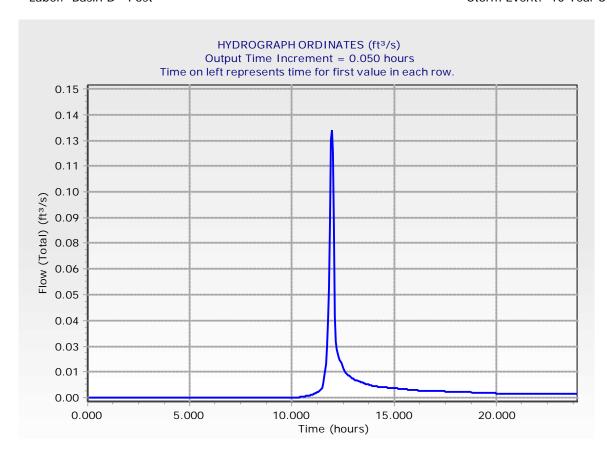
Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Basin D - Post Storm Event: 10 Year Storm

Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.073 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.933 hours
Flow (Peak, Computed)	0.13 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	0.13 ft ³ /s
Drainage Area	
	70.000
SCS CN (Composite)	78.000
Area (User Defined) Maximum Retention	0.073 acres
(Pervious)	2.8 in
Maximum Retention (Pervious, 20 percent)	0.6 in
Cumulative Runoff	
Cumulative Runoff Depth	101
(Pervious)	1.2 in
Runoff Volume (Pervious)	0.007 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	0.007 ac-ft
SCS Unit Hydrograph Paramo	tore
SCS Unit Hydrograph Parame	1615
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	0.99 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin D - Post Storm Event: 10 Year Storm


Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.073 acres

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.800	0.00	0.00	0.00	0.00	0.00
11.050	0.00	0.00	0.00	0.00	0.00
11.300	0.00	0.00	0.00	0.00	0.00
11.550	0.01	0.01	0.02	0.03	0.04
11.800	0.05	0.08	0.13	0.13	0.12
12.050	0.08	0.04	0.03	0.02	0.02
12.300	0.02	0.02	0.02	0.02	0.01
12.550	0.01	0.01	0.01	0.01	0.01
12.800	0.01	0.01	0.01	0.01	0.01
13.050	0.01	0.01	0.01	0.01	0.01
13.300	0.01	0.01	0.01	0.01	0.01
13.550	0.01	0.01	0.01	0.01	0.01
13.800	0.01	0.01	0.01	0.01	0.01
14.050	0.01	0.01	0.01	0.01	0.01
14.300	0.01	0.01	0.01	0.01	0.01
14.550	0.01	0.00	0.00	0.00	0.00
14.800	0.00	0.00	0.00	0.00	0.00
15.050	0.00	0.00	0.00	0.00	0.00
15.300	0.00	0.00	0.00	0.00	0.00
15.550	0.00	0.00	0.00	0.00	0.00
15.800	0.00	0.00	0.00	0.00	0.00
16.050	0.00	0.00	0.00	0.00	0.00
16.300	0.00	0.00	0.00	0.00	0.00
16.550	0.00	0.00	0.00	0.00	0.00
16.800	0.00	0.00	0.00	0.00	0.00
17.050	0.00	0.00	0.00	0.00	0.00
17.300	0.00	0.00	0.00	0.00	0.00
17.550	0.00	0.00	0.00	0.00	0.00
17.800	0.00	0.00	0.00	0.00	0.00
18.050	0.00	0.00	0.00	0.00	0.00
18.300	0.00	0.00	0.00	0.00	0.00
18.550	0.00	0.00	0.00	0.00	0.00
18.800	0.00	0.00	0.00	0.00	0.00
19.050	0.00	0.00	0.00	0.00	0.00
19.300	0.00	0.00	0.00	0.00	0.00
19.550	0.00	0.00	0.00	0.00	0.00
19.800	0.00	0.00	0.00	0.00	0.00
20.050	0.00	0.00	0.00	0.00	0.00
20.300	0.00	0.00	0.00	0.00	0.00
20.550	0.00	0.00	0.00	0.00	0.00
20.800	0.00	0.00	0.00	0.00	0.00
21.050	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin D - Post Storm Event: 10 Year Storm

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
21.300	0.00	0.00	0.00	0.00	0.00
21.550	0.00	0.00	0.00	0.00	0.00
21.800	0.00	0.00	0.00	0.00	0.00
22.050	0.00	0.00	0.00	0.00	0.00
22.300	0.00	0.00	0.00	0.00	0.00
22.550	0.00	0.00	0.00	0.00	0.00
22.800	0.00	0.00	0.00	0.00	0.00
23.050	0.00	0.00	0.00	0.00	0.00
23.300	0.00	0.00	0.00	0.00	0.00
23.550	0.00	0.00	0.00	0.00	0.00
23.800	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin D - Post Storm Event: 10 Year Storm

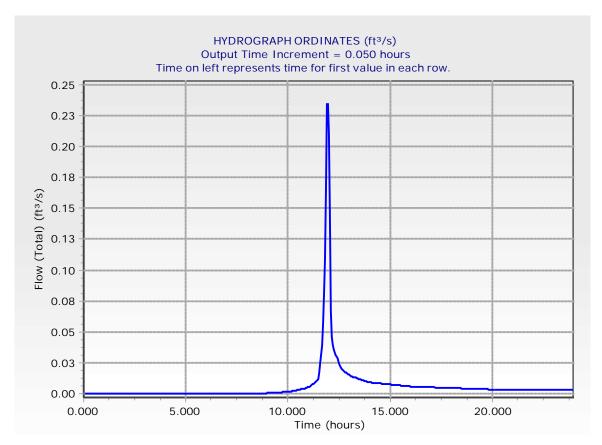
Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin D - Post Storm Event: 50 Year Storm

Storm Event 50 Year Storm Return Event 50 years Duration 24.000 hours Depth 4.3 in Time of Concentration (Composite) Area (User Defined) 0.073 acres Computational Time Increment 0.011 hours Time to Peak (Computed) 11.922 hours Flow (Peak, Computed) 0.25 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.950 hours Flow (Peak Interpolated Output) 11.950 hours Flow (Peak Interpolated Output) 12.8 in Maximum Retention (Pervious) 0.6 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours (Composite) 0.0749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 0.99 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours Total unit time, Tb 0.278 hours			
Duration 24,000 hours Depth 4.3 in Time of Concentration (Composite) 0.083 hours Area (User Defined) 0.073 acres Computational Time Increment 1.1922 hours Flow (Peak, Computed) 0.25 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 11.950 hours Flow (Peak Interpolated Output) 11.950 hours Flow (Peak Interpolated Output) 78.000 Area (User Defined) 0.073 acres Maximum Retention (Pervious) 2.8 in Maximum Retention (Pervious, 20 percent) 0.6 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours Computational Time Increment 0.011 hours Increment 0.014 hours Increment 0.017 hours Increment 0.019 ft³/s Unit Hydrograph Shape Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 0.99 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	Storm Event	50 Year Storm	
Depth 4.3 in Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.222 hours	Return Event	50 years	
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Tow (Pervious) Tow (Pervious, 20 percent) Cumulative Runoff Cumulative	Duration	24.000 hours	
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume Output SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Outpus Compuss Output 11.922 hours 11.922 hours 11.950 hours 11.922 hours	Depth	4.3 in	
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Outly O		0.083 hours	
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Outpus 11.922 hours 11.922 hours 11.920 hours 11.950 hours 12.8 in 12.950 0.073 acres 12.8 in 0.073 acres 12.1 in 12.1 in 12.1 in 12.2 in 12.1 in 12.1 in 12.2 in 12.3 in 12.3 in 12.4 in 12.4 in 12.5 in 12.	Area (User Defined)	0.073 acres	
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Outpus 11.922 hours 11.922 hours 11.920 hours 11.950 hours 12.8 in 12.950 0.073 acres 12.8 in 0.073 acres 12.1 in 12.1 in 12.1 in 12.2 in 12.1 in 12.1 in 12.2 in 12.3 in 12.3 in 12.4 in 12.4 in 12.5 in 12.			
Flow (Peak, Computed) Output Increment Output Increment Output Increment Output Increment Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr Output Outp	•	0.011 hours	
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor Volume, Tp Unit peak, qp O.99 ft³/s Unit peak time, Tp O.0222 hours	Time to Peak (Computed)	11.922 hours	
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.222 hours	Flow (Peak, Computed)	0.25 ft ³ /s	
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak, qp Unit receding limb, Tr O.222 hours	Output Increment	0.050 hours	
Output) Drainage Area SCS CN (Composite) 78.000 Area (User Defined) 0.073 acres Maximum Retention (Pervious) 2.8 in Maximum Retention (Pervious, 20 percent) 0.6 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.083 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 0.99 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours		11.950 hours	
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 0.99 ft³/s Unit peak time, Tp 0.0222 hours		0.23 ft ³ /s	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.6 in 0.6 in 0.6 in 0.6 in 0.6 in 0.011 in 0.013 ac-ft 0.013 ac-ft 0.014 hours 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 Computational Time Comp	Drainage Area		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.6 in 0.6 in 0.6 in 0.6 in 0.6 in 0.011 in 0.013 ac-ft 0.013 ac-ft 0.014 hours 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 Computational Time Comp	SCS CN (Composite)	78.000	
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume CSCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit Possible (D.6 in) 0.6 in 0.6 in 0.01 in 0.013 ac-ft 0.013 ac-ft 0.013 ac-ft 0.011 hours 1.670 0.749 1.670 0.99 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	•		
Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp O.99 ft³/s Unit peak time, Tp O.022 hours	Maximum Retention		
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.011 hours 1.670 0.749 1.670 0.99 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr O.222 hours	Maximum Retention	0.6 in	
Runoff Volume (Pervious) Runoff Volume (Pervious) O.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp O.99 ft³/s Unit peak time, Tp Unit receding limb, Tr O.022 hours	Cumulative Runoff		
(Pervious) Runoff Volume (Pervious) Runoff Volume (Pervious) O.013 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp O.99 ft³/s Unit peak time, Tp Unit receding limb, Tr O.222 hours	Cumulative Runoff Depth	0.11	
Hydrograph Volume (Area under Hydrograph curve) Volume 0.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 483.432 K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 0.99 ft³/s Unit peak time, Tp Unit receding limb, Tr 0.222 hours		2.1 in	
Volume O.013 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.013 ac-ft O.083 hours 0.011 hours 483.432 483.432 Volume Volume O.011 hours 0.749 0.749 0.749 0.749 0.99 ft³/s Unit peak time, Tp 0.056 hours Unit receding limb, Tr	Runoff Volume (Pervious)	0.013 ac-ft	
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding Parameters 0.083 hours 0.011 hours 483.432 1670 1.670 1.670 1.670 0.99 ft³/s Unit peak time, Tp 0.056 hours 0.222 hours	Hydrograph Volume (Area unde	er Hydrograph curve)	
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Possible 10.083 hours 0.011 hours 483.432 483.432 10.749	Volume	0.013 ac-ft	
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Possible 10.0083 hours 0.011 hours 483.432 483.432 10.749			
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit one of the shours	SCS Unit Hydrograph Paramete	ers ———————	
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit Position 1.670 Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr		0.083 hours	
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr C.222 hours		0.011 hours	
Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.670 0.99 ft³/s 0.056 hours 0.222 hours		483.432	
Unit peak, qp 0.99 ft ³ /s Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	K Factor	0.749	
Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours	Receding/Rising, Tr/Tp	1.670	
Unit receding limb, Tr 0.222 hours	Unit peak, qp	0.99 ft ³ /s	
	Unit peak time, Tp	0.056 hours	
Total unit time, Tb 0.278 hours	Unit receding limb, Tr	0.222 hours	
	Total unit time, Tb	0.278 hours	

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin D - Post Storm Event: 50 Year Storm

Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.073 acres


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.650	0.00	0.00	0.00	0.00	0.00
9.900	0.00	0.00	0.00	0.00	0.00
10.150	0.00	0.00	0.00	0.00	0.00
10.400	0.00	0.00	0.00	0.00	0.00
10.650	0.00	0.00	0.00	0.00	0.00
10.900	0.00	0.01	0.01	0.01	0.01
11.150	0.01	0.01	0.01	0.01	0.01
11.400	0.01	0.01	0.01	0.02	0.02
11.650	0.04	0.06	0.08	0.11	0.16
11.900	0.23	0.23	0.21	0.15	0.07
12.150	0.05	0.04	0.04	0.03	0.03
12.400	0.03	0.03	0.02	0.02	0.02
12.650	0.02	0.02	0.02	0.02	0.02
12.900	0.02	0.02	0.02	0.01	0.01
13.150	0.01	0.01	0.01	0.01	0.01
13.400	0.01	0.01	0.01	0.01	0.01
13.650	0.01	0.01	0.01	0.01	0.01
13.900	0.01	0.01	0.01	0.01	0.01
14.150	0.01	0.01	0.01	0.01	0.01
14.400	0.01	0.01	0.01	0.01	0.01
14.650	0.01	0.01	0.01	0.01	0.01
14.900	0.01	0.01	0.01	0.01	0.01
15.150	0.01	0.01	0.01	0.01	0.01
15.400	0.01	0.01	0.01	0.01	0.01
15.650	0.01	0.01	0.01	0.01	0.01
15.900	0.01	0.01	0.01	0.01	0.01
16.150	0.01	0.01	0.01	0.01	0.01
16.400	0.01	0.01	0.01	0.01	0.01
16.650	0.01	0.01	0.01	0.01	0.01
16.900	0.01	0.01	0.01	0.01	0.01
17.150	0.01	0.01	0.01	0.00	0.00
17.400	0.00	0.00	0.00	0.00	0.00
17.650	0.00	0.00	0.00	0.00	0.00
17.900	0.00	0.00	0.00	0.00	0.00
18.150	0.00	0.00	0.00	0.00	0.00
18.400	0.00	0.00	0.00	0.00	0.00
18.650	0.00	0.00	0.00	0.00	0.00
18.900	0.00	0.00	0.00	0.00	0.00
19.150	0.00	0.00	0.00	0.00	0.00
19.400	0.00	0.00	0.00	0.00	0.00
19.650	0.00	0.00	0.00	0.00	0.00
19.900	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin D - Post Storm Event: 50 Year Storm

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
20.150	0.00	0.00	0.00	0.00	0.00
20.400	0.00	0.00	0.00	0.00	0.00
20.650	0.00	0.00	0.00	0.00	0.00
20.900	0.00	0.00	0.00	0.00	0.00
21.150	0.00	0.00	0.00	0.00	0.00
21.400	0.00	0.00	0.00	0.00	0.00
21.650	0.00	0.00	0.00	0.00	0.00
21.900	0.00	0.00	0.00	0.00	0.00
22.150	0.00	0.00	0.00	0.00	0.00
22.400	0.00	0.00	0.00	0.00	0.00
22.650	0.00	0.00	0.00	0.00	0.00
22.900	0.00	0.00	0.00	0.00	0.00
23.150	0.00	0.00	0.00	0.00	0.00
23.400	0.00	0.00	0.00	0.00	0.00
23.650	0.00	0.00	0.00	0.00	0.00
23.900	0.00	0.00	0.00	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years

Label: Basin D - Post Storm Event: 50 Year Storm

Return Event: 100 years

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Label: Basin D - Post

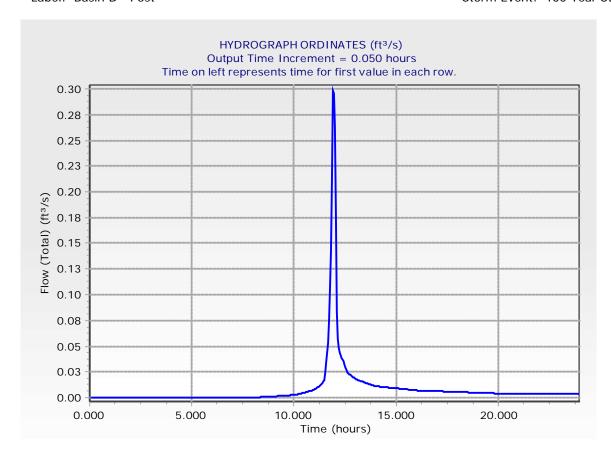
Storm Event 100 Year Storm Return Event 100 years 24.000 hours Duration Depth 5.0 in Time of Concentration 0.083 hours (Composite) Area (User Defined) 0.073 acres **Computational Time** 0.011 hours Increment Time to Peak (Computed) 11.922 hours Flow (Peak, Computed) 0.31 ft³/s **Output Increment** 0.050 hours Time to Flow (Peak 11.900 hours Interpolated Output) Flow (Peak Interpolated 0.30 ft³/s Output) Drainage Area SCS CN (Composite) 78.000 Area (User Defined) 0.073 acres Maximum Retention 2.8 in (Pervious) **Maximum Retention** 0.6 in (Pervious, 20 percent) **Cumulative Runoff Cumulative Runoff Depth** 2.7 in (Pervious) Runoff Volume (Pervious) 0.016 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.016 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.083 hours (Composite) **Computational Time** 0.011 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 0.99 ft3/s Unit peak, qp Unit peak time, Tp 0.056 hours Unit receding limb, Tr 0.222 hours Total unit time, Tb 0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin D - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.073 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.850	0.00	0.00	0.00	0.00	0.00
9.100	0.00	0.00	0.00	0.00	0.00
9.350	0.00	0.00	0.00	0.00	0.00
9.600	0.00	0.00	0.00	0.00	0.00
9.850	0.00	0.00	0.00	0.00	0.00
10.100	0.00	0.00	0.00	0.00	0.00
10.350	0.00	0.00	0.00	0.00	0.00
10.600	0.01	0.01	0.01	0.01	0.01
10.850	0.01	0.01	0.01	0.01	0.01
11.100	0.01	0.01	0.01	0.01	0.01
11.350	0.01	0.01	0.02	0.02	0.02
11.600	0.03	0.05	0.08	0.11	0.14
11.850	0.21	0.30	0.30	0.26	0.18
12.100	0.08	0.06	0.05	0.04	0.04
12.350	0.04	0.04	0.03	0.03	0.03
12.600	0.02	0.02	0.02	0.02	0.02
12.850	0.02	0.02	0.02	0.02	0.02
13.100	0.02	0.02	0.02	0.02	0.02
13.350	0.02	0.02	0.01	0.01	0.01
13.600	0.01	0.01	0.01	0.01	0.01
13.850	0.01	0.01	0.01	0.01	0.01
14.100	0.01	0.01	0.01	0.01	0.01
14.350	0.01	0.01	0.01	0.01	0.01
14.600	0.01	0.01	0.01	0.01	0.01
14.850	0.01	0.01	0.01	0.01	0.01
15.100	0.01	0.01	0.01	0.01	0.01
15.350	0.01	0.01	0.01	0.01	0.01
15.600	0.01	0.01	0.01	0.01	0.01
15.850	0.01	0.01	0.01	0.01	0.01
16.100	0.01	0.01	0.01	0.01	0.01
16.350	0.01	0.01	0.01	0.01	0.01
16.600	0.01	0.01	0.01	0.01	0.01
16.850	0.01	0.01	0.01	0.01	0.01
17.100	0.01	0.01	0.01	0.01	0.01
17.350	0.01	0.01	0.01	0.01	0.01
17.600	0.01	0.01	0.01	0.01	0.01
17.850	0.01	0.01	0.01	0.01	0.01
18.100	0.01	0.01	0.01	0.01	0.01
18.350	0.01	0.01	0.01	0.01	0.01
18.600	0.01	0.01	0.01	0.00	0.00
18.850	0.00	0.00	0.00	0.00	0.00
19.100	0.00	0.00	0.00	0.00	0.00

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin D - Post Storm Event: 100 Year Storm


Time of fert represents time for first value in each row.					
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.350	0.00	0.00	0.00	0.00	0.00
19.600	0.00	0.00	0.00	0.00	0.00
19.850	0.00	0.00	0.00	0.00	0.00
20.100	0.00	0.00	0.00	0.00	0.00
20.350	0.00	0.00	0.00	0.00	0.00
20.600	0.00	0.00	0.00	0.00	0.00
20.850	0.00	0.00	0.00	0.00	0.00
21.100	0.00	0.00	0.00	0.00	0.00
21.350	0.00	0.00	0.00	0.00	0.00
21.600	0.00	0.00	0.00	0.00	0.00
21.850	0.00	0.00	0.00	0.00	0.00
22.100	0.00	0.00	0.00	0.00	0.00
22.350	0.00	0.00	0.00	0.00	0.00
22.600	0.00	0.00	0.00	0.00	0.00
22.850	0.00	0.00	0.00	0.00	0.00
23.100	0.00	0.00	0.00	0.00	0.00
23.350	0.00	0.00	0.00	0.00	0.00
23.600	0.00	0.00	0.00	0.00	0.00
23.850	0.00	0.00	0.00	0.00	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin D - Post

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin E - Post Storm Event: 2 Year Storm

Storm Event	2 Year Storm	
Return Event	2	years
Duration	24.000	hours
Depth	2.2	in
Time of Concentration (Composite)	0.379	hours
Area (User Defined)	9.51	acres
Computational Time Increment	0.051	hours
Time to Peak (Computed)	12.183	hours
Flow (Peak, Computed)	2.08	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	12.200	hours
Flow (Peak Interpolated Output)	2.04	ft³/s
Drainage Area		
	70.000	
SCS CN (Composite)	70.000	
Area (User Defined)	9.51	acres
Maximum Retention (Pervious)	4.3	in
Maximum Retention (Pervious, 20 percent)	0.9	in
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	0.3	in
Runoff Volume (Pervious)	0.254	ac-ft
Hydrograph Volume (Area under	Hvdrograph c	urve)
Volume	0.251	•
SCS Unit Hydrograph Parameter	rs	
Time of Concentration (Composite)	0.379	hours
Computational Time Increment	0.051	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	28.42	ft³/s
Unit peak time, Tp	0.253	hours
Unit receding limb, Tr	1.011	hours
Total unit time, Tb	1.264	hours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin E - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.379 hours
Area (User Defined)	9.51 acres

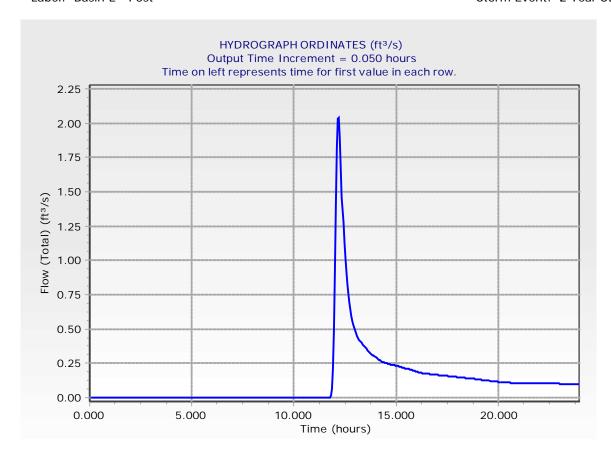
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.750	0.00	0.01	0.06	0.21	0.50
12.000	0.93	1.41	1.82	2.03	2.04
12.250	1.90	1.68	1.46	1.27	1.13
12.500	1.01	0.92	0.83	0.76	0.69
12.750	0.64	0.60	0.56	0.54	0.51
13.000	0.49	0.47	0.45	0.44	0.42
13.250	0.41	0.40	0.39	0.38	0.37
13.500	0.36	0.35	0.35	0.34	0.33
13.750	0.32	0.32	0.31	0.31	0.30
14.000	0.29	0.29	0.28	0.28	0.27
14.250	0.27	0.26	0.26	0.26	0.25
14.500	0.25	0.25	0.25	0.25	0.24
14.750	0.24	0.24	0.24	0.24	0.23
15.000	0.23	0.23	0.23	0.23	0.22
15.250	0.22	0.22	0.22	0.22	0.21
15.500	0.21	0.21	0.21	0.21	0.20
15.750	0.20	0.20	0.20	0.19	0.19
16.000	0.19	0.19	0.19	0.18	0.18
16.250	0.18	0.18	0.18	0.18	0.17
16.500	0.17	0.17	0.17	0.17	0.17
16.750	0.17	0.17	0.17	0.17	0.17
17.000	0.17	0.17	0.16	0.16	0.16
17.250	0.16	0.16	0.16	0.16	0.16
17.500	0.16	0.16	0.16	0.16	0.16
17.750	0.15	0.15	0.15	0.15	0.15
18.000	0.15	0.15	0.15	0.15	0.15
18.250	0.15	0.15	0.14	0.14	0.14
18.500	0.14	0.14	0.14	0.14	0.14
18.750	0.14	0.14	0.14	0.13	0.13
19.000	0.13	0.13	0.13	0.13	0.13
19.250	0.13	0.13	0.13	0.13	0.13
19.500	0.12	0.12	0.12	0.12	0.12
19.750	0.12	0.12	0.12	0.12	0.12
20.000	0.11	0.11	0.11	0.11	0.11
20.250	0.11	0.11	0.11	0.11	0.11
20.500	0.11	0.11	0.11	0.11	0.11
20.750	0.11	0.11	0.11	0.11	0.11
21.000	0.11	0.11	0.11	0.11	0.11
21.250	0.11	0.11	0.11	0.11	0.11
21.500	0.11	0.11	0.11	0.11	0.11
21.750	0.11	0.11	0.10	0.10	0.10
22.000	0.10	0.10	0.10	0.10	0.10

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin E - Post

Storm Event: 2 Year Storm


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)
22.250	0.10	0.10	0.10	0.10	0.10
22.500	0.10	0.10	0.10	0.10	0.10
22.750	0.10	0.10	0.10	0.10	0.10
23.000	0.10	0.10	0.10	0.10	0.10
23.250	0.10	0.10	0.10	0.10	0.10
23.500	0.10	0.10	0.10	0.10	0.10
23.750	0.10	0.10	0.10	0.10	0.10
24.000	0.10	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin E - Post

Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

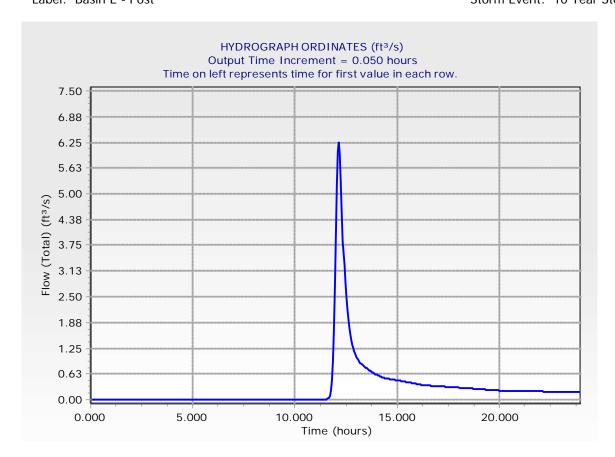
Return Event: 10 years Label: Basin E - Post Storm Event: 10 Year Storm

Storm Event 10 Year Storm Return Event 10 years Duration 24.000 hours Depth 3.1 in Time of Concentration (Composite) P.51 acres Computational Time Increment 0.051 hours Flow (Peak, Computed) 12.133 hours Flow (Peak, Computed) 6.33 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 6.27 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 9.51 acres Maximum Retention (Pervious) 4.3 in (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.379 hours (Composite) 0.379 hours (Composite) 0.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.379 hours (Composite) 0.597 ac-ft SCS Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 28.42 ft³/s Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours Total unit time, Tb 1.264 hours		
Duration 24,000 hours Depth 3.1 in Time of Concentration (Composite) Area (User Defined) 9.51 acres Computational Time Increment 0.051 hours Time to Peak (Computed) 12.133 hours Flow (Peak, Computed) 6.33 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 6.27 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 9.51 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.379 hours (Computational Time Increment 0.051 hours Increment 0.051 hours Increment 0.051 hours K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit Hydrograpl Incrediction Inc	Storm Event	10 Year Storm
Duration 24.000 hours Depth 3.1 in Time of Concentration (Composite) Area (User Defined) 9.51 acres Computational Time Increment 0.051 hours Time to Peak (Computed) 12.133 hours Flow (Peak, Computed) 6.33 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 6.27 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 9.51 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.379 hours (Computational Time Increment 0.051 hours Increment 0.051 hours Increment 0.051 hours Increment 0.051 hours Increment 0.053 hours Unit Hydrograph Shape Factor 483.432 Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	Return Event	10 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) No.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor No.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit Hours	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak Interpolated Output) Flow (Peak Interpolated Out	Depth	3.1 in
Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Pervious) Flow (Peak Interpolated Flow (Pervious) Flow (Pervious) Flow (Peak Interpolated Flow (Pervious) Flow (Pervious) Flow (Peak Interpolated Flow (Pervious) Flow (Peak Interpolated Flow (Pervious) Flow (Pervious) Flow (Peak Interpolated Flow (Pervious) Flow (Pervious) Flow (Peak Interpolated Flow (Pervious) Flo		0.379 hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Output Incremen	, , ,	9.51 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.011 hours		
Flow (Peak, Computed) Output Increment O	•	0.051 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor No.749 Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.011 hours	Time to Peak (Computed)	12.133 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	Flow (Peak, Computed)	6.33 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.011 hours	Output Increment	0.050 hours
Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 9.51 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	•	12.150 hours
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	Flow (Peak Interpolated	6.27 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	Drainage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.597 ac-ft CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.9 in O.9 in O.9 in O.9 in O.9 in O.8 in O.8 in O.802 ac-ft O.602 ac-ft		70.000
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unos in A.3 in 0.9 in 0.9 in 0.9 in 0.8 in 0.8 in 0.602 ac-ft Volume 0.597 ac-ft 0.597 ac-ft 0.379 hours 483.432 483.432 483.432 483.432 483.432 483.432 50.749 60.749 60.253 hours 60.253 hours 60.253 hours 60.253 hours 60.251 hours 60.253 hours 60.253 hours 60.251 hours	•	
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.597 ac-ft Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.9 in O.9 in O.9 in O.9 in O.8 in O.8 in O.602 ac-ft O.602 ac-	,	9.51 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.011 hours		4.3 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.602 ac-ft O.602 ac-ft O.602 ac-ft O.597 ac-ft O.597 ac-ft O.379 hours 0.051 hours 1.670 1.670 1.670 1.670 1.011 hours		0.9 in
(Pervious) Runoff Volume (Pervious) Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.011 hours	Cumulative Runoff	
Runoff Volume (Pervious) O.602 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.011 hours		0.8 in
Volume O.597 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.379 hours 0.379 hours 483.432 483.432 483.432 483.432 Unit peak time, Tp Unit peak time, Tp Unit receding limb, Tr 1.011 hours		0.602 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Parameters 0.379 hours 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 0.749 0.749 0.253 hours	Hydrograph Volume (Area und	ler Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Poor Concentration 0.379 hours 483.432 483.432 483.432 483.432 483.432 483.432 0.749 0.253 hours 1.011 hours	Volume	0.597 ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Poor Concentration 0.379 hours 483.432 483.432 483.432 483.432 483.432 483.432 0.749 0.253 hours 1.011 hours	SCS Unit Hydrograph Paramo	tore
Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit notes to 1.379 hours 0.051 hours 483.432 483.432 1.670 0.749 28.42 ft³/s 0.253 hours Unit receding limb, Tr 1.011 hours		leis
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit State of the state of th		0.379 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Control of the state of the		0.051 hours
Receding/Rising, Tr/Tp Unit peak, qp 28.42 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.670 28.42 ft³/s 0.253 hours 1.011 hours	, , , , , , , , , , , , , , , , , , ,	483.432
Unit peak, qp 28.42 ft³/s Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	K Factor	0.749
Unit peak time, Tp 0.253 hours Unit receding limb, Tr 1.011 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 1.011 hours	Unit peak, qp	28.42 ft ³ /s
_	Unit peak time, Tp	0.253 hours
Total unit time, Tb 1.264 hours	Unit receding limb, Tr	1.011 hours
	Total unit time, Tb	1.264 hours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 10 years

Label: Basin E - Post Storm Event: 10 Year Storm


Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.379 hours
Area (User Defined)	9.51 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.500	0.00	0.00	0.01	0.04	0.10
11.750	0.24	0.49	0.95	1.71	2.78
12.000	4.05	5.23	6.04	6.27	5.96
12.250	5.31	4.55	3.85	3.27	2.83
12.500	2.49	2.20	1.96	1.76	1.59
12.750	1.45	1.34	1.25	1.18	1.12
13.000	1.06	1.01	0.97	0.93	0.90
13.250	0.87	0.84	0.82	0.80	0.78
13.500	0.76	0.74	0.72	0.71	0.69
13.750	0.68	0.66	0.65	0.63	0.62
14.000	0.61	0.59	0.58	0.57	0.56
14.250	0.55	0.54	0.53	0.52	0.52
14.500	0.51	0.51	0.50	0.50	0.50
14.750	0.49	0.49	0.48	0.48	0.47
15.000	0.47	0.46	0.46	0.46	0.45
15.250	0.45	0.44	0.44	0.43	0.43
15.500	0.42	0.42	0.42	0.41	0.41
15.750	0.40	0.40	0.39	0.39	0.38
16.000	0.38	0.37	0.37	0.36	0.36
16.250	0.36	0.35	0.35	0.35	0.35
16.500	0.34	0.34	0.34	0.34	0.34
16.750	0.33	0.33	0.33	0.33	0.33
17.000	0.33	0.32	0.32	0.32	0.32
17.250	0.32	0.32	0.32	0.31	0.31
17.500	0.31	0.31	0.31	0.31	0.30
17.750	0.30	0.30	0.30	0.30	0.29
18.000	0.29	0.29	0.29	0.29	0.29
18.250	0.28	0.28	0.28	0.28	0.28
18.500	0.28	0.27	0.27	0.27	0.27
18.750	0.27	0.27	0.26	0.26	0.26
19.000	0.26	0.26	0.25	0.25	0.25
19.250	0.25	0.25	0.25	0.24	0.24
19.500	0.24	0.24	0.24	0.23	0.23
19.750	0.23	0.23	0.23	0.22	0.22
20.000	0.22	0.22	0.22	0.22	0.21
20.250	0.21	0.21	0.21	0.21	0.21
20.500	0.21	0.21	0.21	0.21	0.21
20.750	0.21	0.21	0.21	0.21	0.21
21.000	0.21	0.21	0.20	0.20	0.20
21.250	0.20	0.20	0.20	0.20	0.20
21.500	0.20	0.20	0.20	0.20	0.20
21.750	0.20	0.20	0.20	0.20	0.20

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin E - Post Storm Event: 10 Year Storm

Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.000	0.20	0.20	0.20	0.20	0.20
22.250	0.20	0.20	0.20	0.20	0.20
22.500	0.20	0.20	0.20	0.20	0.19
22.750	0.19	0.19	0.19	0.19	0.19
23.000	0.19	0.19	0.19	0.19	0.19
23.250	0.19	0.19	0.19	0.19	0.19
23.500	0.19	0.19	0.19	0.19	0.19
23.750	0.19	0.19	0.19	0.19	0.19
24.000	0.19	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin E - Post Storm Event: 10 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin E - Post Storm Event: 50 Year Storm

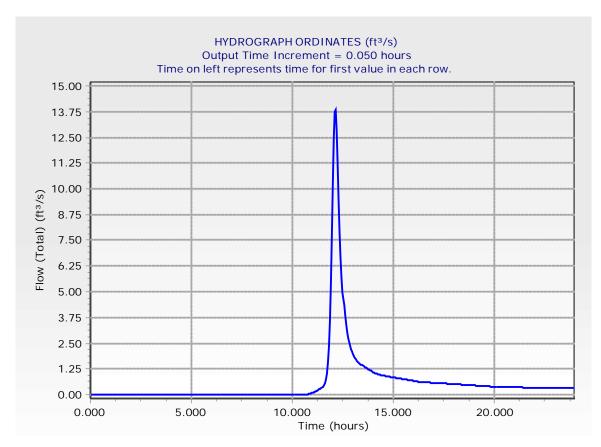
Storm Event	50 Year Storm	
Return Event	50 years	
Duration	24.000 hours	
Depth	4.3 in	
Time of Concentration (Composite)	0.379 hours	
Area (User Defined)	9.51 acres	
Computational Time Increment	0.051 hours	
Time to Peak (Computed)	12.133 hours	
Flow (Peak, Computed)	14.06 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	12.150 hours	
Flow (Peak Interpolated Output)	13.82 ft ³ /s	
Drainage Area		
SCS CN (Composite)	70.000	
Area (User Defined)	9.51 acres	
Maximum Retention (Pervious)	4.3 in	
Maximum Retention (Pervious, 20 percent)	0.9 in	
Cumulative Runoff		
Cumulative Runoff Depth		
(Pervious)	1.5 in	
Runoff Volume (Pervious)	1.221 ac-ft	
Hydrograph Volume (Area unde	r Hydrograph curve)	
Volume	1.213 ac-ft	
SCS Unit Hydrograph Paramete	rs	
Time of Concentration		
(Composite)	0.379 hours	
Computational Time Increment	0.051 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	28.42 ft ³ /s	
Unit peak time, Tp	0.253 hours	
Unit receding limb, Tr	1.011 hours	
Total unit time, Tb	1.264 hours	

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years

Label: Basin E - Post Storm Event: 50 Year Storm

Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.379 hours
Area (User Defined)	9.51 acres


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.500	0.00	0.00	0.00	0.01	0.01
10.750	0.02	0.03	0.04	0.06	0.07
11.000	0.09	0.11	0.12	0.15	0.17
11.250	0.20	0.23	0.26	0.30	0.35
11.500	0.40	0.46	0.57	0.74	1.05
11.750	1.55	2.34	3.55	5.32	7.64
12.000	10.20	12.41	13.72	13.82	12.84
12.250	11.24	9.50	7.93	6.66	5.70
12.500	4.95	4.33	3.82	3.40	3.06
12.750	2.77	2.55	2.36	2.21	2.09
13.000	1.98	1.88	1.80	1.72	1.66
13.250	1.60	1.55	1.51	1.47	1.43
13.500	1.39	1.36	1.32	1.29	1.26
13.750	1.23	1.20	1.17	1.15	1.12
14.000	1.10	1.07	1.05	1.03	1.01
14.250	0.99	0.97	0.96	0.95	0.93
14.500	0.92	0.92	0.91	0.90	0.89
14.750	0.88	0.87	0.86	0.86	0.85
15.000	0.84	0.83	0.82	0.81	0.81
15.250	0.80	0.79	0.78	0.77	0.76
15.500	0.76	0.75	0.74	0.73	0.72
15.750	0.71	0.70	0.70	0.69	0.68
16.000	0.67	0.66	0.65	0.64	0.64
16.250	0.63	0.62	0.62	0.61	0.61
16.500	0.61	0.60	0.60	0.60	0.59
16.750	0.59	0.59	0.58	0.58	0.58
17.000	0.57	0.57	0.57	0.57	0.56
17.250	0.56	0.56	0.55	0.55	0.55
17.500	0.54	0.54	0.54	0.54	0.53
17.750	0.53	0.53	0.52	0.52	0.52
18.000	0.51	0.51	0.51	0.50	0.50
18.250	0.50	0.49	0.49	0.49	0.48
18.500	0.48	0.48	0.48	0.47	0.47
18.750	0.47	0.46	0.46	0.46	0.45
19.000	0.45	0.45	0.44	0.44	0.44
19.250	0.43	0.43	0.43	0.42	0.42
19.500	0.42	0.41	0.41	0.41	0.40
19.750	0.40	0.40	0.39	0.39	0.39
20.000	0.38	0.38	0.38	0.37	0.37
20.250	0.37	0.37	0.37	0.36	0.36
20.500	0.36	0.36	0.36	0.36	0.36
20.750	0.36	0.36	0.36	0.36	0.36

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin E - Post Storm Event: 50 Year Storm

Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
21.000	0.36	0.35	0.35	0.35	0.35
21.250	0.35	0.35	0.35	0.35	0.35
21.500	0.35	0.35	0.35	0.35	0.35
21.750	0.35	0.35	0.35	0.34	0.34
22.000	0.34	0.34	0.34	0.34	0.34
22.250	0.34	0.34	0.34	0.34	0.34
22.500	0.34	0.34	0.34	0.34	0.34
22.750	0.33	0.33	0.33	0.33	0.33
23.000	0.33	0.33	0.33	0.33	0.33
23.250	0.33	0.33	0.33	0.33	0.33
23.500	0.33	0.32	0.32	0.32	0.32
23.750	0.32	0.32	0.32	0.32	0.32
24.000	0.32	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years Label: Basin E - Post Storm Event: 50 Year Storm

Return Event: 100 years

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Label: Basin E - Post

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.379 hours
Area (User Defined)	9.51 acres
Computational Time Increment	0.051 hours
Time to Peak (Computed)	12.133 hours
Flow (Peak, Computed)	18.84 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.100 hours
Flow (Peak Interpolated Output)	18.48 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	9.51 acres
Maximum Retention (Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.0 in
Runoff Volume (Pervious)	1.608 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	1.598 ac-ft
SCS Unit Hydrograph Paramet	ters
Time of Concentration (Composite)	0.379 hours
Computational Time Increment	0.051 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	28.42 ft ³ /s
Unit peak time, Tp	0.253 hours
Unit receding limb, Tr	1.011 hours
Total unit time, Tb	1.264 hours
	2 2

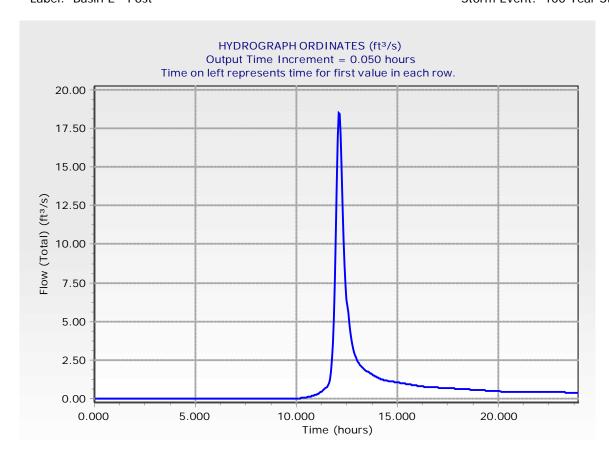
Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years

Label: Basin E - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.379 hours
Area (User Defined)	9.51 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.850	0.00	0.00	0.00	0.01	0.01
10.100	0.01	0.02	0.03	0.04	0.05
10.350	0.06	0.07	0.08	0.09	0.10
10.600	0.12	0.13	0.15	0.17	0.19
10.850	0.21	0.23	0.25	0.28	0.31
11.100	0.34	0.37	0.41	0.45	0.49
11.350	0.55	0.61	0.67	0.74	0.84
11.600	1.00	1.27	1.73	2.46	3.59
11.850	5.28	7.68	10.76	14.10	16.91
12.100	18.48	18.47	17.06	14.86	12.51
12.350	10.40	8.71	7.43	6.43	5.61
12.600	4.94	4.38	3.93	3.56	3.26
12.850	3.02	2.82	2.66	2.52	2.39
13.100	2.28	2.18	2.10	2.03	1.97
13.350	1.91	1.86	1.81	1.76	1.72
13.600	1.67	1.63	1.59	1.55	1.52
13.850	1.48	1.45	1.41	1.38	1.35
14.100	1.32	1.29	1.27	1.24	1.22
14.350	1.21	1.19	1.18	1.16	1.15
14.600	1.14	1.13	1.12	1.11	1.10
14.850	1.08	1.07	1.06	1.05	1.04
15.100	1.03	1.02	1.01	1.00	0.99
15.350	0.98	0.97	0.96	0.95	0.94
15.600	0.92	0.91	0.90	0.89	0.88
15.850	0.87	0.86	0.85	0.84	0.83
16.100	0.82	0.81	0.80	0.79	0.78
16.350	0.77	0.77	0.76	0.76	0.75
16.600	0.75	0.74	0.74	0.74	0.73
16.850	0.73	0.73	0.72	0.72	0.71
17.100	0.71	0.71	0.70	0.70	0.69
17.350	0.69	0.69	0.68	0.68	0.67
17.600	0.67	0.67	0.66	0.66	0.66
17.850	0.65	0.65	0.64	0.64	0.64
18.100	0.63	0.63	0.62	0.62	0.62
18.350	0.61	0.61	0.60	0.60	0.60
18.600	0.59	0.59	0.58	0.58	0.58
18.850	0.57	0.57	0.56	0.56	0.55
19.100	0.55	0.55	0.54	0.54	0.53
19.350	0.53	0.53	0.52	0.52	0.51
19.600	0.51	0.51	0.50	0.50	0.49
19.850	0.49	0.48	0.48	0.48	0.47
20.100	0.47	0.46	0.46	0.46	0.46

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin E - Post Storm Event: 100 Year Storm


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
20.350	0.45	0.45	0.45	0.45	0.45
20.600	0.45	0.45	0.45	0.44	0.44
20.850	0.44	0.44	0.44	0.44	0.44
21.100	0.44	0.44	0.44	0.44	0.44
21.350	0.44	0.43	0.43	0.43	0.43
21.600	0.43	0.43	0.43	0.43	0.43
21.850	0.43	0.43	0.43	0.43	0.43
22.100	0.42	0.42	0.42	0.42	0.42
22.350	0.42	0.42	0.42	0.42	0.42
22.600	0.42	0.42	0.42	0.41	0.41
22.850	0.41	0.41	0.41	0.41	0.41
23.100	0.41	0.41	0.41	0.41	0.41
23.350	0.40	0.40	0.40	0.40	0.40
23.600	0.40	0.40	0.40	0.40	0.40
23.850	0.40	0.40	0.40	0.39	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin E - Post

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin F - Post Storm Event: 2 Year Storm

Storm Event 2 years Duration 24.000 hours Depth 2.2 in Time of Concentration (Composite) Area (User Defined) 10.501 acres Computational Time Increment 0.054 hours Flow (Peak, Computed) 12.174 hours Flow (Peak, Computed) 2.21 ft³/s Output Increment 0.050 hours Time to Flow (Peak 12.200 hours Interpolated Output) 12.19 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours Total unit time, Tb 1.341 hours			
Duration 24.000 hours Depth 2.2 in Time of Concentration (Composite) 10.501 acres Computational Time Increment 0.054 hours Flow (Peak (Computed) 12.174 hours Flow (Peak, Computed) 2.21 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 12.19 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment 0.054 hours Unit Hydrograph Shape Factor 483.432 Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Storm Event	2 Year Storm	
Duration 24.000 hours Depth 2.2 in Time of Concentration (Composite) 10.501 acres Computational Time Increment 0.054 hours Flow (Peak (Computed) 12.174 hours Flow (Peak, Computed) 2.21 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.200 hours Flow (Peak Interpolated Output) 12.19 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment 0.054 hours Unit Hydrograph Shape Factor 483.432 Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Return Event	2	years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Plow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Plow (Peak Interpolated Output) Prainage Area SCS CN (Composite) Area (User Defined) Tourious, 20 percent) Cumulative Runoff Depth (Pervious) Runoff Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.402 hours 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Duration		
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Azimum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.054 hours 10.501 acres 12.200 hours 12	Depth	2.2	in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Pervious) Flow (Perv		0.402	hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	, , ,	10.501	acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Output CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours			
Flow (Peak, Computed) Output Increment O.050 hours Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Volume (Pervious) Noume Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours	•	0.054	hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-49 Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours	Time to Peak (Computed)	12.174	hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Flow (Peak, Computed)	2.21	ft³/s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours	Output Increment	0.050	hours
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours	•	12.200	hours
Output) Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours			
SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	•	2.19	ft³/s
SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Drainage Area		
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.99 in O.99 in O.99 in O.99 in O.99 in O.270 ac-ft O.280 ac-ft O.277 ac-ft O.277 ac-ft O.402 hours O.402 hours O.54 hours Increment Increment Increment Unit Hydrograph Shape Factor V Factor O.749 Receding/Rising, Tr/Tp O.268 hours Unit receding limb, Tr I.073 hours			
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.99 in O.99 in O.99 in O.99 in O.402 in O.280 ac-ft O.277 ac-ft O.274 ac-ft O.402 hours O.402 hours O.402 hours O.54 hours Increment Unit peak, qp 29.58 ft³/s Unit peak time, Tp O.268 hours Unit receding limb, Tr O.268 hours	•		
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.277 ac-ft CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.9 in O.9 in O.9 in O.9 in O.9 in O.9 in O.402 hor O.280 ac-ft O.277 ac-ft O.274 ac-ft O.402 hours O.402 hours O.402 hours O.54 hours Increment Unit Hydrograph Shape Factor V Factor O.749 Receding/Rising, Tr/Tp O.268 hours Unit receding limb, Tr O.268 hours Unit receding limb, Tr	,	10.501	acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours		4.3	in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.280 ac-ft 0.240 hours 0.402 hours 0.402 hours 0.402 hours 1.670		0.9	in
Runoff Volume (Pervious) Runoff Volume (Pervious) O.280 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours	Cumulative Runoff		
Hydrograph Volume (Area under Hydrograph curve) Volume 0.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours Computational Time 10.054 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours		0.3	in
Volume O.277 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.402 hours 0.402 hours 483.432 483.432 483.432 483.432 0.749 0.268 hours Unit peak time, Tp 1.670 Unit peak time, Tp 1.073 hours	Runoff Volume (Pervious)	0.280	ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.402 hours 0.402 hours 483.432 483.432 483.432 483.432 Unit peak time, Tp 0.749 0.268 hours 1.073 hours	Hydrograph Volume (Area under	Hydrograph o	curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.402 hours 0.054 hours 483.432 186.749 187.749 187.749 187.750 187.7	Volume	0.277	ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.402 hours 0.054 hours 483.432 186.749 187.749 187.749 187.750 187.7	CCC Unit Llydragraph Darameter	•	
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit volume 10.402 hours 0.402 hours 483.432 483.432 10.749 10.749 10.760 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.700 10.749 10.770		S 	
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit State 1.034 Hours 483.432 483.432 1.670 1.670 29.58 ft³/s Unit peak time, Tp 1.073 hours		0.402	hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Control 483.432 483.432 1.670 0.749 1.670 0.268 hours 1.073 hours		0.054	hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours		483.432	
Unit peak, qp 29.58 ft ³ /s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	K Factor	0.749	
Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Receding/Rising, Tr/Tp	1.670	
Unit receding limb, Tr 1.073 hours	Unit peak, qp	29.58	ft³/s
•	Unit peak time, Tp	0.268	hours
Total unit time, Tb 1.341 hours	Unit receding limb, Tr	1.073	hours
	Total unit time, Tb	1.341	hours

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin F - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.402 hours
Area (User Defined)	10.501 acres

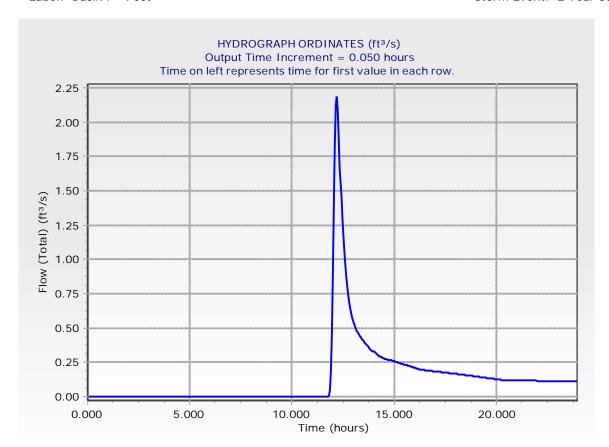
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.750	0.00	0.01	0.05	0.19	0.48
12.000	0.92	1.42	1.85	2.12	2.19
12.250	2.09	1.89	1.66	1.46	1.29
12.500	1.16	1.05	0.95	0.87	0.80
12.750	0.73	0.68	0.64	0.61	0.58
13.000	0.55	0.53	0.51	0.49	0.47
13.250	0.46	0.44	0.43	0.42	0.41
13.500	0.40	0.39	0.39	0.38	0.37
13.750	0.36	0.35	0.35	0.34	0.33
14.000	0.33	0.32	0.31	0.31	0.30
14.250	0.30	0.29	0.29	0.28	0.28
14.500	0.28	0.28	0.27	0.27	0.27
14.750	0.27	0.27	0.26	0.26	0.26
15.000	0.26	0.25	0.25	0.25	0.25
15.250	0.25	0.24	0.24	0.24	0.24
15.500	0.23	0.23	0.23	0.23	0.23
15.750	0.22	0.22	0.22	0.22	0.21
16.000	0.21	0.21	0.21	0.20	0.20
16.250	0.20	0.20	0.20	0.19	0.19
16.500	0.19	0.19	0.19	0.19	0.19
16.750	0.19	0.19	0.19	0.18	0.18
17.000	0.18	0.18	0.18	0.18	0.18
17.250	0.18	0.18	0.18	0.18	0.18
17.500	0.18	0.17	0.17	0.17	0.17
17.750	0.17	0.17	0.17	0.17	0.17
18.000	0.17	0.17	0.16	0.16	0.16
18.250	0.16	0.16	0.16	0.16	0.16
18.500	0.16	0.16	0.16	0.15	0.15
18.750	0.15	0.15	0.15	0.15	0.15
19.000	0.15	0.15	0.15	0.14	0.14
19.250	0.14	0.14	0.14	0.14	0.14
19.500	0.14	0.14	0.14	0.13	0.13
19.750	0.13	0.13	0.13	0.13	0.13
20.000	0.13	0.13	0.13	0.12	0.12
20.250	0.12	0.12	0.12	0.12	0.12
20.500	0.12	0.12	0.12	0.12	0.12
20.750	0.12	0.12	0.12	0.12	0.12
21.000	0.12	0.12	0.12	0.12	0.12
21.250	0.12	0.12	0.12	0.12	0.12
21.500	0.12	0.12	0.12	0.12	0.12
21.750	0.12	0.12	0.12	0.12	0.12
22.000	0.12	0.12	0.12	0.12	0.11

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin F - Post

Storm Event: 2 Year Storm


Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
22.250	0.11	0.11	0.11	0.11	0.11
22.500	0.11	0.11	0.11	0.11	0.11
22.750	0.11	0.11	0.11	0.11	0.11
23.000	0.11	0.11	0.11	0.11	0.11
23.250	0.11	0.11	0.11	0.11	0.11
23.500	0.11	0.11	0.11	0.11	0.11
23.750	0.11	0.11	0.11	0.11	0.11
24.000	0.11	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin F - Post

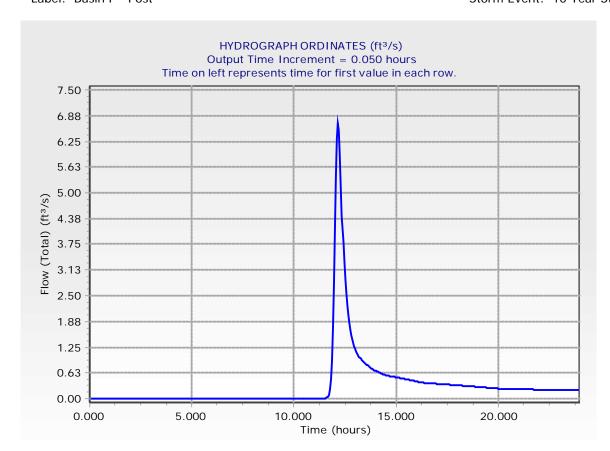
Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Basin F - Post Storm Event: 10 Year Storm

Storm Event 10 Year Storm Return Event 10 years Duration 24.000 hours Depth 3.1 in Time of Concentration (Composite) Area (User Defined) 10.501 acres Computational Time Increment 0.054 hours Flow (Peak, Computed) 12.174 hours Flow (Peak, Computed) 6.74 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 6.68 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.664 ac-ft Hydrograph Volume (Pervious) 0.664 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) 0.54 hours Increment 0.054 hours Increment 0.055 hours Increment 0.056		
Duration 24,000 hours Depth 3.1 in Time of Concentration (Composite) 0.402 hours Area (User Defined) 10.501 acres Computational Time Increment 0.054 hours Time to Peak (Computed) 12.174 hours Flow (Peak, Computed) 6.74 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 10.501 acres SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment 0.054 hours Increment 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Storm Event	10 Year Storm
Depth 3.1 in Time of Concentration (Composite) Area (User Defined) 10.501 acres Computational Time Increment 0.054 hours Time to Peak (Computed) 12.174 hours Flow (Peak, Computed) 6.74 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 6.68 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) 0.54 hours Unit Hydrograph Shape Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Return Event	10 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours	Duration	24.000 hours
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Time to Flow (Peak, Computed) Flow (Peak, Computed) Flow (Peak, Computed) Flow (Peak Interpolated Output) Flow (Peak Interpol	Depth	3.1 in
Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Pervious) Flo		0.402 hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	, , ,	10.501 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours		
Flow (Peak, Computed) Output Increment O.050 hours Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Volume (Pervious) Runoff Volume (Pervious) O.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours	•	0.054 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.664 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-49 Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.073 hours	Time to Peak (Computed)	12.174 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor C N.749 Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Flow (Peak, Computed)	6.74 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr O.000 A.668 ft³/s 0.000	Output Increment	0.050 hours
Output) Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	•	12.150 hours
SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) 0.054 hours Unit Hydrograph Shape Factor 483.432 Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	•	6.68 ft ³ /s
SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) 0.054 hours Unit Hydrograph Shape Factor 483.432 Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Drainago Aroa	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours		70.000
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.99 in O.99 in O.99 in O.80 in O.80 in O.864 ac-ft O.658 ac-ft O.402 hours O.402 hours O.749 Alance of the computation o	·	
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.658 ac-ft CSS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.99 in O.99 in O.99 in O.99 in O.81 in O.864 ac-ft O.664 ac-ft O.658 ac-ft O.402 hours O.402 hours O.749 Ala.3.432 Ala.3.432 Factor O.749 Receding/Rising, Tr/Tp O.268 hours Unit receding limb, Tr O.268 hours Unit receding limb, Tr	,	10.501 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.8 in O.8 in O.8 in O.664 ac-ft O.658 ac-ft O.658 ac-ft O.402 hours 0.402 hours 0.749 1.670 1.670 1.670 1.670 1.670 1.670 1.673 hours		4.3 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) O.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.654 ac-ft O.658 ac-ft O.402 hours 0.402 hours 0.402 hours 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.673 hours		0.9 in
Runoff Volume (Pervious) Runoff Volume (Pervious) O.664 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours	Cumulative Runoff	
Hydrograph Volume (Area under Hydrograph curve) Volume 0.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape 483.432 K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours		0.8 in
Volume O.658 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.658 ac-ft 0.402 hours 0.054 hours 483.432 483.432 483.432 Composite of the compo	Runoff Volume (Pervious)	0.664 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Parameters 0.402 hours 483.432 483.432 483.432 483.432 50.749 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 50.749 60.749 60.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749	Hydrograph Volume (Area und	ler Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.402 hours 0.054 hours 483.432 186.749 187.749 187.749 187.750 187.7	Volume	0.658 ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 0.402 hours 0.054 hours 483.432 186.749 187.749 187.749 187.750 187.7	SCS Unit Hydrograph Parame	ters
Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit value of the control of the con		
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit State 10.034 Hours 483.432 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749	(Composite)	0.402 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Control of the state of the		0.054 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	3 0	483.432
Unit peak, qp 29.58 ft ³ /s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	K Factor	0.749
Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 1.073 hours	Unit peak, qp	29.58 ft ³ /s
_	Unit peak time, Tp	0.268 hours
Total unit time, Tb 1.341 hours	Unit receding limb, Tr	1.073 hours
	Total unit time, Tb	1.341 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin F - Post Storm Event: 10 Year Storm


Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.402 hours
Area (User Defined)	10.501 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.500	0.00	0.00	0.01	0.04	0.10
11.750	0.22	0.46	0.90	1.65	2.76
12.000	4.10	5.37	6.30	6.68	6.51
12.250	5.95	5.20	4.45	3.79	3.28
12.500	2.88	2.55	2.27	2.04	1.84
12.750	1.68	1.55	1.44	1.35	1.27
13.000	1.21	1.15	1.10	1.05	1.01
13.250	0.98	0.94	0.92	0.89	0.87
13.500	0.85	0.83	0.81	0.79	0.77
13.750	0.75	0.74	0.72	0.70	0.69
14.000	0.67	0.66	0.65	0.63	0.62
14.250	0.61	0.60	0.59	0.58	0.58
14.500	0.57	0.56	0.56	0.55	0.55
14.750	0.54	0.54	0.53	0.53	0.52
15.000	0.52	0.51	0.51	0.50	0.50
15.250	0.50	0.49	0.49	0.48	0.48
15.500	0.47	0.47	0.46	0.46	0.45
15.750	0.44	0.44	0.43	0.43	0.42
16.000	0.42	0.41	0.41	0.40	0.40
16.250	0.39	0.39	0.39	0.38	0.38
16.500	0.38	0.38	0.38	0.37	0.37
16.750	0.37	0.37	0.37	0.36	0.36
17.000	0.36	0.36	0.36	0.36	0.35
17.250	0.35	0.35	0.35	0.35	0.34
17.500	0.34	0.34	0.34	0.34	0.34
17.750	0.33	0.33	0.33	0.33	0.33
18.000	0.32	0.32	0.32	0.32	0.32
18.250	0.31	0.31	0.31	0.31	0.31
18.500	0.31	0.30	0.30	0.30	0.30
18.750	0.30	0.29	0.29	0.29	0.29
19.000	0.29	0.28	0.28	0.28	0.28
19.250	0.28	0.27	0.27	0.27	0.27
19.500	0.27	0.26	0.26	0.26	0.26
19.750	0.26	0.25	0.25	0.25	0.25
20.000	0.24	0.24	0.24	0.24	0.24
20.250	0.24	0.23	0.23	0.23	0.23
20.500	0.23	0.23	0.23	0.23	0.23
20.750	0.23	0.23	0.23	0.23	0.23
21.000	0.23	0.23	0.23	0.23	0.23
21.250	0.23	0.22	0.22	0.22	0.22
21.500	0.22	0.22	0.22	0.22	0.22
21.750	0.22	0.22	0.22	0.22	0.22

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin F - Post Storm Event: 10 Year Storm

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.000	0.22	0.22	0.22	0.22	0.22
22.250	0.22	0.22	0.22	0.22	0.22
22.500	0.22	0.22	0.22	0.22	0.22
22.750	0.21	0.21	0.21	0.21	0.21
23.000	0.21	0.21	0.21	0.21	0.21
23.250	0.21	0.21	0.21	0.21	0.21
23.500	0.21	0.21	0.21	0.21	0.21
23.750	0.21	0.21	0.21	0.21	0.21
24.000	0.20	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin F - Post Storm Event: 10 Year Storm

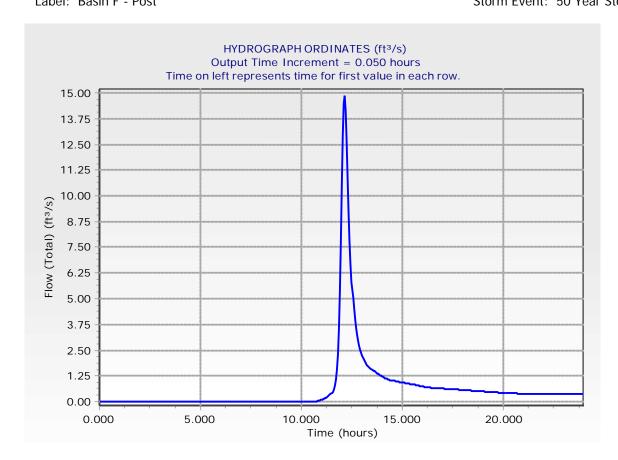
Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin F - Post Storm Event: 50 Year Storm

Storm Event 50 Year Storm Return Event 50 years Duration 24.000 hours Depth 4.3 in Time of Concentration (Composite) Area (User Defined) 10.501 acres Computational Time Increment 0.054 hours Time to Peak (Computed) 12.120 hours Flow (Peak, Computed) 14.95 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 14.88 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Composite) 0.54 hours Increment 0.054 hours (Computational Time 1.073 hours (Computat		
Duration 24,000 hours Depth 4.3 in Time of Concentration (Composite) 10.501 acres Computational Time Increment 2.120 hours Time to Peak (Computed) 12.120 hours Flow (Peak, Computed) 14,95 ft3/s Output Increment 2.150 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 14.88 ft3/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment 0.054 hours Increment 0.	Storm Event	50 Year Storm
Duration 24.000 hours Depth 4.3 in Time of Concentration (Composite) 0.402 hours Area (User Defined) 10.501 acres Computational Time Increment 0.054 hours Time to Peak (Computed) 12.120 hours Flow (Peak, Computed) 14.95 ft³/s Output Increment 0.050 hours Time to Flow (Peak Interpolated Output) 12.150 hours Flow (Peak Interpolated Output) 14.88 ft³/s Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours Increment 0.054 hours Increment 0.054 hours Increment 0.0554 hours Increment 0.0564 hours Increment 0.05749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit Hydrograpl Imb, Tr 1.073 hours	Return Event	50 years
Time of Concentration (Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Time to Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Town (Pervious) Town (Pervious) Town (Pervious) Town (Pervious) Town (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite)	Duration	
Composite) Area (User Defined) Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Flow (Peak, Computed) Time to Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Time (Peak Interpolated Output) Touloutput) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor N-483.432 Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp O.268 hours Unit receding limb, Tr 1.073 hours	Depth	4.3 in
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Time to Peak (Computed) Flow (Peak, Computed) Time to Flow (Peak Interpolated Output) Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Time (Peak Interpolated Output) Time (Pervious) Toutput) Toutput Tout		0.402 hours
Computational Time Increment Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.5 in Runoff Volume (Pervious) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours		10.501 acres
Increment Time to Peak (Computed) Time to Peak (Computed) Flow (Peak, Computed) Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time to Flow (Peak Interpolated Output) 10.501 acres Maximum Retention (Pervious) Maximum Retention (Pervious) Maximum Retention (Pervious) Interpolated Output) Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.348 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor N-49 Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp O.268 hours Unit receding limb, Tr 1.073 hours		
Flow (Peak, Computed) Output Increment O.050 hours Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Volume (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.2.150 hours 12.150 hours 12.150 hours 12.150 hours 12.150 hours 10.000 14.88 ft³/s 16.000 14.88 ft³	•	0.054 hours
Output Increment Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Nume (Pervious) Volume (Pervious) Augustian August	Time to Peak (Computed)	12.120 hours
Time to Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.4.88 ft³/s 1.5 in 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.073 hours Unit receding limb, Tr 1.073 hours	Flow (Peak, Computed)	14.95 ft ³ /s
Interpolated Output) Flow (Peak Interpolated Output) Drainage Area SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit receding limb, Tr 1.4.88 ft³/s 70.000 1.5.000 1.5.01 1.5.01 1.5.01 1.5.01 1.5.01 1.5.02 1.348 ac-ft 1.5.01 1.6.70 1.0.73 hours	Output Increment	0.050 hours
Output) Drainage Area SCS CN (Composite) 70.000 Area (User Defined) 10.501 acres Maximum Retention (Pervious) 4.3 in Maximum Retention (Pervious, 20 percent) 0.9 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours (Computational Time Increment Unit Hydrograph Shape Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	•	12.150 hours
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor C Name Concentration (Name		14.88 ft ³ /s
SCS CN (Composite) Area (User Defined) Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor K Factor C Name Concentration (Name	Droinage Area	
Area (User Defined) Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.5 in Runoff Volume (Pervious) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.073 hours		
Maximum Retention (Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours	•	
(Pervious) Maximum Retention (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours	· · ·	10.501 acres
(Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours		4.3 in
Cumulative Runoff Depth (Pervious) Runoff Volume (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours		0.9 in
Runoff Volume (Pervious) Runoff Volume (Pervious) 1.348 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp 29.58 ft³/s Unit peak time, Tp Unit receding limb, Tr 1.073 hours	Cumulative Runoff	
Hydrograph Volume (Area under Hydrograph curve) Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.402 hours Computational Time 1 0.054 hours Unit Hydrograph Shape 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours		1.5 in
Volume 1.338 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr 1.338 ac-ft 0.402 hours 40.054 hours 0.749 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670	Runoff Volume (Pervious)	1.348 ac-ft
SCS Unit Hydrograph Parameters Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit Parameters 0.402 hours 483.432 483.432 483.432 483.432 50.749 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 483.432 50.749 60.749 60.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749 70.749	Hydrograph Volume (Area und	ler Hydrograph curve)
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.402 hours 0.402 hours 483.432 183.432 483.432 483.432 483.432 0.749 0.749 0.268 hours 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670	Volume	1.338 ac-ft
Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr O.402 hours 0.402 hours 483.432 183.432 483.432 483.432 483.432 0.749 0.749 0.268 hours 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670 1.670	SCS Unit Hydrograph Parame	ters
Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit value of the control of the con		1010
Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Unit receding limb, Tr Unit State 10.034 Hours 483.432 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749 10.749	(Composite)	0.402 hours
Factor K Factor O.749 Receding/Rising, Tr/Tp Unit peak, qp Unit peak time, Tp Unit receding limb, Tr Control of the state of the		0.054 hours
Receding/Rising, Tr/Tp 1.670 Unit peak, qp 29.58 ft³/s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	, , , ,	483.432
Unit peak, qp 29.58 ft ³ /s Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	K Factor	0.749
Unit peak time, Tp 0.268 hours Unit receding limb, Tr 1.073 hours	Receding/Rising, Tr/Tp	1.670
Unit receding limb, Tr 1.073 hours	Unit peak, qp	29.58 ft ³ /s
_	Unit peak time, Tp	0.268 hours
Total unit time, Tb 1.341 hours	Unit receding limb, Tr	1.073 hours
	Total unit time, Tb	1.341 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years

Label: Basin F - Post Storm Event: 50 Year Storm


Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.402 hours
Area (User Defined)	10.501 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.500	0.00	0.00	0.00	0.01	0.01
10.750	0.02	0.03	0.05	0.06	0.07
11.000	0.09	0.11	0.13	0.15	0.18
11.250	0.21	0.24	0.28	0.32	0.37
11.500	0.42	0.49	0.60	0.77	1.07
11.750	1.56	2.31	3.51	5.31	7.73
12.000	10.47	12.89	14.47	14.88	14.17
12.250	12.70	10.93	9.23	7.78	6.66
12.500	5.78	5.07	4.47	3.98	3.57
12.750	3.23	2.95	2.73	2.54	2.39
13.000	2.26	2.14	2.04	1.95	1.87
13.250	1.80	1.74	1.69	1.64	1.60
13.500	1.55	1.51	1.48	1.44	1.40
13.750	1.37	1.34	1.31	1.28	1.25
14.000	1.22	1.19	1.17	1.14	1.12
14.250	1.10	1.08	1.06	1.05	1.04
14.500	1.03	1.02	1.00	0.99	0.99
14.750	0.98	0.97	0.96	0.95	0.94
15.000	0.93	0.92	0.91	0.90	0.89
15.250	0.88	0.87	0.87	0.86	0.85
15.500	0.84	0.83	0.82	0.81	0.80
15.750	0.79	0.78	0.77	0.76	0.75
16.000	0.74	0.73	0.72	0.71	0.71
16.250	0.70	0.69	0.69	0.68	0.68
16.500	0.67	0.67	0.66	0.66	0.66
16.750	0.65	0.65	0.65	0.64	0.64
17.000	0.64	0.63	0.63	0.63	0.62
17.250	0.62	0.62	0.61	0.61	0.61
17.500	0.60	0.60	0.60	0.59	0.59
17.750	0.59	0.58	0.58	0.57	0.57
18.000	0.57	0.56	0.56	0.56	0.55
18.250	0.55	0.55	0.54	0.54	0.54
18.500	0.53	0.53	0.53	0.52	0.52
18.750	0.52	0.51	0.51	0.50	0.50
19.000	0.50	0.49	0.49	0.49	0.48
19.250	0.48	0.48	0.47	0.47	0.47
19.500	0.46	0.46	0.45	0.45	0.45
19.750	0.44	0.44	0.44	0.43	0.43
20.000	0.42	0.42	0.42	0.41	0.41
20.250	0.41	0.41	0.40	0.40	0.40
20.500	0.40	0.40	0.40	0.40	0.40
20.750	0.40	0.40	0.39	0.39	0.39

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin F - Post Storm Event: 50 Year Storm

Time (hours)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
21.000	0.39	0.39	0.39	0.39	0.39
21.250	0.39	0.39	0.39	0.39	0.39
21.500	0.39	0.39	0.38	0.38	0.38
21.750	0.38	0.38	0.38	0.38	0.38
22.000	0.38	0.38	0.38	0.38	0.38
22.250	0.38	0.38	0.37	0.37	0.37
22.500	0.37	0.37	0.37	0.37	0.37
22.750	0.37	0.37	0.37	0.37	0.37
23.000	0.37	0.37	0.36	0.36	0.36
23.250	0.36	0.36	0.36	0.36	0.36
23.500	0.36	0.36	0.36	0.36	0.36
23.750	0.36	0.36	0.35	0.35	0.35
24.000	0.35	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years Label: Basin F - Post Storm Event: 50 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 100 years Label: Basin F - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.402 hours
Area (User Defined)	10.501 acres
Computational Time Increment	0.054 hours
Time to Peak (Computed)	12.120 hours
Flow (Peak, Computed)	20.13 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.150 hours
Flow (Peak Interpolated Output)	19.94 ft ³ /s
Drainage Area	
SCS CN (Composite)	70.000
Area (User Defined)	10.501 acres
Maximum Retention	
(Pervious)	4.3 in
Maximum Retention (Pervious, 20 percent)	0.9 in
Cumulative Runoff	
Cumulative Runoff Depth	
(Pervious)	2.0 in
Runoff Volume (Pervious)	1.775 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	1.763 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.402 hours
Computational Time Increment	0.054 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	29.58 ft ³ /s
Unit peak time, Tp	0.268 hours
Unit receding limb, Tr	1.073 hours
Total unit time, Tb	1.341 hours

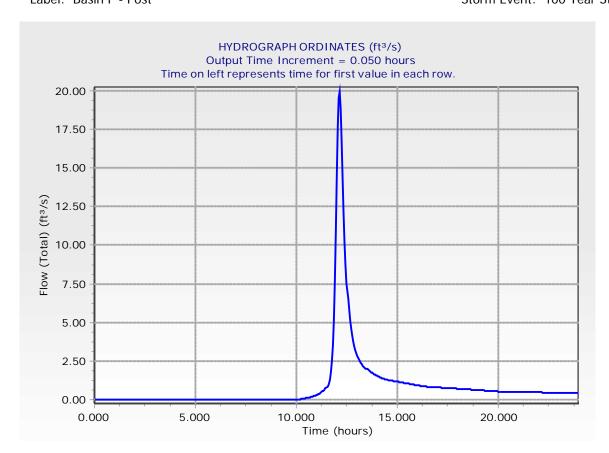
Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years

Label: Basin F - Post Storm Event: 100 Year Storm

Storm Event	100 Year Storm
Return Event	100 years
Duration	24.000 hours
Depth	5.0 in
Time of Concentration (Composite)	0.402 hours
Area (User Defined)	10.501 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
9.850	0.00	0.00	0.00	0.01	0.01
10.100	0.01	0.02	0.03	0.04	0.05
10.350	0.06	0.07	0.08	0.10	0.11
10.600	0.12	0.14	0.16	0.18	0.20
10.850	0.22	0.24	0.27	0.30	0.33
11.100	0.36	0.39	0.43	0.48	0.53
11.350	0.59	0.65	0.72	0.80	0.90
11.600	1.06	1.33	1.78	2.50	3.57
11.850	5.25	7.71	10.93	14.51	17.61
12.100	19.55	19.94	18.87	16.82	14.43
12.350	12.14	10.20	8.70	7.52	6.57
12.600	5.78	5.13	4.59	4.14	3.78
12.850	3.49	3.25	3.05	2.88	2.73
13.100	2.59	2.47	2.37	2.28	2.20
13.350	2.14	2.08	2.02	1.97	1.91
13.600	1.87	1.82	1.77	1.73	1.69
13.850	1.65	1.61	1.58	1.54	1.51
14.100	1.47	1.44	1.41	1.38	1.36
14.350	1.34	1.32	1.31	1.29	1.28
14.600	1.26	1.25	1.24	1.23	1.21
14.850	1.20	1.19	1.18	1.17	1.16
15.100	1.14	1.13	1.12	1.11	1.10
15.350	1.08	1.07	1.06	1.05	1.04
15.600	1.03	1.01	1.00	0.99	0.98
15.850	0.97	0.95	0.94	0.93	0.92
16.100	0.90	0.89	0.88	0.87	0.86
16.350	0.86	0.85	0.84	0.84	0.83
16.600	0.83	0.82	0.82	0.82	0.81
16.850	0.81	0.80	0.80	0.79	0.79
17.100	0.79	0.78	0.78	0.77	0.77
17.350	0.76	0.76	0.76	0.75	0.75
17.600	0.74	0.74	0.73	0.73	0.73
17.850	0.72	0.72	0.71	0.71	0.70
18.100	0.70	0.69	0.69	0.69	0.68
18.350	0.68	0.67	0.67	0.66	0.66
18.600	0.65	0.65	0.65	0.64	0.64
18.850	0.63	0.63	0.62	0.62	0.61
19.100	0.61	0.61	0.60	0.60	0.59
19.350	0.59	0.58	0.58	0.57	0.57
19.600	0.56	0.56	0.56	0.55	0.55
19.850	0.54	0.54	0.53	0.53	0.52
20.100	0.52	0.51	0.51	0.51	0.50

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin F - Post Storm Event: 100 Year Storm


Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
20.350	0.50	0.50	0.50	0.50	0.50
20.600	0.49	0.49	0.49	0.49	0.49
20.850	0.49	0.49	0.49	0.49	0.49
21.100	0.49	0.48	0.48	0.48	0.48
21.350	0.48	0.48	0.48	0.48	0.48
21.600	0.48	0.48	0.48	0.47	0.47
21.850	0.47	0.47	0.47	0.47	0.47
22.100	0.47	0.47	0.47	0.47	0.47
22.350	0.46	0.46	0.46	0.46	0.46
22.600	0.46	0.46	0.46	0.46	0.46
22.850	0.46	0.46	0.45	0.45	0.45
23.100	0.45	0.45	0.45	0.45	0.45
23.350	0.45	0.45	0.45	0.44	0.44
23.600	0.44	0.44	0.44	0.44	0.44
23.850	0.44	0.44	0.44	0.43	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 100 years

Label: Basin F - Post

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 2 years Label: Basin G - Post Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.278 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	0.52 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	0.50 ft ³ /s
Drainage Area	
SCS CN (Composite)	89.000
Area (User Defined)	0.278 acres
Maximum Retention (Pervious)	1.2 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.2 in
Runoff Volume (Pervious)	0.028 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Hydrograph Volume (Area unde Volume	r Hydrograph curve) 0.028 ac-ft
Volume	0.028 ac-ft
Volume SCS Unit Hydrograph Parameter	0.028 ac-ft
Volume	0.028 ac-ft
Volume SCS Unit Hydrograph Parameter Time of Concentration	0.028 ac-ft
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time	0.028 ac-ft ers 0.083 hours
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape	0.028 ac-ft ors 0.083 hours 0.011 hours
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.028 ac-ft ors 0.083 hours 0.011 hours 483.432
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.028 ac-ft 0.083 hours 0.011 hours 483.432 0.749
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.028 ac-ft 0.083 hours 0.011 hours 483.432 0.749 1.670
Volume SCS Unit Hydrograph Parameter Time of Concentration (Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.028 ac-ft 0.083 hours 0.011 hours 483.432 0.749 1.670 3.78 ft ³ /s

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin G - Post

Storm Event: 2 Year Storm

Storm Event	2 Year Storm
Return Event	2 years
Duration	24.000 hours
Depth	2.2 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.278 acres

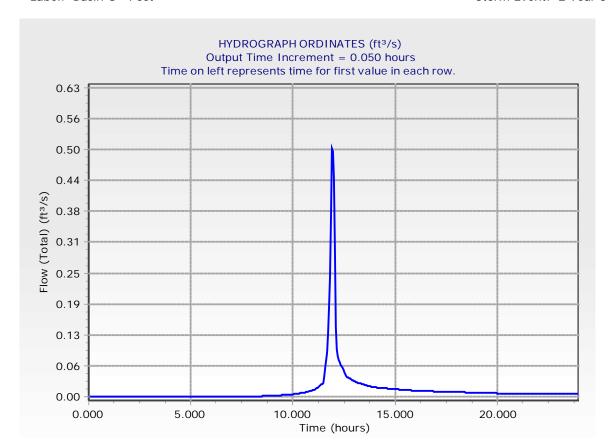
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
8.500	0.00	0.00	0.00	0.00	0.00
8.750	0.00	0.00	0.00	0.00	0.00
9.000	0.00	0.00	0.00	0.00	0.00
9.250	0.00	0.00	0.00	0.00	0.00
9.500	0.00	0.00	0.00	0.00	0.00
9.750	0.00	0.00	0.00	0.00	0.00
10.000	0.00	0.01	0.01	0.01	0.01
10.250	0.01	0.01	0.01	0.01	0.01
10.500	0.01	0.01	0.01	0.01	0.01
10.750	0.01	0.01	0.01	0.01	0.01
11.000	0.01	0.01	0.02	0.02	0.02
11.250	0.02	0.02	0.02	0.02	0.03
11.500	0.03	0.04	0.06	0.09	0.13
11.750	0.18	0.24	0.36	0.50	0.50
12.000	0.44	0.31	0.14	0.10	0.08
12.250	0.07	0.07	0.06	0.06	0.05
12.500	0.05	0.04	0.04	0.04	0.04
12.750	0.04	0.04	0.03	0.03	0.03
13.000	0.03	0.03	0.03	0.03	0.03
13.250	0.03	0.03	0.03	0.03	0.02
13.500	0.02	0.02	0.02	0.02	0.02
13.750	0.02	0.02	0.02	0.02	0.02
14.000	0.02	0.02	0.02	0.02	0.02
14.250	0.02	0.02	0.02	0.02	0.02
14.500	0.02	0.02	0.02	0.02	0.02
14.750	0.02	0.02	0.02	0.02	0.02
15.000	0.02	0.02	0.01	0.01	0.01
15.250	0.01	0.01	0.01	0.01	0.01
15.500	0.01	0.01	0.01	0.01	0.01
15.750	0.01	0.01	0.01	0.01	0.01
16.000	0.01	0.01	0.01	0.01	0.01
16.250	0.01	0.01	0.01	0.01	0.01
16.500	0.01	0.01	0.01	0.01	0.01
16.750	0.01	0.01	0.01	0.01	0.01
17.000	0.01	0.01	0.01	0.01	0.01
17.250	0.01	0.01	0.01	0.01	0.01
17.500	0.01	0.01	0.01	0.01	0.01
17.750	0.01	0.01	0.01	0.01	0.01
18.000	0.01	0.01	0.01	0.01	0.01
18.250	0.01	0.01	0.01	0.01	0.01
18.500	0.01	0.01	0.01	0.01	0.01
18.750	0.01	0.01	0.01	0.01	0.01

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin G - Post

Storm Event: 2 Year Storm


Time of for topicsents time for mot value in cust row.						
	Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)
ı	19.000	0.01	0.01	0.01	0.01	0.01
	19.250	0.01	0.01	0.01	0.01	0.01
	19.500	0.01	0.01	0.01	0.01	0.01
	19.750	0.01	0.01	0.01	0.01	0.01
	20.000	0.01	0.01	0.01	0.01	0.01
	20.250	0.01	0.01	0.01	0.01	0.01
	20.500	0.01	0.01	0.01	0.01	0.01
	20.750	0.01	0.01	0.01	0.01	0.01
	21.000	0.01	0.01	0.01	0.01	0.01
	21.250	0.01	0.01	0.01	0.01	0.01
	21.500	0.01	0.01	0.01	0.01	0.01
	21.750	0.01	0.01	0.01	0.01	0.01
	22.000	0.01	0.01	0.01	0.01	0.01
	22.250	0.01	0.01	0.01	0.01	0.01
	22.500	0.01	0.01	0.01	0.01	0.01
	22.750	0.01	0.01	0.01	0.01	0.01
	23.000	0.01	0.01	0.01	0.01	0.01
	23.250	0.01	0.01	0.01	0.01	0.01
	23.500	0.01	0.01	0.01	0.01	0.01
	23.750	0.01	0.01	0.01	0.01	0.01
	24.000	0.01	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 2 years

Label: Basin G - Post

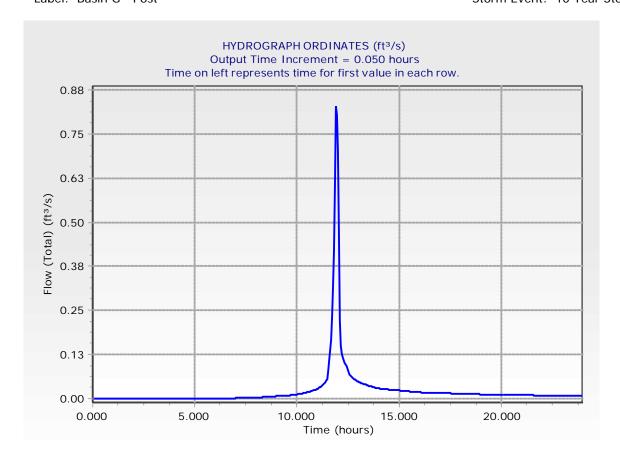
Storm Event: 2 Year Storm

Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Basin G - Post Storm Event: 10 Year Storm

Storm Event	10 Year Storm
Return Event	10 years
Duration	24.000 hours
Depth	3.1 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.278 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	0.86 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	0.83 ft ³ /s
Drainage Area	
SCS CN (Composite)	89.000
Area (User Defined)	0.278 acres
Maximum Retention (Pervious)	1.2 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.0 in
Runoff Volume (Pervious)	0.046 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	0.046 ac-ft
SCS Unit Hydrograph Parame	ters
, , ,	
Time of Concentration	
Time of Concentration (Composite)	0.083 hours
	0.083 hours 0.011 hours
(Composite) Computational Time	
(Composite) Computational Time Increment Unit Hydrograph Shape	0.011 hours
(Composite) Computational Time Increment Unit Hydrograph Shape Factor	0.011 hours 483.432
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor	0.011 hours 483.432 0.749
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp	0.011 hours 483.432 0.749 1.670
(Composite) Computational Time Increment Unit Hydrograph Shape Factor K Factor Receding/Rising, Tr/Tp Unit peak, qp	0.011 hours 483.432 0.749 1.670 3.78 ft ³ /s

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years Label: Basin G - Post Storm Event: 10 Year Storm


Storm Event 10 Year Storm
Return Event 10 years
Duration 24.000 hours
Depth 3.1 in
Time of Concentration
(Composite) 0.083 hours
Area (User Defined) 0.278 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
6.750	0.00	0.00	0.00	0.00	0.00
7.000	0.00	0.00	0.00	0.00	0.00
7.250	0.00	0.00	0.00	0.00	0.00
7.500	0.00	0.00	0.00	0.00	0.00
7.750	0.00	0.00	0.00	0.00	0.00
8.000	0.00	0.00	0.00	0.00	0.00
8.250	0.00	0.00	0.00	0.00	0.00
8.500	0.00	0.00	0.01	0.01	0.01
8.750	0.01	0.01	0.01	0.01	0.01
9.000	0.01	0.01	0.01	0.01	0.01
9.250	0.01	0.01	0.01	0.01	0.01
9.500	0.01	0.01	0.01	0.01	0.01
9.750	0.01	0.01	0.01	0.01	0.01
10.000	0.01	0.01	0.01	0.01	0.01
10.250	0.01	0.02	0.02	0.02	0.02
10.500	0.02	0.02	0.02	0.02	0.02
10.750	0.02	0.02	0.02	0.03	0.03
11.000	0.03	0.03	0.03	0.03	0.04
11.250	0.04	0.04	0.04	0.05	0.05
11.500	0.05	0.08	0.11	0.17	0.23
11.750	0.32	0.42	0.60	0.83	0.80
12.000	0.70	0.48	0.22	0.15	0.13
12.250	0.12	0.11	0.10	0.09	0.08
12.500	0.08	0.07	0.06	0.06	0.06
12.750	0.06	0.06	0.05	0.05	0.05
13.000	0.05	0.05	0.05	0.04	0.04
13.250	0.04	0.04	0.04	0.04	0.04
13.500	0.04	0.04	0.03	0.03	0.03
13.750	0.03 0.03	0.03	0.03 0.03	0.03 0.03	0.03 0.03
14.000	0.03	0.03		0.03	
14.250	0.03	0.03 0.03	0.03 0.03	0.03	0.03 0.02
14.500 14.750	0.03	0.03	0.03	0.03	0.02
15.000	0.02	0.02	0.02	0.02	0.02
15.250	0.02	0.02	0.02	0.02	0.02
15.500	0.02	0.02	0.02	0.02	0.02
15.750	0.02	0.02	0.02	0.02	0.02
16.000	0.02	0.02	0.02	0.02	0.02
16.250	0.02	0.02	0.02	0.02	0.02
16.500	0.02	0.02	0.02	0.02	0.02
16.750	0.02	0.02	0.02	0.02	0.02
17.000	0.02	0.02	0.02	0.02	0.02
17.000	0.02	0.02	0.02	0.02	0.02

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin G - Post Storm Event: 10 Year Storm

	110 011 1011 10	or osomes time	o ioi ilist vai	ac iii cacii i c	
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft ³ /s)	(ft³/s)
17.250	0.02	0.02	0.02	0.02	0.02
17.500	0.01	0.01	0.01	0.01	0.01
17.750	0.01	0.01	0.01	0.01	0.01
18.000	0.01	0.01	0.01	0.01	0.01
18.250	0.01	0.01	0.01	0.01	0.01
18.500	0.01	0.01	0.01	0.01	0.01
18.750	0.01	0.01	0.01	0.01	0.01
19.000	0.01	0.01	0.01	0.01	0.01
19.250	0.01	0.01	0.01	0.01	0.01
19.500	0.01	0.01	0.01	0.01	0.01
19.750	0.01	0.01	0.01	0.01	0.01
20.000	0.01	0.01	0.01	0.01	0.01
20.250	0.01	0.01	0.01	0.01	0.01
20.500	0.01	0.01	0.01	0.01	0.01
20.750	0.01	0.01	0.01	0.01	0.01
21.000	0.01	0.01	0.01	0.01	0.01
21.250	0.01	0.01	0.01	0.01	0.01
21.500	0.01	0.01	0.01	0.01	0.01
21.750	0.01	0.01	0.01	0.01	0.01
22.000	0.01	0.01	0.01	0.01	0.01
22.250	0.01	0.01	0.01	0.01	0.01
22.500	0.01	0.01	0.01	0.01	0.01
22.750	0.01	0.01	0.01	0.01	0.01
23.000	0.01	0.01	0.01	0.01	0.01
23.250	0.01	0.01	0.01	0.01	0.01
23.500	0.01	0.01	0.01	0.01	0.01
23.750	0.01	0.01	0.01	0.01	0.01
24.000	0.01	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 10 years
Label: Basin G - Post Storm Event: 10 Year Storm

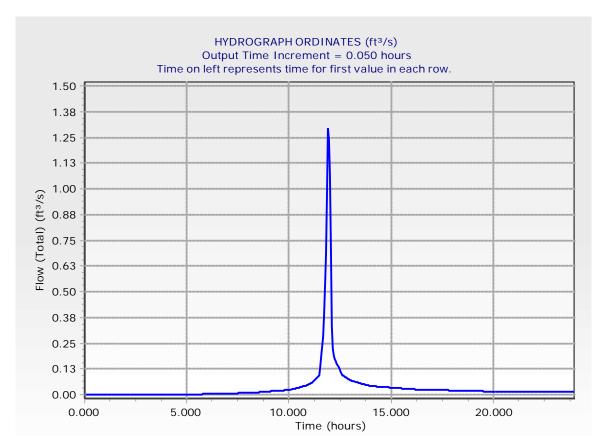
Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Basin G - Post Storm Event: 50 Year Storm

Storm Event	50 Year Storm
Return Event	50 years
Duration	24.000 hours
Depth	4.3 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.278 acres
Computational Time	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	1.33 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated	1.29 ft ³ /s
Output)	
Drainage Area	
SCS CN (Composite)	89.000
Area (User Defined)	0.278 acres
Maximum Retention	
(Pervious)	1.2 in
Maximum Retention (Pervious, 20 percent)	0.2 in
Cumulative Runoff	
-	
Cumulative Runoff Depth (Pervious)	3.1 in
Runoff Volume (Pervious)	0.072 ac-ft
Hydrograph Volume (Area unde	r Hydrograph curve)
Volume	0.072 ac-ft
Volume	0.072 dc 11
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	3.78 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years Label: Basin G - Post Storm Event: 50 Year Storm

Storm Event 50 Year Storm
Return Event 50 years
Duration 24.000 hours
Depth 4.3 in
Time of Concentration
(Composite) 0.083 hours
Area (User Defined) 0.278 acres


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.200	0.00	0.00	0.00	0.00	0.00
5.450	0.00	0.00	0.00	0.00	0.00
5.700	0.00	0.00	0.00	0.00	0.00
5.950	0.00	0.00	0.00	0.00	0.00
6.200	0.00	0.00	0.00	0.00	0.00
6.450	0.00	0.00	0.00	0.00	0.00
6.700	0.00	0.00	0.00	0.01	0.01
6.950	0.01	0.01	0.01	0.01	0.01
7.200	0.01	0.01	0.01	0.01	0.01
7.450	0.01	0.01	0.01	0.01	0.01
7.700	0.01	0.01	0.01	0.01	0.01
7.950	0.01	0.01	0.01	0.01	0.01
8.200	0.01	0.01	0.01	0.01	0.01
8.450	0.01	0.01	0.01	0.01	0.01
8.700	0.01	0.01	0.01	0.01	0.01
8.950	0.02	0.02	0.02	0.02	0.02
9.200	0.02	0.02	0.02	0.02	0.02
9.450	0.02	0.02	0.02	0.02	0.02
9.700	0.02	0.02	0.02	0.02	0.02
9.950	0.02	0.02	0.02	0.03	0.03
10.200	0.03	0.03	0.03	0.03	0.03
10.450	0.03	0.03	0.04	0.04	0.04
10.700	0.04	0.04	0.04	0.05	0.05
10.950	0.05	0.05	0.05	0.06	0.06
11.200	0.07	0.07	0.07	0.08	0.08
11.450	0.09	0.09	0.13	0.19	0.28
11.700	0.39	0.53	0.68	0.96	1.29
11.950	1.24	1.07	0.73	0.33	0.23
12.200	0.19	0.17	0.16	0.15	0.14
12.450	0.12	0.11	0.10	0.10	0.09
12.700	0.09	0.09	0.08	0.08	0.08
12.950	0.07	0.07	0.07	0.07	0.07
13.200	0.06	0.06	0.06	0.06	0.06
13.450	0.06	0.05	0.05	0.05	0.05
13.700	0.05	0.05	0.05	0.05	0.05
13.950	0.04	0.04	0.04	0.04	0.04
14.200	0.04	0.04	0.04	0.04	0.04
14.450	0.04	0.04	0.04	0.04	0.04
14.700	0.04	0.04	0.04	0.04	0.04
14.950	0.03	0.03	0.03	0.03	0.03
15.200	0.03	0.03	0.03	0.03	0.03
15.450	0.03	0.03	0.03	0.03	0.03

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 50 years
Label: Basin G - Post Storm Event: 50 Year Storm

• • • • • • • • • • • • • • • • • • • •	ne on lett re	oreseries cirri		ue in each ic	, vv.
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.700	0.03	0.03	0.03	0.03	0.03
15.950	0.03	0.03	0.03	0.03	0.03
16.200	0.03	0.03	0.03	0.03	0.02
16.450	0.02	0.02	0.02	0.02	0.02
16.700	0.02	0.02	0.02	0.02	0.02
16.950	0.02	0.02	0.02	0.02	0.02
17.200	0.02	0.02	0.02	0.02	0.02
17.450	0.02	0.02	0.02	0.02	0.02
17.700	0.02	0.02	0.02	0.02	0.02
17.950	0.02	0.02	0.02	0.02	0.02
18.200	0.02	0.02	0.02	0.02	0.02
18.450	0.02	0.02	0.02	0.02	0.02
18.700	0.02	0.02	0.02	0.02	0.02
18.950	0.02	0.02	0.02	0.02	0.02
19.200	0.02	0.02	0.02	0.02	0.02
19.450	0.02	0.02	0.02	0.02	0.02
19.700	0.02	0.02	0.02	0.02	0.02
19.950	0.02	0.01	0.01	0.01	0.01
20.200	0.01	0.01	0.01	0.01	0.01
20.450	0.01	0.01	0.01	0.01	0.01
20.700	0.01	0.01	0.01	0.01	0.01
20.950	0.01	0.01	0.01	0.01	0.01
21.200	0.01	0.01	0.01	0.01	0.01
21.450	0.01	0.01	0.01	0.01	0.01
21.700	0.01	0.01	0.01	0.01	0.01
21.950	0.01	0.01	0.01	0.01	0.01
22.200	0.01	0.01	0.01	0.01	0.01
22.450	0.01	0.01	0.01	0.01	0.01
22.700	0.01	0.01	0.01	0.01	0.01
22.950	0.01	0.01	0.01	0.01	0.01
23.200	0.01	0.01	0.01	0.01	0.01
23.450	0.01	0.01	0.01	0.01	0.01
23.700	0.01	0.01	0.01	0.01	0.01
23.950	0.01	0.01	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 50 years Label: Basin G - Post Storm Event: 50 Year Storm

Return Event: 100 years

Storm Event: 100 Year Storm

Subsection: Unit Hydrograph Summary

Label: Basin G - Post

Storm Event 100 Year Storm Return Event 100 years 24.000 hours Duration Depth 5.0 in Time of Concentration 0.083 hours (Composite) Area (User Defined) 0.278 acres **Computational Time** 0.011 hours Increment Time to Peak (Computed) 11.922 hours Flow (Peak, Computed) 1.59 ft³/s **Output Increment** 0.050 hours Time to Flow (Peak 11.900 hours Interpolated Output) Flow (Peak Interpolated 1.55 ft³/s Output) Drainage Area SCS CN (Composite) 89.000 Area (User Defined) 0.278 acres Maximum Retention 1.2 in (Pervious) **Maximum Retention** 0.2 in (Pervious, 20 percent) **Cumulative Runoff Cumulative Runoff Depth** 3.8 in (Pervious) Runoff Volume (Pervious) 0.087 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.087 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.083 hours (Composite) **Computational Time** 0.011 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Unit peak, qp 3.78 ft3/s Unit peak time, Tp 0.056 hours

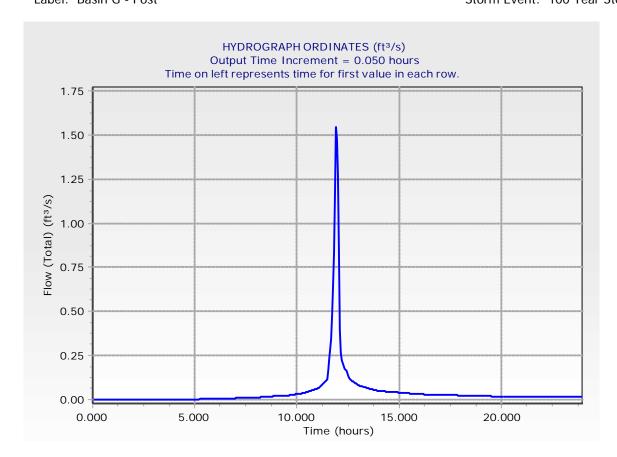
Unit receding limb, Tr

Total unit time, Tb

0.222 hours

0.278 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years Label: Basin G - Post Storm Event: 100 Year Storm


Storm Event 100 Year Storm
Return Event 100 years
Duration 24.000 hours
Depth 5.0 in
Time of Concentration
(Composite) 0.083 hours
Area (User Defined) 0.278 acres

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
4.600	0.00	0.00	0.00	0.00	0.00
4.850	0.00	0.00	0.00	0.00	0.00
5.100	0.00	0.00	0.00	0.00	0.00
5.350	0.00	0.00	0.00	0.00	0.00
5.600	0.00	0.00	0.00	0.00	0.00
5.850	0.00	0.00	0.00	0.01	0.01
6.100	0.01	0.01	0.01	0.01	0.01
6.350	0.01	0.01	0.01	0.01	0.01
6.600	0.01	0.01	0.01	0.01	0.01
6.850	0.01	0.01	0.01	0.01	0.01
7.100	0.01	0.01	0.01	0.01	0.01
7.350	0.01	0.01	0.01	0.01	0.01
7.600	0.01	0.01	0.01	0.01	0.01
7.850	0.01	0.01	0.01	0.01	0.01
8.100	0.01	0.01	0.01	0.01	0.01
8.350	0.01	0.01	0.02	0.02	0.02
8.600	0.02	0.02	0.02	0.02	0.02
8.850	0.02	0.02	0.02	0.02	0.02
9.100	0.02	0.02	0.02	0.02	0.02
9.350	0.02	0.02	0.02	0.02	0.02
9.600	0.02	0.03	0.03	0.03	0.03
9.850	0.03	0.03	0.03	0.03	0.03
10.100	0.03	0.03	0.04	0.04	0.04
10.350	0.04	0.04	0.04	0.04	0.04
10.600	0.05	0.05	0.05	0.05	0.06
10.850	0.06	0.06	0.06	0.06	0.07
11.100	0.07	0.08	0.08	0.09	0.09
11.350	0.10	0.10	0.11	0.12	0.17
11.600	0.23	0.34	0.48	0.64	0.82
11.850	1.16	1.55	1.48	1.27	0.87
12.100	0.39	0.27	0.23	0.21	0.19
12.350	0.18	0.16	0.15	0.13	0.12
12.600	0.11	0.11	0.10	0.10	0.10
12.850	0.09	0.09	0.09	80.0	80.0
13.100	0.08	0.08	0.07	0.07	0.07
13.350	0.07	0.07	0.07	0.06	0.06
13.600	0.06	0.06	0.06	0.06	0.06
13.850	0.05	0.05	0.05	0.05	0.05
14.100	0.05	0.05	0.05	0.05	0.05
14.350	0.05	0.05	0.05	0.04	0.04
14.600	0.04	0.04	0.04	0.04	0.04
14.850	0.04	0.04	0.04	0.04	0.04

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin G - Post Storm Event: 100 Year Storm

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.100	0.04	0.04	0.04	0.04	0.04
15.350	0.04	0.04	0.04	0.04	0.04
15.600	0.03	0.03	0.03	0.03	0.03
15.850	0.03	0.03	0.03	0.03	0.03
16.100	0.03	0.03	0.03	0.03	0.03
16.350	0.03	0.03	0.03	0.03	0.03
16.600	0.03	0.03	0.03	0.03	0.03
16.850	0.03	0.03	0.03	0.03	0.03
17.100	0.03	0.03	0.03	0.03	0.03
17.350	0.03	0.03	0.03	0.03	0.03
17.600	0.03	0.03	0.03	0.02	0.02
17.850	0.02	0.02	0.02	0.02	0.02
18.100	0.02	0.02	0.02	0.02	0.02
18.350	0.02	0.02	0.02	0.02	0.02
18.600	0.02	0.02	0.02	0.02	0.02
18.850	0.02	0.02	0.02	0.02	0.02
19.100	0.02	0.02	0.02	0.02	0.02
19.350	0.02	0.02	0.02	0.02	0.02
19.600	0.02	0.02	0.02	0.02	0.02
19.850	0.02	0.02	0.02	0.02	0.02
20.100	0.02	0.02	0.02	0.02	0.02
20.350	0.02	0.02	0.02	0.02	0.02
20.600	0.02	0.02	0.02	0.02	0.02
20.850	0.02	0.02	0.02	0.02	0.02
21.100	0.02	0.02	0.02	0.02	0.02
21.350	0.02	0.02	0.02	0.02	0.02
21.600	0.02	0.02	0.02	0.02	0.02
21.850	0.02	0.02	0.02	0.02	0.02
22.100	0.02	0.02	0.02	0.02	0.02
22.350	0.02	0.02	0.02	0.02	0.02
22.600	0.02	0.02	0.02	0.02	0.02
22.850	0.02	0.02	0.02	0.02	0.02
23.100	0.02	0.02	0.02	0.02	0.02
23.350	0.02	0.02	0.02	0.02	0.02
23.600	0.02	0.01	0.01	0.01	0.01
23.850	0.01	0.01	0.01	0.01	(N/A)

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 100 years
Label: Basin G - Post Storm Event: 100 Year Storm

Subsection: Addition Summary Return Event: 2 years
Label: Site Outlet - Post Storm Event: 2 Year Storm

Summary for Hydrograph Addition at 'Site Outlet - Post'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin E - Post
<catchment node="" outflow="" to=""></catchment>	Basin D - Post
<catchment node="" outflow="" to=""></catchment>	Basin C - Post
<catchment node="" outflow="" to=""></catchment>	Basin F - Post
Drainline C	Detention Pond

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Basin E - Post	0.251	12.200	2.04
Flow (From)	Basin D - Post	0.004	11.950	0.06
Flow (From)	Basin C - Post	0.046	11.950	0.82
Flow (From)	Basin F - Post	0.277	12.200	2.19
Flow (From)	Drainline C	0.358	12.450	1.72
Flow (In)	Site Outlet -	0.936	12.250	5.39

Subsection: Addition Summary Return Event: 10 years
Label: Site Outlet - Post Storm Event: 10 Year Storm

Summary for Hydrograph Addition at 'Site Outlet - Post'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin E - Post
<catchment node="" outflow="" to=""></catchment>	Basin D - Post
<catchment node="" outflow="" to=""></catchment>	Basin C - Post
<catchment node="" outflow="" to=""></catchment>	Basin F - Post
Drainline C	Detention Pond

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Basin E - Post	0.597	12.150	6.27
Flow (From)	Basin D - Post	0.007	11.950	0.13
Flow (From)	Basin C - Post	0.078	11.950	1.38
Flow (From)	Basin F - Post	0.658	12.150	6.68
Flow (From)	Drainline C	0.792	12.350	5.21
Flow (In)	Site Outlet -	2.133	12.200	17.09

Subsection: Addition Summary Return Event: 50 years
Label: Site Outlet - Post Storm Event: 50 Year Storm

Summary for Hydrograph Addition at 'Site Outlet - Post'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin E - Post
<catchment node="" outflow="" to=""></catchment>	Basin D - Post
<catchment node="" outflow="" to=""></catchment>	Basin C - Post
<catchment node="" outflow="" to=""></catchment>	Basin F - Post
Drainline C	Detention Pond

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Basin E - Post	1.213	12.150	13.82
Flow (From)	Basin D - Post	0.013	11.950	0.23
Flow (From)	Basin C - Post	0.125	11.950	2.20
Flow (From)	Basin F - Post	1.338	12.150	14.88
Flow (From)	Drainline C	1.557	12.350	11.48
Flow (In)	Site Outlet -	4.246	12.150	37.18

Subsection: Addition Summary Return Event: 100 years Label: Site Outlet - Post Storm Event: 100 Year Storm

Summary for Hydrograph Addition at 'Site Outlet - Post'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin E - Post
<catchment node="" outflow="" to=""></catchment>	Basin D - Post
<catchment node="" outflow="" to=""></catchment>	Basin C - Post
<catchment node="" outflow="" to=""></catchment>	Basin F - Post
Drainline C	Detention Pond

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Basin E - Post	1.598	12.100	18.48
Flow (From)	Basin D - Post	0.016	11.900	0.30
Flow (From)	Basin C - Post	0.153	11.950	2.65
Flow (From)	Basin F - Post	1.763	12.150	19.94
Flow (From)	Drainline C	2.032	12.300	17.11
Flow (In)	Site Outlet - Post	5.562	12.150	51.96

Subsection: Addition Summary

Label: Site Outlet (Pre)

Return Event: 2 years

Storm Event: 2 Year Storm

Summary for Hydrograph Addition at 'Site Outlet (Pre)'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin A - Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Basin A - Pre	0.923	12.200	7.35
Flow (In)	Site Outlet (Pre)	0.923	12.200	7.35

Subsection: Addition Summary Return Event: 10 years Label: Site Outlet (Pre) Storm Event: 10 Year Storm

Summary for Hydrograph Addition at 'Site Outlet (Pre)'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin A - Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Basin A - Pre	2.132	12.200	20.96
Flow (In)	Site Outlet (Pre)	2.132	12.200	20.96

Subsection: Addition Summary Return Event: 50 years Label: Site Outlet (Pre) Storm Event: 50 Year Storm

Summary for Hydrograph Addition at 'Site Outlet (Pre)'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin A - Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Basin A - Pre	4.261	12.150	45.73
Flow (In)	Site Outlet (Pre)	4.261	12.150	45.73

Subsection: Addition Summary Return Event: 100 years Label: Site Outlet (Pre) Storm Event: 100 Year Storm

Summary for Hydrograph Addition at 'Site Outlet (Pre)'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Basin A - Pre

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Basin A - Pre	5.582	12.150	60.96
Flow (In)	Site Outlet (Pre)	5.582	12.150	60.96

Subsection: Elevation-Area Volume Curve

Return Event: 2 years Label: Detention Pond Storm Event: 2 Year Storm

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
1,155.61	0.0	0.0368227731739 573	0	0.000	0.000
1,156.00	0.0	0.0408172635307 332	0.1164086430321 54	0.015	0.015
1,157.00	0.0	0.0523415977784 431	0.1393805098100 94	0.046	0.062
1,157.19	0.0	0.0622359963058 593	0.1716523826163 85	0.011	0.072
1,158.00	0.0	0.0769054177885 019	0.2083243982551 05	0.056	0.129
1,158.61	0.0	0.0919651055703 697	0.2529693632191 99	0.051	0.180
1,159.00	0.0	0.1009182736114 19	0.2892211167857 7	0.038	0.218
1,160.00	0.0	0.1460743801158 92	0.3684075385650 19	0.123	0.341
1,161.00	0.0	0.1704315885557 72	0.4742896454270 6	0.158	0.499
1,161.60	0.0	0.1848484847859 75	0.5327737940875 85	0.107	0.605
1,162.00	0.0	0.1958448116876 74	0.5709605209072 37	0.076	0.681
1,162.60	0.0	0.2113177226098 98	0.6105967487031 24	0.122	0.803

Subsection: Outlet Input Data Return Event: 2 years
Label: Composite Outlet Structure - 1 Storm Event: 2 Year Storm

Requested Pond Water Surface Elevations		
Minimum (Headwater)	1,155.61 ft	
Increment (Headwater)	0.50 ft	
Maximum (Headwater) 1,162.60 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	Riser - 1	Forward	Culvert - 1	1,160.77	1,162.60
Orifice-Circular	Orifice - 1	Forward	Culvert - 1	1,159.02	1,162.60
Culvert-Circular	Culvert - 1	Forward	TW	1,155.50	1,162.60
Orifice-Circular	Orifice - 2	Forward	TW	1,158.61	1,162.60
Irregular Weir	Weir - 1	Forward	TW	1,161.60	1,162.60
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 2 years
Label: Composite Outlet Structure - 1 Storm Event: 2 Year Storm

Structure ID: Culvert - 1	
Structure Type: Culvert-Circula	r
Number of Barrels	1
Diameter	18.0 in
Length	25.00 ft
Length (Computed Barrel)	25.00 ft
Slope (Computed)	0.010 ft/ft
Outlet Control Data	
Manning's n	0.012
Ke	0.200
Kb	0.016
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	1.090
T2 ratio (HW/D)	1.192
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	1,157.14 ft	T1 Flow	7.58 ft ³ /s
T2 Elevation	1,157.29 ft	T2 Flow	8.66 ft ³ /s

Subsection: Outlet Input Data Return Event: 2 years Label: Composite Outlet Structure - 1 Storm Event: 2 Year Storm

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	3
Elevation	1,159.02 ft
Orifice Diameter	9.0 in
Orifice Coefficient	0.600
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	1,160.77 ft
Orifice Area	4.0 ft ²
Orifice Coefficient	0.600
Weir Length	9.00 ft
Weir Coefficient	2.80 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False

Structure ID: Weir - 1

Structure Type: Irregular Weir

Station (ft)	Elevation (ft)
0.00	1.00
3.00	0.00
14.00	0.00
17.00	1.00

Lowest Elevation	1,161.60 ft
Weir Coefficient	3.33 (ft^0.5)/s

Structure ID: Orifice - 2 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	1,158.61 ft
Orifice Diameter	6.0 in
Orifice Coefficient	0.600

Structure ID: TV	V
Structure Type:	TW Setup, DS Channel

Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft

Subsection: Outlet Input Data Return Event: 2 years
Label: Composite Outlet Structure - 1 Storm Event: 2 Year Storm

Convergence Tolerances	
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

Subsection: Level Pool Pond Routing Summary

Return Event: 2 years Label: Detention Pond (IN) Storm Event: 2 Year Storm

Laber. Determon Pond (II	N)		Storiii Everit. 2 fear
Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	1,158.61 ft		
Volume (Initial)	0.180 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	2.60 ft ³ /s	Time to Peak (Flow, In)	12.200 hours
Flow (Peak Outlet)	1.72 ft ³ /s	Time to Peak (Flow, Outlet)	12.450 hours
Elevation (Water Surface, Peak)	1,159.32 ft	_	
Volume (Peak)	0.252 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.180 ac-ft		
Volume (Total Inflow)	0.374 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.358 ac-ft		
Volume (Retained)	0.196 ac-ft		
Volume (Unrouted)	-0.001 ac-ft		
Error (Mass Balance)	0.3 %		

Subsection: Level Pool Pond Routing Summary

Return Event: 10 years Label: Detention Pond (IN) Storm Event: 10 Year Storm

Laber. Determon Porio (11	V)		Storm Event. To real
Infiltration			
Infiltration Method (Computed)	No Infiltration	<u></u>	
Initial Conditions			
Elevation (Water Surface, Initial)	1,158.61 ft		
Volume (Initial)	0.180 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	7.22 ft ³ /s	Time to Peak (Flow, In)	12.200 hours
Flow (Peak Outlet)	5.21 ft ³ /s	Time to Peak (Flow, Outlet)	12.350 hours
Elevation (Water Surface, Peak)	1,159.91 ft	=	
Volume (Peak)	0.327 ac-ft		
Mass Balance (ac-ft)		<u> </u>	
Volume (Initial)	0.180 ac-ft		
Volume (Total Inflow)	0.823 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.792 ac-ft		
Volume (Retained)	0.209 ac-ft		
Volume (Unrouted)	-0.001 ac-ft		

0.2 %

Error (Mass Balance)

12.150 hours 12.350 hours

Subsection: Level Pool Pond Routing Summary

Return Event: 50 years Label: Detention Pond (IN) Storm Event: 50 Year Storm

Infiltration	
Infiltration Method (Computed)	No Infiltration
nitial Conditions	
Elevation (Water Surface, Initial)	1,158.61 ft
Volume (Initial)	0.180 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours

nflow/Outflow Hydrograph Sun	nmary	
Flow (Peak In)	15.60 ft ³ /s	Time to Peak (Flow, In)
Flow (Peak Outlet)	11.48 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	1,160.92 ft	_
Volume (Peak)	0.486 ac-ft	
Mass Balance (ac-ft)		<u></u>
Volume (Initial)	0.180 ac-ft	
Volume (Total Inflow)	1.600 ac-ft	
Volume (Total Infiltration)	0.000 ac-ft	
Volume (Total Outlet Outflow)	1.557 ac-ft	
Volume (Retained)	0.221 ac-ft	
Volume (Unrouted)	-0.002 ac-ft	
Error (Mass Balance)	0.1 %	

12.150 hours 12.300 hours

Subsection: Level Pool Pond Routing Summary

Return Event: 100 years Label: Detention Pond (IN) Storm Event: 100 Year Storm

Infiltration	
Inilitration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	1,158.61 ft
Volume (Initial)	0.180 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours

Inflow/Outflow Hydrograph Sun	nmary	
Flow (Peak In)	20.74 ft ³ /s	Time to Peak (Flow, In)
Flow (Peak Outlet)	17.11 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	1,161.25 ft	
Volume (Peak)	0.542 ac-ft	
Mass Balance (ac-ft)		<u></u>
Volume (Initial)	0.180 ac-ft	
Volume (Total Inflow)	2.079 ac-ft	
Volume (Total Infiltration)	0.000 ac-ft	
Volume (Total Outlet Outflow)	2.032 ac-ft	
Volume (Retained)	0.225 ac-ft	
Volume (Unrouted)	-0.002 ac-ft	
Error (Mass Balance)	0.1 %	

Subsection: Pond Routed Hydrograph (total out)

Return Event: 2 years

Label: Detention Pond (OUT)

Storm Event: 2 Year Storm

Peak Discharge	1.72 ft ³ /s
Time to Peak	12.450 hours
Hydrograph Volume	0.358 ac-ft

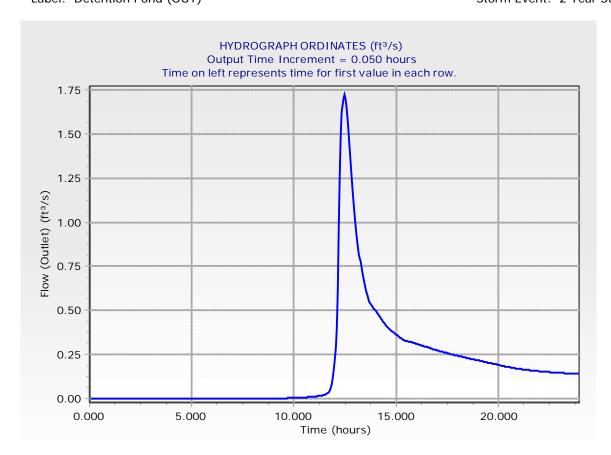
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)
9.000	0.00	0.00	0.00	0.00	0.00
9.250	0.00	0.00	0.00	0.00	0.00
9.500	0.00	0.00	0.00	0.00	0.00
9.750	0.00	0.00	0.00	0.00	0.00
10.000	0.00	0.00	0.00	0.00	0.00
10.250	0.01	0.01	0.01	0.01	0.01
10.500	0.01	0.01	0.01	0.01	0.01
10.750	0.01	0.01	0.01	0.01	0.01
11.000	0.01	0.01	0.01	0.01	0.01
11.250	0.02	0.02	0.02	0.02	0.02
11.500	0.02	0.02	0.03	0.03	0.04
11.750	0.05	0.06	0.09	0.12	0.17
12.000	0.23	0.29	0.40	0.62	0.97
12.250	1.26	1.48	1.63	1.70	1.72
12.500	1.70	1.66	1.60	1.52	1.45
12.750	1.37	1.29	1.21	1.14	1.07
13.000	1.01	0.95	0.90	0.85	0.81
13.250	0.77	0.74	0.70	0.68	0.65
13.500	0.62	0.60	0.58	0.56	0.55
13.750	0.54	0.53	0.52	0.51	0.50
14.000	0.50	0.49	0.48	0.47	0.46
14.250	0.45	0.45	0.44	0.43	0.42
14.500	0.42 0.39	0.41 0.38	0.40	0.40	0.39
14.750 15.000	0.39	0.36	0.38 0.35	0.37 0.35	0.37 0.35
15.250	0.34	0.34	0.33	0.33	0.33
15.500	0.33	0.33	0.32	0.32	0.33
15.750	0.32	0.32	0.32	0.31	0.32
16.000	0.31	0.31	0.31	0.31	0.30
16.250	0.30	0.30	0.30	0.30	0.29
16.500	0.29	0.29	0.29	0.29	0.28
16.750	0.28	0.28	0.28	0.28	0.28
17.000	0.27	0.27	0.27	0.27	0.27
17.250	0.27	0.26	0.26	0.26	0.26
17.500	0.26	0.26	0.25	0.25	0.25
17.750	0.25	0.25	0.25	0.25	0.24
18.000	0.24	0.24	0.24	0.24	0.24
18.250	0.24	0.24	0.23	0.23	0.23
18.500	0.23	0.23	0.23	0.23	0.22
18.750	0.22	0.22	0.22	0.22	0.22
19.000	0.22	0.22	0.21	0.21	0.21
19.250	0.21	0.21	0.21	0.21	0.21
19.500	0.20	0.20	0.20	0.20	0.20
19.750	0.20	0.20	0.20	0.19	0.19
20.000	0.19	0.19	0.19	0.19	0.19
20.250	0.18	0.18	0.18	0.18	0.18

Subsection: Pond Routed Hydrograph (total out)

Return Event: 2 years

Label: Detention Pond (OUT)

Storm Event: 2 Year Storm


Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft ³ /s)	Flow (ft³/s)
20.500	0.18	0.18	0.18	0.18	0.17
20.750	0.17	0.17	0.17	0.17	0.17
21.000	0.17	0.17	0.17	0.17	0.17
21.250	0.16	0.16	0.16	0.16	0.16
21.500	0.16	0.16	0.16	0.16	0.16
21.750	0.16	0.16	0.16	0.16	0.16
22.000	0.16	0.15	0.15	0.15	0.15
22.250	0.15	0.15	0.15	0.15	0.15
22.500	0.15	0.15	0.15	0.15	0.15
22.750	0.15	0.15	0.15	0.15	0.15
23.000	0.15	0.15	0.15	0.15	0.14
23.250	0.14	0.14	0.14	0.14	0.14
23.500	0.14	0.14	0.14	0.14	0.14
23.750	0.14	0.14	0.14	0.14	0.14
24.000	0.14	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Pond Routed Hydrograph (total out)

Return Event: 2 years

Label: Detention Pond (OUT)

Storm Event: 2 Year Storm

Subsection: Pond Routed Hydrograph (total out) Return Event: 10 years

Label: Detention Pond (OUT) Storm Event: 10 Year Storm

Peak Discharge	5.21 ft ³ /s
Time to Peak	12.350 hours
Hydrograph Volume	0.792 ac-ft

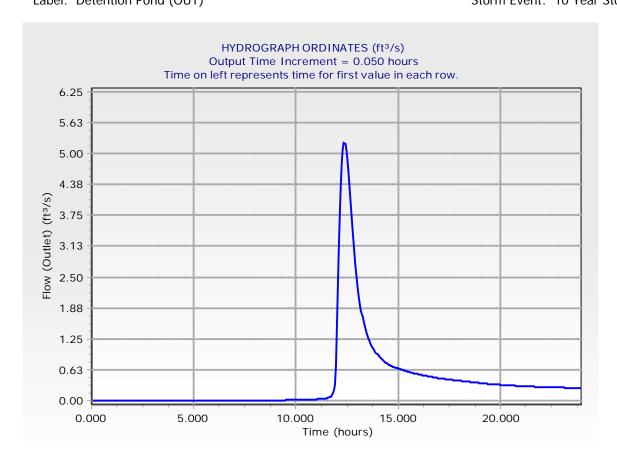
Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
7.300	0.00	0.00	0.00	0.00	0.00
7.550	0.00	0.00	0.00	0.00	0.00
7.800	0.00	0.00	0.00	0.00	0.00
8.050	0.00	0.00	0.00	0.00	0.00
8.300	0.00	0.00	0.00	0.00	0.00
8.550	0.00	0.00	0.00	0.01	0.01
8.800	0.01	0.01	0.01	0.01	0.01
9.050	0.01	0.01	0.01	0.01	0.01
9.300	0.01	0.01	0.01	0.01	0.01
9.550	0.01	0.01	0.01	0.01	0.01
9.800	0.01	0.01	0.01	0.01	0.01
10.050	0.01	0.01	0.02	0.02	0.02
10.300	0.02	0.02	0.02	0.02	0.02
10.550	0.02	0.02	0.02	0.02	0.02
10.800	0.02	0.03	0.03	0.03	0.03
11.050	0.03	0.03	0.03	0.03	0.04
11.300	0.04	0.04	0.04	0.05	0.05
11.550	0.05	0.06	0.07	0.09	0.11
11.800	0.15	0.21	0.31	0.70	1.51
12.050	2.32	3.09	3.77	4.35	4.80
12.300	5.08	5.21	5.19	5.07	4.87
12.550	4.62	4.36	4.09	3.81	3.55
12.800	3.29	3.03	2.79	2.58	2.39
13.050	2.22	2.07	1.93	1.81	1.70
13.300	1.60	1.52	1.44	1.37	1.31
13.550 13.800	1.25 1.04	1.20 1.01	1.16 0.98	1.11 0.95	1.08 0.93
14.050	0.90	0.88	0.98	0.95	0.93
14.300	0.90	0.78	0.80	0.75	0.74
14.550	0.73	0.71	0.70	0.69	0.69
14.800	0.68	0.67	0.66	0.65	0.65
15.050	0.64	0.63	0.63	0.62	0.61
15.300	0.61	0.60	0.60	0.59	0.58
15.550	0.58	0.57	0.57	0.56	0.55
15.800	0.55	0.54	0.54	0.54	0.53
16.050	0.53	0.52	0.52	0.52	0.51
16.300	0.51	0.50	0.50	0.49	0.49
16.550	0.49	0.48	0.48	0.47	0.47
16.800	0.47	0.46	0.46	0.46	0.45
17.050	0.45	0.45	0.45	0.44	0.44
17.300	0.44	0.43	0.43	0.43	0.43
17.550	0.42	0.42	0.42	0.42	0.41
17.800	0.41	0.41	0.41	0.41	0.40
18.050	0.40	0.40	0.40	0.39	0.39
18.300	0.39	0.39	0.38	0.38	0.38
18.550	0.38	0.38	0.37	0.37	0.37

Subsection: Pond Routed Hydrograph (total out)

Return Event: 10 years

Label: Detention Pond (OUT)

Storm Event: 10 Year Storm


rime on lott opresents time for mot value in such rem					
Time (hours)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
					1
18.800	0.37	0.36	0.36	0.36	0.36
19.050	0.35	0.35	0.35	0.35	0.35
19.300	0.34	0.34	0.34	0.34	0.33
19.550	0.33	0.33	0.33	0.33	0.33
19.800	0.32	0.32	0.32	0.32	0.32
20.050	0.32	0.32	0.32	0.32	0.31
20.300	0.31	0.31	0.31	0.31	0.31
20.550	0.31	0.30	0.30	0.30	0.30
20.800	0.30	0.30	0.30	0.30	0.30
21.050	0.29	0.29	0.29	0.29	0.29
21.300	0.29	0.29	0.29	0.29	0.29
21.550	0.28	0.28	0.28	0.28	0.28
21.800	0.28	0.28	0.28	0.28	0.28
22.050	0.28	0.28	0.28	0.27	0.27
22.300	0.27	0.27	0.27	0.27	0.27
22.550	0.27	0.27	0.27	0.27	0.27
22.800	0.27	0.27	0.27	0.26	0.26
23.050	0.26	0.26	0.26	0.26	0.26
23.300	0.26	0.26	0.26	0.26	0.26
23.550	0.26	0.26	0.26	0.26	0.26
23.800	0.26	0.25	0.25	0.25	0.25

Subsection: Pond Routed Hydrograph (total out)

Return Event: 10 years

Label: Detention Pond (OUT)

Storm Event: 10 Year Storm

Subsection: Pond Routed Hydrograph (total out) Return Event: 50 years

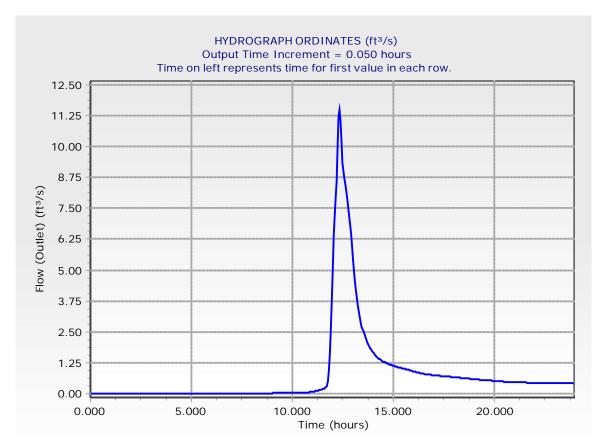
Label: Detention Pond (OUT) Storm Event: 50 Year Storm

Peak Discharge	11.48 ft ³ /s
Time to Peak	12.350 hours
Hydrograph Volume	1.557 ac-ft

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.750	0.00	0.00	0.00	0.00	0.00
6.000	0.00	0.00	0.00	0.00	0.00
6.250	0.00	0.00	0.00	0.00	0.00
6.500	0.00	0.00	0.00	0.00	0.00
6.750	0.00	0.00	0.00	0.00	0.01
7.000	0.01	0.01	0.01	0.01	0.01
7.250	0.01	0.01	0.01	0.01	0.01
7.500	0.01	0.01	0.01	0.01	0.01
7.750	0.01	0.01	0.01	0.01	0.01
8.000	0.01	0.01	0.01	0.01	0.01
8.250	0.01	0.01	0.01	0.01	0.01
8.500	0.01	0.01	0.01	0.02	0.02
8.750	0.02	0.02	0.02	0.02	0.02
9.000	0.02	0.02	0.02	0.02	0.02
9.250	0.02	0.02	0.02	0.02	0.02
9.500	0.02	0.03	0.03	0.03	0.03
9.750	0.03	0.03	0.03	0.03	0.03
10.000	0.03	0.03	0.03	0.03	0.04
10.250	0.04	0.04	0.04	0.04	0.04
10.500	0.04	0.04	0.05	0.05	0.05
10.750	0.05	0.06	0.06	0.07	0.07
11.000	0.08	0.08	0.09	0.10	0.11
11.250	0.12	0.13	0.14	0.16	0.17
11.500	0.19	0.21	0.23	0.27	0.32
11.750	0.50	0.99	1.69	2.65	3.81
12.000	5.07 10.02	6.44	7.19	7.93 11.07	8.58
12.250 12.500	9.35	11.25 8.70	11.48 8.49	8.22	10.28 7.89
12.750	7.55	7.20	6.86	6.52	5.98
13.000	5.45	4.98	4.56	4.20	3.88
13.250	3.59	3.34	3.10	2.89	2.70
13.500	2.54	2.40	2.28	2.17	2.08
13.750	1.99	1.91	1.84	1.78	1.72
14.000	1.67	1.62	1.57	1.53	1.49
14.250	1.45	1.42	1.38	1.35	1.33
14.500	1.30	1.28	1.26	1.24	1.22
14.750	1.20	1.19	1.17	1.16	1.14
15.000	1.13	1.12	1.10	1.09	1.08
15.250	1.07	1.06	1.05	1.04	1.02
15.500	1.01	1.00	0.99	0.98	0.97
15.750	0.96	0.95	0.94	0.93	0.91
16.000	0.90	0.89	0.88	0.87	0.86
16.250	0.85	0.84	0.83	0.82	0.81
16.500	0.81	0.80	0.79	0.78	0.78
16.750	0.77	0.77	0.76	0.76	0.75
17.000	0.75	0.74	0.74	0.73	0.73

Subsection: Pond Routed Hydrograph (total out)

Return Event: 50 years


Label: Detention Pond (OUT)

Storm Event: 50 Year Storm

rime on left represents time for first value in each row.						
Time	Flow	Flow	Flow	Flow	Flow	
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	
17.250	0.73	0.72	0.72	0.71	0.71	
17.500	0.71	0.70	0.70	0.69	0.69	
17.750	0.69	0.68	0.68	0.67	0.67	
18.000	0.67	0.66	0.66	0.65	0.65	
18.250	0.65	0.64	0.64	0.63	0.63	
18.500	0.63	0.62	0.62	0.61	0.61	
18.750	0.61	0.60	0.60	0.59	0.59	
19.000	0.59	0.58	0.58	0.57	0.57	
19.250	0.57	0.56	0.56	0.55	0.55	
19.500	0.55	0.54	0.54	0.54	0.54	
19.750	0.53	0.53	0.53	0.52	0.52	
20.000	0.52	0.51	0.51	0.51	0.50	
20.250	0.50	0.50	0.49	0.49	0.49	
20.500	0.48	0.48	0.48	0.48	0.47	
20.750	0.47	0.47	0.47	0.47	0.46	
21.000	0.46	0.46	0.46	0.46	0.46	
21.250	0.46	0.45	0.45	0.45	0.45	
21.500	0.45	0.45	0.45	0.45	0.45	
21.750	0.44	0.44	0.44	0.44	0.44	
22.000	0.44	0.44	0.44	0.44	0.44	
22.250	0.44	0.43	0.43	0.43	0.43	
22.500	0.43	0.43	0.43	0.43	0.43	
22.750	0.43	0.43	0.43	0.42	0.42	
23.000	0.42	0.42	0.42	0.42	0.42	
23.250	0.42	0.42	0.42	0.42	0.42	
23.500	0.42	0.41	0.41	0.41	0.41	
23.750	0.41	0.41	0.41	0.41	0.41	
24.000	0.41	(N/A)	(N/A)	(N/A)	(N/A)	

Subsection: Pond Routed Hydrograph (total out)

Return Event: 50 years Label: Detention Pond (OUT) Storm Event: 50 Year Storm

Subsection: Pond Routed Hydrograph (total out) Return Event: 100 years

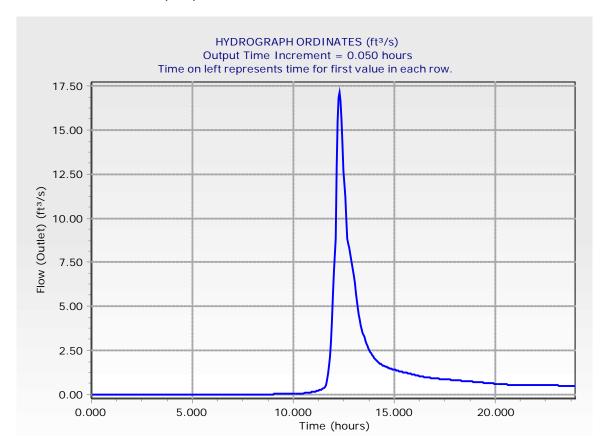
Label: Detention Pond (OUT) Storm Event: 100 Year Storm

Peak Discharge	17.11 ft ³ /s
Time to Peak	12.300 hours
Hydrograph Volume	2.032 ac-ft

Time (hours)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
5.100	0.00	0.00	0.00	0.00	0.00
5.350	0.00	0.00	0.00	0.00	0.00
5.600	0.00	0.00	0.00	0.00	0.00
5.850	0.00	0.00	0.00	0.00	0.00
6.100	0.00	0.00	0.01	0.01	0.01
6.350	0.01	0.01	0.01	0.01	0.01
6.600	0.01	0.01	0.01	0.01	0.01
6.850	0.01	0.01	0.01	0.01	0.01
7.100	0.01	0.01	0.01	0.01	0.01
7.350	0.01	0.01	0.01	0.01	0.01
7.600	0.01	0.01	0.01	0.01	0.01
7.850	0.02	0.02	0.02	0.02	0.02
8.100	0.02	0.02	0.02	0.02	0.02
8.350	0.02	0.02	0.02	0.02	0.02
8.600	0.02	0.02	0.02	0.02	0.02
8.850	0.03	0.03	0.03	0.03	0.03
9.100	0.03	0.03	0.03	0.03	0.03
9.350	0.03	0.03	0.03	0.03	0.04
9.600	0.04	0.04	0.04	0.04	0.04
9.850	0.04	0.04	0.04	0.04	0.05
10.100	0.05	0.05	0.05	0.06	0.06
10.350	0.07	0.07	0.07	0.08	0.09
10.600	0.09	0.10	0.11	0.11	0.12
10.850	0.13	0.14	0.15	0.16	0.17
11.100	0.19	0.20	0.22	0.23	0.25
11.350	0.27	0.29	0.32	0.37	0.46
11.600	0.56	0.81	1.13	1.56	2.15
11.850	2.97	4.08	5.48	6.82	7.83
12.100	8.82	12.89	15.52	16.82	17.11
12.350	16.62	15.58	14.21	12.68	11.25
12.600	9.96	8.81	8.57	8.32	8.01
12.850	7.68	7.34	7.01	6.69	6.32
13.100	5.79	5.33	4.91	4.55	4.23
13.350	3.94	3.69	3.47	3.26	3.07
13.600	2.91	2.76	2.64	2.52	2.42
13.850	2.33	2.24	2.17	2.10	2.03
14.100	1.97	1.92	1.86	1.82	1.77
14.350	1.73	1.69	1.66	1.62	1.60
14.600	1.57	1.54	1.52	1.50	1.48
14.850	1.46	1.44	1.42	1.41	1.39
15.100	1.38	1.36	1.35	1.33	1.32
15.350	1.30	1.29	1.27	1.26	1.25
15.600	1.23	1.22	1.21	1.19	1.18
15.850	1.16	1.15	1.14	1.12	1.11
16.100	1.10	1.08	1.07	1.06	1.04
16.350	1.03	1.02	1.01	1.00	0.99

Subsection: Pond Routed Hydrograph (total out)

Return Event: 100 years


Label: Detention Pond (OUT)

Storm Event: 100 Year Storm

time on left represents time for first value in each row.						
Time	Flow	Flow	Flow	Flow	Flow	
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	
16.60		0.97	0.97	0.96	0.95	
16.85		0.94	0.93	0.93	0.92	
17.10	0.92	0.91	0.90	0.90	0.89	
17.35	0.89	0.88	0.88	0.87	0.87	
17.60	0.86	0.86	0.85	0.85	0.84	
17.85	0.84	0.83	0.83	0.82	0.82	
18.10	0.81	0.81	0.80	0.80	0.79	
18.35	0.79	0.78	0.78	0.77	0.77	
18.60	0.76	0.76	0.75	0.75	0.74	
18.85	0.74	0.73	0.73	0.72	0.72	
19.10	0.71	0.71	0.70	0.70	0.69	
19.35	0.69	0.68	0.68	0.67	0.67	
19.60	0.66	0.66	0.65	0.65	0.64	
19.85	0.64	0.63	0.63	0.62	0.62	
20.10	0.61	0.61	0.60	0.60	0.59	
20.35	0.59	0.58	0.58	0.58	0.57	
20.60	0.57	0.57	0.57	0.56	0.56	
20.85	0.56	0.56	0.56	0.56	0.55	
21.10	0.55	0.55	0.55	0.55	0.55	
21.35	0.55	0.55	0.55	0.55	0.55	
21.60	0.54	0.54	0.54	0.54	0.54	
21.85	0.54	0.54	0.54	0.54	0.54	
22.10	0.54	0.54	0.53	0.53	0.53	
22.35	0.53	0.53	0.53	0.53	0.53	
22.60	0.53	0.53	0.53	0.52	0.52	
22.85	0.52	0.52	0.52	0.52	0.52	
23.10	0.52	0.52	0.52	0.52	0.51	
23.35	0.51	0.51	0.51	0.51	0.51	
23.60	0.51	0.51	0.51	0.51	0.50	
23.85	0.50	0.50	0.50	0.50	(N/A)	

Subsection: Pond Routed Hydrograph (total out)

Return Event: 100 years Label: Detention Pond (OUT) Storm Event: 100 Year Storm

Index

В

- Basin A Post (Runoff CN-Area, 2 years)...22
- Basin A Post (Time of Concentration Calculations, 2 years)...12, 13
- Basin A Post (Unit Hydrograph (Hydrograph Table), 10 years)...35, 36, 37
- Basin A Post (Unit Hydrograph (Hydrograph Table), 100 years)...43, 44, 45
- Basin A Post (Unit Hydrograph (Hydrograph Table), 2 years)...31, 32, 33
- Basin A Post (Unit Hydrograph (Hydrograph Table), 50 years)...39, 40, 41
- Basin A Post (Unit Hydrograph Summary, 10 years)...34
- Basin A Post (Unit Hydrograph Summary, 100 years)...42
- Basin A Post (Unit Hydrograph Summary, 2 years)...30
- Basin A Post (Unit Hydrograph Summary, 50 years)...38
- Basin A Pre (Runoff CN-Area, 2 years)...23
- Basin A Pre (Time of Concentration Calculations, 2 years)...14, 15
- Basin A Pre (Unit Hydrograph (Hydrograph Table), 10 years)...51, 52, 53
- Basin A Pre (Unit Hydrograph (Hydrograph Table), 100 years)...59, 60, 61
- Basin A Pre (Unit Hydrograph (Hydrograph Table), 2 years)...47, 48, 49
- Basin A Pre (Unit Hydrograph (Hydrograph Table), 50 years)...55, 56, 57
- Basin A Pre (Unit Hydrograph Summary, 10 years)...50
- Basin A Pre (Unit Hydrograph Summary, 100 years)...58
- Basin A Pre (Unit Hydrograph Summary, 2 years)...46
- Basin A Pre (Unit Hydrograph Summary, 50 years)...54
- Basin B Post (Runoff CN-Area, 2 years)...24
- Basin B Post (Unit Hydrograph (Hydrograph Table), 10 years)...67, 68, 69
- Basin B Post (Unit Hydrograph (Hydrograph Table), 100 years)...75, 76, 77
- Basin B Post (Unit Hydrograph (Hydrograph Table), 2 years)...63, 64, 65
- Basin B Post (Unit Hydrograph (Hydrograph Table), 50 years)...71, 72, 73
- Basin B Post (Unit Hydrograph Summary, 10 years)...66
- Basin B Post (Unit Hydrograph Summary, 100 years)...74
- Basin B Post (Unit Hydrograph Summary, 2 years)...62
- Basin B Post (Unit Hydrograph Summary, 50 years)...70
- Basin C Post (Runoff CN-Area, 2 years)...25
- Basin C Post (Time of Concentration Calculations, 2 years)...16, 17
- Basin C Post (Unit Hydrograph (Hydrograph Table), 10 years)...83, 84, 85
- Basin C Post (Unit Hydrograph (Hydrograph Table), 100 years)...91, 92, 93
- Basin C Post (Unit Hydrograph (Hydrograph Table), 2 years)...79, 80, 81
- Basin C Post (Unit Hydrograph (Hydrograph Table), 50 years)...87, 88, 89
- Basin C Post (Unit Hydrograph Summary, 10 years)...82

- Basin C Post (Unit Hydrograph Summary, 100 years)...90
- Basin C Post (Unit Hydrograph Summary, 2 years)...78
- Basin C Post (Unit Hydrograph Summary, 50 years)...86
- Basin D Post (Runoff CN-Area, 2 years)...26
- Basin D Post (Unit Hydrograph (Hydrograph Table), 10 years)...99, 100, 101
- Basin D Post (Unit Hydrograph (Hydrograph Table), 100 years)...107, 108, 109
- Basin D Post (Unit Hydrograph (Hydrograph Table), 2 years)...95, 96, 97
- Basin D Post (Unit Hydrograph (Hydrograph Table), 50 years)...103, 104, 105
- Basin D Post (Unit Hydrograph Summary, 10 years)...98
- Basin D Post (Unit Hydrograph Summary, 100 years)...106
- Basin D Post (Unit Hydrograph Summary, 2 years)...94
- Basin D Post (Unit Hydrograph Summary, 50 years)...102
- Basin E Post (Runoff CN-Area, 2 years)...27
- Basin E Post (Time of Concentration Calculations, 2 years)...18, 19
- Basin E Post (Unit Hydrograph (Hydrograph Table), 10 years)...115, 116, 117
- Basin E Post (Unit Hydrograph (Hydrograph Table), 100 years)...123, 124, 125
- Basin E Post (Unit Hydrograph (Hydrograph Table), 2 years)...111, 112, 113
- Basin E Post (Unit Hydrograph (Hydrograph Table), 50 years)...119, 120, 121
- Basin E Post (Unit Hydrograph Summary, 10 years)...114
- Basin E Post (Unit Hydrograph Summary, 100 years)...122
- Basin E Post (Unit Hydrograph Summary, 2 years)...110
- Basin E Post (Unit Hydrograph Summary, 50 years)...118
- Basin F Post (Runoff CN-Area, 2 years)...28
- Basin F Post (Time of Concentration Calculations, 2 years)...20, 21
- Basin F Post (Unit Hydrograph (Hydrograph Table), 10 years)...131, 132, 133
- Basin F Post (Unit Hydrograph (Hydrograph Table), 100 years)...139, 140, 141
- Basin F Post (Unit Hydrograph (Hydrograph Table), 2 years)...127, 128, 129
- Basin F Post (Unit Hydrograph (Hydrograph Table), 50 years)...135, 136, 137
- Basin F Post (Unit Hydrograph Summary, 10 years)...130
- Basin F Post (Unit Hydrograph Summary, 100 years)...138
- Basin F Post (Unit Hydrograph Summary, 2 years)...126
- Basin F Post (Unit Hydrograph Summary, 50 years)...134
- Basin G Post (Runoff CN-Area, 2 years)...29
- Basin G Post (Unit Hydrograph (Hydrograph Table), 10 years)...147, 148, 149
- Basin G Post (Unit Hydrograph (Hydrograph Table), 100 years)...155, 156, 157
- Basin G Post (Unit Hydrograph (Hydrograph Table), 2 years)...143, 144, 145
- Basin G Post (Unit Hydrograph (Hydrograph Table), 50 years)...151, 152, 153
- Basin G Post (Unit Hydrograph Summary, 10 years)...146

```
Basin G - Post (Unit Hydrograph Summary, 100 years)...154
Basin G - Post (Unit Hydrograph Summary, 2 years)...142
Basin G - Post (Unit Hydrograph Summary, 50 years)...150
Composite Outlet Structure - 1 (Outlet Input Data, 2 years)...167, 168, 169, 170
D
Detention Pond (Elevation-Area Volume Curve, 2 years)...166
Detention Pond (IN) (Level Pool Pond Routing Summary, 10 years)...172
Detention Pond (IN) (Level Pool Pond Routing Summary, 100 years)...174
Detention Pond (IN) (Level Pool Pond Routing Summary, 2 years)...171
Detention Pond (IN) (Level Pool Pond Routing Summary, 50 years)...173
Detention Pond (OUT) (Pond Routed Hydrograph (total out), 10 years)...178, 179,
180
Detention Pond (OUT) (Pond Routed Hydrograph (total out), 100 years)...184, 185,
186
Detention Pond (OUT) (Pond Routed Hydrograph (total out), 2 years)...175, 176,
Detention Pond (OUT) (Pond Routed Hydrograph (total out), 50 years)...181, 182,
183
M
Master Network Summary...2, 3
S
Site Outlet - Post (Addition Summary, 10 years)...159
Site Outlet - Post (Addition Summary, 100 years)...161
Site Outlet - Post (Addition Summary, 2 years)...158
Site Outlet - Post (Addition Summary, 50 years)...160
Site Outlet (Pre) (Addition Summary, 10 years)...163
Site Outlet (Pre) (Addition Summary, 100 years)...165
Site Outlet (Pre) (Addition Summary, 2 years)...162
Site Outlet (Pre) (Addition Summary, 50 years)...164
Т
TS #1 (Time-Depth Curve, 10 years)...4, 5
TS #1 (Time-Depth Curve, 100 years)...6, 7
TS #1 (Time-Depth Curve, 2 years)...8, 9
TS #1 (Time-Depth Curve, 50 years)...10, 11
```


Worksheet for Swale A - 10-Year

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.078	
Channel Slope	0.04700	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	6.92	ft³/s

Results

Normal Depth		0.70	ft
Flow Area		2.87	ft²
Wetted Perimeter		6.43	ft
Hydraulic Radius		0.45	ft
Top Width		6.20	ft
Critical Depth		0.55	ft
Critical Slope		0.12829	ft/ft
Velocity		2.41	ft/s
Velocity Head		0.09	ft
Specific Energy		0.79	ft
Froude Number		0.62	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.70	ft
Critical Depth	0.55	ft
Channel Slope	0.04700	ft/ft
Critical Slope	0.12829	ft/ft

Worksheet for Swale A - 100-Year

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.078	
Channel Slope	0.04700	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	20.09	ft³/s

Results

Normal Depth		1.15	ft
Flow Area		6.31	ft²
Wetted Perimeter		9.30	ft
Hydraulic Radius		0.68	ft
Top Width		8.93	ft
Critical Depth		0.95	ft
Critical Slope		0.11095	ft/ft
Velocity		3.19	ft/s
Velocity Head		0.16	ft
Specific Energy		1.31	ft
Froude Number		0.67	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.15	ft
Critical Depth	0.95	ft
Channel Slope	0.04700	ft/ft
Critical Slope	0.11095	ft/ft

Worksheet for Swale B - 10-Year

D		—	
Pro	IACT.	Descri	ntion
			DUOL

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.00800	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	1.15	ft³/s

Results

Normal Depth	0.33	ft
Flow Area	1.00	ft²
Wetted Perimeter	4.11	ft
Hydraulic Radius	0.24	ft
Top Width	4.00	ft
Critical Depth	0.20	ft
Critical Slope	0.05584	ft/ft
\/a a a't		
Velocity	1.15	ft/s
Velocity Head	_	ft/s ft
•	0.02	
Velocity Head	0.02	ft

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.33	ft
Critical Depth	0.20	ft
Channel Slope	0.00800	ft/ft
Critical Slope	0.05584	ft/ft

Worksheet for Swale B - 100-Year

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.00800	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	2.19	ft³/s

Results

Normal Depth		0.47	ft
Flow Area		1.58	ft²
Wetted Perimeter		4.95	ft
Hydraulic Radius		0.32	ft
Top Width		4.80	ft
Critical Depth		0.29	ft
Critical Slope		0.05046	ft/ft
Velocity		1.38	ft/s
Velocity Head		0.03	ft
Specific Energy		0.50	ft
Froude Number		0.42	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.47	ft
Critical Depth	0.29	ft
Channel Slope	0.00800	ft/ft
Critical Slope	0.05046	ft/ft

Worksheet for Swale C - 10-Year

Pro	iect	Descri	ntion
1 10	Jeci	Descri	puon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.08700	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	1.38	ft³/s

Results

Normal Depth	0.19	ft
Flow Area	0.49	ft²
Wetted Perimeter	3.21	ft
Hydraulic Radius	0.15	ft
Top Width	3.15	ft
Critical Depth	0.22	ft
Critical Slope	0.05423	ft/ft
Velocity	2.79	ft/s
Velocity Head	0.12	ft
Specific Energy	0.31	ft
Froude Number	1.24	
Flow Type		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.19	ft
Critical Depth	0.22	ft
Channel Slope	0.08700	ft/ft
Critical Slope	0.05423	ft/ft

Worksheet for Swale C - 100-Year

Project Descriptio	n
--------------------	---

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.08700	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	2.65	ft³/s

Results

Normal Depth		0.27	ft
Flow Area		0.78	ft²
Wetted Perimeter		3.74	ft
Hydraulic Radius		0.21	ft
Top Width		3.65	ft
Critical Depth		0.32	ft
Critical Slope		0.04903	ft/ft
Velocity		3.41	ft/s
Velocity Head		0.18	ft
Specific Energy		0.46	ft
Froude Number		1.31	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.27	ft
Critical Depth	0.32	ft
Channel Slope	0.08700	ft/ft
Critical Slope	0.04903	ft/ft

Worksheet for Swale D - 10-Year

_		D : .:
ヒィへ	IDCT.	Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.02000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	0.13	ft³/s

Results

Normal Depth	0.08	ft
Flow Area	0.17	ft²
Wetted Perimeter	2.48	ft
Hydraulic Radius	0.07	ft
Top Width	2.45	ft
Critical Depth	0.05	ft
Critical Slope	0.08288	ft/ft
Velocity	0.77	ft/s
Velocity Head	0.01	ft
Specific Energy	0.08	ft
Froude Number	0.52	

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.08	ft
Critical Depth	0.05	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.08288	ft/ft

Worksheet for Swale D - 100-Year

	worksneet for Sv	vale D - I	00-real
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.045	
Channel Slope		0.02000	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	ft/ft (H:V)
Bottom Width		2.00	ft
Discharge		0.30	ft³/s
Results			
Normal Depth		0.12	ft
Flow Area		0.29	ft²
Wetted Perimeter		2.77	ft
Hydraulic Radius		0.10	ft
Top Width		2.73	ft
Critical Depth		0.09	ft
Critical Slope		0.07055	ft/ft
Velocity		1.04	ft/s
Velocity Head		0.02	ft
Specific Energy		0.14	ft

0.56

0.00 ft

GVF	Input	Data
-----	-------	------

Froude Number

Flow Type

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Subcritical

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.12	ft
Critical Depth	0.09	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.07055	ft/ft

Worksheet for Swale E - 10-Year

Proi	ioct	Description
	IECL.	Describilion

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.078	
Channel Slope	0.09000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	6.27	ft³/s

Results

Normal Depth		0.57	ft
Flow Area		2.10	ft²
Wetted Perimeter		5.59	ft
Hydraulic Radius		0.38	ft
Top Width		5.41	ft
Critical Depth		0.52	ft
Critical Slope		0.13007	ft/ft
Velocity		2.98	ft/s
Velocity Head		0.14	ft
Specific Energy		0.71	ft
Froude Number		0.84	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.57	ft
Critical Depth	0.52	ft
Channel Slope	0.09000	ft/ft
Critical Slope	0.13007	ft/ft

Worksheet for Swale E - 100-Year

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.078	
Channel Slope	0.09000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	18.48	ft³/s

Results

Normal Depth		0.96	ft
Flow Area		4.66	ft²
Wetted Perimeter		8.05	ft
Hydraulic Radius		0.58	ft
Top Width		7.74	ft
Critical Depth		0.91	ft
Critical Slope		0.11220	ft/ft
Velocity		3.97	ft/s
Velocity Head		0.24	ft
Specific Energy		1.20	ft
Froude Number		0.90	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.96	ft
Critical Depth	0.91	ft
Channel Slope	0.09000	ft/ft
Critical Slope	0.11220	ft/ft

Worksheet for Swale F - 10-Year

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.00200	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	8.00	ft
Discharge	7.65	ft³/s

Results

Normal Depth		0.73	ft
Flow Area		7.39	ft²
Wetted Perimeter		12.59	ft
Hydraulic Radius		0.59	ft
Top Width		12.36	ft
Critical Depth		0.29	ft
Critical Slope		0.04641	ft/ft
Velocity		1.03	ft/s
Velocity Head		0.02	ft
Specific Energy		0.74	ft
Froude Number		0.24	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.73	ft
Critical Depth	0.29	ft
Channel Slope	0.00200	ft/ft
Critical Slope	0.04641	ft/ft

Worksheet for Swale F - 100-Year

Droi	inat	Desc	rin	tion
		Desc	יקווע	uon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.00200	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	8.00	ft
Discharge	22.59	ft³/s

Results

Normal Depth		1.31	ft
Flow Area		15.69	ft²
Wetted Perimeter		16.31	ft
Hydraulic Radius		0.96	ft
Top Width		15.88	ft
Critical Depth		0.58	ft
Critical Slope		0.03816	ft/ft
Velocity		1.44	ft/s
Velocity Head		0.03	ft
Specific Energy		1.35	ft
Froude Number		0.26	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.31	ft
Critical Depth	0.58	ft
Channel Slope	0.00200	ft/ft
Critical Slope	0.03816	ft/ft

Worksheet for Swale F - WQF

Project Description

Friction Method Manning Formula Normal Depth Solve For

Input Data

Roughness Coefficient	0.150	
Channel Slope	0.00200	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	8.00	ft
Discharge	0.36	ft³/s

Results

Normal Depth	0.25	ft
Flow Area	2.18	ft²
Wetted Perimeter	9.58	ft
Hydraulic Radius	0.23	ft
Top Width	9.49	ft
Critical Depth	0.04	ft
Critical Slope	0.97013	ft/ft
Velocity	0.17	ft/s
Velocity Head	0.00	ft
Specific Energy	0.25	ft
Froude Number	0.06	

Flow Type Subcritical

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

0.00	ft
0.00	ft
Infinity	ft/s
Infinity	ft/s
0.25	ft
0.04	ft
0.00200	ft/ft
0.97013	ft/ft
	0.00 Infinity Infinity 0.25 0.04 0.00200

Worksheet for Swale G -10-Year

Project	Description
---------	-------------

Friction Method Manning Formula Solve For Normal Depth

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.33000	ft/ft
Left Side Slope	1000.00	ft/ft (H:V)
Right Side Slope	1000.00	ft/ft (H:V)
Bottom Width	0.00	ft
Discharge	0.83	ft³/s

Results

Normal Depth	0.03	ft
Flow Area	1.03	ft²
Wetted Perimeter	64.20	ft
Hydraulic Radius	0.02	ft
Top Width	64.20	ft
Critical Depth	0.03	ft
Critical Slope	0.27103	ft/ft
Velocity	0.81	ft/s
Velocity Head	0.01	ft
Specific Energy	0.04	ft
Froude Number	1.12	
Flow Type	Supercritical	

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.03	ft
Critical Depth	0.03	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.27103	ft/ft

Worksheet for Swale G - 100-Year

Proj	ect	Descri	ption		

Friction Method Manning Formula Normal Depth Solve For

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.33000	ft/ft
Left Side Slope	1000.00	ft/ft (H:V)
Right Side Slope	1000.00	ft/ft (H:V)
Bottom Width	0.00	ft
Discharge	1.55	ft³/s

Results

Normal Depth		0.04	ft
Flow Area		1.69	ft²
Wetted Perimeter		82.22	ft
Hydraulic Radius		0.02	ft
Top Width		82.22	ft
Critical Depth		0.04	ft
Critical Slope		0.24917	ft/ft
Velocity		0.92	ft/s
Velocity Head		0.01	ft
Specific Energy		0.05	ft
Froude Number		1.13	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.04	ft
Critical Depth	0.04	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.24917	ft/ft

Worksheet for Swale H -10-Year

Pro	iect	Descri	ntion
ГЮ	JEC.	Descii	puon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0.045

 Channel Slope
 0.01000 ft/ft

 Left Side Slope
 8.00 ft/ft (H:V)

 Right Side Slope
 3.00 ft/ft (H:V)

 Bottom Width
 0.00 ft

 Discharge
 1.86 ft³/s

Results

Normal Depth 0.51 ft Flow Area 1.42 ft2 Wetted Perimeter 5.71 ft Hydraulic Radius 0.25 ft Top Width 5.59 ft Critical Depth 0.37 0.05311 ft/ft Critical Slope Velocity 1.31 ft/s Velocity Head 0.03 ft Specific Energy 0.54 ft Froude Number 0.46 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description 0.00 ft Profile Headloss Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s 0.51 ft Normal Depth 0.37 Critical Depth ft 0.01000 Channel Slope ft/ft Critical Slope 0.05311 ft/ft

Worksheet for Swale H - 100-Year

Project Desc	rintion

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.01000	ft/ft
Left Side Slope	8.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	0.00	ft
Discharge	5.57	ft³/s

Results

Normal Depth		0.77	ft
Flow Area		3.24	ft²
Wetted Perimeter		8.61	ft
Hydraulic Radius		0.38	ft
Top Width		8.44	ft
Critical Depth		0.58	ft
Critical Slope		0.04589	ft/ft
Velocity		1.72	ft/s
Velocity Head		0.05	ft
Specific Energy		0.81	ft
Froude Number		0.49	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.77	ft
Critical Depth	0.58	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.04589	ft/ft

Worksheet for Swale I -10-Year

Project Descript	tion
------------------	------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.00500	ft/ft
Left Side Slope	8.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	0.00	ft
Discharge	1.86	ft³/s

Results

Normal Depth		0.68	ft
Flow Area		2.54	ft²
Wetted Perimeter		7.63	ft
Hydraulic Radius		0.33	ft
Top Width		7.48	ft
Critical Depth		0.37	ft
Critical Slope		0.12488	ft/ft
Velocity		0.73	ft/s
Velocity Head		0.01	ft
Specific Energy		0.69	ft
Froude Number		0.22	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.68	ft
Critical Depth	0.37	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.12488	ft/ft

Worksheet for Swale I - 100-Year

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.00500	ft/ft
Left Side Slope	8.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	0.00	ft
Discharge	5.57	ft³/s

Results

Normal Depth		1.03	ft
Flow Area		5.79	ft²
Wetted Perimeter		11.51	ft
Hydraulic Radius		0.50	ft
Top Width		11.28	ft
Critical Depth		0.58	ft
Critical Slope		0.10788	ft/ft
Velocity		0.96	ft/s
Velocity Head		0.01	ft
Specific Energy		1.04	ft
Froude Number		0.24	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.03	ft
Critical Depth	0.58	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.10788	ft/ft

Channel Stablity Calculations

Swale	10-Year Swale Flow (cfs)	10-Year Swale Depth (ft)	10-Year Swale Peak Velocity (fps)	Maximum Channel Slope (%)	Channel Shear Stress*
Α	6.92	0.70	2.41	0.05	2.05
В	1.15	0.33	1.15	0.01	0.16
С	1.38	0.19	2.79	0.09	1.03
D	0.13	0.08	0.77	0.02	0.10
Е	6.27	0.57	2.98	0.09	3.20
F	7.65	0.73	1.03	0.002	0.09
G	0.83	0.03	0.81	0.33	0.62
Н	1.86	0.51	1.31	0.01	0.32
1	1.86	0.68	0.73	0.005	0.21

^{*}Channel Stress = Depth (ft) X Slope (ft/ft) X Unit weight of water (lb/ft3)

Spillway Stablity Calculations

Swale	100-Year Swale	100-Year Swale	100-Year Swale Peak	Maximum Channel	Channel Shear
	Flow (cfs)	Depth (ft)	Velocity (fps)	Slope (%)	Stress*
Spillway	1.98	0.17	1.06	0.500	5.20

^{*}Spillway Stress = Depth (ft) X Slope (ft/ft) X Unit weight of water (lb/ft3)

Worksheet for Emergency Spillway

	worksneet i	or Emergency	Spiliway
Project Description			
Solve For	Discharge		
Input Data			
Headwater Elevation		1161.77	ft
Crest Elevation		1161.60	ft
Tailwater Elevation		1160.00	ft
Crest Surface Type	Gravel		
Crest Breadth		11.00	ft
Crest Length		11.00	ft
Results			
Discharge		1.98	ft³/s
Headwater Height Above Crest		0.17	ft
Tailwater Height Above Crest		-1.60	ft
Weir Coefficient		2.57	US
Submergence Factor		1.00	
Adjusted Weir Coefficient		2.57	US
Flow Area		1.87	ft²
Velocity		1.06	ft/s
Wetted Perimeter		11.34	ft
Top Width		11.00	ft

Culvert Calculator Report Drainline A1 - 10-Year

Culvert Summary					
Allowable HW Elevation	1,164.92	ft	Headwater Depth/Heigh	t 0.68	
Computed Headwater Eleva	1,161.29	ft	Discharge	6.92	cfs
Inlet Control HW Elev.	1,161.23	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,161.29	ft	Control Type E	intrance Control	
Grades					
Upstream Invert	1,159.92	ft	Downstream Invert	1,159.49	ft
Length	43.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.75	ft
Slope Type	Steep		Normal Depth	0.73	ft
Flow Regime S	upercritical		Critical Depth	0.93	ft
Velocity Downstream	6.47	ft/s	Critical Slope	0.004045	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Sec@mrMgaterdaHDPE (Smoo	oth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,161.29	ft	Upstream Velocity Head	0.36	ft
Ke	0.20		Entrance Loss	0.07	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,161.23	ft	Flow Control	Unsubmerged	
Inlet Type Groove end	l projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
С	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline A1 - 100-Year

Culvert Summary					
Allowable HW Elevation	1,164.92	ft	Headwater Depth/Height	1.33	
Computed Headwater Eleva	1,162.59	ft	Discharge	20.09	cfs
Inlet Control HW Elev.	1,162.59	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,162.55	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	1,159.92	ft	Downstream Invert	1,159.49	ft
Length	43.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.42	ft
Slope Type	Steep		Normal Depth	1.38	ft
Flow Regime S	Supercritical		Critical Depth	1.61	ft
Velocity Downstream	8.44	ft/s	Critical Slope	0.006953	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Myateria HDPE (Smooth	oth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,162.55	ft	Upstream Velocity Head	0.85	ft
Ke	0.20		Entrance Loss	0.17	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,162.59	ft	Flow Control	Submerged	
Inlet Type Groove end	d projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
C	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline A1 - 25-Year

Culvert Summary					
Allowable HW Elevation	1,164.92	ft	Headwater Depth/Heigh	t 0.89	
Computed Headwater Eleva	1,161.71	ft	Discharge	11.01	cfs
Inlet Control HW Elev.	1,161.65	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,161.71	ft	Control Type E	ntrance Control	
Grades					
Upstream Invert	1,159.92	ft	Downstream Invert	1,159.49	ft
Length	43.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.97	ft
Slope Type	Steep		Normal Depth	0.94	ft
Flow Regime S	upercritical		Critical Depth	1.19	ft
Velocity Downstream	7.25	ft/s	Critical Slope	0.004591	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
SecComrMgatterdaHDPE (Smoo	oth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,161.71	ft	Upstream Velocity Head	0.50	ft
Ke	0.20		Entrance Loss	0.10	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,161.65	ft	Flow Control	Unsubmerged	
Inlet Type Groove end	l projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
C	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline A2 - 10-Year

Culvert Summary					
Allowable HW Elevation	1,164.92	ft	Headwater Depth/Heigh	t 0.74	
Computed Headwater Eleva	1,161.41	ft	Discharge	8.07	cfs
Inlet Control HW Elev.	1,161.35	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,161.41	ft	Control Type E	ntrance Control	
Grades					
Upstream Invert	1,159.92	ft	Downstream Invert	1,159.49	ft
Length	43.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.81	ft
Slope Type	Steep		Normal Depth	0.79	ft
	Supercritical		Critical Depth	1.01	ft
Velocity Downstream	6.72	ft/s	Critical Slope	0.004173	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Sec@comrMgeaterichHDPE (Smo	oth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,161.41	ft	Upstream Velocity Head	0.40	ft
Ke	0.20		Entrance Loss	0.08	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,161.35	ft	Flow Control	Unsubmerged	
Inlet Type Groove en	d projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
С	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline A2 - 100-Year

Culvert Summary					
Allowable HW Elevation	1,164.92	ft	Headwater Depth/Height	1.48	
Computed Headwater Eleva	1,162.88	ft	Discharge	22.28	cfs
Inlet Control HW Elev.	1,162.88	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,162.77	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	1,159.92	ft	Downstream Invert	1,159.49	ft
Length	43.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.53	ft
Slope Type	Steep		Normal Depth	1.50	ft
Flow Regime S	upercritical		Critical Depth	1.68	ft
Velocity Downstream	8.66	ft/s	Critical Slope	0.007897	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Sec@mrl/getterdaHDPE (Smoo	oth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,162.77	ft	Upstream Velocity Head	0.97	ft
Ke	0.20		Entrance Loss	0.19	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,162.88	ft	Flow Control	Submerged	
Inlet Type Groove end	l projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
C	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline A2 - 25-Year

Culvert Summary					
Allowable HW Elevation	1,164.92	ft	Headwater Depth/Heigh	t 0.96	
Computed Headwater Eleva	1,161.85	ft	Discharge	12.51	cfs
Inlet Control HW Elev.	1,161.80	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,161.85	ft	Control Type E	ntrance Control	
Grades					
Upstream Invert	1,159.92	ft	Downstream Invert	1,159.49	ft
Length	43.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.05	ft
Slope Type	Steep		Normal Depth	1.01	ft
Flow Regime S	Supercritical		Critical Depth	1.27	ft
Velocity Downstream	7.48	ft/s	Critical Slope	0.004850	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Sec@mrMgatterdaHDPE (Smoo	oth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,161.85	ft	Upstream Velocity Head	0.55	ft
Ke	0.20		Entrance Loss	0.11	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,161.80	ft	Flow Control	Unsubmerged	
Inlet Type Groove end	d projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
C	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline B - 10-Year

Culvert Summary					
Allowable HW Elevation	1,145.15	ft	Headwater Depth/Heig	ht 0.65	
Computed Headwater Eleva	1,142.64	ft	Discharge	6.27	cfs
Inlet Control HW Elev.	1,142.58	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,142.64	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	1,141.35	ft	Downstream Invert	1,140.46	ft
Length	89.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.69	ft
Slope Type	Steep		Normal Depth	0.69	ft
Flow Regime	Supercritical		Critical Depth	0.89	ft
Velocity Downstream	6.53	ft/s	Critical Slope	0.003986	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section My Matterica HDPE (Smo	ooth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,142.64	ft	Upstream Velocity Hea	d 0.34	ft
Ke	0.20		Entrance Loss	0.07	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,142.58	ft	Flow Control	N/A	
Inlet Type Groove en	d projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
C	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline B - 100-Year

Culvert Summary					
Allowable HW Elevation	1,145.15	ft	Headwater Depth/Heig	ht 1.24	
Computed Headwater Eleva	1,143.83	ft	Discharge	18.48	cfs
Inlet Control HW Elev.	1,143.82	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,143.83	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	1,141.35	ft	Downstream Invert	1,140.46	ft
Length	89.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.31	ft
Slope Type	Steep		Normal Depth	1.30	ft
Flow Regime	Supercritical		Critical Depth	1.55	ft
Velocity Downstream	8.49	ft/s	Critical Slope	0.006373	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Myateria HDPE (Smo	ooth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,143.83	ft	Upstream Velocity Hea	d 0.78	ft
Ke	0.20		Entrance Loss	0.16	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,143.82	ft	Flow Control	N/A	
Inlet Type Groove er	nd projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
С	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline B - 25-Year

Culvert Summary					
Allowable HW Elevation	1,145.15	ft	Headwater Depth/Heig	ht 0.85	
Computed Headwater Eleva	1,143.05	ft	Discharge	10.09	cfs
Inlet Control HW Elev.	1,142.99	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,143.05	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	1,141.35	ft	Downstream Invert	1,140.46	ft
Length	89.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.90	ft
Slope Type	Steep		Normal Depth	0.89	ft
Flow Regime	Supercritical		Critical Depth	1.14	ft
Velocity Downstream	7.38	ft/s	Critical Slope	0.004446	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Mytesterica HDPE (Smo	ooth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,143.05	ft	Upstream Velocity Hea	d 0.47	ft
Ke	0.20		Entrance Loss	0.09	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,142.99	ft	Flow Control	N/A	
Inlet Type Groove en	d projecting		Area Full	3.1	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
C	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline C - 10-Year

Culvert Summary					
Allowable HW Elevation	1,158.00	ft	Headwater Depth/Height	2.32	
Computed Headwater Eleva	1,158.98	ft	Discharge	3.21	cfs
Inlet Control HW Elev.	1,156.53	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,158.98	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	1,155.50	ft	Downstream Invert	1,155.25	ft
Length	25.00	ft	Constructed Slope	-0.100000	ft/ft
Hydraulic Profile					
Profile CompositeA2Pres	sureProfile		Depth, Downstream	0.68	ft
Slope Type	Adverse		Normal Depth	0.00	ft
Flow Regime	Subcritical		Critical Depth	0.68	ft
Velocity Downstream	4.10	ft/s	Critical Slope	0.004414	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Sec@omrMgaterdaHDPE (Smoo	oth Interior)		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	1,158.98	ft	Upstream Velocity Head	0.05	ft
Ke	0.20		Entrance Loss	0.01	ft
Inlet Control Properties					
Inlet Control HW Elev.	1,156.53	ft	Flow Control	Unsubmerged	
Inlet Type Groove end	projecting		Area Full	1.8	ft²
K	0.00450		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	3	
С	0.03170		Equation Form	1	
Υ	0.69000				

Culvert Calculator Report Drainline C - 100-Year

Culvert Summary				
Allowable HW Elevation	1,158.00 ft	Headwater Depth/Height	2.36	
Computed Headwater Eleva	1,159.05 ft	Discharge	15.75	cfs
Inlet Control HW Elev.	1,159.05 ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,158.68 ft	Control Type	Inlet Control	
Grades				
Upstream Invert	1,155.50 ft	Downstream Invert	1,155.25	ft
Length	25.00 ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile				
Profile CompositeM2Pres	sureProfile	Depth, Downstream	1.42	ft
Slope Type	Mild	Normal Depth	N/A	ft
Flow Regime	Subcritical	Critical Depth	1.42	ft
Velocity Downstream	9.10 ft/s	Critical Slope	0.016576	ft/ft
Section				
Section Shape	Circular	Mannings Coefficient	0.012	
Section Myateria HDPE (Smooth	oth Interior)	Span	1.50	ft
Section Size	18 inch	Rise	1.50	ft
Number Sections	1			
Outlet Control Properties				
Outlet Control HW Elev.	1,158.68 ft	Upstream Velocity Head	1.23	ft
Ke	0.20	Entrance Loss	0.25	ft
Inlet Control Properties				
Inlet Control HW Elev.	1,159.05 ft	Flow Control	Submerged	
Inlet Type Groove end	d projecting	Area Full	1.8	ft²
K	0.00450	HDS 5 Chart	1	
M	2.00000	HDS 5 Scale	3	
C	0.03170	Equation Form	1	
Υ	0.69000			

Culvert Calculator Report Drainline C - 25-Year

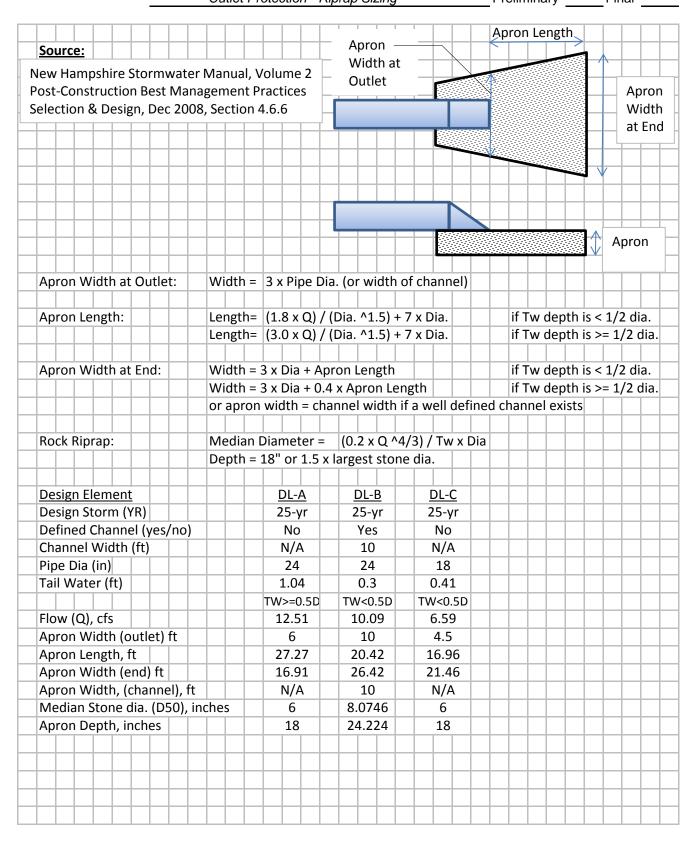
Culvert Summary					
Allowable HW Elevation	1,158.00	ft	Headwater Depth/Heigh	t 1.01	
Computed Headwater Eleva	1,157.02	ft	Discharge	6.59	cfs
Inlet Control HW Elev.	1,156.99	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	1,157.02	ft	Control Type E	ntrance Control	
Grades					
Upstream Invert	1,155.50	ft	Downstream Invert	1,155.25	ft
Length	25.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.85	ft
Slope Type	Steep		Normal Depth	0.82	ft
	Supercritical		Critical Depth	0.99	ft
Velocity Downstream	6.39	ft/s	Critical Slope	0.005566	ft/ft
Section Shape	Circular		Mannings Coefficient	0.012	
Section Shape	Circular		Mannings Coefficient	0.012 1.50	ft
			Mannings Coefficient Span Rise	0.012 1.50 1.50	
Section Shape Sec@mrl/gateriaHDPE (Smo	ooth Interior)		Span	1.50	
Section Shape Section Shape Section Size	ooth Interior) 18 inch		Span	1.50	
Section Shape Sectionring that with HDPE (Smother Section Size Number Sections	ooth Interior) 18 inch	ft	Span	1.50 1.50	ft
Section Shape Section Size Number Sections Outlet Control Properties	ooth Interior) 18 inch 1	ft	Span Rise	1.50 1.50	ft
Section Shape Section Flyateria HDPE (Smoosection Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke	18 inch 1 1,157.02	ft	Span Rise Upstream Velocity Head	1.50 1.50	ft
Section Shape Sectionrivigaterial HDPE (Smoosection Size Number Sections Outlet Control Properties Outlet Control HW Elev.	18 inch 1 1,157.02		Span Rise Upstream Velocity Head	1.50 1.50	ft
Section Shape Section Flyateria HDPE (Smoth Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control Properties Inlet Control HW Elev.	18 inch 1 1 1,157.02 0.20		Span Rise Upstream Velocity Head Entrance Loss	1.50 1.50	ft ft ft
Section Shape Section Flyateria HDPE (Smoth Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control Properties Inlet Control HW Elev.	1,157.02 0.20		Span Rise Upstream Velocity Head Entrance Loss Flow Control	1.50 1.50 0.44 0.09	ft ft ft
Section Shape Section Figure 1 Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control HW Elev. Inlet Type Groove er	1,157.02 0.20 1,156.99 nd projecting		Span Rise Upstream Velocity Head Entrance Loss Flow Control Area Full	1.50 1.50 0.44 0.09 Unsubmerged 1.8	ft ft ft
Section Shape Sections Myateria HDPE (Smoosection Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control HW Elev. Inlet Type Groove er K	1,156.99 nd projecting 0.00450		Span Rise Upstream Velocity Head Entrance Loss Flow Control Area Full HDS 5 Chart	1.50 1.50 1.50 0.44 0.09 Unsubmerged 1.8	ft ft ft

Worksheet for Drainline A Grate - 25-Year

Project Description		
Solve For	Spread	
Input Data		
Discharge	1.32	? ft³/s
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Grate Width	2.00) ft
Grate Length	2.00) ft
Local Depression	0.00) in
Local Depression Width	0.00) ft
Grate Type	P-50 mm (P-1-7/8")	
Clogging	20.00	%
Results		
Spread	2.93	s ft
Depth	0.16	i ft
Wetted Perimeter	2.98	ft ft
Top Width	2.93	ft ft
Open Grate Area	2.88	s ft²
Active Grate Weir Length	7.20) ft

Worksheet for Drainline A Grate - 100-Year

Project Description		
Solve For	Spread	
Input Data		
Discharge	2.02	ft³/s
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	2.00	ft
Grate Width	2.00	ft
Grate Length	2.00	ft
Local Depression	0.00	in .
Local Depression Width	0.00	ft
Grate Type	P-50 mm (P-1-7/8")	
Clogging	20.00	%
Results		
Spread	3.24	ft
Depth	0.21	ft
Wetted Perimeter	3.30	ft
Top Width	3.24	ft
Open Grate Area	2.88	ft²
Active Grate Weir Length	7.20	ft



 Client
 NU / PSNH
 Page
 1
 of

 Project
 Northern Pass
 Date
 09/02/15
 Made By J Sirhall

 Transition Station #1
 Checked By K Baragar

 Outlet Protection - Riprap Sizing
 Preliminary
 Final

STORMWATER POND DESIGN CRITERIA (Env-Wq 1508.03)

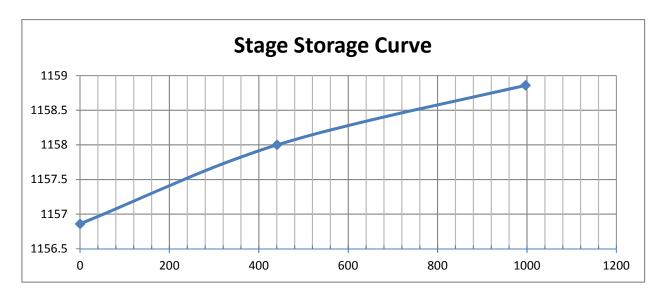
Type/Node Name: Wet Extended Detention Basin

Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the drainage analysis, if applicable

11.20		A A was desired to the constitue	
11.39	_	A = Area draining to the practice	
0.32		A_{I} = Impervious area draining to the practice	
	decimal	I = percent impervious area draining to the practice, in decimal form	
0.08	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.86	ac-in	WQV = 1" x Rv x A	
3,113	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
311	cf	10% x WQV (check calc for sediment forebay and micropool volume)	
1,556	cf	50% x WQV (check calc for extended detention volume)	
997	_cf	V_{SED} = sediment forebay volume	$\leftarrow \geq 10\% \text{WQV}$
7,749	cf	V_{PP} = permanent pool volume (volume below the lowest invert of the	outlet structure)
NA	cf	$V_{ED} = WQV - V_{PP} = $ extended detention volume	$\leftarrow \leq X\%^{1}WQV$
N/A		E_{ED} = elevation of V_{ED} (attach stage-storage table)	
-	cfs	$2Q_{avg} = 2*V_{ED} / 24$ hrs * (1hr / 3600 sec) (used to check against Q_{EDm}	_{ax} below)
0.15	cfs	Q_{EDmax} = discharge at the E_{ED} (attach stage-discharge table)	← <2Q _{avg}
-	hours	T_{ED} = drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	← ≥ 24-hrs
3.00	1: (Pond side slopes	← ≥3:1
3.00	ft	Average permanent pool depth	← 3 - 6 ft
3.75	ft	Maximum depth of permanent pool	← ≤ 8 ft
115.00	ft	Length of the flow path between the inlet and outlet at mid-depth	
37.00	ft	Average Width ([average of the top width + average bottom width]/2)	
3.11	:1	Length to Average Width ratio	← ≥ 3:1
Yes	Yes/No	The perimeter should be curvilinear.	
Yes	Yes/No	The inlet and outlet should be located as far apart as possible.	
Yes	Yes/No	Is there a manually-controlled drain provided to dewater the pond over	a 24hr period?
If n	o state why:		
Inspection	on/Repair	What mechanism is proposed to prevent the outlet structure from clogging	ng (applicable for
		orifices/weirs with a dimension of ≤ 6 ")?	C . 11
1,160.92	ft	Peak elevation of the 50-year storm event	
1,162.60	ft	Berm elevation of the pond	
YES		50 peak elevation \leq the berm elevation?	← yes
Qualified p	professional	that developed the planting plan:	
Name, P	rofession:		
4 1177	 		

1. "X" varies depending on type of stormwater pond design. See NH Stormwater Manual, Vol.2, Ch.4-3, Section 1, for the design permanent pool volumes and extended detention volumes.

Designer's Notes:			

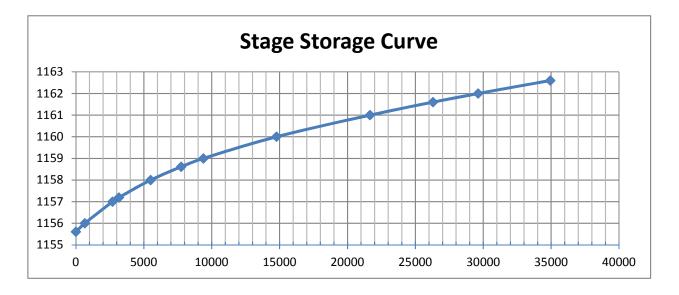


Client_	Eversource			Page		of
Project	Northern Pass	Date	10/17/16	Made By	R. Reed	
	Transition Station #1	Checked F	Зу			
Sediment Forebay - Stage-Storage Table				Prelimina	ry	Final

Stage/Storage Table

ELEV	AREA	AVERAGE AREA	DIFFERENCE IN	STORAGE VOLUME		
(FT.)	(S.F.)	(S.F.)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft
1156.86	260			0	0	0
1158	513	386.5	1.14	441	441	0.0101
1158.86	780	646.5	0.86	556	997	0.0229

Stage Storage Curve



Client	Eversource F			Page	of
Project	Northern Pass	08/05/16	Made By R.	Reed	
Transition Station #1				Checked By	
Detention Basin - Stage-Storage Table				 Preliminary	Final

Stage/Storage Table

ELEV	AREA	AVERAGE AREA	DIFFERENCE IN	STORAGE VOLUME		
(FT.)	(S.F.)	(S.F.)	ELEVATION (FT.)	INCREMENTAL	TOTAL (CF)	Total Ac-Ft
1155.61	1604			0	0	0
1156	1778	1691	0.39	659	659	0.02
1157	2280	2029	1	2029	2688	0.06
1157.19	2711	2495.5	0.19	474	3163	0.07
1158	3350	2815	1	2815	5503	0.13
1158.61	4006	3143	1.61	5060	7749	0.18
1159	4396	4201	0.39	1638	9387	0.22
1160	6363	5379.5	1	5380	14767	0.34
1161	7424	6893.5	1	6894	21660	0.50
1161.6	8052	7738	0.6	4643	26303	0.60
1162	8531	8291.5	0.4	3317	29620	0.68
1162.6	9205	8628.5	1	8629	34931	0.80

Stage Storage Curve

TREATMENT SWALE DESIGN CRITERIA (Env-Wq 1508.07)

Node Name: Drainline B/Swale F Treatment Swale

Enter the node name in the drainage analysis (e.g., reach TS 5) if applicable

		Enter the node name in the drainage analysis (e.g., reach TS 5), if applicable	
Yes	Yes/No	Have you reviewed the restrictions on unlined swales outlined in Env-Wq	1508.07(b)?
No	Yes/No	Is the system lined?	
11.30	ac	A = Area draining to the practice	
0.35	ac	A _I = Impervious area draining to the practice	
22.7	minutes	$T_c = Time of Concentration$	
0.03	decimal	I = percent impervious area draining to the practice, in decimal form	
0.08	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.88	ac-in	WQV = 1" x Rv x A	
3,194	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".	
0.08	inches	Q = water quality depth. Q = WQV/A	
80	unitless	$CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q^2 + 1.5])$	25*Q*P] ^{0.5})
2.56	inches	S = potential maximum retention. $S = (1000/CN) - 10$	
0.513	inches	Ia = initial abstraction. Ia = $0.2S$	
260	cfs/mi ² /in	qu = unit peak discharge. Obtain this value from TR-55 exhibits 4-II at	nd 4-III
0.36	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multip	ly by 1mi ² /640ac
109.00	feet	$L = swale length^{1}$	← ≥ 100'
8.00	feet	$w = bottom of the swale width^2$	← 0 - 8 feet ²
1,135.00	feet	E_{SHWT} = elevation of SHWT. If none found, use the lowest elev. of test	t pit
1,140.39	feet	E_{BTM} = elevation of the bottom of the practice	$\leftarrow \geq E_{SHWT}$
3.0	:1	SS_{RIGHT} = right Side slope	← ≥3:1
3.0	:1	$SS_{LEFT} = left Side slope$	← ≥3:1
0.002	ft/ft	S = slope of swale in decimal form ³	← 0.00505
3.0	inches	d = flow depth in swale at WQF (attach stage-discharge table) ⁴	← <u><</u> 4"
0.15	unitless	d must be < 4 ", therefore Manning's n = 0.15	
2.19	ft ²	Cross-sectional area check (assume trapezoidal channel)	
9.58	feet	Check wetted perimeter	
0.36	cfs	$WQF_{check}^{5} \leftarrow WQF_{check} = WQF$	
2%		Percent difference between WQF _{check} and WQF ⁵	← +/- 10%
11	minutes	HRT = hydraulic residence time during the WQF	← ≥ 10 min
1,141.19	ft	Peak elevation of the 10-year storm event	
1,143.90	ft	Elevation of the top of the swale	
YES	Yes/No	10 peak elevation \leq the top of swale	← yes
1 Any nor	tion of the	swale that is in a roadside ditch shall not count towards the swale length	

- 1. Any portion of the swale that is in a roadside ditch shall not count towards the swale length.
- 2. Widths up to 16' allowed if a dividing berm or structure is used such that neither width is more than 8'.
- 3. If > 0.02 (2%) then check dams are required. No additional detention time is credited for check dams.
- 4. If a detention structure is used immediately upstream of the swale, the flow depth in the swale shall be no greater than 4" during the peak of the 2-yr storm, 24-hour storm event.
- 5. The WQF_{check} & WQF should be near equal (within 10%) to confirm that you have selected the correct depth off the stage-discharge table. If the depth is not accurate the HRT will be incorrect. Designer's Notes:

Depth	Q	Area	Veloc	Wp
(ft)	(cfs)	(sqft)	(ft/s)	(ft)
0.20	0.248	1.720	0.14	9.26
0.40	0.809	3.680	0.22	10.53
0.60	1.637	5.880	0.28	11.79
0.80	2.729	8.320	0.33	13.06
1.00	4.086	11.00	0.37	14.32
1.20	5.718	13.92	0.41	15.59
1.40	7.635	17.08	0.45	16.85
1.60	9.846	20.48	0.48	18.12
1.80	12.36	24.12	0.51	19.38
2.00	15.20	28.00	0.54	20.65

Groundwater Recharge Volume (GRV) Calculation

I		ac	Area of HSG A soil that was replaced by impervious cover	0.40"
ŀ		ac	* * * *	
ı		ac	Area of HSG B soil that was replaced by impervious cover	0.25"
I	0.39	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
L	0.13	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
I	0.08	inches	Rd = weighted groundwater recharge depth	
	0.039	ac-in	GRV = AI * Rd	
	142	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env. Wq 1507.04):
Ground Water Recharge requirements will be met with the permanent pool in the storm water pond

0	BURNS				Cli	Client Eversource										_Page1						of											
MCDONNELL.					L.	Client Eversource Project Northern Pass Date							Made By																				
						Transition Station #1									Made By Checked By Preliminary Final																		
						Impervious Area Summary												Preliminary Final							al								
																											,			•	_		_
																															Т	\top	_
\exists	\neg	\top	\top																												\top	+	_
	ВM	p· ς	tori	nwa	ter	Por	nd																								\dashv	+	-
				ervi				Irai	nin	g to	th	e p	rac	tice	5 = (0.32	2 ac	;										Н		H	+	_	-
-	\dashv			ntribu						_									_									Н			+	-	-
	+	- '	100		1	5 VV	att	.131	lcu	J. /	1100	ΙΛ,	AI (- a L	, ,	l	<u>ر</u>											Н			\dashv	-	-
	+	+		0.25	26		۸۵	nha	1+ г	Pave	am/	ont																Н			\dashv	-	-
-	+	+	_	0.23			_						2 to d	L 60	D C 1	oto	for		la+i	o n \								Н		\vdash	+	+	-
-	\dashv	+	_		_					roo		-										•	-I £ -	\ A	/O\	, ,	01			\vdash	\dashv	-	_
-	-	+	-	0.06	ac		VVa	ater	r (p	ort	ion	OT	tne	ae	ten	TIOI	n ba	isir	ı-nc	ot re	equ	ire	а тс	or v	νQ۱	/ -0	.01	ac)		-	-	_
	_	4	_																								_				4	+	_
_	4	4	_ !	0.32	<u>ac</u>		то	TA	L In	npe	rvi	ous	Ar	ea	Cor	ntri	but	ing	to	BIV	1P:	Sto	rm	wat	ter	Por	าd	Ш		Ш	_	\perp	_
4	_	4	\perp			Ш		\sqsubseteq	_		_	_		_	_	_			_				\sqsubseteq					Щ		Ш	_	\perp	_
_					Ш																							Ш		Ш			_
					Ш																							Ш		Ш			
				tmer																													
	/	A ₁ =	Imp	ervi	ous	are	a d	Irai	nin	g to	th	ер	rac	tice	<u> = (</u>	0.3	5 ac	<u>.</u>															
		(Cor	ntribu	utin	g w	ate	ersh	ed	s: A	rea	C,	Are	ea E	. pa	arti	al A	rea	F)														
	\neg	7													<u> </u>				Ĺ												\neg		_
\exists	\top	\top		0.35	ac		Ası	pha	lt F	ave	eme	ent																		П	\top	+	
\forall	\neg	\top	\top				_			at a				of A	rea	Fil	mp	erv	iou	s (-(0.03	30 a	ac c	f Tı	rost	le I	lan	e)			\top	+	
\forall		+		_						dra																		-,		Н	+	\neg	
\dashv	\dashv	+	+	+											,													Н		Н	\dashv	+	-
\dashv	+	+		0.35	ac		TΩ	ΤΔΙ	l In	npe	rvi	OHS	Δr	ea	Cor	ntri	hut	inσ	to	RM	1P·	Tre	atn	nen	t Sı	wal	ام	Н		H	+	_	
+	\dashv	+	-	<u> </u>	<u>ue</u>					pc					<u> </u>			6										Н		H	+	+	-
+	\dashv	+		+																								Н		H	\dashv	+	-
+	+	+	+	-			\vdash		-																			Н			\dashv	-	-
+	\dashv	+	+	+	Н		\vdash		-					_					-									Н		\vdash	\dashv	+	_
\dashv	+	+	+	+	\vdash		$\vdash\vdash$	H	<u> </u>				H	-					<u> </u>				H			-		H		\vdash	+	+	_
+	+	+	+	+	\vdash	-			\vdash				H	-					<u> </u>							\dashv		$\vdash\vdash$		H	\dashv	+	_
+	\dashv	+	+	+	\vdash	-		<u> </u>	_		-	-	-	_	-	-			_				<u> </u>			-		$\vdash\vdash$		\vdash	\dashv	+	_
-	+	+	+	+	\vdash		\vdash	H	\vdash				H	_					H				H			-		$\vdash\vdash$		\vdash	\dashv	+	_
4	\dashv	+	+	+	\vdash	-			<u> </u>		_	_		_	_	_			<u> </u>							_		$\vdash\vdash$		Н	4	+	_
4	+	+	+	_		Щ		<u> </u>	_		<u> </u>	<u> </u>		_	<u> </u>	<u> </u>			_				<u> </u>			_		Ш		\square	4	+	_
4	4	4	_	4	Ш				<u> </u>		_	_	\vdash	_	_	_			_							_		Ш	Ш	Ш	4	_	_
4	4	4	_	_	Ш	Ш		<u> </u>	<u> </u>		_	_	\vdash	_	_	_			_				<u> </u>			_		Ш	Ш	Ш	4	_	_
4	_	_	\perp		Ш				_					_					_			Ш				_		Щ	Ш	Ш		_	_
_					Ш																							Ш		Ш			
																														Ш			
T	T													L																	T		_
\exists	\dashv	\top	\top																											H	\dashv	\top	
\dashv	\dashv	+	+	+		=																						Н		H	\dashv	+	-
\dashv	\dashv	+	+	+	\vdash																					\dashv		\vdash		H	\dashv	+	-
_	\rightarrow	\perp	+	-	\vdash		\vdash	\vdash	_	-	-	-		_	-	-			_	-	\vdash	\square	\vdash					\vdash	\square	\vdash	\dashv	+	_

Northern Pass Transmission Project Transition Station #1

Stormwater System Operations and Maintenance Plan

General Overview

Eversource has established an operations and maintenance (O&M) plan for the station post-construction stormwater management system in accordance with the New Hampshire Department of Environmental Services Stormwater Manual (2008) and will be implemented upon completion of construction as outlined below. Any required post construction stormwater management permits will be obtained and implemented by Eversource.

The station is located on Eversource owned property on Old Canaan Road, Pittsburg, NH 03592

Purpose & Goals

The purpose of this O&M Plan is to provide guidance for the implementation and documentation process of the station site stormwater management system to help conform with the corresponding regulatory agency approvals and permits. The guidance provided herein is the minimum required. The primary goal is to inform all the property managers about how the system operates and what maintenance items are necessary to protect the downstream storm drain system and waters. The secondary goal is to provide a practical, efficient means of maintenance planning and record keeping to verify permit compliance.

Responsible Parties

Eversource will be responsible for implementing the O&M Plan.

Eversource 13 Legends Drive Hooksett, NH 03106

Maintenance Logs and Checklists

Eversource will keep a record of all maintenance procedures performed, date of inspection/cleanings, etc. Copies of inspection reports and maintenance records shall be kept on site.

Forms

The following forms will be developed for annual maintenance. Copies of the forms will be kept onsite as part of the Post-Construction Stormwater Management Plan.

- Annual Checklist
- Quarterly Checklist
- Monthly Checklist

Training

Responsible operations and maintenance workers and contractors will be trained with a basic description of the purpose and function of the onsite stormwater management system as well as safety protocol and procedures, with annual up-dates, to provide that the workers tasked with

maintaining the station site do so in accordance with the approved permit conditions. All workers that have maintenance duties will be adequately informed of their responsibilities. All subcontractors (Vactor, landscaping, snowplowing, etc.) will be informed of special requirements and responsibilities.

Stormwater Management System

The onsite stormwater management system has several components that are shown on the Site Development Plans and they perform various functions in conveying and treating stormwater runoff. Refer to the Site Development Plans for locations and details for each of the stormwater system components. Regular operations and maintenance is critical to the long term success of the stormwater management system components. The stormwater system components are:

Stormwater Swales:

Onsite stormwater swales collect and convey stormwater runoff and are either lined with vegetation or riprap. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species.
- Perform periodic mowing; frequency depends on location and type of grass. Do not cut shorter than Water Quality Flow depth (maximum 4-inches).
- Remove debris and accumulated sediment, based on inspection.
- Removal of woody vegetation from embankments.
- Repair eroded areas, remove invasive species and dead vegetation, and reseed with applicable grass mix as warranted by inspection.
- For riprap lined swales, inspect and repair for erosion, displaced riprap, and remove accumulated sediment.
- Periodic mowing of vegetated swales.

Culverts:

Culverts convey stormwater runoff under driveways and consists of an open pipe end upstream and a flared end section downstream. It is typical that stormwater swales are located both upstream and downstream of the culvert and may have riprap outlet protection. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment and debris in the culvert and also at the upstream and downstream ends that may be restricting flow though.
- Inspect and repair any damage and deterioration to the upstream and downstream swales and outlet protection.

Underdrains:

Onsite underdrains are located outside the station perimeter fence adjacent to earthwork cut areas of the site and in earthen slope benches. These underdrains discharge to culvert crossing under access road. Cleanouts are provided on the underdrains to provide access. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment and debris in the underdrains through the cleanouts and outlets.
- Inspect and Repair any damage and deterioration to the outlet protection and downstream areas.

Storm Drainage System:

Onsite storm drainage system including conveyance pipes, flared end sections, and catch basins convey stormwater. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment or debris at the outfalls.
- Inspect and repair any damage and deterioration to the conveyance pipes, catch basins, and riprap outlet protection.

Outfalls:

Storm drainage outfalls are the point stormwater discharges from pipe outlets and consist of a flared end section and riprap outlet protection. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any accumulated sediment or debris at the outfalls.
- Inspect and repair any damage and deterioration to riprap outlet protection.

Wet Extended Detention Basin:

The wet extended detention basin attenuates stormwater, provides water quality and groundwater recharge and consists of numerous components including a sediment forebay, outlet control structure, trash rack, outlet pipe, emergency spillway, anti-seep collar, permanent pond etc. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Remove any trash and debris.
- Periodic mowing of embankments.
- Removal of woody vegetation from embankments.
- Removal of debris from outlet structures. Removal of accumulated sediment.
- Inspection and repair of embankments, outlet structures, and appurtenances.
- Inspect for erosion, sediment accumulation, vegetation loss, and presence of invasive species
- Inspection of permanent pond components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Inspection of pretreatment measures at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.

Station Yard Stone:

The station yard stone within the station yard can become compacted and eroded over time. The following is recommended for regular maintenance twice annually unless otherwise noted:

- Inspect for and repair any erosion in the yard, on access roads, and at the perimeter of the gravel areas.
- As the gravel areas become compacted, scrape off top layer to subgrade elevation and install new gravel surfacing layer at design elevation and pitch.

Spill Control

Eversource will have a spill control program. That program will be updated annually and incorporated into the employee-training program.

Disposal:

For all removed sediment, debris, trash, etc. from the stormwater management system during operations and maintenance shall be disposed of properly and legally by a New Hampshire Licensed hauler. Road sand may be reused for winter sanding, but may not be stored on-site.

Pesticides:

Northern Pass anticipates that vegetation management activities will be performed by Eversource. Work will be performed in accordance with Eversource's vegetation management program, which currently employs only mechanical means for controlling vegetation within the Eversource rights of way. Eversource does not currently plan to use herbicides as part of its vegetation management program, and as indicated in the Northern Pass application for a Presidential Permit (at page 52), all vegetation management and maintenance will be carried out in accordance with the New Hampshire Division of Forest and Lands Best Management Practice for utility maintenance. Herbicides will not be used before or during construction of the Northern Pass.

* * * * *

not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Silliwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this incident.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood insurance Study Report for information on flood control structures for this jurisdiction.

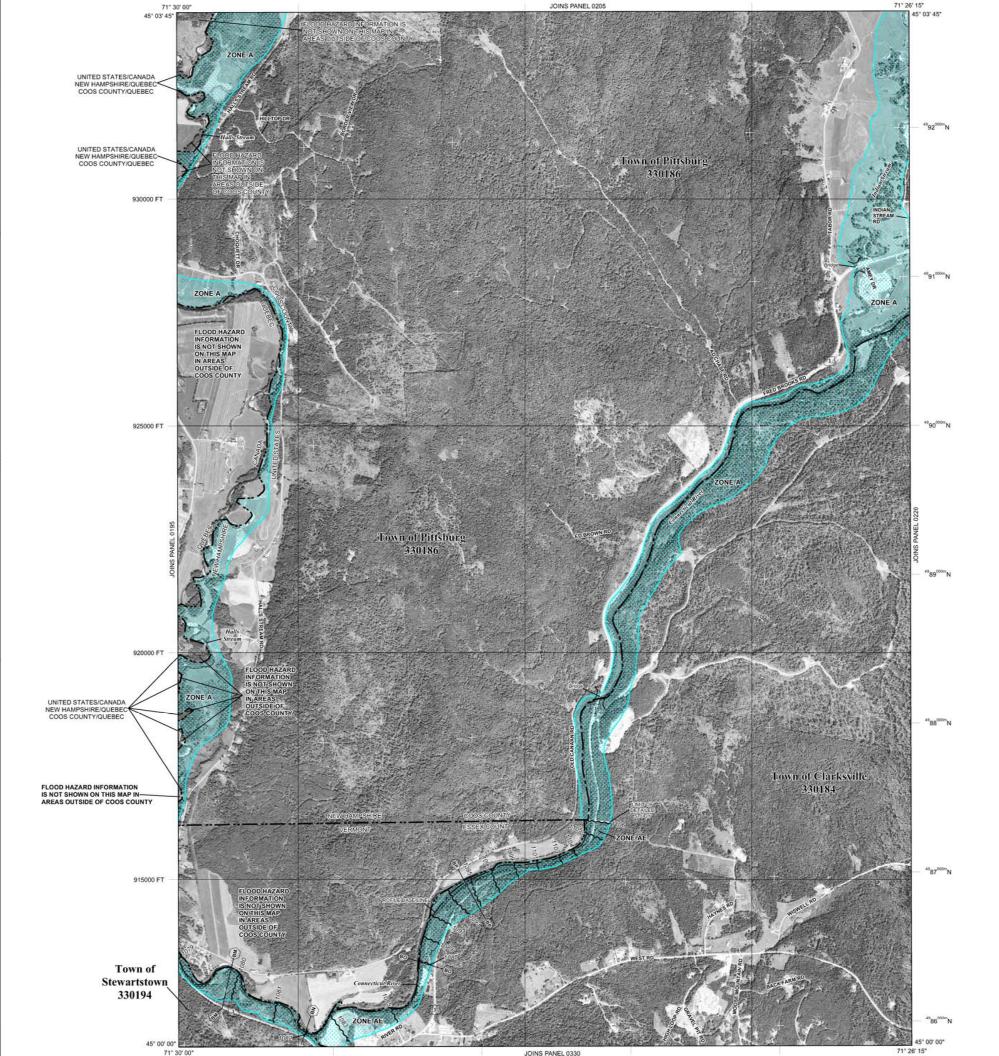
The projection used in the preparation of this map was New Hampshire State Plane Zone (FIPS zone 2800). The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of Flood elevations on this map are reterenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at https://www.ngs.ngaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was provided in digital format by the National Agriculture Imagery Program. This information was photogrammetrically compiled at a scale of 1:12,000 from aerial photography dated 2009.


The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov, Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA vebsite at http://www.fema.gov/business/nfip.

rine 1% annual chance flood (100-year flood), also known as the base flood, is the flood that it a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Are is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard inducte Zores A, RE, Alty, AO, RA, Agh, Y, and RL. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE AE Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations

Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined

Special Flood Hazard Areas formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined. ZONE A99

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.

Coastal flood zone with velocity hazard (wave action); Base Flood Elevations

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in

OTHER FLOOD AREAS

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

ZONE D

nined to be outside the 0.2% annual chance floodplain.

Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas 1% Annual Chance Floodplain Boundary

0.2% Annual Chance Floodplain Boundary

Zone D boundary

CBRS and OPA boundary

Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different Base Flood Elevation flood depths, or flood velocities.

Base Flood Elevation line and value; elevation in feet ~~ 513~~~ Base Flood Elevation value where uniform within zone; elevation in feet* (EL 987)

(A) $\langle A \rangle$ 23 ---- 23

Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) Western Hemisphere

5000-foot ticks: New Hampshire State Plane Zone (FIPS Zone 2800), Transverse Mercator projection Bench mark (see explanation in Notes to Users section of this FIRM DX5510 ×

Refer to Map Repos EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP February 20, 2013

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL

To determine if flood insurance is available in this community, contact your insurance a or call the National Flood Insurance Program at 1-800-638-6620.

MAP SCALE 1" = 1000"

NFIP PANEL 0215D **FIRM**

FLOOD INSURANCE RATE MAP COOS COUNTY, NEW HAMPSHIRE (ALL JURISDICTIONS)

PANEL 215 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

CONTAINS:

COMMUNITY NUMBER 339184 339186 339194 CLARKSVILLE, TOWN OF PITTSBURG, TOWN OF

OTOTO INSINISANIE

should be used when placing map orders; the Community Number shown above should be

MAP NUMBER

Northern Pass Transmission Project Soil Survey Report for Transition Stations, Substation Expansions, and Converter Terminal

Prepared For: Northern Pass Transmission, LLC

Submitted On: February 6, 2015

Prepared By: Normandeau Associates, Inc. 25 Nashua Road Bedford, NH 03110

www.normandeau.com

Table of Contents

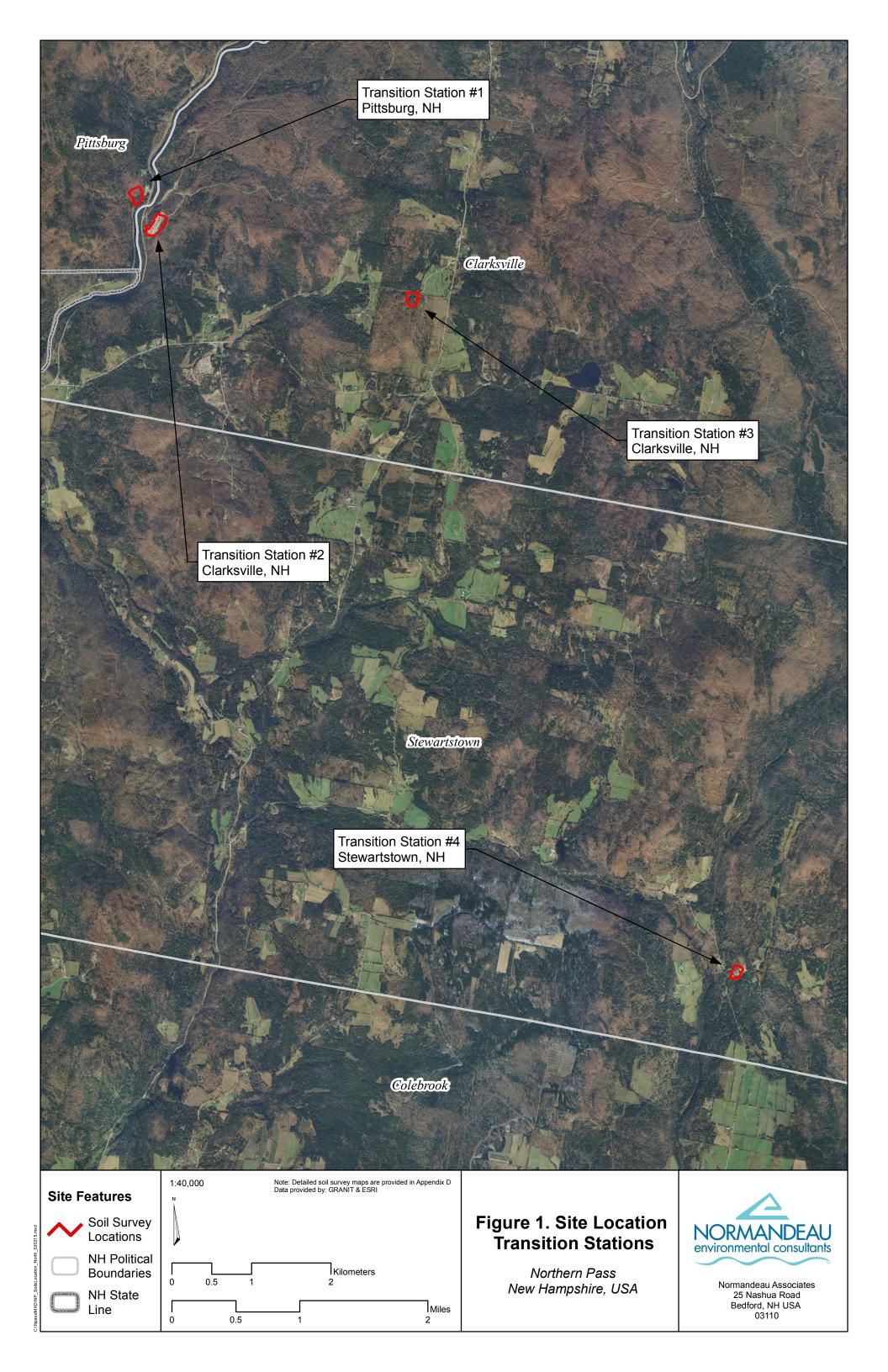
	Page
1.0	INTRODUCTION
2.0	PURPOSE 5
3.0	METHODOLOGY
	3.1 FIELD PROCEDURES 5 3.2 SOIL MAP UNITS 6 3.3 HYDRIC SOILS 7
4.0	SUMMARY OF FINDINGS7
	4.1 STATION 1, PITTSBURGH 8 4.2 STATION 2, CLARKSVILLE NORTH 9 4.3 STATION 3, CLARKSVILLE SOUTH 11 4.4 STATION 4, STEWARTSTOWN 14 4.5 CONVERTER TERMINAL, FRANKLIN 16 4.6 DEERFIELD SUBSTATION EXPANSION- DEERFIELD 18 4.7 SCOBIE POND SUBSTATION EXPANSION- LONDONDERRY 20
5.0	REFERENCES
Appe Appe A A A A	NDICES ndix A: Map Unit Descriptions ndix B Appendix B-1: Station 1, Pittsburgh, Soil Test Pit Logs Appendix B-2: Station 2, Clarksville, Soil Test Pit Logs Appendix B-3: Station 3, Clarksville, and Underground Segment Soil Test Pit Logs Appendix B-4: Station 4, Stewartstown, Soil Test Pit Logs Appendix B-5: Converter Terminal, Franklin, Soil Test Pit Logs Appendix B-6: Deerfield Substation Expansion, Deerfield, Soil Test Pit Logs Appendix B-7: Scobie Pond Substation Expansion, Londonderry, Soil Test Pit Logs
Appe	ndix C: NRCS Soil Survey Map Unit Descriptions ndix D: Soil Survey Maps

List of Figures

		Page
Figure 1.	Site Location Transition Stations	2
Figure 2.	Site Location Franklin Converter Station	3
Figure 3.	Deerfield and Scobie Substations	4

List of Tables

	ſ	Page
Table 3-1.	Slope Class	6
Table 4-1.	Station 1, Pittsburgh- Summary of Soil Physical Characteristics	8
Table 4-2a.	Station 2, Clarksville, Summary of Soil Physical Characteristics	10
Table 4-2b.	Station2. Clarksville, Summary of Made Land Estimated Physical Characteristics ¹	10
Table 4-3.	Station 3, Clarksville South, Summary of Soil Physical Characteristics	12
Table 4-4A.	Station 4, Stewartstown, Summary of Soil Physical Characteristics	15
Table 4-5B.	Converter Terminal, Franklin, Summary of Udorthents and Udipsamments (Made Land) Estimated Physical Characteristics ¹	18
Table 4-6B.	Deerfield Substation Expansion, Summary of Udorthents (Made Land) Estimated Physical Characteristics ¹	19
Table 4-7A.	Scobie Pond Substation Expansion, Summary of Soil Physical Characteristics	21
Table 4-7B.	Scobie Pond Substation Expansion, Summary of Udorthents (Made Land) Estimated Physical Characteristics ¹	21


^{1.} Society of Soil Scientists of Northern New England. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNNE Special Publication No. 3. Durham, NH.

1.0 Introduction

Normandeau Associates, Inc. (Normandeau) has reviewed and mapped the soils in areas under consideration for four proposed Transition Stations located in Pittsburgh, Clarksville (two), and Stewartstown (Figure 1) associated with the Northern Pass Transmission (NPT) project.

In addition, Normandeau also conducted a soil survey on a potential new converter terminal site in Franklin (Figure 2), and two substation expansions areas; one in Deerfield and one in Londonderry (Figure 3). The report is summarizes the soil surveys completed at each site.

All sites were previously surveyed for wetlands by Normandeau wetland scientists in 2012-2013. Information obtained during the soil surveys indicates that wetland boundaries were consistent with hydric soil boundaries.

2.0 Purpose

The purpose of the soil survey is to provide a soil map of each site showing limitations to development, including hydric soil boundaries where observed, for inclusion in an Alteration of Terrain Permit application that is anticipated to be filed for the project. This survey is appropriate for use in planning site design for stormwater runoff and erosion control. Information is also provided regarding limitations to the potential for site development including roads, shallow excavations, and stormwater detention. It is important to note that soils considered appropriate (non-limiting) for one use may be considered limiting for another use. Soil map units described in this report have been influenced by the intended use of the soil map; consequently, the information provided may not be adequate for uses other than for those for which the soil map was originally developed.

This soil narrative and accompanying soil survey map have been completed in accordance with the *Site Specific Standards for New Hampshire and Vermont* (SSSNNE 2011). No other warranty, expressed or implied, is made. This map product is within the technical standards of the National Cooperative Soil Survey. It is a special purpose product, intended for the assessment of site limitations to development of the site. It was produced by professional soil scientists, and is not the product of the USDA Natural Resources Conservation Service (NRCS). There are maps for each site that accompany this report.

Data provided on soil series are based on interpretation of published information by the NRCS. Due to the complexity of the glaciated landscape in New Hampshire, variations in subsurface conditions may exist, which were not evident during the project review. Should significant variations in subsurface conditions become evident during site development, re-evaluation of site conditions may be warranted based on the present findings of this report.

3.0 Methodology

3.1 Field Procedures

Certified Soil Scientists conducted the field reviews at the various sites. Jennifer West and Ian Broadwater are Maine-Certified Soil Scientists, with reciprocity to practice in New Hampshire. John Hayes is a Certified New Hampshire Soil Scientist. Field observations were made using borings dug by hand with a dutch auger and tile spade and test pits dug with an excavator. Soil observations were made to either bedrock or to 60 inches, where feasible. The area of soils review at each site was generally larger than the final surveyed site, which was reduced during planning.

The general field procedures used to make this soil map follow those of the National Cooperative Soil Survey (Schoeneberger et al. 1998). The soils mapped are either established soil series used in the State of New Hampshire by the NRCS (USDA NRCS 2011) or are classified according to the NRCS classification system described in the *Disturbed Soil Mapping*

Unit Supplement for New Hampshire, DES AoT Site Specific Soil Maps (SSSNNE 2011). Map unit descriptions are provided in Appendix A.

Soil test pit logs were completed for each observation. Representative observations are provided in Appendix B. Test pits were located with a Trimble® GPS, which is capable of submeter accuracy. Soil map unit boundaries are approximate, as their placement is based on a combination of field observations and surveyed site topography.

3.2 Soil Map Units

The soil map units used for this survey are either consociations or complexes. Consociations are dominated by a single soil series and similar soils. Complexes consist of two or more dissimilar components that cannot be mapped separately and the named components are sufficiently different in either morphology or behavior that the unit cannot be considered a consociation. Map unit symbols in this survey are from the State Numerical Legend along with the soil series name. Slope phases are designated as a letter in the map unit symbol - A, B, C, D, E - refers to slope class (Table 3-1).

Table 3-1. Slope Class

Slope Symbol	Standard Range
Α	0-3%
В	3-8%
С	8-15%
D	15-25%
Е	25-50%

The soil interpretations provided are based on information in the soil series descriptions and technical information provided by the NRCS web soil survey (Soil Survey Staff 2014). All limitations and constraints invoked by the NRCS for such interpretations also apply to this soil survey.

The map units observed are summarized on an attached plan and described in Appendix A. These descriptions are within the NRCS range for each official Soil Series Description; however, they provide more detail as they are based on site-specific observations. Each map unit description includes information on soil taxonomic classification, general description, morphology, physical characteristics, inclusions, use, and management. The taxonomic classification follows Keys to Soil Taxonomy (Soil Survey Staff 2014). Information on soil morphology and physical characteristics were obtained from the NRCS (Soil Survey Staff 2014).

Disturbed soil map units were classified according to the New Hampshire State-Wide Numerical Soils Legend (USDA NRCS 2011). Additional information on each map unit is provided according to criteria outlined in the disturbed soil supplement created by SSSNNE (2011), which utilizes the definition of disturbed land, including excavated and filled land, as defined by RSA 485-A:6, VIII; RSA 485-A: 17; and NHDES Env-Wq 1500. The map symbol for disturbed soil consists of two parts separated by a forward slash (/). The first part consists of the NRCS Disturbed Map Unit symbol (USDA NRCS 2011) and a capital letter designating

slope. The second part consists of symbols of the Disturbed Soil Supplement (SSSNNE 2011) and is composed of 5 lower case letters, which describe drainage class, parent material, restrictive/impervious layers, estimated Ksat, and estimated hydrologic soil group.

Consociation map units, in accordance with the standards, will have a minimum of 75% of the named soil or similar soils within that unit. The named soil will be the most common of all similar soils. The total number of dissimilar soils in any one mapping unit for either consociations or complexes should not exceed 25% of the map unit of which no more than 15% is limiting. Similar soils are alike in most properties and share similar limitations such as depth to water table or content of organic matter. Dissimilar soils do not share limits of some important diagnostic properties of the named soil and may have different use or management requirements for a particular land use. It is important to note that some dissimilar soils are more limiting in their use than the named soil. For instance, an inclusion of somewhat poorly drained soils can occur within a well-drained soil map unit. A summary of potential inclusions of similar and dissimilar soils is provided for each map unit.

The hydrologic group identifies soils having the same runoff potential under similar storm conditions. Soil properties that influence runoff are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. Infiltration rate is the rate at which water enters the soil at the surface and is controlled by surface conditions. Transmission rate is the rate at which water moves in the soil and is controlled by soil properties.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. Ksat values are based on soil characteristics in the field, particularly structure, consistence, porosity and texture (SSSNNE 2009). The Ksat values provided are from the Typical Pedon from the county that best reflected the soil and/or had the most acres of that soil. The data represents the range within the B and C horizons (SSSNNE 2009).

3.3 Hydric Soils

Hydric soils refer to those soil series the NRCS considers to be either poorly or very poorly drained. The NRCS (Soil Survey Staff 2014) defines hydric soil as "a soil that is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part". The hydric soil boundary corresponds with the wetland boundary in the areas observed for this project. The hydric soil boundary was located with a Trimble® GPS unit and post processed for submeter accuracy. Impacts to wetlands come under the jurisdiction of the U.S. Army Corps of Engineers and New Hampshire Department of Environmental Services.

4.0 Summary of Findings

The following summarizes the results of the soil surveys at the seven sites. Soil map unit descriptions are provided in Appendix A; representative soil logs in Appendix B; NRCS soil map unit descriptions for Station 3 underground segment in Appendix C, and soil maps in Appendix D. Soil logs that are provided in Appendix B but are not shown on the relevant map were outside the final project survey area.

4.1 Station 1, Pittsburgh

Overview

The Station 1 site is located within the Connecticut River Valley and is within ¼ mile of the Connecticut River, which is a Designated River, managed and protected in accordance with RSA 483, The Rivers Management and Protection Act. The site is wooded on a south facing slope draining to the river. Timber harvesting has occurred within the last 10-15 years resulting in an early successional, deciduous forest crisscrossed by old skidder tracks.

The site is moderately steep (15 to 25% slopes) to steep (25 to 50% slopes) near the Old Canaan Road and strongly sloping (8 to 15% slopes) as one moves upslope away from the road. The west side of the site is bedrock controlled with bedrock outcrops and shallow to bedrock soils while the east side tends to have deeper soils with bedrock greater than 60 inches from the soil surface. Wetland conditions have been enhanced by skidder tracks and harvesting activities that have compacted soil structure, decreasing the infiltration rate. Erosion within the wetlands has also exposed stony surfaces.

Soil Mapping Results

Normandeau conducted a field review of the Pittsburgh site on July 10th and 21st, 2014. The final survey area is 6 acres. Six map units have been identified within the site. All are formed within glacial till parent material with the exception of Stetson, which formed in glaciofluvial deposits along the banks of the Connecticut River. Table 4-1 summarizes the map units and their physical characteristics identified within the project site. Slope phases are not provided in Table 4-1 but are included in the detailed summary on each map unit provided in Appendix A.

A total of 28 test pits were evenly distributed across the site and located with a Trimble® GPS. The wetland boundary had been previously flagged and located in the field by Normandeau Associates, Inc..

Map Unit	Hydrologic Group	Seasonal Water Table (SWT) Depth ¹ (Inches)	Depth to Bedrock (Inches)	Drainage Class ²	Ksat (in/hr)	Limitations
90-Tunbridge-Lyman	C/A/D	>40	0-40	W	0.6-6.0	rock
Complex						
123-Telos	С	≤15	>60	SP	0.02-0.2	
126-Chesuncook	С	15-40	>60	MW	0.02-0.2	
399/RK- Rock outcrop	unknown	unknown	0	unknown	unknown	rock
564-Plaisted	С	>40	>60	W	0.06-2.0	

Table 4-1. Station 1, Pittsburgh- Summary of Soil Physical Characteristics

 Seasonal water table ranges are provided from the NRCS. On-site conditions are expected to fall within these ranges based on test pit observations.

>60

2. Drainage Classes:

590-Cabot

P- poorly drained; SP- somewhat poorly drained; MW- moderately well drained W- well drained; SE- somewhat excessively drained.

Surface to 12

Tunbridge fine sandy loam and Lyman loam are bedrock controlled soils. Tunbridge soils are moderately deep with bedrock within 40 inches of the soil surface. Lyman soils are shallow

0.06 - 0.2

with bedrock within 20 inches of the soil surface. Bedrock outcrops were mapped within the vicinity of this map unit.

Plaisted silt loam is well drained with a seasonal water table greater than 40 inches from the soil surface. Chesuncook silt loam is moderately well drained with a seasonal water table within 15 to 40 inches of the soil surface. Telos silt loam is somewhat poorly drained with a seasonal water table within 15 inches of the soil surface due to the presence of dense lodgement till.

Cabot, very stony, silt loam is poorly drained with dense lodgement till in the substratum. Free water is commonly at or near the surface to result in hydric conditions.

Summary

Limitations to development within the site include wetlands, steep slopes, shallow to bedrock conditions and shallow to moderately shallow dense lodgement till. The eastern side of the site is more gently sloping with deeper soils compared to the bedrock controlled western portion of the site. Proposed access routes should be designed to ensure sheet flow drainage across the route to minimize concentration of spring runoff.

4.2 Station 2, Clarksville North

Overview

The site is located within the Connecticut River Valley and is within ¼ mile of the Connecticut River, which is a Designated River, managed and protected in accordance with RSA 483, The Rivers Management and Protection Act. The proposed site is part of an active gravel pit operation on the western slope of a hill overlooking the Connecticut River. At the time of a site visit in July 2014 material was being excavated and sorted. Access to the site is from US Route 3 along a gravel road. The site is on a steep hillside; Route 3 is at an elevation of approximately 1260 feet and the eastern edge of the site is at an elevation of approximately 1300 feet. The proposed site is bordered by undisturbed forest.

Soil Mapping Results

Normandeau conducted an examination of soils within the western half of the site on July 9, 2014. A second site visit was conducted to review the eastern half of the site on December 23, 2014. The final survey area is approximately 9 acres in size. Sixteen test pits were dug throughout the site. Eight map units have been identified within the site. Madawaska and Stetson are formed within glacial fluvial parent material. Dixmont and Cabot are formed within glacial till. Table 4-2a summarizes the map units and their physical characteristics identified within the project site. Slope phases are not provided but are included in the detailed summary on each map unit provided in Appendix A.

5.0 References

- Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D. 1998. Field book for describing and sampling soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln, NE.
- Society of Soil Scientists of Northern New England. 2009. Ksat Values for New Hampshire Soils. SSSNNE Special Publication No. 5. September, 2009. Durham, NH.
- Society of Soil Scientists of Northern New England. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNNE Special Publication No. 3. Durham, NH.
- Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Accessed July and August 2014. Available online at http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.
- USDA Natural Resources Conservation Service. 2011. New Hampshire State-Wide Numerical Soils Legend. Issue #10. Durham, NH.

Appendix A

Map Unit Descriptions

Map Unit: Cabot silt loam, very stony

Map Unit Symbol: 590B

Classification: Loamy, mixed, active, nonacid, frigid, shallow Typic Humaquepts

DESCRIPTION AND MORPHOLOGY

Landform: Glaciated upland

Landscape Position: Hillslopes, depressions

Parent Material: Basal till

Slope Gradient

Range: B: 1 to 8%

Typical Profile

Description: Surface Layer: Black very fine sandy loam, friable, 0-9".

Subsurface Layer: Very dark brown very fine sandy loam, friable, 7-15".

Subsoil Layer: Gravelly to very gravelly olive very fine sandy loam, firm at 20", redox

features at 15", 15-32".

Substratum: Gravelly, dark olive gray coarse sandy loam, firm, 32-96"

Extent of Excavation: 96"; (Reference: Pittsburgh TP 6).

PHYSICAL CHARACTERISTICS

Drainage Class: Poorly drained

Depth to

Water Table¹: Water is removed so slowly that the soil is wet at shallow depths periodically during the

growing season or remains wet for long periods.

Hydrologic Group²: Group D:

Ksat²: Capacity of the most limiting layer to transmit water: low to high, 0.06 to 0.2 in/hr,,

(based on Cabot map unit number 589)

Hazard of Flooding: None

Depth to Bedrock: Very deep to bedrock **Surface Stoniness:** Stony to very stony

INCLUSIONS

Similar Soils: Wonsqueak (VP),

Dissimilar Soils: Telos (SP), Howland (MW), Dixmont (MW), Plaisted (W), Lyman (SE), Tunbridge (W),

rock outcrop, Stetson (W),

SSSNNE. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNE Special Publication No. 3. Durham, NH.

^{2.} SSSNNE. 2009. Ksat Values for New Hampshire Soils. SSSNNE Special Publication No. 5. September, 2009. Durham, NH.

Map Unit: Chesuncook, very stony

Map Unit Symbol: 126B, 126C, 126D, 126E

Classification: Coarse-loamy, isotic, frigid Aquic Haplorthods

DESCRIPTION AND MORPHOLOGY

Landform: Till plains and ridges

Landscape Position: Strongly sloping to moderately steep knolls

Parent Material: Dense glacial till.

Slope Gradient Range: B: 3-8%; C: 8 to 15%; D: 15 to 25%

Typical Profile

Description: Surface Layer: Black silt loam, friable, 0-2".

Subsurface Layer: Eluviated horizon, dark gray silt loam, friable, 2-8". **Subsoil Layer**: Spodic horizon, gravelly brown loam, friable, 8-19".

Substratum: Redox features were noted at 19 inches, dark olive gray gravelly silt loam

subsoil, firm, 19-84". The percent of stones increase with depth.

Extent of excavation: 84"; (Reference: Pittsburgh TP 11).

PHYSICAL CHARACTERISTICS

Drainage Class: Moderately well drained

Depth to Water Table¹: Water is removed from the soil somewhat slowly during periods of the year. Soil

morphology indicating a seasonal water table is observed at fifteen inches to forty

inches below the surface.

Hydrologic Group²: Group C

Ksat²: Capacity of the most limiting layer to transmit water: low to high is 0.02 to 0.2 in/hr.

Hazard of Flooding: None **Depth to Bedrock:** > 60 inches

Surface Stoniness: Stony

INCLUSIONS

Similar Soils: Stetson (W)

Dissimilar Soils: Tunbridge (W), Telos (SP), Cabot (P), Tunbridge (W), Lyman (SE) rock outcrop

¹ SSSNNE. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNE Special Publication No. 3. Durham, NH.

² SSSNNE. 2009. Ksat Values for New Hampshire Soils. SSSNNE Special Publication No. 5. September, 2009. Durham, NH.

Map Unit: Plaisted very fine sandy loam, very stony

Map Unit Symbol: 564D

Classification: Coarse-loamy, isotic, frigid Oxyaquic Haplorthods

DESCRIPTION AND MORPHOLOGY

Landform: Glaciated upland Landscape Position: Hillslopes, ridges

Parent Material: Basal till

Slope Gradient

Range: D: 15-25%

Typical Profile

Description: Surface Layer: Very dark brown loam, friable, 0-7"

Subsurface Layer: Very dark grayish loam and dark brown loam, friable, 7-23".

Subsoil Layer: Dark brown very fine sandy loam, friable, 23-28".

Substratum: Very dark grayish brown very fine sandy loam, firm, 28-60".

Increasing stones, boulders with depth.

Extent of excavation: 60". (Reference: Station 1, TP 17)

PHYSICAL CHARACTERISTICS

Drainage Class: Well drained

Depth to

Water Table¹: Water is removed from the soil readily but not rapidly. The soil does not have a seasonal

high water table within forty inches of the surface throughout the year.

Hydrologic Group²: Group C

Ksat²: Capacity of the most limiting layer to transmit water: low to high, 0.06 to 2 in/hr,,

Hazard of Flooding: None

Depth to Bedrock: Very deep to bedrock

Surface Stoniness: Stony

INCLUSIONS

Similar Soils: None

Dissimilar Soils: Telos (SP), Chesuncook (MW), Stetson (W), Lyman (SED), Tunbridge (WD), rock

outcrop,

SSSNNE. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNE Special Publication No. 3. Durham, NH.

^{2.} SSSNNE. 2009. Ksat Values for New Hampshire Soils. SSSNNE Special Publication No. 5. September, 2009. Durham, NH.

Map Unit: Made Land- Disturbed Soil- Rock, Mapping Units¹

299- Udorthents, smoothed

300- Udipsamments

399- Rock Outcrop

400- Udorthents, sand or gravelly

500- Udorthents, loamy

727- Rubble land

799A - Urban land-Canton Complex

299- Udorthents, smoothed: land that has been cut and filled to create large level or nearly level areas such as building lots and roads. Soil material making up this area are generally from the surrounding area.

300- Udipsamments: soils are characterized by textures of loamy fine sand to sand and gravel. Commonly a sand pit. Inclusions: Udorthents, smoothed; Udorthents, sand or gravelly; rubble land

399- Rock outcrop: exposed bedrock.

400- Udorthents, sand or gravelly: soils include very gravelly sand, very gravelly loamy sand, sand or lamy sand that may have lenses of loamy very fine sand or finer. These soils that have been excavated for sand and gravel. Seasonal water table is generally greater than 40". Inclusions: rubble land, Udorthents, smoothed, Udorthents loamy, Udipsamments.

500- Udorthents, loamy: soils have textures that are sandy loam, loam or silt loam. The areas have been excavated down to the loamy underlying material. Inclusions: Udipsamments, Udorthents sand or gravelly, Udorthents smoothed, rubble land.

727- Rubble land: stones, boulders and soil have been sorted and piled within excavated gravel pit or adjacent to made land.

799- Urban land-Canton Complex, see description from NRCS in Appendix C.

¹ USDA Natural Resources Conservation Service. 2011. New Hampshire State-Wide Numerical Soils Legend. Issue #10. Durham, NH.

Map Unit: Telos, very stony

Map Unit Symbol: 123B, 123C

Classification: Loamy, isotic, frigid, shallow Aquic Haplorthods

DESCRIPTION AND MORPHOLOGY

Landform: Till plains and ridges
Landscape Position: Moderately steep slopes
Parent Material: Dense lodgement till.
Slope Gradient Range: B: 3-8%; C: 8 to 15%;

Typical Profile

Description: Surface Layer: Very dark brown very fine sandy loam, friable, 0-7".

Subsurface Layer: Very dark gray very fine sandy loam, friable, 7-9".

Subsoil Layer: Dark brown very fine sandy loam, redox features begin at 14", 9-22". **Substratum:** Dark brown gravelly very fine sandy loam, redox features, firm, 22-42".

Extent of excavation: 42"; Reference: Pittsburgh TP 3.

PHYSICAL CHARACTERISTICS

Drainage Class: Somewhat poorly drained

Depth to Water Table¹: Water is removed slowly so that the soil is wet at a shallow depth for significant

periods during the growing season. Soil morphology indicating a seasonal water table is observed at a depth less than fifteen inches below the surface. These soils are not

hydric.

Hydrologic Group²: Group C

Ksat²: Capacity of the most limiting layer to transmit water: low to high is 0.02 to 0.2 in/hr.

Hazard of Flooding: None

Depth to Bedrock: Very deep
Surface Stoniness: Stony

INCLUSIONS

Similar Soils: Colonel (SP)

Dissimilar Soils: Cabot (P), Chesuncook (MW), Lyman (SE), Plaisted (W), Tunbridge (WD), rock outcrop

SSSNNE. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNE Special Publication No. 3. Durham, NH.

² SSSNNE. 2009. Ksat Values for New Hampshire Soils. SSSNNE Special Publication No. 5. September, 2009. Durham, NH.

Map Unit: Tunbridge-Lyman Complex- 90

Tunbridge-Lyman-Rock Outcrop Complex- 61

Map Unit Symbol: 90B, 61B, 61C, 161D

Classification: Lyman: Loamy, isotic, frigid Lithic Haplorthods

Tunbridge: Coarse-loamy, isotic, frigid Typic Haplorthods

DESCRIPTION AND MORPHOLOGY

Landform:Glaciated uplandsLandscape Position:Slopes and ridge linesParent Material:Coarse-loamy till

Slope Gradient Range: B: 3-8%; C: 8-15%; D: 15-25%

Typical Profile Description:

Surface Layer: Very dark brown loam, friable, 0-6".

Subsurface Layer: Very dark grayish brown loam, friable, 6-12".

Bedrock: 12-24".

Reference: Station 3, Stewartstown, TP 9

PHYSICAL CHARACTERISTICS

Drainage Class: Lyman: Somewhat excessively; Tunbridge: well

Depth to Water Table¹: Well drained: Water is removed from the soil readily but not rapidly. The soil does not

have a seasonal high water table within forty inches of the surface throughout the year. <u>Somewhat excessively drained</u>: Water is removed from the soil rapidly. The soils are commonly coarse textured and have high saturated hydrologic conductivity or are

very shallow.

Hydrologic Group²: Lyman: A/D; Tunbridge: B

Ksat¹: Capacity of the most limiting layer to transmit water: low to high, 0.6 to 6.0 in/hr.

Hazard of Flooding: None

Depth to Bedrock: Lyman: 10-20"; Tunbridge: 20-40".

Surface Stoniness: Nonstony

INCLUSIONS

Similar Soils:

Dissimilar Soils: Cabot (P), Telos (SW), Howland (MW), Plaisted (W), Stetson (W), Udorthents, Rubble

land

¹ SSSNNE. 2011. Site-Specific Soil Mapping Standards for New Hampshire and Vermont. Version 4.0. SSSNNE Special Publication No. 3. Durham, NH.

² SSSNNE. 2009. Ksat Values for New Hampshire Soils. SSSNNE Special Publication No. 5. September, 2009. Durham, NH.

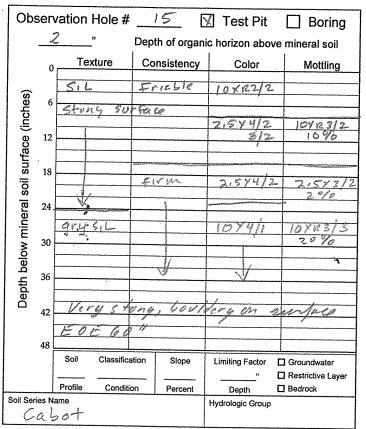
Appendix B

Soil Observat Abbreviations	· ·		
Abbreviation	Soil Texture	Consistence	Miscellaneous
S	Sandy		
FS	Fine Sand		
FSL	Fine Sandy Loam		
	Very Fine Sandy		
VFSL	Loam		
CS	Coarse Sand		
GRY	Gravelly		
L	Loam		
SL	Sandy Loam		
FR		Friable	
			Extent of
EOE			Excavation

Appendix B-1 Station 1, Pittsburgh, Soil Test Pit Logs

To	vn,	City, Plantation		Str	eet, Road, Subdivi	ision			Owner or App	ioont Name	
		itsburgh			Old Can		Zv e	rd	Owner or App	icant ivame	
SC)IL	PROFILE D	ESCRIPTION	AND CLAS	SIFICATION			(Locat	ion of Observ	ration Holes S	hown Above)
		· /							eri diamana di diamana di		·
O	ose	ervation Hole	***************************************	Test Pit		Ob	serv	ation Hole	# _ 4	☑ Test Pit	Boring
			1	nic horizon abo	ve mineral soil				Depth of orga	anic horizon abov	e mineral soil
		0 Texture	Consistency	Color	Mottling	1 1		Texture	Consistenc	y Color	Mottling
6		VESL	Freable	10/12/2		1		VESL	f riable	10712/1	
che		6				hes	6				
Ë	, ,	12		107 R 3/2	*******] <u>E</u>					
ဋ	,	12		1 1 1 1		e	12			107163/3	
Depth below mineral soil surface (inches)	1	8 4/			7154 15 3/3	Depth below mineral soil surface (inches)	70		aggette company to the management of the contract of the contr	agyrae .	- 4
Soil			<u></u> ₩	- Option	2.0/0		18	Vary Vest	900		
era	2	4 gry vfsc	FIRM			<u>a</u>	24	V+2~	Firm		
Ξį.		1 -	7 115 77			i je	1	t-	<u> </u>		
8	3	0 <u>Cobbly</u>		+ -	NACE TO SERVICE TO SER	N Y	30				
þe	3	۷		· ·		음	ļ	lenges			eesse .
pt t	اد	0			Tag .	鲁	36	LVfs	Friable	2,543/2	
۵	4:	2			+V	Del	. }		to firm		
		E0E 42	//				42	C056/6	701111 000711		
	48						48	CD 36 16	EOEII	No Sedroc	4
		Soil Classif	ication Slope	Limiting Factor	☐ Groundwater ☐ Restrictive Layer			Soil Classif	ication Slope	Limiting Factor	☐ Groundwater
		Profile Cond	fition Percent	Depth	☐ Bedrock			Profile Cond	dition Percent	Depth	☐ Restrictive Layer ☐ Bedrock
		Name	,	Hydrologic Group		Soil Ser	rioe Ma				C. Decrock
160	. 8 %		# Sure .		1	1			. /	Hydrologic Group	
		s very.	stong			1		cook vo	ers shons	Hydrologic Group	
		<u> </u>	*	√ Tost Dit	□ Poring	Che	sun	eook vo			
		vation Hole #	5: [☐ Test Pit	Boring	Che	sun		6 [☑ Test Pit	Boring
	ser	vation Hole #	5. Depth of organ	ic horizon abov	e mineral soil	Che	sun	ation Hole #		☑ Test Pit	_
	ser	<u> </u>	5: [- 1	Che	sun	eook vo	6 [☑ Test Pit	_
Obs	ser	vation Hole #	5. Depth of organ	ic horizon abov	e mineral soil	Obs	erva	ation Hole #		☑ Test Pit	mineral soil
Obs	ser	vation Hole # Texture	Depth of organ	c horizon abov	e mineral soil	Obs	erva	cook vo	Depth of organ	☑ Test Pit lic horizon above Color	mineral soil
Obs	ser	vation Hole #	Depth of organ	c horizon abov	e mineral soil	Obs	erva	cook vo	Depth of organ	▼ Test Pit lic horizon above Color	mineral soil
Obs	0 6	Texture Mockey VStony	Depth of organ	c horizon abov	e mineral soil Mottling	Obs	erva	cook vo	Depth of organ	☑ Test Pit lic horizon above Color	mineral soil
Obs	0 6	Texture Mucky VStony Surface	Depth of organic Consistency	C horizon above	e mineral soil Mottling	Obs	erva	cook vo	Depth of organ	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	0 6 12	Texture Mocky VStony Surface FS L	Depth of organic Consistency	Color 16 Y × 2/(Mottling 21575/	Obs	0 C	cook vo	Depth of organ	▼ Test Pit lic horizon above Color	Mottling
Obs	0 6	Texture Mucky VStony Surface	Depth of organic Consistency	C horizon above	e mineral soil Mottling	Obs	0 C	cook vo	Depth of organ	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	6 12 18	Texture Mocky VStony Surface FS L	Depth of organic Consistency	Color 16 Y × 2/(Mottling 21575/	Obs	0 C	cook vo	Depth of organ	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	0 6 12	Texture Mocky VStony Surface FS L	Depth of organic Consistency	Color 16 Y × 2/(e mineral soil Mottling 2:575/1 2:575/1	Obs	0 C	cook vo	Depth of organ	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	6 12 18	Texture Mocky VStony Surface FS L	Depth of organic Consistency	Color 16 Y × 2/(Mottling 21575/	Obs	0 C C C C C C C C C C C C C C C C C C C	tion Hole #	Depth of organ Consistency Frickle	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	0 6 12 18 24	Texture Mocky VStony Surface FS L	Depth of organic Consistency	Color 16 Y × 2/(e mineral soil Mottling 2:575/1 2:575/1	Obs	0 C C C C C C C C C C C C C C C C C C C	Texture VEST	Depth of organ	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	0 6 12 18 24	Texture Mocky VStony Surface FS L	Depth of organic Consistency	Color 16 Y × 2/(e mineral soil Mottling 215 7 5 7 C, 5 9/6	Depth below mineral soil surface (inches)	0 C C C C C C C C C C C C C C C C C C C	Texture VEST	Depth of organ Consistency Frickle	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
	0 6 12 18 24 30 36 42	Texture Texture Wocky VStony Surface FS L VFSL	Depth of organic Consistency	Color 16 Y × 2/(e mineral soil Mottling 215 7 5 7 C, 5 9/6	Depth below mineral soil surface (inches)	0 C C C C C C C C C C C C C C C C C C C	Texture VEST	Depth of organ Consistency Frid Lie	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	0 6 12 18 24 30	Texture Texture Wocky Vistory Surface FSL VFSL Gry VFSL bouldery EOE 8	Depth of organic Consistency LEOSE LEOSE MASSIVE	C horizon above Color 16 x x 2/1 2.5 y 3/2 2.5 y 3/2	e mineral soil Mottling 2:575/1 c, 50/6	Depth below mineral soil surface (inches)	0 C C C C C C C C C C C C C C C C C C C	Texture VESL CSL Mereasing Real with d	Depth of organ Consistency Fridle	Test Pit ic horizon above Color 10 Y R 2 / 1	Mottling Mottling
Obs	0 6 12 18 24 30 36 42	Texture Texture Wocky Vistory Surface FSL VFSL Gry VFSL bouldery EOE 8 Soil Classific	Depth of organic Consistency Loose Fullstee WAGSSIVE	C horizon above Color 16 x x 2/1 2.5 y 3/2 2.5 y 3/2	e mineral soil Mottling 215 7 5 7 C, 5 9/6	Depth below mineral soil surface (inches)	0 C C C C C C C C C C C C C C C C C C C	Texture VESL CSL Mcreasing Vesal with d	Depth of organ Consistency Fridle	Test Pit ic horizon above Color 107 R 2 / 1 107 R 2 / 2 2.57 4 / 3	Mottling Mottling
Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48	Texture Texture Wocky VStony Surface FSL VFSL Gry VFSL bouldery EOE 8 Soil Classifica	Depth of organic Consistency Loose Fullstee WAGSSIVE	C horizon above Color 16 x x 2/1 2.5 y 3/2 2.5 y 3/2 Limiting Factor Depth	Mottling 2:5/5// 2:5/6	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 \$\frac{1}{3}\$	Texture VEST CSL Noreasing Veral with desired conditions and conditions are considered to the conditions are conditions and conditions are conditionally conditions are conditionally conditions are conditionally conditions are conditionally conditionally conditions are conditionally conditionally conditions are conditionally conditionally conditions are conditionally	Depth of organ Consistency Frid Lie Firm ation Slope	Z Test Pit ic horizon above Color 107 R 2 / 1 107 R 2 / 2 2.57 4 / 3 Limiting Factor [Mottling Nottling
Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48 es N	Texture Texture Wocky VStony Surface FSL VFSL Bouldery EOE 8 Soil Classification	Depth of organic Consistency LEOSE LEOSE MASSIVE Mass	C horizon above Color 16 x x 2/1 2 (5 y 3/2 2 (5 y 4/2 Limiting Factor	E mineral soil Mottling 2:5/5// 2:5/6 Groundwater ☐ Restrictive Layer	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48 Pess Name	Texture "Texture VEST Increasing West with description FOR 96 Soil Classification rofile Condition	Depth of organ Consistency Frid Lie Firm ation Slope	Z Test Pit ic horizon above Color 107 R 2 / 1 107 R 2 / 2 2.57 4 / 3 Limiting Factor [Mottling Mottling
Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48 es N	Texture Texture Wocky VStony Surface FSL VFSL Bouldery EOE 8 Soil Classification	Depth of organic Consistency LEOSE LEOSE MASSIVE Mass	C horizon above Color 16 x x 2/1 2.5 y 3/2 2.5 y 3/2 Limiting Factor Depth	E mineral soil Mottling 2:5/5// 2:5/6 Groundwater ☐ Restrictive Layer	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 \$\frac{1}{3}\$	Texture "Texture VEST Increasing West with description FOR 96 Soil Classification rofile Condition	Depth of organ Consistency Frid Lie Firm ation Slope	Z Test Pit ic horizon above Color 10 Y R 2 / 1 10 X R 2 / 2 2.5 Y Y / 3 Limiting Factor [Depth [Mottling Mottling
Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48 es N	Texture Texture Wocky VStony Surface FSL VFSL Bouldery EOE 8 Soil Classification	Depth of organic Consistency LEOSE LEOSE MASSIVE Mass	C horizon above Color 16 x x 2/1 2.5 y 3/2 2.5 y 3/2 Limiting Factor Depth Hydrologic Group	e mineral soil Mottling 2/5/5// 2/5// C, 50/6 Groundwater □ Restrictive Layer □ Bedrock	Depth below mineral soil surface (inches)	0 6 12 18 24 48 PP PS Namm	Texture "Texture VEST CSL Noreasing Veral With d EOE 96 Trofile Condition	Depth of organ Consistency FILE & Ce FILE &	Z Test Pit ic horizon above Color 10 Y R 2 / 1 10 X R 2 / 2 2.5 Y Y / 3 Limiting Factor [Depth [Mottling Mottling

	ity, Plantation	9 h		reet, Road, Subdivision Old Canaon	n /Zv/	a d		Owner or Applic	cant Name	•
SOIL P	ROFILE DE	SCRIPTION	AND CLAS	SSIFICATION			(Location	on of Observ	ation Holes S	hown Above
Obsen	vation Hole #			- 1	Obs	servation	Hole #		Test Pit	Boring
		1	nic horizon abo	ove mineral soil	`		 " .	Depth of organ	nic horizon abov	e mineral soil
0	Texture	Consistency	- Color	Mottling		0 T	exture	Consistency	Color	Mottling
(S)	SL	Fuelle	10×12/	2	9	VE	SL	Frikble	· loyazji	
Depth below mineral soil surface (inches)	MANAGEMENT STATEMENT OF THE PROPERTY OF		Section and the section of the secti	8	Depth below mineral soil surface (inches)	6 46	y VESL		10 X K 7/ 2	
e) 12	dan eer				(E)	10	\		, , ,	
<u>L</u> ac		FIRM	2/57 3/	resignation .	face	12				
ਤ 18		1			sur	18	1,	firm.	2.573/2	10 YR 3/
SO					soil	.	₩	(comented)		50/0
ত ট					la	24	V			
Ë	54				nja					
§ 30	ex.gry L		$\pm \sqrt{-}$		×	30	en contrata video in Espain de Conses	7	-	
pe	LOAVSE		V) Sec	V-9-5	5 L			1 1/-
를 ³⁶	gani				ŧ	36 6 to	ns	"\		
ညီ ₄₂	Stony	//			Del		e bent de	J		
	boulder	V				42				
48	E0848	At				48 E 6	E 96	1/		
	Soil Classifica	ation Slope	Limiting Factor	Groundwater		Soil	Classific		Limiting Factor	☐ Groundwater
	Profile Conditi	ion Persont		☐ Restrictive Layer			-			☐ Restrictive Laye
	i i onio conditi			T Radrock	1			3	i	
il Series N	ame	on Percent	Depth Hydrologic Grou	☐ Bedrock	Soil Ser	Profile	Condi	tion Percent	Depth Hydrologic Group	☐ Bedrock
		· · · · · · · · · · · · · · · · · · ·			1	ries Name	***************************************		Depth Hydrologic Group	☐ Bedrock
il Series N S+c+s	iame	· · · · · · · · · · · · · · · · · · ·			1		***************************************			☐ Bedrock
Stcts		stry		p	76	ries Name	very s	tens.	Hydrologic Group	
Stcts	ation Hole #	stay 9: 0	Hydrologic Grou	□ Boring	76	ries Name	rery s	tens .	Hydrologic Group Test Pit	☐ Boring
Stcts Observa	ation Hole #	stry	Hydrologic Grou	□ Boring	76	ervation	Hole #	tons	Hydrologic Group Test Pit ic horizon above	Boring
Stcts	ation Hole #	strong 9: Depth of organi	Hydrologic Grou	Boring ve mineral soil	76	ervation	rery s		Hydrologic Group Test Pit ic horizon above	☐ Boring
Stcts Observa	ation Hole #	9: Depth of organi	Hydrologic Grou Test Pit c horizon abor Color	Boring ve mineral soil	Obs	ervation	Hole #	tons	Hydrologic Group Test Pit ic horizon above Color	Boring
Stcts Observa	ation Hole #	9: Depth of organi	Hydrologic Grou Test Pit c horizon abor Color	Boring ve mineral soil Mottling	Obs	ervation	Hole #		Hydrologic Group Test Pit ic horizon above Color	Boring e mineral soil Mottling
stcts bserv	ation Hole # Texture Sth	9: Depth of organi	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation Te 6 FS	Hole #		Hydrologic Group Test Pit ic horizon above Color	Boring mineral soil Mottling
stcts bserv	ation Hole #	9: Depth of organi	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3//	Boring mineral soil Mottling
stcts bserva	ation Hole # Texture Sil- Jenses of Sand Loam	9. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation Te F 5	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color	Boring mineral soil Mottling
stcts bserva	ation Hole # Texture Sil	9. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation Te 6 FS	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3//	Boring emineral soil Mottling
stcts bserv	ation Hole # Texture Sil- Jenses of Sand Loam	G. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation Te 6 FS 12 18	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In Y R 3/1 \$1,57 R 2,5/2	Boring mineral soil Mottling
stcts bserva	ation Hole # Texture Sil- Jenses of Sand Loam	G. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation Te 6 FS 12 18 9 9 24 5 4	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring emineral soil Mottling
Stcts Observa	ation Hole # Texture Sil- Jenses of Sand Loam	G. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling	Obs	ervation Te 6 F 5 12 18 3 3 3 4	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling Figure 3/
Stcts bserv	ation Hole # Texture Sil- Jenses of Sand Loam	G. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling 2,574/1,2% 2,107 & 3/3,2%	Obs	ervation Te 6 FS 12 18 9 9 24 5 4	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling Figure 3/
Stcts Observa	ation Hole # Texture Sil- Jenses of Sand Loam	G. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling 2,574(1,2%) 2,107=3/3,2%	Obs	ervation Te 6 FS 12 18 30 V	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling 7.5 y R 3/.
0 0 0 0 0 0 0 0 0 0	ation Hole # Texture Sth Jenses & Sand Loam Gry	G. Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling 2,574/1,2% 2,107 & 3/3,2%	Obs	ervation Te 6 F 5 12 18 3 3 3 4	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling 7.57 8.37.
0 0 0 0 0 0 0 0 0 0	ation Hole # Texture Syl- Jenses & Sand Loan gry	9: Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling 2,574(1,1%) 2,1074.3/3,1%	76	ervation Te 6 FS 12 18 30 V	Hole #	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling 7.5 y R 3/.
Observa (Saucini) acidon independent indep	ation Hole # Texture Sil- Jenses & Sand Loam Gog	9: Depth of organi Consistency Friable	Hydrologic Grou	Boring ve mineral soil Mottling 2,574(1,1%) 2,1074.3/3,1%	Obs	ervation / Te	Hole # "exture	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling 7.5 y R 3/.
Observa (inches) 12 18 18 24 30 36 36 36 36 36 36 36 36 36 36 36 36 36	ation Hole # Texture Sil Jenses & Sand Sand Soam Gry Sil Vigry ECE 96	9: Depth of organi Consistency Frable	Hydrologic Ground Test Pit c horizon about Color 15 y R 2 / 1 215 y 3 / 2 Mixed Colors, Grains 5 y 3 / 2	Boring ve mineral soil Mottling 2.574(1,2%) 2.107#3/3,2% 7.5783/2 2.26/0	Obs	ervation Te F S 12 18 G F S 24 S A 30 36	Hole # " exture	Depth of organ Consistency	Hydrologic Group Test Pit ic horizon above Color In YR 3// \$157 R 2/5/7	Boring mineral soil Mottling 7.57 8.37.
Observation and a solidary and a sol	ation Hole # Texture Sil- Jenses & Sand Loam Gog	9 Depth of organi Consistency Frable	Hydrologic Grou	Boring ve mineral soil Mottling 2.574(1, 2%) 2.107 = 3/3, 2% 7.57 y = 3/2 2.26/0	Obs	ervation / Te	Hole # "exture	Depth of organ Consistency Friebt	Hydrologic Group Test Pit ic horizon above Color In y R 3// In	□ Boring mineral soil Mottling 7.5 y £ 3/. 20/0
Observa (solucion solucion sol	ation Hole # Texture Sil Jenses & Sand Loam Gry Sil Vigry ECE 96	Depth of organi Consistency Firm final Slope	Hydrologic Ground Test Pit c horizon about Color 15 y R 2 / 1 215 y 3 / 2 Mixed Colors, Grains 5 y 3 / 2	Boring ve mineral soil Mottling 2.574(1,2%) 2.107#3/3,2% 7.5783/2 2.26/0	Obs	ervation / Te	Hole # " exture Classification of the state of the stat	Depth of organ Consistency Friebt ation Slope	Hydrologic Group Test Pit ic horizon above Color In Y R 3// \$1,57 R 2,5/2 107 R 3/2 2,57 3// Limiting Factor "	□ Boring e mineral soil Mottling # Sy # 3/- 20/0
Observa (12) 12 18 18 18 18 18 18 18	ation Hole # Texture Sil- Jenses & Sand Loam Jenses & Sand Loam Jenses & Sand Loam Gry Soil Classificat Profile Conditionme	Depth of organi Consistency Firm firm Slope	Hydrologic Ground Test Pit c horizon about Color 16 7 72 7 1 215 7 3/1 Mixed Colors, Grains 5 7 3/2 Limiting Factor	Boring ve mineral soil Mottling 2.574(1, 2%) 2.107 = 3/3, 2% 7.57 y = 3/2 2.26/0 Groundwater Restrictive Layer Bedrock	Depth below mineral soil surface (inches)	ervation Te F S 12 18 G F S 12 18 G F S 12 48 Soil Profile es Name	Hole # "exture Classification Conditions of the second s	Depth of organ Consistency Fribb Fill Management ation Slope on Percent	Hydrologic Group Test Pit ic horizon above Color In Y R 3// \$1,57 R 2,5/2 107 R 3/2 2,57 3// Limiting Factor "	Boring mineral soil Mottling 7.5 y ≥ 3/. 20/0
0 0 0 0 0 0 0 0 0 0	ation Hole # Texture Sil- Jenses & Sand Loam Jenses & Sand Loam Jenses & Sand Loam Gry Soil Classificat Profile Conditionme	Depth of organi Consistency Firm firm Slope	Hydrologic Ground Test Pit c horizon about Color 10 7 72 1/1 2/5 7 3/2 M/Ked Colors Grains 5 7 3/2 Limiting Factor Depth	Boring ve mineral soil Mottling 2.574(1, 2%) 2.107 = 3/3, 2% 7.57 y = 3/2 2.26/0 Groundwater Restrictive Layer Bedrock	Depth below mineral soil surface (inches)	ervation Te F S 12 18 24 30 36 42 Profile	Hole # "exture Classification Conditions of the second s	Depth of organ Consistency Fribb Fill Management ation Slope on Percent	Hydrologic Group Test Pit ic horizon above Color In Y R 3// \$1,5\forall R 2,5\forall 2 2,5\forall 3// 2,5\forall 3// Limiting Factor Depth	Boring e mineral soil Mottling 7.57 € 3/ 20/2


		·		•								
Tow	/n, C	City, Plantation		Stre	eet, Road, Subdivis	ion			0	wner or Appl	icant Name	**************************************
so		PROFILE DE	SCRIPTIO	N AND CLAS	Old Canada SIFICATION	n ILIA		<u> </u>	ocatio	n of Obsen	ation Holes S	hown Abovol
						<u> </u>	<u> </u>	(Journ	ir or observ	adon notes o	ilowii Abovej
Ob	ser	vation Hole #		☐ Test Pit	☐ Boring	Obs	serva	ation H	lole#	12		Boring
		2 "	Depth of org	anic horizon abo	ve mineral soil		,	н		Depth of orga	anic horizon abov	
	(0 Texture	Consistenc	y Color	Mottling		0 m	Text	ure	Consistenc	y Color	Mottling
(S		514	frieble	1/07/24/1			-	Sapri			· 104x2/1	
che	6	5				ches	6	<u>mátc</u>	rial	Friable		
ir)	12	100 m		715 × K21	7/2	(j.	12	SIL				
urfac						Ifac		***************************************			-	-
oil s	18	STREET AND AND COLUMN TO THE PROPERTY OF THE P		market and the second s		li su	18				2.5×3/2	
<u>12</u>	24	1 2 ry	EIVM	2,5 × 3/2	2 %	alsc	24	Viar	-U		5° 73/1.	resone or
nine		increase				iner	77	SIL	J			
V	30	to the		1 1/		W P	30			Vi firm		715413/3
bel L	36	depth			<u> </u>	pelc	26					7 7 2
Depth below mineral soil surface (inches)			Vifirm			Depth below mineral soil surface (inches)	36					
L	42					ā	42					
	48	EPE 90	//					EO	15	20 11		
		Soil Classific	ation Slope	Limiting Factor	☐ Groundwater		48	Soil	Classifica	<u> </u>	Limiting Factor	☐ Groundwater
		Profile Condit	tion Percent	Depth	☐ Restrictive Layer ☐ Bedrock		-					☐ Restrictive Layer
Soil Se	ries I	Name						Profile	Conditio	n Percent	Denth	T Podroek
	1		er de e	Hydrologic Group		Soil Se	ies Na		Conditio	······	Depth Hydrologic Group	☐ Bedrock
	<u> </u>	esuncook	stong	Hydrologic Group			ies Na	me		shy		☐ Bedrock
		esuncook					ies Nar Ca S	me lot,	verj	stay	Hydrologic Group	
		vation Hole #		∑ Test Pit	Boring		ies Nar Ca S	me lot,	verj	stry	Hydrologic Group Test Pit	Boring
	ser.	vation Hole #		Test Pit	Boring e mineral soil		erva	of, ition Ho	vers	Stny 14 Depth of orga	Hydrologic Group Test Pit Tic horizon above	Boring
Obs		vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov	Boring e mineral soil Mottling		erva	tion Ho	vers	Stry 14 Depth of orga Consistency	Hydrologic Group Test Pit nic horizon above Color	☐ Boring e mineral soil
Obs	ser.	vation Hole #	<u>/3</u> Depth of orga	Test Pit	Boring e mineral soil Mottling	Obs	erva	tion Ho	vers	Stny 14 Depth of orga	Hydrologic Group Test Pit Tic horizon above	Boring
Obs	0 6	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov	Boring e mineral soil Mottling	Obs	erva	tion Ho	vers	Stry 14 Depth of orga Consistency	Hydrologic Group Test Pit nic horizon above Color	Boring
Obs	serv	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov	Boring e mineral soil Mottling	Obs	erva	tion Ho	vers	Stry 14 Depth of orga Consistency	Hydrologic Group Test Pit nic horizon above Color	Boring mineral soil Mottling
Obs	0 6	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling	Obs	erva	Textu v, gry	vers	Stry 14 Depth of orga Consistency	Hydrologic Group Test Pit nic horizon above Color 10 YIZ 2/1	Boring mineral soil Mottling
Obs	0 6 12	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov	Boring e mineral soil Mottling	Obs	erva	tion Ho	ole#_	Stry 14 Depth of orga Consistency	Hydrologic Group Test Pit nic horizon above Color 10 YIZ 2/1	Boring mineral soil Mottling
Obs	0 6	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling 7:5 yr 3/3 5 9/6	Obs	erva	Textu V, 9ry SiL	ole#_	Strag 14 Depth of orga Consistency Friable	Hydrologic Group Test Pit nic horizon above Color 10 YIZ 2/1 10 YIZ 3/2 7,5 Y IZ 3/2	Boring mineral soil Mottling
Obs	0 6 12	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling	Obs	erva	Textu V, 9ry SiL	ole#_	Strag 14 Depth of orga Consistency Friable	Hydrologic Group Test Pit nic horizon above Color 10 YIZ 2/1 10 YIZ 3/2 7,5 Y IZ 3/2	Boring mineral soil Mottling
Obs	0 6 12 18	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling 7:5 yr 3/3 5 9/6	Obs	erva	Textu V, 9ry SiL	ole#_	Strag 14 Depth of orga Consistency Friable	Hydrologic Group Test Pit nic horizon above Color 10 x R 2/1 10 y R 3/2 10 x R 3/2	Boring mineral soil Mottling
Obs	0 6 12 18	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling 7:5 yr 3/3 5 9/6	Obs	erva	Textu V, 9ry SiL	ole#_	Strag 14 Depth of orga Consistency Friable	Hydrologic Group Test Pit nic horizon above Color 10 x R 2/1 10 y R 3/2 10 x R 3/2	Boring mineral soil Mottling
	0 6 12 18 24 30	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling 7:5 yr 3/3 5 9/6	Depth below mineral soil surface (inches)	0 6 12 18 4 30 36 36	Textu V, 9ry SiL	ole#_	Strag 14 Depth of orga Consistency Friable	Hydrologic Group Test Pit nic horizon above Color 10 x R 2/1 10 y R 3/2 10 x R 3/2	Boring mineral soil Mottling
Obs	0 6 12 18 24	vation Hole #	/3_ Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling 7:5 yr 3/3 5 9/6	Depth below mineral soil surface (inches)	0 crva	Textu V, 9ry SiL	ole#_	Strag 14 Depth of orga Consistency Friable	Hydrologic Group Test Pit nic horizon above Color 10 x R 2/1 10 y R 3/2 10 x R 3/2	Boring mineral soil Mottling
Obs	0 6 12 18 24 30	/ation Hole # /	Depth of orga Consistency	Test Pit nic horizon abov Color 10 7 × 2/2	Boring e mineral soil Mottling 715 YF 3/7 5 %	Depth below mineral soil surface (inches)	0	Textury, gry	ole#_	Stry 14 Depth of orga Consistency Friable Friable	Hydrologic Group Test Pit nic horizon above Color 10 x R 2/1 10 y R 3/2 10 x R 3/2	Boring mineral soil Mottling
Obs	0 6 12 18 24 30 36 42	/ation Hole # / " Texture SiL Soil Classifica	Depth of orga Consistency	Test Pit nic horizon abov Color	Boring e mineral soil Mottling 7:5 yr 3/3 5 9/6	Depth below mineral soil surface (inches)	0	Textury, gry	ole#_	Stry 14 Depth of orga Consistency Friable Friable	Hydrologic Group Test Pit nic horizon above Color 10 YR 2// 10 YR 3/2 7, 5 Y R 3/2 2/5 Y 3//	Boring emineral soil Mottling 7/57 to 3/3 / 55 9/8
Obs	0 6 12 18 24 30 36 42 48 [/ation Hole # / " Texture Sit Soil Classifica Profile Condition	Depth of orga Consistency Free See	Test Pit nic horizon abov Color 10 / 2/2 S/4// Limiting Factor Depth	□ Boring e mineral soil Mottling 7:5 yr 3/3 5 yo	Depth below mineral soil surface (inches)	0 6 12 18 42 48 P	Textu V; fry JFSL	ole#_	Stry 14 Depth of orga Consistency Friable friable on Slope	Hydrologic Group Test Pit nic horizon above Color 10 YR 2// 10 YR 3/2 7, 5 Y R 3/2 2/5 Y 3// Limiting Factor Depth	Boring mineral soil Mottling 7/57 N 3/3 / 15- 9/8
Depth below mineral soil surface (inches)	0 6 12 18 24 4 30 36 42 48 Eies N	vation Hole # / " Texture Sit Soil Classifica Profile Condition	Depth of orga Consistency Free Section Slope Percent	Test Pit nic horizon abov Color 10 / × 2/2 S / 4// Limiting Factor	□ Boring e mineral soil Mottling 7/5 × 6 3/3 5 % □ Groundwater □ Restrictive Layer	Depth below mineral soil surface (inches)	0 6 12 18 24 30 36 42 48 PP	Textury; fry	Dole #	Stry 14 Depth of orga Consistency Friable friable on Slope	Hydrologic Group Test Pit nic horizon above Color 10 YR 2/1 10 YR 3/2 7, 5 Y R 3/2 2/5 Y 3/1 Limiting Factor	Boring mineral soil Mottling 7,57 to 3/3 1 5- 9/5

Soil Scientist/Site Evaluator Signature

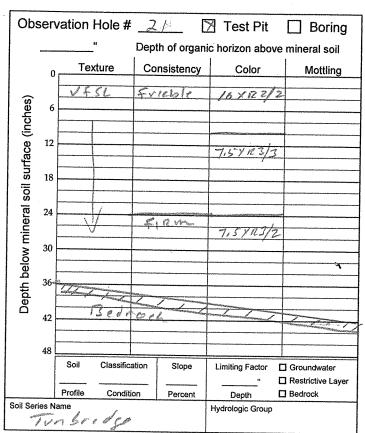
CSS/LSE#

7-/0-/4 Date

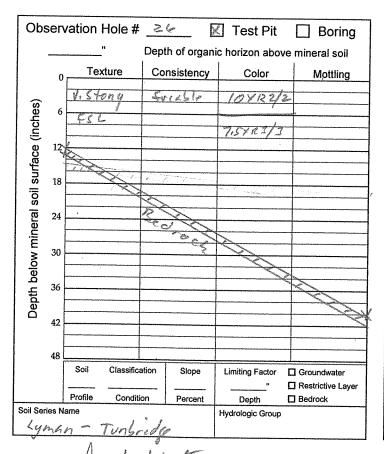
Town, City, Plantation Potts Surgh	Street, Road, Subdivision	ned	····	Owner or Applicant Name
SOIL PROFILE DÉSCRIPTION AND C	LASSIFICATION		(Loca	tion of Observation Holes Shown Above)

Obs	ser	/ation Hole #		16 [☑ Test Pit	Boring
	ve mineral soil					
	0	Texture	Co	nsistency	Color	Mottling
		Loam	F	richle.	7.5412.5/	1
hes	6				t the state of the	contag.
(ji			-		7.6 YE 35	72
ല്ല	12	aru SL	4	rM	715412,5/	3
urf		Stone				
oi S	,18			1		
Depth below mineral soil surface (inches)	24			1	10 × 12/2	*
ine	- `		-		1	
₹	30			√/		
oelo		$= \sqrt{-}$			/	
# E	36				<u> </u>	
Det						
	42	FOE 48	44			
	48	E 0 E 48				
		Soil Classific	ation	Slope	Limiting Factor	☐ Groundwater
		Profile Condit	ion	Percent	Depth	Restrictive Layer
	Soil Series Name			1 GICCIN	Hydrologic Group	☐ Bedrock
CA	25	uncook				

Observation Hole #/-7 ☑ Test Pit ☐ Boring						Boring	
		11	ic horizon above	mineral soil			
	0	Texture	Co	nsistency	Color	Mottling	
		Loan	C	ielle	10×12/2		
(Se	6		1 2	15-15-15	TOTAL		
Depth below mineral soil surface (inches)	Ů						
Ë				+	10×123/2		
e e	12	 	 		7.54 123/3		
큠							
ns	18	V					
Ö				\			
3	24	,		-	September 1997	*	
je i	44	VFSL			10412313	<u> </u>	
;							
≥	30		dissa Sam	V"W.	1 11 11 12 12 12		
음		. /	dies	4 80.00	10Y#3/2		
ď	36	V .					
ta							
å		INCreasing	(Len	nes, bo	ulders with	1 2 777	
	42		<u> </u>	1113 , 30	DIDETS AND	carpie	
		E 08 6	07				
	48						
		Soil Classifica	ation	Slope	Limiting Factor	Groundwater	
					" I	Restrictive Layer	
0-11.0		Profile Conditi	on	Percent		☐ Bedrock	
	Soil Series Name				Hydrologic Group		
<u> </u>	Plaisted						


Observation Hole # 19 Test Pit Bori						Boring
			Dep	th of organ	ic horizon abov	/e mineral soil
	0	Texture	Co	nsistency	Color	Mottling
les)	6	5644 FSE	F.V	iable	10४८५।	
Depth below mineral soil surface (inches)	12	VESL				
soil sur	18					
neral s	24					
low mir	30	Decompe:				
epth be	36	Begins	2 6 6 -	518+6	and the second	and the second s
۵	42	GOE.	34"			
	48					
		Soil Clas	ssification	Slope	Limiting Factor	☐ Groundwater ☐ Restrictive Layer
		Profile Co	ondition	Percent	Depth	☐ Restrictive Layer ☐ Bedrock
Soil Series Name Tun bridge			*		Hydrologic Group	

Soil/Scientist/Site Evaluator Signature


ME 215

7-21-14

T		
Town, City, Plantation	Street, Road, Subdivision	Owner or Applicant Name
Pittsbursh	101d Canaan Road	1,
SOIL PROFILÉ DESCRIPTION AND	CLASSIFICATION	(Location of Observation Holes Shown Above)

Obs	serv	/ation Hole #	2	4 0	☑ Test Pit	Boring
		H	ic horizon above	mineral soil		
	0	Texture	Co	nsistency	Color	Mottling
		Loam	Sal.	iable.	10 4102/2	
Spes	6			D) read		
ice (inc	12	Vgra File		тамжу рамжу	10783/2	7,5 8 12.4/3
il surfa	,18			Prince and Prince and Association (Marcon and Association and		
eral so	24	Learn		A Company of the Comp	10463/3	5.
Depth below mineral soil surface (inches)	30	512		<u>V</u> .	2/5/3/3	10783/3
pth bel	36					2 %
De	42					
	48					
		Soil Classifica	ation	Slope		Groundwater
	Profile Condition			Percent		Restrictive Layer Bedrock
	Soil Series Name Con Soft Nariant				Hydrologic Group	

Observation Hole #			2	. 7_ 5	Test Pit	Boring
		11	Dep	th of organi	c horizon abov	ve mineral soil
	0	Texture	Co	nsistency	Color	Mottling
		Loax	and the same	1460	10×12/2	
ches	6					75783/3
Ē	12					0x101 01.12058640
face	12					
sul	18	00455	eggeneration of	e 150.		
SOI	·	44600	75.5		7/5/13/2	2544/2
Jera	24					
Ē	30					
e ov						
Depth below mineral soil surface (inches)	36					
Dep						
	42	E0 E 56	1/			
	48					
		Soil Classifica	ation	Slope	Limiting Factor	☐ Groundwater
		Profile Condition	on	Percent	Depth	☐ Restrictive Layer ☐ Bedrock
	Soil Series Name				Hydrologic Group	
	Chesuncook					

Soil Scientis//Site Evaluator Signature

7-21-14 Date

Tow	n, C	City, Plantation	/		eet, Road, Subdivi	sion	*		T	Owne	r or Applic	cant Name	
so	IL I	PROFILE DE			Old Cana. SIFICATION	2 <i>1</i> 7 /6	nd A	. 0	() ocatio	on of	Obsorv	ation Holos	Shown Above)
							·		(LOCALIT	JII QI	Observ	ation notes	Silowii Above)
Ob	sei	vation Hole#		☑ Test Pit	☐ Boring	0	bse	rvatior	n Hole #	ŧ		☐ Test Pit	Boring
		·	1	nic horizon abov	ve mineral soil				TH	Dept	th of orga	nic horizon ab	ove mineral soil
		Texture	Consistency	Color	Mottling			o T	exture	Co	nsistency	Color	Mottling
(Se	,	516	5112618	10442/2		6	ò				*		
L CP	`						2	6					
Ge (i	12	2				j	ا 1 د	2					
Depth below mineral soil surface (inches)	4.0			2(5)/ 2/		Denth helow mineral coil curface	2			<u> </u>			
Soils	18	***************************************			2 1014714	10 110	,1	8					
ra s	24	grysil	FIFT			100	5 2	4			1		
nine		Stornes				iner	}	<u></u>					
- MO	30					W.	3)					
n be	36				*		2	,					
eptl		Stong a	urfuel			- the	3 i)					
L	42		10 0			ا ا	4:	2					
	48	eot s	' at la	ge son	l de -				***************************************				
		Soil Classifica	ation Slope	Limiting Factor	☐ Groundwater	İ	4	Soil	Classific	cation	Slope	Limiting Factor	☐ Groundwater
		Profile Conditi	on Percent	Depth	☐ Restrictive Layer ☐ Bedrock			Profile		4:			☐ Restrictive Layer
Soil Se				Hydrologic Group		Soil	Series	Name	Condi	uon	Percent	Depth Hydrologic Grou	☐ Bedrock ip
	<u> </u>	os, verg.	s may										
Obs	en	/ation Hole #	, [Test Pit	□ Poring								
				c horizon above	☐ Boring		1561	valion	Hole #		L	Test Pit	Boring
	0	Teyture	Consistency	Color	Mottling			Te	- exture	ł	sistency	ı	ve mineral soil
_	U						C		Attaro	001	Sistericy	Color	Mottling
Depth below mineral soil surface (inches)	6					(se	6						
(inc						ja							
face	12					gce	12						
sur	18					Depth below mineral soil surface (inches)	18		· · · · · ·				
Soi						soil	10						
nera	24	`				eral	24						
E	30					l E	•						
elov						NO NO	30						
ăh tr	36					다 라	36						
Del	42					Dep							
	42						42						
	48						48						
		Soil Classificat	ion Slope		☐ Groundwater ☐ Restrictive Layer	İ		Soil	Classifica	ation	Slope	Limiting Factor	☐ Groundwater
Soil Seri	as N	Profile Condition	n Percent	Depth	☐ Bedrock			Profile	Condition	on	Percent	Depth	☐ Restrictive Layer ☐ Bedrock
001	JJ 14	an 11 W		Hydrologic Group		Soil Se	eries N	lame				Hydrologic Group	
					i	L							
*************		Λ	1 11			A 16 185	6	i and					:
	So	il Scientist/Site	As My	1		MB CSS#	A.	15			7-21	~/ ¾ Date	:

Appendix C

NRCS Soil Map Unit Descriptions

Coos County Area, New Hampshire

61D—Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2trpk Elevation: 520 to 1,970 feet

Mean annual precipitation: 31 to 95 inches Mean annual air temperature: 27 to 52 degrees F

Frost-free period: 60 to 160 days

Farmland classification: Not prime farmland

Map Unit Composition

Tunbridge, very stony, and similar soils: 40 percent Lyman, very stony, and similar soils: 29 percent

Rock outcrop: 18 percent Minor components: 13 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tunbridge, Very Stony

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Shoulder, summit, backslope Landform position (three-dimensional): Mountaintop, mountainflank,

side slope, crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy supraglacial till derived from granite and gneiss and/or loamy supraglacial till derived from phyllite and/or loamy supraglacial till derived from mica schist

Typical profile

Oe - 0 to 3 inches: moderately decomposed plant material Oa - 3 to 5 inches: highly decomposed plant material

E - 5 to 8 inches: fine sandy loam Bhs - 8 to 11 inches: fine sandy loam Bs - 11 to 26 inches: fine sandy loam BC - 26 to 28 inches: fine sandy loam

R - 28 to 38 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Percent of area covered with surface fragments: 1.5 percent Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low

to high (0.00 to 14.03 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Available water storage in profile: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C

Description of Lyman, Very Stony

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Mountaintop, mountainflank,

crest, side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy supraglacial till derived from granite and gneiss and/or loamy supraglacial till derived from phyllite and/or loamy supraglacial till derived from mica schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loam

E - 3 to 5 inches: fine sandy loam

Bhs - 5 to 7 inches: loam Bs1 - 7 to 11 inches: loam

Bs2 - 11 to 18 inches: channery loam

R - 18 to 28 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Percent of area covered with surface fragments: 1.5 percent Depth to restrictive feature: 11 to 24 inches to lithic bedrock Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low

to high (0.00 to 14.03 in/hr)

Depth to water table: More than 80 inches

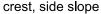
Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s


Hydrologic Soil Group: D

Description of Rock Outcrop

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Mountaintop, mountainflank,

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Igneous and metamorphic rock

Typical profile

R - 0 to 10 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low

to very high (0.00 to 14.17 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s

Minor Components

Peru, very stony

Percent of map unit: 6 percent Landform: Mountains, hills

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Mountainflank, mountaintop,

side slope, crest

Microfeatures of landform position: Open depressions, open

depressions

Down-slope shape: Concave Across-slope shape: Concave

Moosilauke, very stony

Percent of map unit: 4 percent Landform: Mountains, hills

Landform position (two-dimensional): Footslope, toeslope

Landform position (three-dimensional): Mountaintop, mountainflank,

side slope, crest

Microfeatures of landform position: Open depressions, open

depressions

Down-slope shape: Concave Across-slope shape: Concave

Monadnock, very stony

Percent of map unit: 3 percent Landform: Hills, mountains

Landform position (two-dimensional): Shoulder, summit, backslope Landform position (three-dimensional): Mountaintop, mountainflank,

side slope, crest

Down-slope shape: Convex

Across-slope shape: Convex

Data Source Information

Soil Survey Area: Coos County Area, New Hampshire

Survey Area Data: Version 20, Sep 15, 2014

Coos County Area, New Hampshire

61E—Tunbridge-Lyman-Rock outcrop complex, 25 to 60 percent slopes

Map Unit Setting

National map unit symbol: 2trph Elevation: 430 to 2,490 feet

Mean annual precipitation: 31 to 95 inches Mean annual air temperature: 27 to 52 degrees F

Frost-free period: 60 to 160 days

Farmland classification: Not prime farmland

Map Unit Composition

Tunbridge, very stony, and similar soils: 42 percent Lyman, very stony, and similar soils: 31 percent

Rock outcrop: 17 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tunbridge, Very Stony

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy supraglacial till derived from granite and gneiss and/or loamy supraglacial till derived from phyllite and/or

loamy supraglacial till derived from mica schist

Typical profile

Oe - 0 to 3 inches: moderately decomposed plant material Oa - 3 to 5 inches: highly decomposed plant material

E - 5 to 8 inches: fine sandy loam Bhs - 8 to 11 inches: fine sandy loam Bs - 11 to 26 inches: fine sandy loam BC - 26 to 28 inches: fine sandy loam

R - 28 to 38 inches: bedrock

Properties and qualities

Slope: 25 to 60 percent

Percent of area covered with surface fragments: 1.5 percent Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low

to high (0.00 to 14.03 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: C

Description of Lyman, Very Stony

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy supraglacial till derived from granite and gneiss and/or loamy supraglacial till derived from phyllite and/or

loamy supraglacial till derived from mica schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loam

E - 3 to 5 inches: fine sandy loam

Bhs - 5 to 7 inches: loam Bs1 - 7 to 11 inches: loam

Bs2 - 11 to 18 inches: channery loam

R - 18 to 28 inches: bedrock

Properties and qualities

Slope: 25 to 60 percent

Percent of area covered with surface fragments: 1.5 percent Depth to restrictive feature: 11 to 24 inches to lithic bedrock Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low

to high (0.00 to 14.03 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Description of Rock Outcrop

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, free face,

free face, side slope

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Igneous and metamorphic rock

Typical profile

R - 0 to 10 inches: bedrock

Properties and qualities

Slope: 25 to 60 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low

to very high (0.00 to 14.17 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Minor Components

Peru, very stony

Percent of map unit: 6 percent Landform: Mountains, hills

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Mountainflank, side slope Microfeatures of landform position: Open depressions, open

depressions

Down-slope shape: Concave Across-slope shape: Concave

Moosilauke, very stony

Percent of map unit: 3 percent Landform: Hills, mountains

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Mountainflank, side slope Microfeatures of landform position: Open depressions, open

depressions

Down-slope shape: Concave Across-slope shape: Concave

Monadnock, very stony

Percent of map unit: 1 percent Landform: Hills, mountains

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope

Down-slope shape: Convex Across-slope shape: Convex

Data Source Information

Soil Survey Area: Coos County Area, New Hampshire

Survey Area Data: Version 20, Sep 15, 2014

Coos County Area, New Hampshire

560C—Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9dvt Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: Farmland of local importance

Map Unit Composition

Tunbridge and similar soils: 50 percent Plaisted and similar soils: 15 percent Lyman and similar soils: 15 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the

mapunit.

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Typical profile

H1 - 0 to 2 inches: silt loam H2 - 2 to 25 inches: silt loam

H3 - 25 to 34 inches: cobbly fine sandy loam R - 34 to 38 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to

high (0.01 to 6.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation

till derived from granite and gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

H1 - 1 to 4 inches: fine sandy loam H2 - 4 to 13 inches: fine sandy loam

H3 - 13 to 16 inches: gravelly fine sandy loam R - 16 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock Natural drainage class: Somewhat excessively drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Low to

high (0.01 to 5.95 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: D

Description of Plaisted

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Lodgment till derived from schist and phyllite

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

H1 - 2 to 29 inches: silt loam

H2 - 29 to 65 inches: very fine sandy loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 18 to 39 inches to densic material

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Minor Components

Howland

Percent of map unit: 8 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Cabot

Percent of map unit: 4 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Bangor

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Lombard

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Data Source Information

Soil Survey Area: Coos County Area, New Hampshire

Survey Area Data: Version 20, Sep 15, 2014

Coos County Area, New Hampshire

560D—Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 9dvv Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: Not prime farmland

Map Unit Composition

Tunbridge and similar soils: 40 percent Plaisted and similar soils: 25 percent Lyman and similar soils: 20 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Typical profile

H1 - 0 to 2 inches: silt loam H2 - 2 to 25 inches: silt loam

H3 - 25 to 34 inches: cobbly fine sandy loam R - 34 to 38 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to

high (0.01 to 6.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Description of Plaisted

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Lodgment till derived from schist and phyllite

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

H1 - 2 to 29 inches: silt loam

H2 - 29 to 65 inches: very fine sandy loam

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 18 to 39 inches to densic material

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation

till derived from granite and gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

H1 - 1 to 4 inches: fine sandy loam H2 - 4 to 13 inches: fine sandy loam

H3 - 13 to 16 inches: gravelly fine sandy loam R - 16 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock Natural drainage class: Somewhat excessively drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Low to

high (0.01 to 5.95 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Minor Components

Howland

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Lombard

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 3 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Dixmont

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Convex Across-slope shape: Convex

Bangor

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex

Across-slope shape: Convex

Data Source Information

Soil Survey Area: Coos County Area, New Hampshire

Survey Area Data: Version 20, Sep 15, 2014

Coos County Area, New Hampshire

567C—Howland silt loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9dwd Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Farmland classification: Not prime farmland

Map Unit Composition

Howland and similar soils: 85 percent *Minor components:* 15 percent

Estimates are based on observations, descriptions, and transects of the

mapunit.

Description of Howland

Setting

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Basal till derived from schist and phyllite

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

H1 - 1 to 3 inches: silt loam

H2 - 3 to 24 inches: gravelly silt loam H3 - 24 to 65 inches: gravelly silt loam

Properties and qualities

Slope: 8 to 15 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 19 to 39 inches to densic material

Natural drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C

Minor Components

Plaisted

Percent of map unit: 10 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

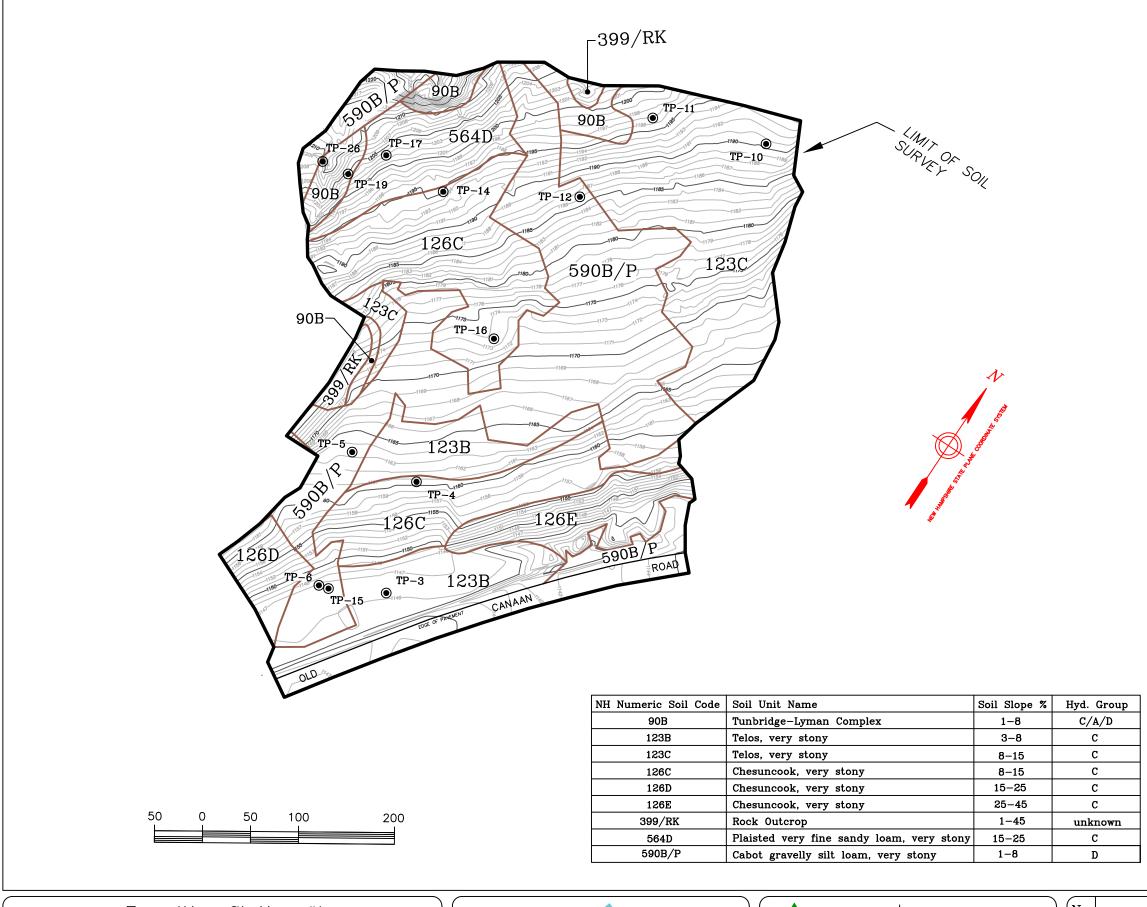
Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 5 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave


Data Source Information

Soil Survey Area: Coos County Area, New Hampshire

Survey Area Data: Version 20, Sep 15, 2014

Appendix D

Soil Survey Maps

LOCUS MAP 1:10,000

NOTES

- 1. BASEMAP PROVIDED BY COLER & COLANTONIO INC.; LOCUS BASEMAP PROVIDED BY USGS & ESRI.
- 2. THIS MAP PRODUCT IS WITHIN THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOIL SURVEY. IT IS A SPECIAL PURPOSE PRODUCT, INTENDED FOR USE IN SHOWING LIMITATIONS TO DEVELOPMENT OF ROADS, SHALLOW EXCAVATIONS AND PLANNING SITE DESIGN FOR STORMWATER RUNOFF & EROSION CONTROL. IT WAS PRODUCED BY A CERTIFIED SOIL SCIENTIST AND IS NOT A PRODUCT OF THE USDA NATURAL RESOURCES CONSERVATION SERVICE. THERE IS A NARRATIVE REPORT THAT ACCOMPANIES THIS MAP, WHICH PROVIDES METHODOLOGY, MAP UNIT DESCRIPTIONS & INTERPRETATIONS.
- 3. PREPARED FOR NORTHERN PASS TRANSMISSION PROJECT. PREPARED BY NORMANDEAU ASSOCIATES INC.
- 4. FIELD WORK COMPLETED BY NORMANDEAU ASSOCIATES INC., IAN BROADWATER (MECSS 305) & JENNIFER WEST (MECSS 215), CERTIFIED SOIL SCIENTIST ON JULY 10 & 21, 2014.

LEGEND

-Soil Survey Boundary
-Soil Boundary
-Soil Boundary
-Index Contour
-Intermediate Contour
-Road

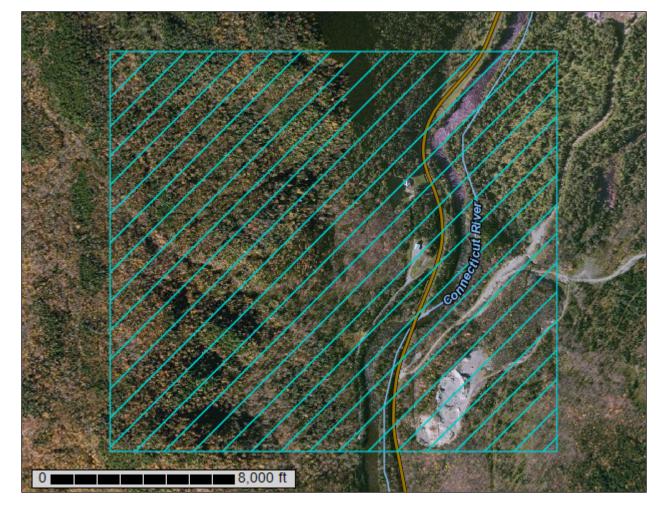
Transition Station #1
Pittsburg, NH

SOIL SURVEY OVERVIEW

Date: 02.02.15

Project No.: 21812.204 Scale: 1"=100'

No.	Document/Draft Name	Ini.	Date)
1	C:\Npass\DWG\NP_TransitionSites_SOIL_020215	JCB	02.02.15



Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Coos County Area, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	7
Soil Map	8
Legend	9
Map Unit Legend	10
Map Unit Descriptions	11
Coos County Area, New Hampshire	13
14B—Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes	13
28B—Madawaska very fine sandy loam, 3 to 8 percent slopes	15
61D—Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent	
slopes	16
61E—Tunbridge-Lyman-Rock outcrop complex, 25 to 35 percent	
slopes	
433A—Grange silt loam, 0 to 5 percent slopes	
523B—Stetson fine sandy loam, 3 to 8 percent slopes	
523C—Stetson fine sandy loam, 8 to 15 percent slopes	
523E—Stetson fine sandy loam, 15 to 60 percent slopes	
560D—Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes	27
561C—Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes,	
very stony	30
564E—Plaisted very fine sandy loam, 25 to 35 percent slopes, very	
stony	
573C—Bangor silt loam, 8 to 15 percent slopes, very stony	
573D—Bangor silt loam, 15 to 25 percent slopes, very stony	
573E—Bangor silt loam, 25 to 35 percent slopes, very stony	37
579C—Dixmont very fine sandy loam, 8 to 15 percent slopes, very	00
stony	39
579D—Dixmont very fine sandy loam, 15 to 25 percent slopes, very	40
stony	
590B—Cabot gravelly silt loam, 3 to 8 percent slopes, very stony	
590C—Cabot gravelly silt loam, 8 to 15 percent slopes, very stony	
633A—Pemi silt loam, 0 to 5 percent slopes	
670D—Tunbridge-Berkshire-Lyman complex, 15 to 25 percent slopes 895A—Bucksport muck, 0 to 1 percent slopes	
W—Water	
References	51 52

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

Custom Soil Resource Report

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

▲ Lava Flow

▲ Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Saline Spot
Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

OLIND

Spoil Area

*(*0)

Very Stony Spot

Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

+++ Rails

Interstate Highways

Background

Merial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Coos County Area, New Hampshire Survey Area Data: Version 18, Sep 21, 2012

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2010—Jul 16, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Coos County Area, New Hampshire (NH607)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
14B	Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes	4.7	1.1%		
28B	Madawaska very fine sandy loam, 3 to 8 percent slopes	1.9	0.5%		
61D	Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent slopes	48.0	11.8%		
61E	Tunbridge-Lyman-Rock outcrop complex, 25 to 35 percent slopes	137.6	33.7%		
433A	Grange silt loam, 0 to 5 percent slopes	5.1	1.3%		
523B	Stetson fine sandy loam, 3 to 8 percent slopes	9.6	2.3%		
523C	Stetson fine sandy loam, 8 to 15 percent slopes	12.9	3.2%		
523E	Stetson fine sandy loam, 15 to 60 percent slopes	38.4	9.4%		
560D	Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes	4.7	1.1%		
561C	Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes, very stony	51.2	12.5%		
564E	Plaisted very fine sandy loam, 25 to 35 percent slopes, very stony	4.6	1.1%		
573C	Bangor silt loam, 8 to 15 percent slopes, very stony	6.5	1.6%		
573D	Bangor silt loam, 15 to 25 percent slopes, very stony	19.0	4.6%		
573E	Bangor silt loam, 25 to 35 percent slopes, very stony	2.1	0.5%		
579C	Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony	14.5	3.6%		
579D	Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony		2.7%		
590B	Cabot gravelly silt loam, 3 to 8 percent slopes, very stony	3.7	0.9%		
590C	Cabot gravelly silt loam, 8 to 15 percent slopes, very stony	7.9	1.9%		
633A	Pemi silt loam, 0 to 5 percent slopes	8.3	2.0%		

Coos County Area, New Hampshire (NH607)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
670D	Tunbridge-Berkshire-Lyman complex, 15 to 25 percent slopes	0.4	0.1%			
895A	Bucksport muck, 0 to 1 percent slopes	3.8	0.9%			
W	Water	12.4	3.0%			
Totals for Area of Interest	•	408.4	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Custom Soil Resource Report

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Coos County Area, New Hampshire

14B—Sheepscot cobbly very fine sandy loam, 1 to 8 percent slopes

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Sheepscot and similar soils: 85 percent

Minor components: 15 percent

Description of Sheepscot

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Outwash

Properties and qualities

Slope: 1 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 5.95 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.6 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 2e Hydrologic Soil Group: B

Typical profile

0 to 3 inches: Slightly decomposed plant material 3 to 12 inches: Cobbly very fine sandy loam 12 to 21 inches: Very stony fine sandy loam 21 to 65 inches: Extremely gravelly sand

Minor Components

Naumburg

Percent of map unit: 3 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Custom Soil Resource Report

Croghan

Percent of map unit: 3 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Colton

Percent of map unit: 3 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Grange

Percent of map unit: 2 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Madawaska

Percent of map unit: 2 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Waumbek

Percent of map unit: 1 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Adams

Percent of map unit: 1 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

28B—Madawaska very fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 790 to 2,300 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Madawaska and similar soils: 85 percent

Minor components: 15 percent

Description of Madawaska

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy outwash over sandy and/or gravelly outwash derived from

granite and gneiss or schist

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 1.98 in/hr)

Depth to water table: About 12 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 8.8 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2w

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Very fine sandy loam 8 to 30 inches: Very fine sandy loam

30 to 65 inches: Fine sand

Minor Components

Groveton

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope

Custom Soil Resource Report

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Grange

Percent of map unit: 4 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Searsport

Percent of map unit: 2 percent

Landform: Outwash terraces, depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Nicholville

Percent of map unit: 2 percent Landform: Lake terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Croghan

Percent of map unit: 2 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

61D—Tunbridge-Lyman-Rock outcrop complex, 15 to 25 percent slopes

Map Unit Setting

Elevation: 820 to 6,290 feet

Mean annual precipitation: 40 to 60 inches Mean annual air temperature: 30 to 46 degrees F

Frost-free period: 30 to 135 days

Map Unit Composition

Tunbridge and similar soils: 45 percent Lyman and similar soils: 30 percent

Rock outcrop: 15 percent Minor components: 10 percent

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Silt loam 2 to 25 inches: Silt loam

25 to 34 inches: Cobbly fine sandy loam 34 to 38 inches: Unweathered bedrock

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

granite and gneiss

Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: C/D

Typical profile

0 to 1 inches: Moderately decomposed plant material

1 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam

13 to 16 inches: Gravelly fine sandy loam 16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 8s

Hydrologic Soil Group: D

Minor Components

Moosilauke

Percent of map unit: 5 percent

Landform: Ground moraines, depressions
Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Base slope, side slope

Down-slope shape: Concave Across-slope shape: Concave

Monadnock

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Peacham

Percent of map unit: 1 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Base slope, side slope

Down-slope shape: Concave Across-slope shape: Concave

61E—Tunbridge-Lyman-Rock outcrop complex, 25 to 35 percent slopes

Map Unit Setting

Elevation: 820 to 6,290 feet

Mean annual precipitation: 40 to 60 inches Mean annual air temperature: 30 to 46 degrees F

Frost-free period: 30 to 135 days

Map Unit Composition

Tunbridge and similar soils: 45 percent Lyman and similar soils: 30 percent

Rock outcrop: 15 percent Minor components: 10 percent

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Properties and qualities

Slope: 25 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Silt loam 2 to 25 inches: Silt loam

25 to 34 inches: Cobbly fine sandy loam 34 to 38 inches: Unweathered bedrock

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

granite and gneiss

Properties and qualities

Slope: 25 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: C/D

Typical profile

0 to 1 inches: Moderately decomposed plant material

1 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam

13 to 16 inches: Gravelly fine sandy loam 16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 25 to 35 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 8s

Hydrologic Soil Group: D

Minor Components

Moosilauke

Percent of map unit: 5 percent

Landform: Depressions, ground moraines
Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Monadnock

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Peacham

Percent of map unit: 1 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

433A—Grange silt loam, 0 to 5 percent slopes

Map Unit Setting

Elevation: 790 to 2,300 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Grange and similar soils: 85 percent *Minor components:* 15 percent

Description of Grange

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Outwash

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 1.98 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 7.8 inches)

Interpretive groups

Farmland classification: Farmland of local importance

Land capability (nonirrigated): 4w

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 27 inches: Silt loam 27 to 65 inches: Sand

Minor Components

Madawaska

Percent of map unit: 7 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Pemi

Percent of map unit: 5 percent

Landform: Lake terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Wonsqueak

Percent of map unit: 3 percent

Landform: Depressions, bogs, swamps

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

523B—Stetson fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 820 to 2,300 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Stetson and similar soils: 85 percent *Minor components*: 15 percent

Description of Stetson

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Outwash

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.9 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 2s

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Fine sandy loam

8 to 18 inches: Gravelly fine sandy loam 18 to 28 inches: Very gravelly sandy loam 28 to 65 inches: Very gravelly sand

Minor Components

Masardis

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Sheepscot

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Adams

Percent of map unit: 4 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Linear

Groveton

Percent of map unit: 1 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

523C—Stetson fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Elevation: 820 to 2,300 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Stetson and similar soils: 85 percent *Minor components*: 15 percent

Description of Stetson

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Outwash

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.9 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Fine sandy loam

8 to 18 inches: Gravelly fine sandy loam 18 to 28 inches: Very gravelly sandy loam 28 to 65 inches: Very gravelly sand

Minor Components

Masardis

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Sheepscot

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Adams

Percent of map unit: 4 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Groveton

Percent of map unit: 1 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

523E—Stetson fine sandy loam, 15 to 60 percent slopes

Map Unit Setting

Elevation: 820 to 2,300 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Stetson and similar soils: 85 percent Minor components: 15 percent

Description of Stetson

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Riser

Down-slope shape: Linear Across-slope shape: Linear Parent material: Outwash

Properties and qualities

Slope: 15 to 60 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Fine sandy loam

8 to 18 inches: Gravelly fine sandy loam 18 to 28 inches: Very gravelly sandy loam 28 to 65 inches: Very gravelly sand

Minor Components

Masardis

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Riser

Down-slope shape: Linear Across-slope shape: Linear

Colton

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Adams

Percent of map unit: 4 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Riser

Down-slope shape: Linear

Across-slope shape: Linear

Groveton

Percent of map unit: 1 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Riser

Down-slope shape: Linear Across-slope shape: Linear

560D—Tunbridge-Plaisted-Lyman complex, 15 to 25 percent slopes

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Tunbridge and similar soils: 40 percent Plaisted and similar soils: 25 percent Lyman and similar soils: 20 percent Minor components: 15 percent

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Silt loam

2 to 25 inches: Silt loam

25 to 34 inches: Cobbly fine sandy loam 34 to 38 inches: Unweathered bedrock

Description of Plaisted

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Lodgment till derived from schist and phyllite

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 18 to 39 inches to densic material

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Moderately decomposed plant material

2 to 29 inches: Silt loam

29 to 65 inches: Very fine sandy loam

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

granite and gneiss

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6e Hydrologic Soil Group: C/D

Typical profile

0 to 1 inches: Moderately decomposed plant material

1 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam

13 to 16 inches: Gravelly fine sandy loam 16 to 20 inches: Unweathered bedrock

Minor Components

Howland

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Lombard

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 3 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Dixmont

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Convex Across-slope shape: Convex

Bangor

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

561C—Tunbridge-Plaisted-Lyman complex, 8 to 15 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Tunbridge and similar soils: 40 percent Lyman and similar soils: 20 percent Plaisted and similar soils: 20 percent Minor components: 20 percent

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Silt loam 2 to 25 inches: Silt loam

25 to 34 inches: Cobbly fine sandy loam 34 to 38 inches: Unweathered bedrock

Description of Plaisted

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Lodgment till derived from schist and phyllite

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 18 to 39 inches to densic material

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Moderately decomposed plant material

2 to 29 inches: Silt loam

29 to 65 inches: Very fine sandy loam

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

granite and gneiss

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: C/D

Typical profile

0 to 1 inches: Moderately decomposed plant material

1 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam

13 to 16 inches: Gravelly fine sandy loam 16 to 20 inches: Unweathered bedrock

Minor Components

Howland

Percent of map unit: 6 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Lombard

Percent of map unit: 6 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 5 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Peacham

Percent of map unit: 3 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

564E—Plaisted very fine sandy loam, 25 to 35 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches

Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Plaisted and similar soils: 85 percent Minor components: 15 percent

Description of Plaisted

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Lodgment till derived from schist and phyllite

Properties and qualities

Slope: 25 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 18 to 39 inches to densic material

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Moderately decomposed plant material

2 to 29 inches: Silt loam

29 to 65 inches: Very fine sandy loam

Minor Components

Howland

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Tunbridge

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 3 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Bangor

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

573C—Bangor silt loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Bangor and similar soils: 85 percent *Minor components*: 15 percent

Description of Bangor

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

phyllite

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 12.0 inches)

Interpretive groups

Farmland classification: Farmland of local importance

Land capability (nonirrigated): 6s

Hydrologic Soil Group: B

Typical profile

0 to 2 inches: Moderately decomposed plant material

2 to 12 inches: Silt loam

12 to 23 inches: Gravelly silt loam 23 to 65 inches: Gravelly silt loam

Minor Components

Dixmont

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 3 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Berkshire

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Plaisted

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Tunbridge

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

573D—Bangor silt loam, 15 to 25 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Bangor and similar soils: 85 percent Minor components: 15 percent

Description of Bangor

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

phyllite

Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 12.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: B

Typical profile

0 to 2 inches: Moderately decomposed plant material

2 to 12 inches: Silt loam

12 to 23 inches: Gravelly silt loam 23 to 65 inches: Gravelly silt loam

Minor Components

Dixmont

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Base slope, side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 3 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Berkshire

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Plaisted

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Tunbridge

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

573E—Bangor silt loam, 25 to 35 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Bangor and similar soils: 85 percent Minor components: 15 percent

Description of Bangor

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

phyllite

Properties and qualities

Slope: 25 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 12.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: B

Typical profile

0 to 2 inches: Moderately decomposed plant material

2 to 12 inches: Silt loam

12 to 23 inches: Gravelly silt loam 23 to 65 inches: Gravelly silt loam

Minor Components

Dixmont

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Convex Across-slope shape: Convex

Berkshire

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Tunbridge

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 2 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Plaisted

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

579C—Dixmont very fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Dixmont and similar soils: 85 percent Minor components: 15 percent

Description of Dixmont

Setting

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from schist and phyllite

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.58 to 1.98 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 11.3 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

Typical profile

0 to 3 inches: Very fine sandy loam 3 to 19 inches: Very fine sandy loam

19 to 65 inches: Silt loam

Minor Components

Bangor

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Sunapee

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Cabot

Percent of map unit: 3 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Berkshire

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

579D—Dixmont very fine sandy loam, 15 to 25 percent slopes, very stony

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Dixmont and similar soils: 85 percent Minor components: 15 percent

Description of Dixmont

Setting

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from schist and phyllite

Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.58 to 1.98 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 11.3 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

Typical profile

0 to 3 inches: Very fine sandy loam 3 to 19 inches: Very fine sandy loam

19 to 65 inches: Silt loam

Minor Components

Bangor

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Sunapee

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Berkshire

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Cabot

Percent of map unit: 2 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

590B—Cabot gravelly silt loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Elevation: 790 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Cabot and similar soils: 85 percent *Minor components*: 15 percent

Description of Cabot

Settina

Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Basal till derived from schist and phyllite

Properties and qualities

Slope: 0 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 14 to 39 inches to densic material

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.05 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 3.0 inches)

Interpretive groups

Farmland classification: Farmland of local importance

Land capability (nonirrigated): 6s

Hydrologic Soil Group: D

Typical profile

0 to 9 inches: Gravelly silt loam 9 to 14 inches: Gravelly loam 14 to 65 inches: Gravelly silt loam

Minor Components

Howland

Percent of map unit: 8 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Peacham

Percent of map unit: 5 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Base slope, side slope

Down-slope shape: Concave Across-slope shape: Concave

Wonsqueak

Percent of map unit: 2 percent

Landform: Swamps, bogs, depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

590C—Cabot gravelly silt loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Elevation: 790 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Cabot and similar soils: 85 percent *Minor components*: 15 percent

Description of Cabot

Setting

Landform: Hillslopes, depressions

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Basal till derived from schist and phyllite

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 14 to 39 inches to densic material

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.05 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 3.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: D

Typical profile

0 to 9 inches: Gravelly silt loam 9 to 14 inches: Gravelly loam 14 to 65 inches: Gravelly silt loam

Minor Components

Howland

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Peacham

Percent of map unit: 5 percent Landform: Depressions, hillslopes

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Tunbridge

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Plaisted

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex

Across-slope shape: Convex

Wonsqueak

Percent of map unit: 1 percent

Landform: Depressions, bogs, swamps

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

633A—Pemi silt loam, 0 to 5 percent slopes

Map Unit Setting

Elevation: 790 to 2,300 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Pemi and similar soils: 85 percent Minor components: 15 percent

Description of Pemi

Setting

Landform: Lake terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Lacustrine

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 0 to 10 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very high (about 13.7 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4w

Hydrologic Soil Group: C

Typical profile

0 to 5 inches: Moderately decomposed plant material

5 to 14 inches: Silt loam

14 to 21 inches: Very fine sandy loam 21 to 65 inches: Stratified silt loam

Minor Components

Grange

Percent of map unit: 5 percent

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Nicholville

Percent of map unit: 5 percent Landform: Lake terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Wonsqueak

Percent of map unit: 5 percent

Landform: Swamps, bogs, depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

670D—Tunbridge-Berkshire-Lyman complex, 15 to 25 percent slopes

Map Unit Setting

Elevation: 820 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Tunbridge and similar soils: 45 percent Berkshire and similar soils: 20 percent Lyman and similar soils: 15 percent Minor components: 20 percent

Description of Tunbridge

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: C

Typical profile

0 to 2 inches: Silt loam 2 to 25 inches: Silt loam

25 to 34 inches: Cobbly fine sandy loam 34 to 38 inches: Unweathered bedrock

Description of Berkshire

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from granite and gneiss

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.3 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: B

Typical profile

0 to 4 inches: Moderately decomposed plant material

4 to 10 inches: Fine sandy loam 10 to 24 inches: Very fine sandy loam 24 to 65 inches: Very fine sandy loam

Description of Lyman

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Ablation till derived from mica schist and/or ablation till derived from

granite and gneiss

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95

in/hr)

Depth to water table: About 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6e Hydrologic Soil Group: C/D

Typical profile

0 to 1 inches: Moderately decomposed plant material

1 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam

13 to 16 inches: Gravelly fine sandy loam 16 to 20 inches: Unweathered bedrock

Minor Components

Sunapee

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Peru

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

Monadnock

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Marlow

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Skerry

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Concave Across-slope shape: Concave

895A—Bucksport muck, 0 to 1 percent slopes

Map Unit Setting

Elevation: 790 to 2,490 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 37 to 46 degrees F

Frost-free period: 90 to 135 days

Map Unit Composition

Bucksport and similar soils: 75 percent

Minor components: 25 percent

Description of Bucksport

Setting

Landform: Depressions, bogs, swamps

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave Parent material: Organics

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: Very high (about 20.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7w

Hydrologic Soil Group: D

Typical profile

0 to 2 inches: Mucky peat 2 to 14 inches: Mucky peat 14 to 54 inches: Mucky peat 54 to 72 inches: Mucky peat

Minor Components

Searsport

Percent of map unit: 5 percent

Landform: Depressions, outwash terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Peacham

Percent of map unit: 5 percent Landform: Hillslopes, depressions

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Base slope, side slope

Down-slope shape: Concave Across-slope shape: Concave

Pondicherry

Percent of map unit: 5 percent

Landform: Swamps, bogs, depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Wonsqueak

Percent of map unit: 5 percent

Landform: Swamps, bogs, depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Rumney

Percent of map unit: 4 percent

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf, dip

Down-slope shape: Linear, concave Across-slope shape: Linear, concave

Vassalboro

Percent of map unit: 1 percent

Landform: Depressions, bogs, swamps

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

W-Water

Map Unit Composition

Water: 100 percent

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/

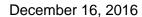
Custom Soil Resource Report

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

Geotechnical Engineering Report

Transition Station #1 Project Northern Pass Transmission Line Pittsburg, New Hampshire

December 16, 2016 QS Project No. 16004


Prepared for:

PAR Electrical Contractors, Inc. 60 Fuller Road Chicopee, Massachusetts 01020

Prepared by:

Quanta Subsurface 307 W. Main Street Radford, Virginia 24141

PAR Electrical Contractors, Inc. 60 Fuller Road Chicopee, Massachusetts 01020

Attention: Ms. Stephanie Labbe

Project Manager

Re: Geotechnical Engineering Report

Transition Station #1 Project – Northern Pass Transmission Line

Pittsburg, New Hampshire QS Project No. 16004

Dear Ms. Labbe,

The purpose of this report is to present the results of the subsurface exploration program and geotechnical engineering analyses undertaken by Quanta Subsurface (QS) associated with the above referenced project. Our services were provided in general accordance with QS's proposal dated August 22, 2016 as approved by PAR Electrical Contractors' (PAR) Limited Notice to Proceed (LNTP) #4 dated August 26, 2016. The attached report presents our understanding of the project, the findings of the subsurface exploration program, and our geotechnical conclusions and recommendations.

Sincerely,

Quanta Subsurface

Sean Kearney, P.G.

Gant. Verry

Project Engineering Geologist

NEW HAMPSTAND OF NEW HAMPSTAND OF NEW HAMPSTAND OF NO. 14656

NO. 14656

NO. 14656

NO. 14656

NO. 14656

NO. 14656

J.T. McGinnis, P.E. Geotechnical Department Manager

TABLE OF CONTENTS

1.0	PROJI	ECT INFORMATION	1
2.0	PROV	IDED DOCUMENTS AND PREVIOUS EXPLORATION DATA	1
3.0	PURP	OSE AND SCOPE OF SERVICE	2
4.0	EXPLO	DRATION AND TESTING PROCEDURES	3
4.1	SUE	SSURFACE EXPLORATION	3
4.2		ORATORY TESTING	
4.3		D INFILTRATION TESTING	
5.0		OGY AND SUBSURFACE CONDITIONS	
5.1 5.2		NERAL	
5.2 5.3		SUBSURFACE CONDITIONS	
6.0		IN AND CONSTRUCTION RECOMMENDATIONS	
6.1	GEN	IERAL	9
6.2	SITI	E PREPARATION	9
6.3		NTROLLED STRUCTURAL FILL	
6.4	SLC .4.1	PE STABILITYGeneral	
_	.4.1	New Slope Stability	
6.5		DUNDWATER CONDITIONS	
	.5.1	General	
	.5.2	Basin Estimated Seasonal High Water Table (ESHWT)	
6.6	GEO	OTECHNICAL DESIGN STRENGTH PARAMETERS	
6.7	BUS	S SUPPORT STRUCTURE/POLE FOUNDATION DESIGN AND CONSTRUCTION	
6	.7.1	General	
_	.7.2	Drilled Shaft Foundations	
	.7.3	Drilled Shaft Construction	
6.8		LLOW FOUNDATION DESIGN AND CONSTRUCTION	
	.8.1	Transformer Pad	
_	.8.2	Single-Story Equipment Structures	
	.8.3	Shrink-Swell and Frost Depth Considerations	
	.8.4	Shallow Foundation Construction	
6.9	.9.1	THQUAKE CONSIDERATIONSSeismic Site Class Definition	
	.9.2	Liquefaction	
6.10		ST GEOLOGY	
6.11		RROSION CONSIDERATIONS	
7.0	LIMITA	ATIONS	17
8.0	REFE	RENCES	17

FIGURES

Figure 1 Site Vicinity Map
Figure 2 Site Location Map
Figure 3 QS Boring Location Plan
Figure 4 H&A Boring Location Plan
Figure 5 Bedrock Geologic Map

APPENDICES

Appendix A H&A Boring Logs Appendix B QS Boring Logs

Appendix C QS Rock Core Photographs
Appendix D Laboratory Test Results
Appendix E Infiltration Test Results

Appendix F Summary Geotechnical Design Parameters

Appendix G SLIDE 7.0 Stability Outputs

EXECUTIVE SUMMARY

This Executive Summary is provided as a brief overview of our geotechnical engineering conclusions and recommendations for the project and is not intended to replace more detailed information contained elsewhere in this report. As an overview, this summary inherently omits details that could be very important to the proper application of the provided geotechnical design recommendations. This report should be read in its entirety.

- QS's geotechnical field exploration program consisted of thirteen (13) Standard Penetration Test (SPT) borings, drilled to a maximum depth of approximately 50 feet.
- Three infiltration (INF) test borings were conducted to characterize the subsurface conditions to a depth of approximately 5 feet below the planned basin bottom. Following completion of each INF test boring, field infiltration tests were performed at each location.
- The subsurface conditions encountered at the site generally included a layer of topsoil, glaciofluvial deposits, glacial till (ablation till), and bedrock. Test borings performed by others in the vicinity of the project site reported similar conditions to those encountered during the exploration program presented herein.
- With the exception of borings BH 108 and BH 110, groundwater was encountered in each of the borings. Based on groundwater depths encountered and reported in both the QS and Haley & Aldrich test borings, we anticipate that groundwater will exist at a depth ranging from 0 (i.e. the ground surface) to 10 feet below existing grades across the site.
- In general, the subsurface conditions encountered at the site are suitable for the proposed construction with considerations presented herein.
- Due to relatively very dense/hard glaciofluvial soils encountered at relatively shallow depths in the area of the planned structures and the possible presence of cobbles/boulders at shallow depths in other areas of the project site, drilled shafts are recommended for support of the bus support/pole structures.
- Controlled structural fill and/or the onsite soils (glaciofluvial deposits) will provide suitable support for the transformer pad designed to transmit an approximate uniform bearing pressure of up to 500 psf and structures supported by shallow foundation designed with a maximum allowable bearing pressure of 3,000 psf.
- Frost depth should be anticipated to be 4 feet below the lowest adjacent grade.
- A Seismic Site Class Definition of "D" is recommended for design.
- Laboratory corrosivity testing performed on samples collected from the site indicated that soil in the vicinity of BH 105 exhibit "aggressive" corrosion properties.
- We anticipate that the planned cut and fill slopes will exhibit a factor of safety (FoS) of 1.3 or greater for global stability.

1.0 PROJECT INFORMATION

The Northern Pass project consists of a 192-mile long transmission line that will convey 1,090 megawatts of energy from hydroelectric facilities in Canada to New England via a corridor than traverses north-to-south through New Hampshire (see Site Vicinity Map – Figure 1). In addition to construction of new transmission line, the project also includes the construction of three (3) new substations and six (6) new transition stations along the corridor. In general, the new transition stations (designated Transition Stations #1 through #6) are located along the northern and central portions of the corridor while the three new substations (designated Franklin Substation, Deerfield Substation, and Scobie Pond Substation) are located along the southern portion of the corridor. The information presented herein is for the Transition Station #1 located approximately 1 mile north-northwest of Clarksville, New Hampshire (see Site Location Map - Figure 2).

The Transition Station #1 site is undeveloped and wooded. Within the transition station pad footprint, the ground surface elevations range from approximately 1169 feet to 1187 feet. Maximum depths of cut and fill of approximately 20 feet and 2 feet, respectively, will be required to develop the planned finished grade elevations of 1166 to 1172 feet. Development will include construction of cut slopes with a planned configuration of 3 (Horizontal) to 1 (Vertical) along the southwest, northwest, and northeast sides of the site. A small fill slope with a 3H to 1V configuration will be constructed along the pad's southeast side between it and a planned storm water basin. Along the south side of the basin, a small slope with a planned configuration of 2H to 1V with a riprap facing will be constructed. No retaining walls or asphalt pavements are planned.

New structures within the transition station footprint are anticipated to consist of a transformer pad, a bus support structure, and possibly single-story structures designed to house electrical equipment. Quanta Subsurface (QS) has assumed the following regarding loading and foundation support of the new structures: 1) the bus structure will require deep foundation support to resist shear and overturning loads, 2) the transformer pad will consist of slab-on-grade support designed for a maximum bearing pressure of 500 psf, and 3) single-story structures designed to house equipment will be lightly loaded with shallow foundation support.

2.0 PROVIDED DOCUMENTS AND PREVIOUS EXPLORATION DATA

Multiple documents were provided to QS by PAR Electrical Contractors (PAR) for consideration during our geotechnical exploration and engineering evaluation. The provided geotechnical report documents were developed by others and presented information at various locations along the transmission line corridor. Upon review of the provided data, one document provided test boring data within and immediately adjacent to the Transition Station #1 footprint. Also, one document provided GIS information containing general surficial and bedrock geology information in the area of the Transition Station #1 site. The specific documents included as reference by QS herein are listed below.

- Haley & Aldrich, Inc.; Geotechnical Data Report Route 3/Connector River Crossing: Northern Pass Transmission Project, February 21, 2014.
- Terracon Consultants, Inc.; Report of Expected Geotechnical Conditions: Northern Pass Project; July 10, 2015.

Although data from these two reports was not specifically used in development of the recommendations presented in Section 6.0 of this report, selected information was used as reference in support of the site specific data obtained by QS. Specific citations are noted below.

3.0 PURPOSE AND SCOPE OF SERVICE

QS's scope of work was developed based on information provided by PAR that included requested field investigations for civil works from Burns & McDonnell (*Subsurface Exploration and Geotechnical Engineering Report: Technical Guidelines*; Northern Pass Transmission Stations, New Hampshire, provided to QS on July 11, 2016) as well as requested investigations for planned structures from others. The purposes of our involvement on Transition Station #1 phase of the project were as follows: 1) provide general descriptions of the subsurface conditions encountered at the transition station site; 2) provide geotechnical design parameters for use by others in analysis and design of site grading and permanent slopes; 3) provide geotechnical foundation design recommendations for support of the transition station structures; and 4) comment on geotechnical aspects of the proposed construction. In order to accomplish the above objectives, QS undertook the following scope of services:

- 1) reviewed available subsurface and geologic information relative to the project site;
- 2) supervised a subsurface exploration program consisting of thirteen (13) geotechnical borings within the area of the proposed transition station;
- 3) performed field infiltration testing services at three (3) locations within the proposed basin areas:
- 4) supervised a laboratory testing program on selected soil and rock core samples obtained during the drilling program;
- 5) evaluated the findings of the test borings and laboratory tests relative to foundation support of planned structures and other geotechnical aspects of the project;
- 6) and prepared this written report summarizing our services for the project, providing descriptions of the subsurface conditions encountered, laboratory test results, and design recommendations, as well as geotechnical considerations for construction. Copies of the QS boring logs, rock core photos, laboratory test results, infiltration test results, summary of geotechnical design parameters, and slope stability analysis outputs are provided in Appendices B through G.

QS's scope of services did not include a survey of boring locations and elevations, quantity estimates, preparation of plans or specifications, pavement design, infiltration/retention basin design, blasting recommendations, identification of environmental impacts or aspects related to the project and/or site, or other services not specified above.

4.0 EXPLORATION AND TESTING PROCEDURES

4.1 SUBSURFACE EXPLORATION

QS's geotechnical field exploration program consisted of thirteen (13) Standard Penetration Test (SPT) borings performed at the approximate locations shown on the attached QS Boring Location Plan (see Figure 3) and summarized in Table 1 below. For reference, the location of three Haley & Aldrich's (H&A) borings (HA-5, HA-6 & HA-7) that exist within or adjacent to the Transition Station #1 site are illustrated in Figure 4. The QS test boring locations were staked in the field by others using surveying methods; ground surface elevations at the boring locations were derived from topographic data included within an ACAD site plan document (labeled *NPTT104-C101-Geotech.dwg*) using latitude and longitude data provided by PAR.

Table 1 - As-Drilled SPT Borehole Depths and Coordinates

Boring Designation	Total Depth (ft)	Ground Surface Elevation (ft)	Latitude	Longitude
BH 101	10	1148.7	45.02149722	-71.46548056
BH 102	13	1164.7	45.02172222	-71.46584167
BH 103	15	1169.9	45.02200556	-71.46572778
BH 104	15	1168.9	45.02231667	-71.46516111
BH 105	22	1176.7	45.02241944	-71.46548889
BH 106	48	1186.9	45.02228889	-71.46605833
BH 107	11	1180.9	45.02261111	-71.46549444
BH 108	27	1196.1	45.02230000	-71.46638889
BH 109	36	1188.2	45.02263056	-71.46576667
BH 110	25	1209.2	45.02256389	-71.46643333
INF 101	14	1163.7	45.02194444	-71.46533333
INF 102	12.5	1162.7	45.02200833	-71.46522222
INF 103	10	1145.2	45.02160833	-71.46511389

Note: Elevation information is NAVD88

Test borings were performed by S.W. Cole Engineering, Inc. (S.W. Cole) utilizing a CME 850 drill rig equipped with a 140-lb automatic drop hammer falling 30 inches. The drilling methods utilized for this investigation consisted of solid stem augers, hollow stem augers, and rotary drive and wash (wet rotary). Standard penetration testing was performed in general accordance with ASTM D1586 and at approximate 2-foot intervals to a depth of 10 feet and at 5-foot intervals thereafter. The number of hammer blows required to advance the sample for successive 6-inch intervals is recorded, and the total number of blows required to drive the sampler from 6 to 18 inches is referred to as the SPT "N-value". The N-value provides a general indication of in-situ soil density/consistency and has been correlated with certain engineering properties of soils. Soil samples were collected with a standard split-spoon sampler (2-in OD) and in bulk samples from auger cuttings for laboratory testing.

In some soils it is not always practical to drive a split-spoon sampler the full four consecutive 6-inch increments. Whenever more than 50 blows are required to drive the sampler over a 6-inch increment, or the sampler is observed not to penetrate after 50 blows, the condition is referred to as split-spoon refusal. The SPT N-value for split-spoon refusal conditions is typically estimated as greater than 100 blows per foot (bpf). Where the sampler is observed not to penetrate after 50 blows, the N-value is reported as 50/0. Otherwise, the depth of penetration after 50 blows is reported in inches (i.e. 50/5, 50/2, etc.).

The test borings were extended to the planned termination depth or auger refusal, whichever was encountered first. At select locations, the boring was advanced beyond auger refusal using double-tube rock-coring techniques in accordance with ASTM D2113.

The subsurface materials encountered at each boring location were visually classified by QS personnel in the field. Soil samples were visually classified in accordance with ASTM D2488. The rock core was visually classified for lithology and parameters were collected for weathering, intact rock strength, rock mass discontinuities, core recovery, and Rock Quality Designation (RQD) for each run. In addition to visual classification of the materials in the field, the boring logs incorporate both driller and field inspector observations and comments as well as modifications based on laboratory test results. QS's boring logs and associated rock core photographs are presented in Appendix B and C, respectively. SPT samples were collected in Ziploc bags and bulk samples were collected in 5-gallon buckets. The rock core samples were placed in wood core boxes and photographed.

4.2 LABORATORY TESTING

QS selected various bulk, SPT, and rock core samples for laboratory testing. Laboratory testing on soil samples was performed by S.W. Cole in their Londonderry and Manchester (New Hampshire) laboratories or via subcontract with Absolute Resource Associates (sulfate and chloride testing). Laboratory testing on rock core samples was performed by GeoTesting Express in their Acton, Massachusetts laboratory. Table 2 provides a summary of the laboratory testing performed for the Transition Station #1 site. A summary of the laboratory testing results and accompanying laboratory test data reports are provided in Appendix D.

Table 2 – Laboratory Test Summary

Test	ASTM/AASHTO	No. of Test Performed
Moisture Content	D2216	24
Sieve Analysis	D422	3
Percent Passing No. 200 Sieve	D1140	7
Atterberg Limits	D4318	3
Modified Proctor	D1557	3
Unconfined Comp. Strength of Rock	D7102	3
pH of Soil	G51	2
Soluble Chloride		2
Soluble Sulfate		2
Resistivity	T188	2

4.3 FIELD INFILTRATION TESTING

Three infiltration (INF) test borings were conducted (designated INF 101, INF 102, and INF 103) to characterize the subsurface conditions to a depth of approximately 5 feet below the planned basin bottom. Each boring was sampled continuously (every 2 feet) from ground surface to its termination depth. Following completion of each INF test boring, an offset borehole was drilled and PVC casing was installed to the approximate planned bottom of the basin for field infiltration testing. At some time following completion of drilling, field infiltration tests were performed by Quanta Subsurface. The results of the field infiltration tests are provided in Appendix E. The installation, preparation, and testing procedures followed were in general accordance with Table 2-3 of the New Hampshire Department of Environmental Services Stormwater Manual, Volume 2 (2008).

5.0 GEOLOGY AND SUBSURFACE CONDITIONS

5.1 GENERAL

The overburden soils at the project site are derived from several episodes of advancing and retreating glacial ice. Subsurface materials encountered within the borings are consistent with the geologic setting of the area. The following sections describe the regional geology and site specific subsurface conditions.

5.2 REGIONAL GEOLOGY

The surficial geology of the White Mountains in New Hampshire is derived from the erosional and depositional processes of the continental and mountain glaciers of the Wisconsin Glacial Episode during the late Pleistocene Epoch. The dominant glacial soils that are found in this region are glacial till, glaciofluvial/outwash deposits, and glacio-lacustrine deposits. Younger post glacial deposits formed from the numerous rivers, streams and lakes that dominate the landscape; these include alluvium and stream terrace deposits. The surficial soil in the area of the Transition Station #1 site is mapped as ablation till (Figure 3; Terracon, 2015).

Bedrock in the White Mountains are comprised of folded and faulted Paleozoic sedimentary and volcanic rocks that have been regionally metamorphosed and intruded by large and small bodies of plutonic rocks. The grade of metamorphism ranges from the chlorite zone at one extreme to the sillimanite zone at the other (Billings, 1980). The majority of the rocks mapped in this region consist of schist, phyllites, limestone, and quartzite. As shown in Figure 5 (Bedrock Geology Map), extrapolation of information provided in the *Geologic Map and Structure Sections of the Dixville Quadrangle* (1963) indicates that bedrock underlying the Transition Station #1 site consist of the Gile Mountain Formation described as phyllite and micaceous quartzite.

5.3 SITE SUBSURFACE CONDITIONS

The subsurface conditions encountered in the test borings generally included a layer of topsoil, glaciofluvial deposits, glacial till (ablation till), and bedrock. Test borings performed by Haley & Aldrich (provided in Appendix A) in the vicinity of the Transition Station #1 site reported generally similar conditions of glaciofluvial and/or glacial till deposits consisting of very dense sands and

gravels underlain by bedrock described as fresh to slightly weathered phyllite (Haley & Aldrich, 2014). A summary of the subsurface materials encountered in the exploration described herein is provided below and in Table 3, and specific data are shown on the QS boring logs provided in Appendix B.

Topsoil

Material described as topsoil was encountered at the ground surface in each of the test borings. The thickness of the topsoil ranged from 1 to 2 feet. The sampled topsoil was described as lean CLAY (CL) or SILT (ML) with trace amounts of organics and varying amounts of sand. Laboratory testing was not performed to determine the organic content or horticultural properties of the topsoil. Therefore, the term "topsoil" is not intended to indicate suitability for landscaping and/or other purposes.

Glaciofluvial Deposits

The glaciofluvial deposits are described as sands and gravels with minor amounts of silt and clay (eroded glacial till) that were deposited within high energy meltwater channels draining into the valleys. Glaciofluvial materials were encountered in each test boring and were generally described as silty SAND (SM), silty GRAVEL (GM), or SILT (ML) with varying amounts of sand. Zones of cobbles and boulders were present at several locations. Field N-values obtained within the glaciofluvial material ranged from 6 bpf to 50 blows per 5 inches of penetration (i.e. 50/5") with a typical N-value ranging from 10 to 35 bpf.

Glacial Till

Glacial till was encountered below glaciofluvial deposits at seven (7) boring locations: BH102, BH 103, BH 105, BH 106, BH 107, INF 101 and INF 102. Glacial till deposits consist of material that has been transported and deposited by glacial ice. The glacial till encountered was characterized as ablation till (melt-out till) indicating the material was carried on or near the surface of the glacier. Boulders of varying size are common within till deposits. Sampled till was generally described as sandy silty SAND (SM), sandy SILT (ML), and SILT (ML). Field N-values obtained within the till material ranged from 44 bpf to 50 blows per 5 inches of penetration.

Refusal Conditions/Bedrock

Bedrock and/or auger refusal was encountered in eight (8) test borings. Auger refusal occurs when materials are encountered that cannot be penetrated by a soil auger or roller bit and is normally indicative of hard or very dense material, such as debris within fill, boulders, rock lenses, pinnacles, or the bedrock surface. In test borings BH 102, BH 103, BH 107, and INF 102 auger refusal was encountered and coring was not performed to confirm the nature of the auger refusal material. However, based on the soil conditions and depths to bedrock encountered in adjacent borings within the site, QS anticipates that the auger refusal conditions in these borings are indicative of the bedrock surface.

One rock type was identified in the test borings: PHYLLITE. The unit is described as fresh to highly weathered, fine grained, very weak to strong, PHYLLITE. The unit exhibited a weathered zone transitioning from highly weathered to fresh or slightly weathered bedrock with the upper 1 to 5 feet of the bedrock surface.

Groundwater

Groundwater levels were measured using a tape measure in each boring. With the exception of borings BH 108 and BH 110, groundwater was encountered in each of the borings. Borings BH 108 and BH 110 have the highest ground surface elevations and are the furthest borings from the transition station pad; we expect that the lack of groundwater data at these two locations was the result of introduction of water to facilitate drilling required below a depth of 9 feet.

Where encountered, groundwater depths ranged from 0 (i.e. at the ground surface) to 9.7 feet below the existing ground surface. Where ground water was reported near the ground surface (BH 104, BH 105 and BH 109), a flowing drainage feature existed immediately adjacent to the boring area. Therefore, the high groundwater depths may have be the result of water infiltration into the boreholes from or near the surface. Fluctuations in water levels and soil moisture should be anticipated with changes in precipitation, run-off, and moisture.

Table 3 – Encountered Subsurface Conditions Summary

Boring No. Ground Elevation (ft) BH 101 1148.7 BH 102 1164.7 BH 103 1169.9 BH 104 1168.9 BH 105 1176.7 BH 106 1186.9	Depth to Groundwater ¹ (ft)	Boring Termination Condition	Depth (ft)	Material Origin	Encountered Material	Field N-Value ²	
				0 - 1	Topsoil	ML	-
DU 101	11/07	7.5	ВТ	1 - 2	Olaski (l. kal	SM	7
DIT IOI	1140.7	7.5	B1	2 - 5	Glaciofluvial Deposits	SM	50/6" - 50/4"
				5 - 10	Верозно	SM	20 - 23
				0 - 1	Topsoil	CL	-
BH 102	11647	1.0	AR	1 - 2	Glaciofluvial	SM	6
DI1 102	1104.7	1.0	AN	2 - 8	Deposits	SM/GP-GM	15 - 39
				8 - 13	Till	SM	44
				0 - 1	Topsoil CL		-
DI 1400	4400.0	4.0	AD	1 - 2	Glaciofluvial	SM	4
BH 103	1169.9	4.0	AR	2 - 6	Deposits	SM	10 - 14
				6 - 15	Till	SM/ML	47 - 53
				0 - 1	Topsoil	CL	-
				1 - 2		SM	7
BH 104	1168.9	0.3	BT	2 - 4	Glaciofluvial	SM	23
				4 - 8	Deposits	GM	50/5"
				8 - 15		SM	28
				0 - 1.5	Topsoil	CL	2
BH 105	1176.7	0.0	ВТ	1.5 - 13	Glaciofluvial Deposits	SM/ML	6 - 19
				1.5 - 22	Till	SM	50 - 55
				0 - 1	Topsoil	CL	-
				1 - 2	Glaciofluvial	SM	8
BH 106	1186.9	6.0	СТ	2 - 13	Deposits	SM	17 - 52
				13 - 33	Till	SM/ML	47 - 50/5"
				33 - 50.8	Bedrock	F Phyllite	-

Table 3 – Encountered Subsurface Conditions Summary (cont)

No. Elevation (ft) Groundwater (ft) Condition Field N-Value ²							
				0 - 1	•	CL	4
BH 107	1180.9	3.0	AR	1 - 8.5		SM	11 - 13
				8.5 - 11	Till	SM	53
				11 - 13.5	Bedrock	HW Phyllite	-
				0 - 1	Topsoil	ML	-
BH 108	1106 1	NE	СТ	1 - 2		Material No.	7
DI1 100	1130.1	14.∟.	01	2 - 8	Deposits	SM	26 - 34
				8 - 27	Bedrock	F Phyllite	-
				0 - 1	•	CL	-
BH 100	1100 0	0.2	СТ	1 - 20		SM/GM	11 - 38
DH 109	1100.2	0.2	Ci	20 - 21	Bedrock		50/2"
				21 - 36		F Phyllite	-
				0 - 1	•	CL	6
BH 110	1209.2	N.E.	СТ	1 - 8		SM	29 - 33
				8 - 10	Redrock	HW Phyllite	50/6"
				10 - 25	F Phyllite	-	
							-
INF 101	1163 7	6.5	RT				5
1141 101	1100.7	0.0	J.			_	32 - 89
							35 - 47
					Topsoil		-
INF 102	1162.7	7.4	AR				10 - 24
					7		32 - 33
							45 - 50/3"
					•		3
INF 103	1145.2	9.7	BT				17
				4 - 10	Deposits	SM/ML	49 - 50/4"

¹ Reported groundwater levels were measured at the time of drilling.
2 Field N-Value is an uncorrected blow count value measured in the field.
BT = Boring Termination (at or near the planned depth)
CT = Coring Terminated
AR = Auger or Roller Bit Refusal

6.0 DESIGN AND CONSTRUCTION RECOMMENDATIONS

6.1 GENERAL

The following sections present our geotechnical recommendations for design and construction of the transition station. In general, the subsurface conditions encountered at the site are suitable for the proposed construction with considerations presented in the following subsections.

6.2 SITE PREPARATION

Before proceeding with construction, any topsoil, roots, foundation remnants, pavements, and any other deleterious non-soil materials should be stripped or removed from the proposed construction area. During the clearing and stripping operations, positive surface drainage should be maintained to prevent the accumulation of water. It should be noted that areas of standing surface water and small streams of flowing water were observed at the surface in multiple areas within the project site.

After stripping, areas intended to support new fill, gravel roadways, slabs, and foundations should be carefully evaluated by an experienced geotechnical engineer or engineering geologist. Where noted on the borings logs and where located within 3 to 4 feet of new fill, roadways, slabs, and foundations, soils that exhibit SPT N-values of 6 bpf or less should be removed and replaced with controlled structural fill placed in accordance with recommendations presented in Section 6.3. The geotechnical engineer/geologist may also require scarification and compaction (per Section 6.3) of the upper 6 inches of the exposed surface and/or proofrolling of the subgrade with a 20- to 30-ton loaded dump truck or other pneumatic tired vehicle of similar size and weight. Proofrolling should be performed during a time of good weather and not while the site is wet, frozen, or severely desiccated. The purpose of the proofrolling is to locate soft, weak, or excessively wet soils present at the time of construction and provide an opportunity for the geotechnical engineer/geologist to locate inconsistencies intermediate of the boring locations.

Depending on how the near surface materials respond during proofrolling operations, some inplace densification, undercutting, or in-place stabilization may be required. The extent of densification, undercutting and/or in-place stabilization required across the site can best be determined by a geotechnical engineer/geologist at the time of construction. Once the site has been properly prepared, at-grade construction may proceed.

6.3 CONTROLLED STRUCTURAL FILL

The majority of the project site will require excavation/cut to achieve the planned finished grades. Where required, controlled structural fill may consist of the non-organic, on-site soils (including glaciofluvial and till soils). Based on laboratory testing on bulk samples obtained from other transition stations and substations sites along the transmission line corridor, we anticipate that off-site borrow material will consist of sandy silt, silty sand, or sand with a USCS classification of ML, SM, or SP. Other materials may be suitable for use as controlled structural fill and should be individually evaluated by the geotechnical engineer; in general, the structural fill should have a USCS classification of CL, ML, SM, or SC. Controlled structural fill should be free of boulders, organic matter, debris, or other deleterious materials and should have a maximum particle size no greater than 3 inches.

Fill materials should be placed in horizontal lifts with a maximum height of 8 inches loose measure. New fill should be adequately keyed into stripped and scarified subgrade soils and should, where applicable, be benched into the existing slopes. During fill operations, positive surface drainage should be maintained to prevent the accumulation of water. We recommend that structural fill (soil and crushed stone) be compacted to a minimum of 95 percent of the maximum dry density and within two (2) percentage points of the optimum moisture content determined by the modified Proctor density test (ASTM D1557). In confined areas such as utility trenches, portable compaction equipment and thin lifts of 3 to 4 inches may be required to achieve specified degrees of compaction. Each lift of fill should be tested in order to confirm that the recommended degree of compaction is attained.

6.4 SLOPE STABILITY

6.4.1 General

We recommend that cut and fill slopes have a minimum factor of safety of 1.3 for global stability. Proposed structures on the Transition Station #1 site should be located a minimum distance of 10 feet and 15 feet from the crest and toe of slopes, respectively. In addition, we recommend that roadways be designed with a minimum setback of 5 feet from both the crest and toe of slopes.

Drainage from nearby structures and/or surface runoff should be directed away from the crest and toe of both planned cut and fill slopes. We note that diversion of surface water away from the slope crest and face is critical to reducing the potential of surface erosion and shallow failures. For erosion protection, a protective cover of grass or other vegetation should be established on permanent soil slopes as soon as possible.

6.4.2 New Slope Stability

New slopes constructed to develop the planned finished grade of the transition station pad will predominately consist of cut slopes with a configuration of 3H to 1V and a maximum unbenched height of 30 feet. Using the computer program SLIDE 7.0 (RocScience), stability analyses were performed on two cut slope sections in the vicinity of borings BH 102/BH 103 and BH 109. The BH 102 and BH 109 cut slopes were models with a configuration of 3(H) to 1(V) and a height of 20 feet and 24 feet, respectively. Based on the results of the SLIDE analyses (see Appendix G – Outputs 1 and 2), we anticipate that planned 3(H) to 1(V) cut slopes will exhibit a factor of safety (FoS) of 1.3 or greater for global stability if constructed in accordance with the recommendations presented herein.

A small 2(H) to 1(V) fill slope with a rip-rap face and a height of less than 6 feet is also planned as part of the basin located immediately southeast of the transition station pad. We anticipate that planned 3(H) to 1(V) fill slopes less than 10 feet in height and the 2(H) to 1(V) slope with rip rap face will exhibit a factor of safety (FoS) of greater than 1.3 for global stability. We recommend that the protective rip-rap layer have a minimum thickness of 1.5 feet, be underlain by a separation geotextile to minimum soil intrusion into the rip-rap, and be keyed into the subgrade at the slope's toe a minimum of 1.5 feet. The separation geotextile fabric used should have an equivalent opening size of equal to or greater than the US No 50 sieve, a minimum tensile strength at 20 percent strain of 30 pounds/linear inch, and a minimum puncture strength of 80 pounds.

6.5 GROUNDWATER CONDITIONS

6.5.1 General

Based on the data obtained during our exploration program, we anticipate that groundwater will be encountered during expected earthwork or shallow foundation excavations at the site. Based on groundwater depths encountered and reported in both the QS and Haley & Aldrich test borings, we anticipate that groundwater will exist at a depth ranging from 0 (i.e. the ground surface) to 10 feet below existing grades across the site. Fluctuation of the groundwater surface due to seasonal precipitation and immediately after precipitation events should be expected.

6.5.2 Basin Estimated Seasonal High Water Table (ESHWT)

Borings INF 101, INF 102, and INF 103 were performed to characterize the subsurface conditions to a depth of approximately 4 to 5 feet below the planned basin bottom and provide information necessary to estimate the seasonal high water table within the basin footprint. Subsurface data recorded in the infiltration test borings are shown on the respective logs included in Appendix B, and the results of infiltration tests performed immediately adjacent to each boring are provided in Appendix E. Table 5 below presents a summary of the interpreted ESHWT at each boring location as well as pertinent information required for design of the basins.

Table 5 – Basin Summary Information

Description	Boring INF 101	Boring INF 102	Boring INF 103						
Infiltration Planned Bottom Elev. (ft)	1155.6	1155.6	1140.4						
Encountered Very Dense/Very Hard Soil Elev. (ft)	1160	1151	1139						
Encountered Bedrock Elev. (ft)	N.E.	1150	N.E.						
Encountered Groundwater Elev. (ft)	Encountered Groundwater Elev. (ft) 1157 11								
Description Descr	N.E.	N.E.							
USDA Textural Class (with 5 ft of Basin Bottom)	Clay	Sandy Clay Loam	Clay						
Description INF 101 102 10 Infiltration Planned Bottom Elev. (ft) 1155.6 1155.6 114 Encountered Very Dense/Very Hard Soil Elev. (ft) 1160 1151 113 Encountered Bedrock Elev. (ft) N.E. 1150 N. Encountered Groundwater Elev. (ft) 1157 1155 113 Highest Elevation of Observed Redox Features N.E. N.E. N.E. N. USDA Textural Class (with 5 ft of Basin Bottom) Clay Clay Clay Loam Loam Estimated Seasonal High Water Table (ESHWT) Elev. (ft) 1157 1155 113 Infiltration Test Elevation (ft) 1153 1152 113	1) 1157 1155 1135								
Infiltration Test Elevation (ft)	1153	1152	1139						
Description Descr	4.2								

Notes:

¹⁾ Borings generally extended about 5 feet below the planned depth of each respective basin unless where refusal and/or bedrock was encountered.

²⁾ N.E. = Not Encountered

³⁾ Very Dense/Very Hard Soil is defined as material exhibiting an SPT N-Value of greater than 50 blows per foot (bpf).

⁴⁾ Noted elevations are estimates and should be considered approximate.

⁵⁾ The average infiltration rate presented is based on field measurements; a factor of safety has not been applied.

⁶⁾ Drilling contractor flushed the infiltration test boreholes with water following test casing installation. The water level measurements obtained at INF 101 and 102 at the time of the infiltration testing are not anticipated to represent the stabilized groundwater level. See the INF 101 and 102 boring logs for the appropriate groundwater levels.

6.6 GEOTECHNICAL DESIGN STRENGTH PARAMETERS

Recommended geotechnical strength parameters are provided for the subsurface conditions encountered in each test boring (not including infiltration test borings) in Appendix F. The recommended strength parameters for soil and highly weathered bedrock (HWR) were developed based on consideration of lab test results and established correlations with SPT data.

For bedrock described as slightly weathered or better, parameters in the form of equivalent Mohr-Coulomb parameters were developed and are recommended for strength properties of the rock mass. The equivalent Mohr-Coulomb strength properties were developed based on fitting an average linear relationship to the curve generated by solving for the Generalized Hoek-Brown failure criterion over an estimated range of minor principal stress values (Hoek et. al, 2002). The range of minor principal stresses was assumed as that common to a typical slope of up to 30 feet in height. The computer program RocLab (developed by Rocscience Inc.) was used to the estimate rock mass equivalent Mohr-Coulomb strength properties provided in Appendix F.

6.7 BUS SUPPORT STRUCTURE/POLE FOUNDATION DESIGN AND CONSTRUCTION

6.7.1 General

Foundation support for the bus support structure (including ancillary pole structures) is anticipated to require deep foundations to resist shear and overturning loads. Driven pile, helical pile, and drilled shaft foundation options were considered for support of the bus structure. We anticipate that very dense/hard till soil may be encountered within 10 feet of the planned finished grade. In addition, based on conditions encountered in other borings within the station pad area the existence of cobbles and boulders is a possibly. Therefore, some amount of pre-drilling would be expected to facilitate installation of driven and helical piles. Considering this and the conditions encountered in boring BH 105, we recommend that support for the bus support/pole structures consist of drilled shafts at the Transition Station #1 site.

6.7.2 Drilled Shaft Foundations

Based on the subsurface conditions encountered in the area of BH 105, a top of finished grade elevation of about 1172 feet, and the general site preparation recommendations presented in previous sections of this report, we recommend the allowable axial values and the associated LPILE (lateral) parameters shown in Tables 6 and 7, respectively, be used for design of drilled shaft foundations. Total settlement of drilled shaft foundations designed per the recommendations provided below is estimated to be less than 1 inch.

Table 6 – Recommended Drilled Shaft Axial Design Parameters

Sublayer Description	De	layer pth ft)	Material USCS	Allowable Skin Friction	Allowable Skin Friction	Allowable End Bearing
- 3 σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	Тор	Bottom	Description	(Comp.) (psf)	(Uplift) (psf)	(psf)
Topsoil/GFD	0	5	CL/SM		REMOVED	
Glaciofluvial	5	10	SM/ML		IGNORE	
Deposits	Deposits 10 13		ML	80	80 60	
Till	13+	-	SM	775	650	20,000

Notes:

- Approximately 5 feet of soil will be removed in the area of BH 105 to bring the area to the planned finished grade of 1172 feet.
- Ultimate skin friction and end bearing capacities determined per methods prescribed in FHWA GEC 10: Drilled Shaft: Construction Procedures and LRFD Design Methods (2010).
- 3) Allowable capacities for skin (comp), skin (uplift), and end-bearing determined by applying a factor of safety of 2.5, 3.0 and 3.0, respectively.

Table 7 - Recommended Drilled Shaft Lateral (LPILE) Design Parameters

Sublayer Description	De	ayer pth t) Bot.	Material USCS Description	Effective Unit Weight (pcf)	Effective Friction Angle (deg)	Soil Modulus Constant (k) (pci)	Unconfined Comp. Strength (psi)	m _i	Poisson's Ratio	Geologic Strength Index (GSI)	Rock Mass Modulus (psi)
Topsoil/Till	0	5	CL/SM			(рсі)	REMO	OVED			
Glaciofluvial	5	oth :) Bot.	SM/ML	53	31	45	-	-	-	-	-
Deposits	8	13	ML	53	27	10	-	-	-	-	-
Till	13+	-	SM	73	41	161	-	-	-	-	-

Note:

Additional Drilled Shaft Design Recommendations

- Due to strain incompatibilities, drilled shaft design based entirely on skin friction or end bearing is recommended.
- A minimum shaft length (below the ground surface) of 12 feet is recommended to adequately resist uplift created due to adfreeze forces within the frost zone.
- A minimum shaft diameter of 30 inches is recommended.
- Should multiple shaft foundations be required, the minimum center-to-center spacing should be three (3) times the shaft diameter.
- Based on groundwater depths encountered and reported in QS test borings, we anticipate that groundwater will exist within 5 feet of the planned finished grade.

¹⁾ Use of the Reese (Sand) constitutive model is recommended for each sublayer.

6.7.3 Drilled Shaft Construction

Temporary wall support through the use of temporary casing may be required to prevent loss of sidewall support. The use of slurry for side wall support is not recommended. We recommend that the proposed drilled shaft construction equipment, methods, procedures, and planned quality control testing and inspection during construction be reviewed by a qualified geotechnical engineer prior to the start of shaft construction.

The ability of a drilled shaft to provide the end bearing resistances and associated settlements described herein is directly related to the construction methods and procedures used to provide a clean shaft bottom condition. Drilled shaft excavation and clean out methods shall result in bases/bottoms that are free of loose, soft, or disturbed material. Cleaning of the shaft excavations shall result in a maximum of 1 inch of loose, soft, or disturbed material on the shaft bottom at the time of concrete placement. Should concrete placement within the shaft not occur immediately following excavation and clean out, the condition of the excavation bottom shall be verified to confirm that no more than 1 inch of loose, soft, or disturbed material is present in the bottom of the excavation prior to concrete placement. Inspection of the installation methods and materials by an individual qualified and experienced in drilled shaft construction is recommended.

Placement of concrete via free-fall methods is acceptable assuming placement is directed vertically downward avoiding impact with reinforcement and that the height of groundwater on the bottom of the shaft does not exceed 3 inches at the time of placement. Should the level of water at the bottom of the excavation not be maintained at less than 3 inches, concrete placement via tremmie methods will be required.

6.8 SHALLOW FOUNDATION DESIGN AND CONSTRUCTION

6.8.1 Transformer Pad

Where planned (vicinity of BH 105), we anticipate that approximately 5 feet of cut will be required to develop the planned finished grades in the area of the transformer pad. Therefore, we expect the transformer pad to be supported on medium dense and stiff glaciofluvial deposits silty sands and sandy silts. If the transformer equipment and ancillary connections are susceptible to vertical movement resulting from frost action, then the silty sand/sandy silt material 4 feet below the transformer pad (and to a distance of 2 feet laterally beyond the pad edges) should be removed and replaced with a clean sand or gravel meeting the requirements of NHDOT Standard Specification Section 209.

Controlled structural fill material placed in accordance with recommendations provided in herein and/or the existing glaciofluvial deposits underlying the site will provide suitable support for transformer pads design to impart an approximate uniform bearing pressure of up to 500 pounds per square foot (psf). The soils encountered at the site should react elastically to structure loads; settlements induced by foundation loads should occur soon after the load is applied. Maximum total settlement induced by the transformer slab loads are anticipated to be about ½ inch.

6.8.2 Single-Story Equipment Structures

Should single-story buildings be required to house equipment operated at the transition station, they may be supported on shallow foundations bearing on approved glaciofluvial silty sands and sandy silts or newly placed controlled structural fill material placed in accordance with recommendations provided herein. We recommend that building foundations be designed for a maximum allowable bearing pressure of 3,000 psf for foundations bearing on approved subgrades. To reduce the possibility of localized shear failures, spread and strip footings should be a minimum of 3 feet and 1.5 feet wide, respectively.

For single-story structures designed for a maximum allowable bearing pressure of 3,000 psf on approved glaciofluvial soils or newly controlled structural fill, total settlements of about ½ inch with differential settlements of 1/2 to 2/3 the total estimated settlement are anticipated. As stated previously, settlements induced by foundation loads should occur soon after the load is applied.

6.8.3 Shrink-Swell and Frost Depth Considerations

Based on the soil materials observed in the test boring samples and the laboratory test results, the on-site soils will generally have a low shrink-swell potential. Accordingly, we do not recommend any foundation design modifications relative to the potential for shrink-swell soils.

Frost depth should be anticipated to be 4 feet below the lowest adjacent grade. Therefore, utilities that are susceptible to frost action and building foundations should bear a minimum of 4 feet below adjacent grades.

6.8.4 Shallow Foundation Construction

All foundation subgrades should be observed, evaluated, and verified for the design bearing pressure by a representative of the geotechnical engineer after excavation and prior to reinforcement steel placement. If low density/consistency soils are encountered at the foundation subgrade during construction, localized undercutting and/or in-place stabilization of foundation subgrades may be required. The actual need for, and extent of, undercutting or in-place stabilization should be based on field observations made by a representative of the geotechnical engineer at the time of construction.

Excavations for footings should be made in such a way as to provide bearing surfaces that are firm and free of loose, soft, wet, or otherwise disturbed soils. Foundation concrete should not be placed on frozen or saturated subgrades. If such materials are allowed to remain below foundations, settlements will increase. Foundation excavations should be concreted as soon as practical after they are excavated. If an excavation is left open for an extended period, a thin mat of lean concrete should be placed over the bottom of the excavation to minimize damage to the bearing surface from weather or construction activities. Water should not be allowed to pond in any excavation.

6.9 EARTHQUAKE CONSIDERATIONS

6.9.1 Seismic Site Class Definition

The following recommendations are based Chapter 20 of the ASCE 7-10. ASCE 7-10 provides a methodology for interpretation of SPT resistance values (N-values) to determine a Site Class Definition; however, this method requires averaging N-values over the top 100 feet of the subsurface profile. We note that the test borings for this project were extended to a maximum depth of about 50 feet below existing site grades.

The available subsurface data from our exploration indicates an N-value range of about 2 to greater than 100 bpf within the upper 50 feet below existing site grades. In general accordance with ASCE 7-10 and considering the boring data and planned grading, we recommend that a Site Class Definition "D" be used for design.

6.9.2 Liquefaction

Liquefaction of saturated, loose to medium dense, fine grained sands and silty sands is not anticipated to be a design concern for the Transition Station #1 site.

6.10 KARST GEOLOGY

Karst topography occurs from the dissolution of soluble bedrock (such as limestone, dolomite, or gypsum) which creates karst features (sinkholes and caves) within the subsurface. Karst conditions were not encountered during the exploration reported herein. Karst features/conditions are not anticipated to be a design or construction concern for the Transition Station #1 site.

6.11 CORROSION CONSIDERATIONS

Two bulk samples obtained in borings BH 105 and BH 106 were tested in the laboratory to determine pH, water soluble sulfate and chloride, and resistivity. The results of the lab tests are summarized in Table 7 below.

Table 7 – Laboratory Corrosivity Test Results

Boring No.	Sample Type & Depth (ft)	рН	Chloride (ug/g)	Sulfate (ug/g)	Electrical Resistivity (ohm-cm)
BH 105	BULK (1 - 6)	5.8	< 6.8	< 6.8	1,900
BH 106	BULK (5 - 15)	5.4	< 5.9	12	6,900

In general, soils that exhibit a resistivity of greater than 5,000 ohm-cm are considered non-aggressive (FHWA, 2010). Therefore, based on the results of the laboratory tests material collected from BH 106 can be considered to be "non-aggressive". However, the sample obtained from BH 105 should be considered as "aggressive". Based on corrosivity testing performed at various locations along the Northern Pass Transmission corridor, we anticipate that the BH 105 material represents an isolated condition. However, we recommend that underground utilities

installed in the area of BH 105 be designed assuming an "aggressive" corrosion environment. In addition, cut material originating from the BH 105 area should be used in locations on the transition corridor where underground utilities and foundations are not planned.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of PAR Electrical Contractors, Inc. or their agent, for specific application to the Transition Station #1 project near Clarksville, New Hampshire. The conclusions and recommendations presented herein are based on design information furnished to us, the data obtained from the previously described subsurface exploration programs, and generally accepted geotechnical engineering practice. The conclusions and recommendations do not reflect variations in subsurface conditions which could exist intermediate of the boring locations or in unexplored areas of the site. Should such variations become apparent during construction, it will be necessary to re-evaluate our conclusions and recommendations based upon on-site observations of the conditions.

The soil and rock descriptions/classifications and the strata breaks shown on the boring logs attached to this report are based primarily on visual observation and should be considered approximate. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. Therefore, experienced geotechnical engineers or engineering geologists should evaluate earthwork and foundation construction to verify that the conditions anticipated in design actually exist.

In the event that changes are made in the design or location of the project, the recommendations presented in the report shall not be considered valid unless the changes are reviewed by Quanta Subsurface and conclusions of this report modified and/or verified in writing. If this report is copied or transmitted to a third party, it must be copied or transmitted in its entirety, including text, attachments, and enclosures. Interpretations based on only a part of this report may not be valid.

8.0 REFERENCES

- Haley & Aldrich, Inc.; Geotechnical Data Report Route 3/Connector River Crossing: Northern Pass Transmission Project, February 21, 2014.
- New Hampshire Department of Environmental Services: New Hampshire Stormwater Manual; Post-Construction Best Management Practices Selection & Design; Volume 2; December 2008.
- New Hampshire Department of Resources and Economic Development; Geologic Map and Structure Sections of the Dixville Quadrangle New Hampshire, Plate 1; Scale 1:62,500; 1963.
- New Hampshire Department of Transportation; Standard Specifications for Road and Bridge Construction; Section 209 Granular Backfill; 2016

- Terracon Consultants' Inc.; Report of Expected Geotechnical Conditions: Northern Pass Project; July 10, 2015.
- U.S Department of Transportation Federal Highway Administration (FHWA); Drilled Shafts: Construction Procedures and LRFD Design Methods; FHWA-NHI-10-016; May 2010.
- McGregor, J and J.M. Duncan; Virginia Polytechnic Institute and State University Center for Geotechnical Practice and Research; Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice; October 1998

Figures

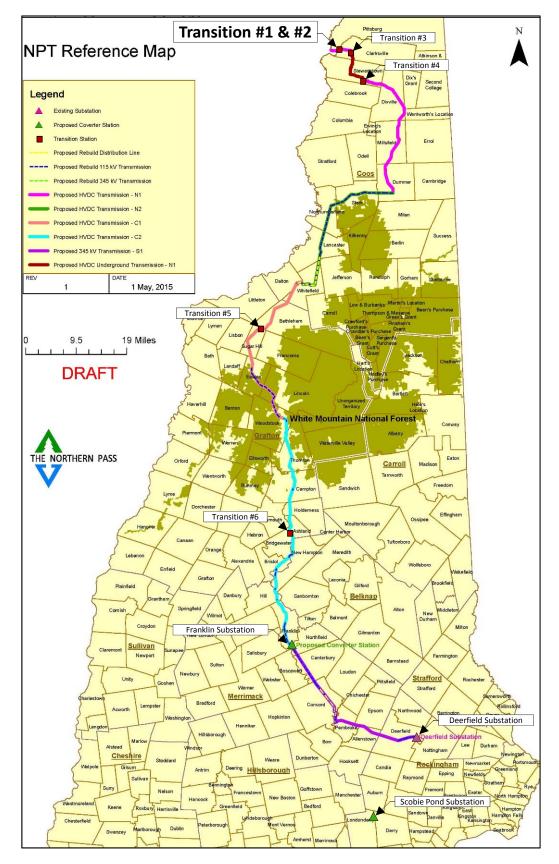
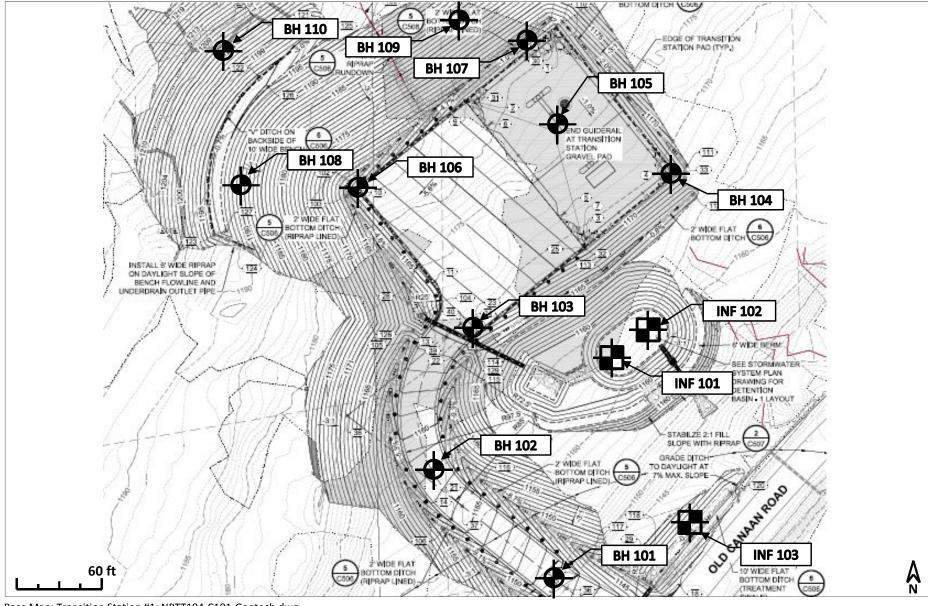
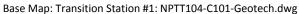


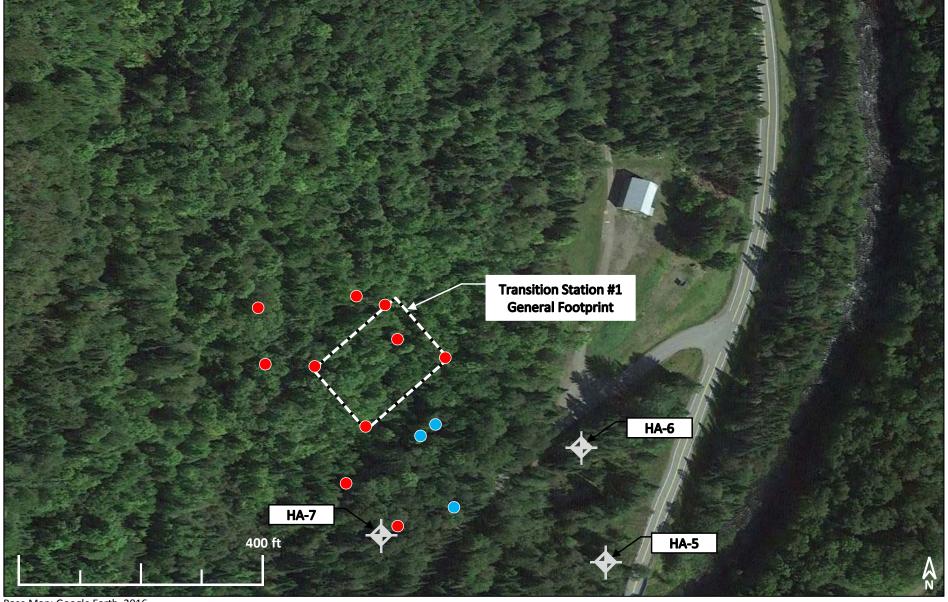
Figure 1
Site Vicinity Plan





Base Map: Google Earth, 2016.

Figure 2 Site Location Map



Quanta Subsurface Boring Location, August/September 2016

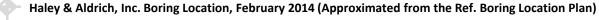
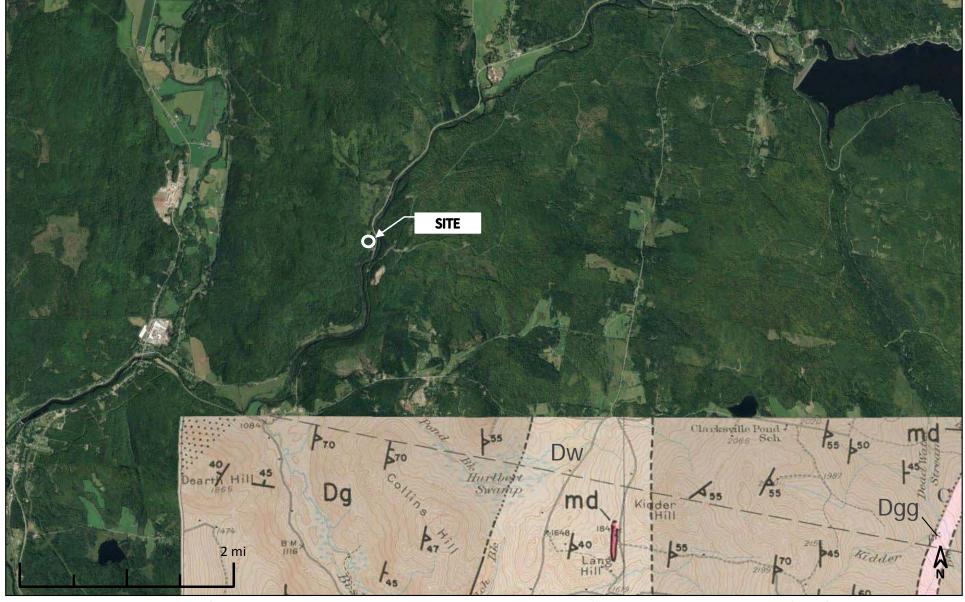

Quanta Subsurface Infiltration Location, August/September 2016

Figure 3 QS Boring Location Plan

Base Map: Google Earth, 2016.
Haley & Aldrich Boring Locations: Haley & Aldrich, Inc.; Geotechnical Data Report - Route 3/Connector River Crossing: Northern Pass Transmission Project; February 21, 2014 (Figure 3).



- Quanta Subsurface Boring Location, August/September 2016 (see Figure 3)
- Quanta Subsurface Infiltration Location, August/September 2016 (see Figure 3)

H&A Boring Location Plan

Base Map: New Hampshire Department of Resources and Economic Development, Geologic Map and Structure Sections of the Dixville Quadrangle New Hampshire (Plate 1)

Epidote Amphibolite/Amphibolite Legend: Gile Mountain Formation - Phyllite/Micaceous Quartzite/Schist Dg Waits River Formation - Phyllite/Micaceous Quartzite Dw

Gile Mountain Formation – Greenstone and Amphibolite Lenses

Figure 5

Dgg

Appendix A Haley & Aldrich Boring Logs

Boring No. **HA-5 TEST BORING REPORT** 40460-004 NORTHERN PASS, PITTSBURG-CLARKSVILLE-STEWARTSTOWN, NEW HAMPSHIRE File No. Project Sheet No. 1 of 4 Client **BURNS & MCDONNELL** December 4, 2013 Start Contractor NEW HAMPSHIRE BORING, INC. December 9, 2013 Finish **Drilling Equipment and Procedures** Sampler Barrel Casing Driller W. Hoeckele H&A Rep. Rig Make & Model: Diedrich D-50 Track S. Shay Type HW S NX Bit Type: Roller Bit Elevation 1126.0 (est.) Inside Diameter (in.) 1 3/8 4.0 2.0 Drill Mud: None NAVD 88 Datum Casing: HW Drive to 44.8 ft Hammer Weight (lb) 300 140 Location See Plan Hoist/Hammer: Winch Safety Hammer Hammer Fall (in.) 30 24 PID Make & Model: None Gravel Sand Field Test Sampler Blow per 6 in. Sample No. & Rec. (in.) Symbol VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Sample Depth (ft) € Stratum Change Elev/Depth (Toughness Coarse % Medium % Coarse Dilatancy Plasticity Depth Fines (Density/consistency, color, GROUP NAME, max. particle size*, Strength Fine Fine SCS 8 structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) % % % Medium dense dark brown grading to brown silty SAND with gravel (SM), 15 10 15 40 20 8 S1 0.0 mps 1 cm, no structure, no odor, moist. Top 6 inches up to 10% rootlets 8 2.0 with forest mat debris 20 -ALLUVIAL/FLOOD PLAIN DEPOSITS-Medium dense olive-brown silty SAND (SM), mps 1.2 cm, stratified and 10 5 5 35 45 4.0 8 12 occasional sorted interbedded coarse sand lenses, no odor, wet 6.0 9 5 50 1118.0 35 25 20 10 5 GP Very dense dark olive-brown poorly graded GRAVEL with sand (GP), mps S3 9.0 120 2.8 cm, no structure, no odor, wet, occasional brown fine sand pockets. 10.0 Both rounded and angular gravel pieces present Similar to S3 above, both rounded and angular gravel pieces present 35 25 20 10 5 140 **S4** 14.0 14.5 15 -GLACIOFLUVIAL DEPOSITS-40 20 15 10 Similar to above except change in fine gravel content 10 100/2 S5 19.0 2 19.2 Water Level Data Well Diagram Sample ID Summary Riser Pipe Depth (ft) to: Elapsed O - Open End Rod Date Time I Screen Bottom Bottom Time (hr.) Water T - Thin Wall Tube Casing of Hole Filter Sand U - Undisturbed Sample Cuttings Samples 12/5/2013 07:10 9.0 11S, 7C 16 24.0 31.0 S - Split Spoon Sample Grout 12/5/2013 15:45 3 44.8 55.0 9.3 HA-5 Concrete Boring No. 12/9/2013 12:00 72 44.8 70.0 7.8 Bentonite Seal Dilatancy: R - Rapid Plasticity: N - Nonplastic L - Low M - Medium H - High S - Slow N - None Field Tests: Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Jan 28, 14

H	IAL LD	EY&	E H			TEST BORING REPORT	F	ile	No.	N c	046)4	A-5	
				£	<u></u>		-	Shee avel		lo. San		of	_	ield	Te
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	1	ě	% Medium	% Fine	% Fines	Dilatancy	Ś	Plasticity
-				1104.0 22.0			_								
- 25 - - -	110	\$6 6	24.0 \24.5		SP	Very dense dark olive-brown poorly graded SAND with gravel (SP), mps 2 cm, no structure, no odor, wet, gravel pieces frequently highly to completely weathered -GLACIOFLUVIAL DEPOSITS-	10	15	30	30	10	5			
- - 30 - -	125	S7 6 /	29.0 \\29.5 \	1094.0 32.0	SP	Very dense dark olive-brown poorly graded SAND with gravel and residual soil from completely weathered rock, residual soil portions friable, no odor, wet	10	10	20	25	30	5			
- - 35 - -	100	\$8 _5	34.0 \\34.5 \i	-	SP- SM	Very dense dark olive-brown poorly graded SAND with silt and gravel (SP-SM), mps 2 cm, no structure, no odor, wet -GLACIOFLUVIAL DEPOSITS-	5	10	20	30	25	10			
- 40 -	120	\$9 6/	39.0 \39.5	1086.0	SP- SM	Similar to S8 above Note: SILT with sand at bottom 10 inches of 3 inch diameter spoon drive	5	10	20	30	25	10			
-	52 102	\$10 6	41.0 42.0		ML	when collecting geothermal sample. Very dense dark olive-brown SILT with sand (ML), mps < 0.1 mm, frequent partings, no odor, wet -GLACIOLACUSTRINE DEPOSITS-					25	75	R	L	N
- 45 - -	110	S11 4 J	44.0 \\44.5	1081.2	ML	Very dense dark olive-brown and olive-gray SILT with sand (ML), mps < 0.1 mm, frequent partings and varves, no odor, wet TOP OF BEDROCK 44.8 FT Note: Advanced borehole with roller bit to 45.0 ft prior to coring. SEE CORE BORING REPORT FOR ROCK DETAILS	/				20	80	R	L	L
	NOTE	: Soil in	dentifica	tion base	d on vi	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No			H	A-5	

HALEY& ALDRICH

CORE BORING REPORT

Boring No. File No. 40460-004 Sheet No. 3 of 4

HA-5

İ	Depth	Drilling	Run	Run	Recove	ry/RQD	Weath-	Elev./	Visual Description
	(ft)	Rate (min./ft)	No.	Depth (ft)	in.	%	ering	Depth (ft)	and Remarks
ŀ	- 45 -	8	C1	45.0	60	100	Fresh		SEE TEST BORING REPORT FOR OVERBURDEN DETAILS Very hard, fresh, gray, aphanitic, graphitic PHYLLITE. Foliation extremely thin to thin
	-	8	Ci	50.0	59	98	Tresir		where discernible. Joints moderate to wide, dipping at low to moderate angles, rough, planar, generally fresh, tight. Graphitic/metallic film on wash water throughout drilling. Minimal water loss.
	-	6							
	-	7							
	-	8							
	- 50 -	5	C2	50.0	60	100	Fresh		Similar to above. Bottom core damage upon removal from core barrel.
	-	5		55.0	56	93			
	-	5							
n 28, 14	-	6							
\text{\text{IMAN\text{COMMON\text{40460}}} \text{\text{\text{NORTHERN PASS\FIELD\text{GINT LOGS\2013-1030-HAI-TEST_CORE BORINGS.GPJ} Jan 28, 14}	=	6							
RINGS	- 55 -	6	C3	55.0	60	100	Fresh		Similar to above. Single low angle joint in middle of core slightly weathered surfaces.
ORE BC	-	6		60.0	59	98			
LTEST_C	-	6							
-1030-HA	-	5							
GS\2013	-	6							
SINT LO	- 60 -								
S/FIELD/(00	6	C4	60.0 65.0	60 60	100 100	Fresh		Similar to above, highly foliated, horizontal drill breaks.
ERN PAS	_	6							
NORTH		6							
N40460	-	7							
NCOMMC	-	6							
\\MAN	- 65 -	6	C5	65.0 70.0	60 59	100 98	Fresh		Similar to above, general foliation trend at moderate to high angles.
7-1.GDT	-	5							
+WELL-0	-	5							
B+CORE	-	5							
B HA-T	-	6							
H+A_CORE+WELL07-1 HA-LIB09-BOS_ECG.GLB HA-TB+CORE+WELL-07-1.GDT	- 70 -	6	C6	70.0 75.0	60 60	100 100	Fresh		Similar to above, highly foliated bottom 2 ft of core with irregular coarse grained quartz inclusions.
309-BOS	-	6							
HA-LIE	-	7							
VELL07-1	-	8							
CORE+W	-	8							
H+A_C	– 75 –								

HALEY& ALDRICH

CORE BORING REPORT

Boring No. HA-5 File No. 40460-004 Sheet No. 4 of 4

		1							Sheet No. 4 of 4
Depth	Drilling Rate	Run	Run	Recove	ry/RQD	Weath-	Elev./	Visual Desc	cription
(ft)	Rate (min./ft)	Run No.	Depth (ft)	in.	%	ering	Depth (ft)	Visual Desc and Rema	arks
			(1-7)	111.	70		(11)		
- 75 —	6	C7	75.0	60	100	Fresh		Similar to above, except foliation not apparent, fi	requent vertical fractures confined to
	6		80.0	53	88			middle 1.5 ft of core. Note: Graphitic/metallic film on wash water C1 approximately 100 gallon C1 - C7.	- C7. Minimal water loss at
	0							approximately 100 gallon C1 - C7.	
	8								
	8								
	7								
	,								
- 80 —							1046.0 80.0	BOTTOM OF EXPLO	RATION 80.0 FT
- 95 -									
85 —									
- 90 —									
95 –									
100 —									
105 -									

Boring No. HA-6 (OW) **TEST BORING REPORT** 40460-004 NORTHERN PASS, PITTSBURG-CLARKSVILLE-STEWARTSTOWN, NEW HAMPSHIRE File No. Project Sheet No. 1 of 3 Client **BURNS & MCDONNELL** December 2, 2013 Start Contractor NEW HAMPSHIRE BORING, INC. December 3, 2013 Finish Sampler Barrel **Drilling Equipment and Procedures** Casing Driller W. Hoeckele H&A Rep. Rig Make & Model: Diedrich D-50 Track S. Shay Type HW S NX Bit Type: Roller Bit 1149.5 (est.) Elevation Inside Diameter (in.) 1 3/8 4.0 2.0 Drill Mud: None NAVD 88 Datum Casing: HW Drive to 24 ft Hammer Weight (lb) 300 140 Location See Plan Hoist/Hammer: Winch Safety Hammer Hammer Fall (in.) 30 24 PID Make & Model: None Well Diagram Gravel Sand Field Test Symbol Sample No. & Rec. (in.) VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Bo ∏ Stratum Change Elev/Depth (Sample Depth (ft) € Toughness Coarse % Medium % Coarse Sampler B per 6 ir Plasticity Depth Dilatancy Fines (Density/consistency, color, GROUP NAME, max. particle size*, Strength Fine Fine SCS (structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) % % % 25 25 50 M/OL 0.0 Medium dense dark brown silty SAND with organic soil (SM/OL), up S1 1149.0 8 to 50% forest mat debris ML 3 1.0 25 75 -TOPSOIL-S1A 1.0 Medium dense orange-brown SILT with sand (ML), mps 8 mm, no 14 2.0 structure, no odor, moist -SUBSOIL-1146.5 3.0 Very dense brown silty GRAVEL with sand (GM), mps 2 cm, irregular 40 10 10 10 10 20 4.0 60 16 stratification with occasional dark brown silt pods, no odor, moist 6.0 5 41 40 -GLACIOFLUVIAL DEPOSITS-1141.5 15 20 30 20 10 SP-Very dense dark olive-brown poorly graded SAND with silt and gravel S3 9.5 10 15 (SP-SM), mps 2 cm, no structure, no odor, moist, gravel frequently 11.5 highly weathered Very dense dark olive-brown silty SAND with gravel (SM), mps 2 cm, 10 25 10 25 15 15 S4 14.0 45 no structure, no odor, moist, gravel frequently highly weathered 6 90 -GLACIOFLUVIAL DEPOSITS-1132.0 17.5 Note: Slight change in drilling at 17.5 ft when advancing borehole with roller bit ahead of casing. Very dense dark olive-brown silty SAND with gravel (SM), mps 2 cm, 15 | 15 | 25 | 15 | 25 S5 42 19.5 Water Level Data Well Diagram Sample ID Summary Riser Pipe Depth (ft) to: Elapsed O - Open End Rod Date Time I Screen Bottom Bottom Time (hr.) Water T - Thin Wall Tube Casing of Hole Filter Sand U - Undisturbed Sample Cuttings Samples 12/3/2013 13:05 0.5 7.9 9S, 1C 24.0 33.0 S - Split Spoon Sample Grout **HA-6 (OW)** Concrete Boring No. Bentonite Seal Plasticity: N - Nonplastic L - Low M - Medium H - High Dilatancy: R - Rapid S - Slow N - None Field Tests: Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Jan 28, 14

\\man\\COMMON\40460 NORTHERN PASS\FIELD\\GINT LOGS\2013-1030-HAFTEST CORE BORINGS\GPJ

HA-TB+CORE+WELL-07-1.GDT

HA-LIB09-BOS ECG.GLB

H&A-TEST BORING-07-1 NO OVERBURDEN

I-A	IAL LD	EY&	E H			•	TEST BORING REPORT	F	ile		4	046	0-00		(O)	W)
				Ē	(F)	ō	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	shee avel		lo. San		of		ield	Te
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
20 -	96 110	14	21.0				moderately well bonded, no odor, wet, gravel frequently highly to completely weathered									
25 –	82 108	\$6 12	24.0 25.0		1127.0 22.5	ML	Very dense dark olive-brown sandy SILT (ML), mps 9 mm, very well bonded, no odor, moist, gravel frequently weathered		5	10	15	20	50			
30 -	1 <u>00/2</u> //	\S7\2	29.5			ML	Very dense dark olive-brown sandy SILT with gravel (ML), mps 3 cm, well bonded, no odor, wet, gravel frequently weathered Thermal sample note: 29.5 - 29.7 ft SPT refusal then 29.7 - 31 ft using 3 inch spoon/300 lb hammer, then advanced roller bit to 31.5 ft and drove extra 3 inch spoon/300 lb hammer from 31.5 - 33.0 ft to obtain 5 lbs of soil. See S7 for soil description to 33.0 ft.	5	10	5	15	15	50			
	120	60	24.0		1116.5 33.0		-GLACIAL TILL DEPOSITS- Very dense dark olive-brown poorly graded SAND with silt and gravel	10	20	30	15	15	10		_	
35 -	128	S8 _6/	34.0		1114.5 35.0	SM	(SP-SM), mps 2.5 cm, no structure, no odor, wet TOP OF BEDROCK 35.0 FT Note: Advanced roller bit to 36.0 ft prior to coring. Change in drilling		20	30	13	13	10			
40 -							effort and wash water content at 35.0 ft. SEE CORE BORING REPORT FOR ROCK DETAILS									
							manual methods of the USCS as practiced by Haley & Aldrich, Inc.		ر دي:	ng	NI-		 	[A-6	(O)	 W)

HALEY& ALDRICH

CORE BORING REPORT

Boring No. HA-6 (OW) File No. 40460-004 Sheet No. 3 of 3

									Sneet No. 3 of 3
D 41-	Drilling	D	Run	Recove	n/POD	1114-	Well Dia-	Elev./	Viewal Description
Depth	Rate	Run No.	Depth	IVECTA	I y/I \QD	Weath-	Dia-	Depth	Visual Description
(ft)	(min./ft)	No.	(ft)		%	ering	gram	(ft)	and Remarks
	, ,		(11)	in.	%		grain	(π)	
L		L		<u></u>			<u></u>		SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
	6	C1	36.0	57	95	Slight			Hard to moderately hard, slightly weathered, gray, aphanitic, PHYLLITE. Weak foliation top 2.9 ft grading abruptly to extremely foliated, very thin. Joints dipping
			41.0	50	83	-	l∷⊟∷		foliation top 2.9 ft grading abruptly to extremely foliated, very thin. Joints dipping
_	9								at low angles, rough, planar, frequently discolored with brown staining, open.
	9						l∷⊟∷		Non-calcareous from HCI test. Lost approximately 100 gallons of water during
							l∷⊟∷		Non-calcareous from HCI test. Lost approximately 100 gallons of water during drilling. Graphitic/metallic film on wash tub water surface throughout core run.
ļ.	7								Taped borehole to check 3 inches of core snapped off at bottom of core run not
	,						∷⊟∷		recovered.
							l:::::::::::::::::::::::::::::::::::::		iccovered.
-	8						· · ·		
							∷⊟∷		
							∷ ∷		
− 40 −	8						l∷⊟∷		
							_: _::		
								1108 5	
						Slight		1108.5 41.0	BOTTOM OF EXPLORATION 41.0 FT
						8			
-									
				1					
ŀ									
- 45 50	1			1					
1				1					
1				1					
Γ				1					
L									
L									
-									
− 50 −	-								
-									
r									
L									
L									
– 55 –	1			1					
1				1					
1				1					
F				1					
1				1					
1				1					
 									
				1					
L				1					
Γ				1					
l				1					
L									
1									
I				1					
- 60 -	1								
l Š									
I				1					
ŀ				1					
l				1					
I				1					
-				1					
				1					
I				1					
t				1					
				1					
				1					
-				1					
				1					
- 65 -									
05 —									
ii									
F									
4		_				· · · · · · · · · · · · · · · · · · ·			

Boring No. HA-7 (OW) **TEST BORING REPORT** 40460-004 NORTHERN PASS, PITTSBURG-CLARKSVILLE-STEWARTSTOWN, NEW HAMPSHIRE File No. Project Sheet No. 1 of 3 Client **BURNS & MCDONNELL** November 22, 2013 Start Contractor NEW HAMPSHIRE BORING, INC. November 23, 2013 Finish Sampler Barrel **Drilling Equipment and Procedures** Casing Driller W. Hoeckele H&A Rep. Rig Make & Model: Diedrich D-50 Track S. Shay Type HW S NX Bit Type: Roller Bit Elevation 1157.5 (est.) Inside Diameter (in.) 4.0 1 3/8 2.0 Drill Mud: None NAVD 88 Datum Casing: HW Drive to 28.0 ft Hammer Weight (lb) 300 140 Location See Plan Hoist/Hammer: Winch Safety Hammer Hammer Fall (in.) 30 24 PID Make & Model: None Well Diagram Gravel Sand Field Test Sampler Blow per 6 in. Symbol Sample No. & Rec. (in.) VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Stratum Change Elev/Depth (Sample Depth (ft) € % Medium Toughness Coarse % Coarse Plasticity Depth % Fines Dilatancy (Density/consistency, color, GROUP NAME, max. particle size*, Strength Fine Fine SCS (structure, odor, moisture, optional descriptions
GEOLOGIC INTERPRETATION) % % Loose dark brown sandy ORGANIC SOIL (OL/OH) with forest mat 40 60 OL/ 3 7 S1 0.0 OH 6 1.0 debris 1156.5 1.0 -TOPSOIL ML 15 | 15 | 20 | 50 S1A 1.0 Medium dense orange-brown sandy SILT (ML), mps 4 mm, no 10 2.0 structure, no odor, moist, top of sample light gray (gleyed) -SUBSOIL-1154.5 SM Very dense dark olive-brown silty SAND with gravel (SM), mps 2 cm, 10 25 15 20 5 25 4.0 95 well bonded, no odor, moist 5.5 72 5 10 10 20 20 10 30 Similar to S2 above S3 9.0 12 10.5 76 -GLACIAL TILL DEPOSITS-Similar to above including bonding, wet 10 10 10 25 40 14.0 73 15.5 1140.0 17.5 Very dense dark olive-brown sandy SILT (ML), mps 2 cm, very well 5 5 20 60 5 100/37 S5 19.0 bonded, no odor, moist 3 19.2 Water Level Data Well Diagram Sample ID Summary Riser Pipe Depth (ft) to: Elapsed O - Open End Rod Date Time 且 Screen Bottom Bottom Time (hr.) Water T - Thin Wall Tube f Casing of Hole Filter Sand U - Undisturbed Sample Cuttings Samples 11/23/2013 07:10 7S, 4C 16 14.0 20.5 3.1 S - Split Spoon Sample Grout Water due to seal in very dense till **HA-7 (OW)** Concrete Boring No. Bentonite Seal Dilatancy: R - Rapid S - Slow N - None Plasticity: N - Nonplastic L - Low M - Medium H - High Field Tests: Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Jan 28, 14

HA-TB+CORE+WELL-07-1.GDT

HA-LIB09-BOS ECG.GLB

H&A-TEST BORING-07-1 NO OVERBURDEN

H	IAL	EY&	2				TEST DODING DEDORT			_	No			A-7	(O	W)
A		RIC	H				TEST BORING REPORT	F	ile l	et N	lo.	0460 2	0-00 of	3		
(ft)	Slows n.	S.E.	<u>⊕</u>	gram	t (ff)	loqu	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		San	b			S	Tes
ြှာ Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- 25 -	120	\$6 _6_/	24.0 \\24.5			ML	-GLACIAL TILL DEPOSITS- Very dense dark olive-gray sandy SILT with gravel (ML), mps 2 cm, very well bonded, no odor, moist	5	10	5	5	15	60			
-					1129.5 28.0		TOP OF BEDROCK 28.0 FT									
- 30 –	1 <u>00/2</u>]	\NR /	29.0		28.0		Note: Change in drilling effort at 28.2 ft. Advanced roller bit to 29.0 ft. No recovery SEE CORE BORING REPORT FOR ROCK DETAILS									
- - - 35 – -																
- 40 -																
	NOTE:	Soil in	lentifica	tion h	nased on t	vieusiv	manual methods of the USCS as practiced by Haley & Aldrich, Inc.	B	ori	na	No		Н	[A-7	(0)	W)

HALEY& ALDRICH

CORE BORING REPORT

Boring No. HA-7 (OW) File No. 40460-004 Sheet No. 3 of 3

ALI									Sheet No. 3 of 3
Depth	Drilling	Run	Run	Recove	rv/RQD	Weath-	Well	Elev./	Visual Description
(ft)	Rate	No.	Depth	1100010		ering	Dia-	Depth	and Remarks
\·-/	(min./ft)		(ft)	in.	%	و،	gram	(ft)	
	10/0.8'	C:	20.2	0.6	100	Ci. i			SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
	10/0.8	C1	29.2 30.0	9.6 6	100 63	Slight			Hard, slightly weathered, gray, aphanitic PHYLLITE, short core run to collect thermal sample.
- 30 -	8	C2	30.0	40	83	Slight			Hard to moderately hard, slightly to moderately weathered, gray, aphanitic
			34.0	11	23				PHYLLITE. Very thin foliation dipping at high angles, joints generally at high
	12					Slight			angles along foliation planes with extreme conic and vertical fracturing, rough, planar, discolored, tight to open. Vertical fracturing may have impeded core from
									progressing inside core barrel. Noticeable graphitic film on wash water.
	12								
-	15					Moder-			
						ate			
	6	C3	34.0	45	99	Slight			Similar to above except slightly weathered and most of fracturing along, high angle
25			37.8	30	66				foliation planes. Core barrel jammed at 37.8 ft.
- 35 -	8								
	_								
	7								
	10/0.01								
	10/0.8'								
	7	C4	37.8	26	98	Slight			Similar to above, slightly weathered. Stopped core run for well installation at 40.0
	7	CŦ	40.0	22	83	Slight			ft. Minimal water loss for C1 - C4.
_	7								
	/								
- 40 -	3/0.2'							$1117.5 \\ 40.0$	
. •	3/0.2							40.0	BOTTOM OF EXPLORATION 40.0 FT
_									
- 45 -									
40									
_									
_									
- 50 -									
- 5F ·									
- 55 —									
•									

Appendix B QS Boring Logs

		UAN JBSURI	ACE	Quanta Su 4308 N Ba Spokane \ Telephone	rker R /allev.	D WA 99	9027 409	BOR	ING NUM	1BE		H 1	
	IT <u>PA</u>		cal Co	ntractors				PROJECT NAME Northern Pass TL PROJECT LOCATION Pittsburg, Ne		ition #1	<u> </u>		
DATE DRILL DRILL LOGG	START	TED <u>11</u> ONTRAC	/18/16 TOR _ Solid	SW Cole Stem Auge	er		ED _11/18/16 BY _J.T. McGinnis	GROUND ELEVATION 1148.7 ft LATITUDE 45.02149722 DRILLING EQUIPMENT CME 850	HOLE SIZE LONGITUD SPT HAMM	E <u>-71</u>			
ELEV (ft)	о ОЕРТН (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG		MATERIAL DESCRIPTION		MOISTURE CONTENT (%)	LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
		SPT 1	63	2-3-4-8 (7)		2. 2	medium stiff, fine GLACIOFLUVIA moist, medium d	y SILT (ML), trace organics, moderate be e grained sand L: Silty SAND with gravel (SM), dark yell ense, fine to coarse grained gravel, fine	owish brown.				
1145		SPT 2	81	17-16- 50/4"			subangular -very dense with	cobbles from 2 to 5 feet					
	5	SPT 3	100	50/6"									
		SPT 4	54	6-10-10-12 (20)	2		<u>.</u> . ∑						
1140	10	SPT 5	83	12-11-12- 14 (23)				Bottom of Borehole at 10.0 feet					

	\	UB	JAN SURF	ACE	Quanta Su 4308 N Ba Spokane \ Telephone	irker R /alley,	D WA 99		BORING	G NUN	IBE		H 1	
1				cal Co	ntractors						tion #1			
DATE DRILI DRILI LOGG	LING O	TEI ON IETI Y <u>S</u>	D <u>11/</u> TRAC	18/16 TOR _ Solid	SW Cole Stem Auge	er		D _11/18/16 BY _J.T. McGinnis	LATITUDE 45.02172222 I DRILLING EQUIPMENT CME 850 S	HOLE SIZE LONGITUD SPT HAMM	E <u>-71</u>			
ELEV (ff)	O DEPTH		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG		MATERIAL DESCRIPTION		MOISTURE CONTENT (%)	LIMIT	PLASTICITY STAN	FINES CONTENT (%)
	_	X	SPT 1	54	2-3-3-5 (6)		7. 7.7 7. 7.7 7. 7. 7	medium stiff ✓ GLACIOFLUVIAL loose to dense, fi	CLAY (CL), trace organics, moderate brown, .: Silty SAND with gravel (SM), light olive grane to coarse grained gravel, fine grained sar	ay, moist,	24.7			
TRANSITION 1.6	-	Y	SPT 2	50	16-17-22- ₄ (39)	1		subangular						
ORTHERN PASS	5	Y	SPT 3	33	7-5-10-14 (15)			Poorly Graded Gl moist, medium de	rish brown and medium dense from 4 to 5 fe RAVEL with silt (GP-GM), moderate yellowisense to dense, fine to coarse grained gravel,	h brown,				18.1
004 GINT/16004 N	-	Y	SPT 4	63	14-13-18- 10 (31)			grained sand, sub	oangular					
1155 1155 1155 1155 1155 1155 1155 115	10		SPT 5	50	16-18-26- 29 (44)		(O INY		with gravel (SM), moderate yellowish brown arse grained gravel, fine grained sand, subar					
::\USERS\JTMCGINN	- - - -	_												
0 - 98:39 - 0									Auger Refusal at 13.0 feet Bottom of Borehole at 13.0 feet					
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C::USERSUTMCGINNISIDOCUMEN IS/16004 GIN 1/16004 MORTHERN PASS TRANSITION 1.GFD														

BORING NUMBER BH 103 Quanta Subsurface QUANTA SUBSURFACE 4308 N Barker RD PAGE 1 OF 1 Spokane Valley, WA 99027 Telephone: 509-892-9409 **CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire **DATE STARTED** 11/18/16 **COMPLETED** 11/18/16 GROUND ELEVATION 1169.9 ft HOLE SIZE 6" **DRILLING CONTRACTOR** SW Cole **LATITUDE** 45.02200556 **LONGITUDE** -71.46572778 DRILLING METHOD Solid Stem Auger DRILLING EQUIPMENT _CME 850 ___ SPT HAMMER _Automatic LOGGED BY S. Laing CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES** $\sqrt{2}$ AT TIME OF DRILLING 4.0ft / Elev 1165.9ft FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) RECOVERY (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX LIQUID € MATERIAL DESCRIPTION **REMARKS** 0 TOPSOIL: Lean CLAY with sand (CL), trace organics, moderate brown, moist, soft, fine grained 1/ . 11/ 1-2-2-4 sand 50 19.9 (4) GLACIOFLUVIAL: Silty SAND with gravel (SM), GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:\USERS\JTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GP\ moderate yellowish brown, moist, loose to medium dense, fine grained sand, subangular 5-7-7-9 SPT 58 13.8 (14)Silty SAND (SM), little gravel, moderate yellowish brown, wet, loose, fine grained sand, subangular 1165 SPT 4-5-5-5 63 (10)TILL: Sandy SILT (ML), moderate yellowish brown, moist, hard, fine grained sand 11-21-26 SPT 63 35 51.5 (47)Silty SAND with gravel (SM), dark yellowish brown, moist, very dense, fine to coarse grained gravel, 14-21-32 SPT fine grained sand, subangular 75 36 (53)1160 10 Augered through bedrock from 14.5 to 15 feet.

Auger Refusal at 15.0 feet Bottom of Borehole at 15.0 feet

1155

				AN SURF		Quanta Su 4308 N Ba Spokane \ Telephone	rker R ⁄alley,	D WA 99	9027 409	В	ORII	NG	NUI	ΜВІ	PAGE 1 OF 1
	CLIEN	IT <u>P</u> A	AR E	lectric	cal Co	ntractors				PROJECT NAME Northern Pas	s TL -	Transi	tion St	ation	#1
F	PROJ	ECT N	UMI	BER _	16004	1				PROJECT LOCATION Pittsburg	g, New	Hamp	shire		
	DATE	STAR	TEC	11/2	23/16		COMF	LETE	D 11/23/16	GROUND ELEVATION 1168.9	ft	HOL	_E SIZ	E 6"	
[ORILL	ING C	ON	TRAC ⁻	TOR _	SW Cole				LATITUDE 45.02231667		LON	IGITU	DE	71.46516111
[ORILL	ING M	ETH	HOD _	Hollov	v Stem Au	ger/We	t Rota	ary	DRILLING EQUIPMENT _CME 8	50	SPT	HAM	MER .	Automatic
Įι	_OGG	ED BY	/ <u>_S</u>	. Lain	g		CHEC	KED E	BY J.T. McGinnis	GROUND WATER LEVEL:					
1	NOTE	s								$\overline{igspace}$ at time of drilling $\underline{f 0}$.3ft / E	lev 11	68.6ft		
	ELEV (ft)	DEPTH (ft)		SAMPLE I 7 PE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATEI	RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIN	RBERG IITS	CONTENT (%)	REMARKS
'	Ш	0	2	NAME	RECO (F	S S S	POCK	GR, L			CONT	LIQUID	PLASTICITY INDEX	FINES	
JPJ -	_		X	SPT 1	50	1-1-6-19 (7)		7 7 7 7 7 7	organics, modera sand GLACIOFLUVIAL	CLAY with sand (CL), little te brown, wet, loose, fine grained :: Silty SAND (SM), little fine to rk yellowish brown, moist,					
S TRANSITION 1.0	1165	- - -	X	SPT 2	63	10-10-13- 15 (23)	-		medium dense, fi	ne grained sand, subangular					
NORTHERN PAS	-	5	X	SPT 3	64	25-50/5"	-		brown, moist, ver	th sand (GM), dark yellowish y dense, fine to coarse grained ed sand, subangular					Rock coring performed from 5 to 10 feet to penetrate boulder(s).
MENTS/16004 GINT/16004 NORTHERN PASS TRANSITION 1.GPJ	-									tered from 5 to 6.3 feet					
	1160	10							brown, wet, medi	gravel (SM), dusky yellowish um dense, fine to coarse grained ed sand, subangular					
SERS/JTMCGINN	-		X	SPT 4	29	6-10-18-13 (28)	8								
/16/16 09:35 - C:\U	- 1155	 	-												
T - 12		15													
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:\USERS\JTMCGINNIS\DOC\ 									Bottom	of Borehole at 15.0 feet					

BORING NUMBER BH 105 Quanta Subsurface QUANTA SUBSURFACE 4308 N Barker RD Spokane Valley, WA 99027 PAGE 1 OF 2 Telephone: 509-892-9409 CLIENT PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire DATE STARTED <u>11/23/16</u> COMPLETED <u>11/23/16</u> GROUND ELEVATION <u>1176.7 ft</u> HOLE SIZE <u>6"</u> DRILLING CONTRACTOR SW Cole **LATITUDE** 45.02241944 **LONGITUDE** _-71.46548889 DRILLING METHOD Hollow Stem Auger DRILLING EQUIPMENT CME 850 SPT HAMMER Automatic

- 1			S. Lair	ng		CHEC	KED I	3Y J.T. McGinnis	GROUND WATER LEVEL:	0 4 / E		70 7 4	-	
ļ.	NOTE	S		T	T				$\sqrt{2}$ at time of drilling 0	.0π / E	1		l .	
i	eLEV (ft)	OEPTH O	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	∇	IAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY STEED S	FINES CONTENT (%)	REMARKS
- Ta 1	- 175		SPT 1	50	1-1-1-1 (2)		70.7 7.77 7.77	coarse gravel, trac moist, soft, fine to	LAY with sand (CL), little fine to be organics, moderate brown, coarse grained sand, subangular Silty SAND with gravel (SM),					A small stream located 8 to 10 feet from boring.
ASS TRANSITION 1.G		 	SPT 2	33	3-6-13-10 (19)			moderate yellowisl	n brown, wet, medium dense to se grained gravel, fine to coarse	16.7				A bulk sample was obtained from 1 to 6 feet. w% = 33.1% LL = 33; PI = NP
NORTHERN P.	_	5	SPT 3	75	5-5-5-5 (10)									% fines = 43.3% Resistivity = 1,900 ohm-cm pH = 5.8
6004 GINT\16004	170 -		SPT 4	75	5-6-8-10 (14)			moderate yellowisl	little fine to coarse gravel, n brown, wet, stiff to medium grained sand, subangular				53.6	
INIS\DOCUMENTS\1	-	10	SPT 5	67	7-4-2-3 (6)									
C:\USERS\JTMCGIN	- 165_													
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:USERS\UTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ	- - - 1160	15	SPT 6	71	20-22-28- 36 (50)			yellowish brown, w	vith gravel (SM), moderate ret, dense to very dense, fine to evel, fine to coarse grained sand,					
SEOTECH BH COLUMNS - DF STD	-		SPT		19-24-31-									

1155

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027

(55)

BORING NUMBER BH 105

PAGE 2 OF 2

Telephone: 509-892-9409 **CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire ATTERBERG LIMITS SAMPLE TYPE NUMBER FINES CONTENT (%) RECOVERY % (RQD) MOISTURE CONTENT (%) POCKET PEN. (tsf) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH (ft) PLASTICITY INDEX ELEV (ft) LIQUID MATERIAL DESCRIPTION REMARKS

Bottom of Borehole at 22.0 feet

GEOTECH BH COLUMNS - DF STD US LAB E-IM GDT - 12/16/16 09:35 - C:\USERS\JTMGGINN\S\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ

BORING NUMBER BH 106

PAGE 1 OF 3

QUANTA SUBSURFACE

Quanta Subsurface
4308 N Barker RD
Spokane Valley, WA 99027
Telephone: 509-892-9409

CLIENT PAR Electrical Contractors

PROJECT NAME Northern Pass TL - Transition Station #1

PROJECT NUMBER 16004

PROJECT LOCATION Pittsburg, New Hampshire

DATE STARTED 12/12/16 COMPLETED 12/12/16 GROUND ELEVATION 1186.9 ft HOLE SIZE 6"

DRILLING CONTRACTOR SW Cole LATITUDE 45.02228889 LONGITUDE -71.46605833

DRILLING METHOD Solid Stem Auger/Wet Rotary DRILLING EQUIPMENT CME 850 SPT HAMMER Automatic

LOGGED BY S. Laing CHECKED BY J.T. McGinnis GROUND WATER LEVEL:

NOTES

AT TIME OF DRILLING 6.0ft / Elev 1180.9ft

NO ⁻	TES _			,				$\underline{\underline{\nabla}}$ AT TIME OF DRILLING $\underline{\underline{6}}$.0ft / E	lev 11	80.9ft		
ELEV (#)	OEPTH	(μ)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	ATTER LIMIT PIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
- - - - 118	 35	_	SPT 1	58	2-2-6-10 (8)		7 <u>7 7</u>	TOPSOIL: Lean CLAY with sand (CL), trace organics, moderate brown, moist, soft, fine grained sand GLACIOFLUVIAL: Silty SAND with gravel (SM), moderate yellowish brown, moist, medium dense to	26.2				
S TRANSITION 1.		_	SPT 2	67	14-17-20- 31 (37)			dense, fine to coarse grained gravel, fine grained sand, subangular, gravel spotted with oxidation					
NORTHERN PAS	_ 5		SPT 3	67	12-12-13-9 (25)			abla	10.5				A bulk sample was obtained from 5 to 15 feet. w% = 16.1% LL = 18; PI = NP
16004 GINT/16004	-	_	SPT 4	63	9-7-10-14 (17)			- light olive gray from 6 to 13 feet					% fines = 36.6% Resistivity = 6,900 ohm-cm pH = 5.4
NIS/DOCUMENTS/	- <u> </u>	_	SPT 5	63	16-19-33- 41 (52)			- very dense from 8 to 13 feet	11.9				
- 12/16/16 09:35 - C:\USERS\UTMCGINNIS\DOCUMENTS\\16004 GINT\\16004 NORTHERN PASS TRANSITION 1.GPJ	- <u>-</u> '5												
	- - -							TILL: Silty SAND (SM), trace fine gravel, light olive gray, moist, very dense, fine grained sand, subangular					
US LAB E-M.GDT	- <u>15</u> - <u>-</u>		SPT 6	100	34-50/6"				16.9				
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT													
GEOTECH ВН С	_ 20		SPT 7	91	34-50/5"								

BORING NUMBER BH 106

PAGE 2 OF 3

QUANTA SUBSURFACE Straineering + Construction

Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

CLIENT PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1

PROJ	ECT N	JMBER _	16004	ļ			PROJECT LOCATION Pittsbur	g, Nev	v Hamp	shire		
ELEV (ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE	LIMIT LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
1165							TILL: Silty SAND (SM), trace fine gravel, light olive gray, moist, very dense, fine grained sand, subangular (continued)					
1160		SPT 8	96	22-29-32- 41 (61)			SILT (ML), little fine sand, light olive gray, moist, hard				89.6	
1160 1160 1160 1160 1160 1160 1160 1160	30	SPT 9	83	14-20-27- 34 (47)	_		Silty SAND (SM), trace fine gravel, light olive gray, moist, dense, fine grained sand, subangular	_				
1150	35	RC 1	90 (90)				Roller Bit Refusal at 33 feet Begin Coring at 33 feet BEDROCK: Fresh (I), moderate dark gray, fine grained, medium weak (R2), excellent, PHYLLITE, foliated, graphitic with quartz and pyrite					1100 -1-00 1-5-
11145	40	RC 2	100 (100)				- fine to medium grained and weak (R2) to medium strong (R3) from 38 to 43 feet					UCS at 38.4 feet = 5,062 psi
	45						Fresh (I), moderate dark gray, fine grained, medium strong (R3), excellent, PHYLLITE, foliated graphitic with quartz and pyrite					

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

BORING NUMBER BH 106

PAGE 3 OF 3

PROJECT NAME Northern Pass TL - Transition Station #1

PROJECT LOCATION Pittsburg, New Hampshire

ELEV (ft)	(H) 45	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	FINES CONTENT (%)	REMARKS
1140		RC 3	94 (94)				Fresh (I), moderate dark gray, fine grained, medium strong (R3), excellent, PHYLLITE, foliated, graphitic with quartz and pyrite (continued)				

Bottom of Borehole at 48.0 feet

GEOTECH BH COLUMNS - DF STD US LAB E-IM GDT - 12/16/16 09:35 - C:\USERS\JTMGGINN\S\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ

	$\overline{}$		AN SURF		Quanta St 4308 N Ba Spokane \ Telephone	arker R /alley,	D WA 9			В	ORII	NG	NU	MBI	ER BH 107 PAGE 1 OF 1
CLIE					•					PROJECT NAME Northern Pas	s TL -	Transi	tion S	tation	#1
PROJ	IECT N	UME	BER _	16004	1					PROJECT LOCATION Pittsburg	g, New	Hamp	shire		
DATE	STAR	TED	12/	12/16		COMI	PLETE	ED _	12/12/16	GROUND ELEVATION 1180.9	ft	HO	LE SIZ	ZE <u>6"</u>	
1					SW Cole										
1			_								350	_ SP1	T HAN	IMER .	Automatic
1	ED BY					CHEC	KED	BY	J.T. McGinnis	GROUND WATER LEVEL: $\sqrt{2}$ AT TIME OF DRILLING $\sqrt{3}$. ∩ft / ⊏	lov 11	77 Of		
		1		1						ZAT TIME OF DIVIDENCE		A TTC:	RBERG		
			- K	% >	တ္ထ	Ä.	ပ				₩ <u>@</u>	LIN	IITS	- E E	
ELEV (ft)	O DEPTH (#)	CAMDI F T	NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN (tsf)	GRAPHIC LOG		MATE	RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
4400		V					1/ . 1/ . 1/	:1		CLAY with sand (CL), trace te brown, moist, soft, fine grained					A bulk sample was
1180			SPT 1	58	2-1-3-6 (4)				sand GLACIOFLUVIAL dusky yellowish b	: Silty SAND with gravel (SM), rown, moist, loose to medium urse grained gravel, fine grained					obtained from 1 to 10 feet.
	- ·	X	SPT 2	67	7-6-5-6 (11)			⊻	sand, subangular		16.3				
	- 5	Y	SPT 3	50	4-4-7-13 (11)				- wet from 4 to 8.	5 feet	13.5				
	- - - -	X	SPT 4	58	9-7-6-9 (13)						13.1				
	10	X A	SPT 5	63	4-11-42-5 (53)	0			brown, wet, very	with gravel (SM), dark yellowish dense, fine to coarse grained ed sand, subangular					Auger refusal condition was anticipated to be bedrock based on driller's observations.
1170															
1170										er Refusal at 11.0 feet of Borehole at 11.0 feet					

	C		UAN JBSURF	ACE	Quanta Su 4308 N Ba	ırker R	D	0007	ВС	DRIN	IG I	NUN	1BE	R BH 107A PAGE 1 OF 1
		IT PA	gineering + Con	struction cal Cor		: 509-	892-94	1027 109	PROJECT NAME Northern P					#1
DI	RILL	ING C	ONTRAC	TOR _	SW Cole			D 12/12/16			_ L	ONGIT	UDE	71.46549444
Lo		ED BY	-		v Stem Aug		KED E	3Y J.T. McGinnis		<u> 850</u>	S	PT HAI	MMER	_Automatic
N N	(ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	VERY % QD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATE	RIAL DESCRIPTION	MOISTURE	(%) ATT	ERBERG	_ 🗆	REMARKS
		O DE	SAMPL	RECOVERY 9 (RQD)	COL (N <	POCKE	GRA L(MOIS	CONTEN	PLASTICITY	FINES	Boring offest 4 feet
	180							Aug No	er Probe to Refusal Samples Obtained					from original location.
NSITION 1.G	-													
RN PASS TRA	-	 5												
004 NORTHE	175_													
6004 GINT\16	-	 												
OCUMENTS/1	-	<u> </u>												
MCGINNIS/D	- 170_	10												Highly weathered bedrock was encountered at 11
- C:\USERS\J1	_													feet.
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:\USERS\JTMCGINN\S\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ									r Refusal at 13.5 feet of Borehole at 13.5 feet					
3 E-M.GDT - 1														
F STD US LA														
COLUMNS - D														
SEOTECH BH (

BORING NUMBER BH 108 Quanta Subsurface QUANTA 4308 N Barker RD SÙBSURFACE Spokane Valley, WA 99027 Telephone: 509-892-9409 **CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire **COMPLETED** 12/12/16 GROUND ELEVATION 1196.1 ft **DATE STARTED** <u>12/12/16</u> HOLE SIZE 6" DRILLING CONTRACTOR SW Cole **LATITUDE** 45.0223 **LONGITUDE** -71.46638889 DRILLING METHOD Solid Stem Auger/Wet Rotary DRILLING EQUIPMENT CME 850 SPT HAMMER Automatic LOGGED BY S. Laing CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES** AT TIME OF DRILLING Not Encountered (prior to rotary wash at 9 feet ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX MATERIAL DESCRIPTION LIQUID **REMARKS** LIMIT 0 TOPSOIL: Sandy SILT (ML), trace organics, moderate brown, wet, medium stiff, fine to medium 1/. 11/ A bulk sample was 2-3-4-6 1195 grained sand 13 30.0 obtained from 1 to (7) GLACIOFLUVIAL: Silty SAND with gravel (SM), 10 feet. dark yellowish brown, moist, medium dense to w% = 14.9% LL = 28; PI = NP dense, fine to coarse grained gravel, fine grained % fines = 39.3% sand, subangular 11-12-14 SPT 63 14 8.8 (26)SPT 11-9-25-18 71 9.7 (34)1190 12-14-14 SPT 75 17 (28)BEDROCK: Highly weathered (IV), dark gray, fine 36 50/6" grained, medium weak (R2), very poor, PHYLLITE 10 1185 Roller Bit Refusal at 12 feet Begin Coring at 12 feet Fresh (I), dark gray, fine grained, medium strong (R3), good, PHYLLITE, graphitic RC 84 (84)15 <u>11</u>80 Fresh (I), dark gray, fine grained, medium strong (R3) to strong (R4), excellent, PHYLLITE, graphitic RC 100

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C;USERS\JTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GP\

2

20

(100)

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

BORING NUMBER BH 108

PAGE 2 OF 2

PROJECT NAME Northern Pass TL - Transition Station #1

PROJECT LOCATION Pittsburg, New Hampshire

(#) (#)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
	- - 25	RC 3	100 (100)				Fresh (I), dark gray, fine grained, medium strong (R3) to strong (R4), excellent, PHYLLITE, graphitic (continued)					

Bottom of Borehole at 27.0 feet

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:\USERS\JTMCG\INN\S\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ

QUANTA Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409 BORING NUMBER BH 109 PAGE 1 OF 2

	Er	ngineer	ring + Cons	truction	Spokane V Telephone	alley, 509-	WA 990 892-940	27 19						
CLIEN					ntractors				PROJECT NAME Northern Pass	s TL -	Transi	tion St	ation #	1 1
	ECT N								PROJECT LOCATION Pittsburg					
DATE	STAP	TFF) 12/	12/16		СОМ	ol ETED	12/12/16	GROUND ELEVATION 1188.2 f	t	HOI	F SI7	E 6"	
					SW Cole	001111		12/12/10			-			1.46576667
						r/Wet			DRILLING EQUIPMENT CME 8					
									GROUND WATER LEVEL:					
NOTE	s								$\overline{igspace}$ at time of drilling $\underline{}$ 0.	2ft / El	lev 118	38.0ft		
		ı	Ш	%		÷					ATTER	RBERG	F	REMARKS
>	Ξ	(SAMPLE TYPE NUMBER	RECOVERY 9 (RQD)	N TS UE)	POCKET PEN. (tsf)	₽			MOISTURE CONTENT (%)	Livi		N H H	
ELEV (ft)	DEPTH (ft)	l i	PLE JMB	OVE	BLOW COUNTS (N VALUE)	KET (tsf)	GRAPHIC LOG	MATER	IAL DESCRIPTION	IEN	5 ₹		8	REMARKS
			Z Z	ZEC.	mos	၁၀င	9			₩ N N N	a=	AS-	NES	
	0		, I			_	12. ·3. 12.	Z TOPSOII : Loan C	LAY with sand (CL), little coarse			颪	됴	
		V	SPT		4-5-6-11		11. 11.	gravel, trace organ	nics, moderate brown, moist, stiff,					
			1	29	(11)			fine grained sand GLACIOFLUVIAL:	Silty SAND with gravel (SM),	21.3				
_								dark yellowish brow	wn, moist, medium dense, fine to avel, fine grained sand,					
_		V	SPT		8-8-10-11			subangular	, g. a dullu,					
1185	-	Ă	2	63	(18)					14.5				
	5	V	SPT		8-10-15-7									
		I	3	67	(25)									
		V	ODT		00.44.5.0									
		┪	SPT 4	50	22-14-5-8 (19)									
1180								-=-=-=						
		V	ODT		E 40 00 40			brown, moist, dens	sand (GM), dark yellowish se, fine to coarse grained gravel,					
	-	┪	SPT 5	25	5-10-28-10 (38)			fine grained sand,	subangular					
	_ 10	A					600							
	-													
1175		-					<u> </u>	Silty SAND (SM), t	trace fine gravel, dusky yellowish	1				
	L.							brown, wet, mediu	m dense, fine grained sand					
	15_		1											
	L	J▼	SPT	71	9-10-14-14									
			6	' '	(24)									
	ļ .		<u> </u>											
1170														
1170	-													
	20													
		*	SPT 7	75	50/2"			BEDROCK: Highly gray, fine grained,	weathered (IV), moderate dark very weak (R1), very poor,					

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:USERS\JTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ

QUANTA SUBSURFACE Quanta Subsurface 4308 N Barker RD Spokane Valley, WA 99027 Telephone: 509-892-9409

BORING NUMBER BH 109

PAGE 2 OF 2

CLIENT PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire ATTERBERG 📙

ELEV	(ft)	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY STAN	FINES CONTENT (%)	REMARKS
-	165		RC 1	100 (100)				PHYLLITE Roller Bit Refusal at 21 feet Begin Coring at 21 feet Fresh (I), dark gray, fine grained, medium weak (R2) to medium strong (R3), excellent, PHYLLITE, foliated, graphitic, quartz ribbons, spotty oxidized minerals					UCS at 22 feet = 3,107 psi
- C:\USERS\JTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ	160 -	30	RC 2	100 (100)									
::USERS;JTMCGINNIS;DOCUMENTS;16004	 155 	35	RC 3	100 (100)				Bottom of Borehole at 36.0 feet					
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35													

BORING NUMBER BH 110 Quanta Subsurface QUANTA 4308 N Barker RD SUBSURFACE Spokane Valley, WA 99027 Telephone: 509-892-9409 **CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire **COMPLETED** 12/12/16 DATE STARTED 12/12/16 GROUND ELEVATION 1209.2 ft HOLE SIZE 6" DRILLING CONTRACTOR SW Cole **LATITUDE** 45.02256389 **LONGITUDE** -71.46643333 DRILLING METHOD Solid Stem Auger/Wet Rotary DRILLING EQUIPMENT CME 850 SPT HAMMER Automatic LOGGED BY S. Laing CHECKED BY J.T. McGinnis GROUND WATER LEVEL: **NOTES** AT TIME OF DRILLING Not Encountered (prior to rotary wash at 9 feet ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX € MATERIAL DESCRIPTION LIQUID **REMARKS** LIMIT TOPSOIL: Lean CLAY with sand (CL), little organics, moderate brown, wet, soft, fine grained 1/ . 11/ 1-2-4-9 sand 71 32.1 (6) GLACIOFLUVIAL: Silty SAND with gravel (SM), moderate yellowish brown, moist, medium dense to dense, fine to coarse grained gravel, fine grained sand, subangular SPT 9-15-14-15 88 16.2 (29)1205 17-15-18-SPT 75 31 (33)- cobbles encountered from 6 to 7 feet 20-50/6" 100 BEDROCK: Highly weathered (IV), dark gray, fine grained, very weak (R1), very poor, PHYLLITE 1200 Roller Bit Refusal at 10 feet UCS at 10.3 feet = Begin Coring at 10 feet 15,020 psi Fresh (I), dark gray, fine grained, very strong (R5), excellent, PHYLLITE, graphitic with scattered pyrite and quartz RC 100 (100)1195 15 RC 100 (100)<u>11</u>90

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C;USERS\JTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GP\

CLIENT PAR Electrical Contractors

PROJECT NUMBER 16004

BORING NUMBER BH 110

PAGE 2 OF 2

PROJECT NAME Northern Pass TL - Transition Station #1

PROJECT LOCATION Pittsburg, New Hampshire

ELEV (ft)	DЕРТН (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
		RC 3	94 (95)				Fresh (I), dark gray, fine grained, very strong (R5), excellent, PHYLLITE, graphitic with scattered pyrite and quartz (continued)					

Bottom of Borehole at 25.0 feet

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:\USERS\JTMCG\INN\S\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ

BORING NUMBER INF 101 Quanta Subsurface QUANTA SUBSURFACE 4308 N Barker RD PAGE 1 OF 1 Spokane Valley, WA 99027 Telephone: 509-892-9409 **CLIENT** PAR Electrical Contractors PROJECT NAME Northern Pass TL - Transition Station #1 PROJECT NUMBER 16004 PROJECT LOCATION Pittsburg, New Hampshire DATE STARTED 11/18/16 COMPLETED 11/18/16 GROUND ELEVATION 1163.7 ft HOLE SIZE 6" **DRILLING CONTRACTOR** SW Cole **LATITUDE** 45.02194444 **LONGITUDE** -71.46533333 DRILLING METHOD Solid Stem Auger DRILLING EQUIPMENT _CME 850 ___ SPT HAMMER _Automatic LOGGED BY S. Laing CHECKED BY J.T. McGinnis GROUND WATER LEVEL: NOTES $\sqrt{2}$ AT TIME OF DRILLING 6.5ft / Elev 1157.2ft ATTERBERG LIMITS FINES CONTENT (%) SAMPLE TYPE NUMBER POCKET PEN. (tsf) MOISTURE CONTENT (%) RECOVERY (RQD) BLOW COUNTS (N VALUE) GRAPHIC LOG DEPTH PLASTICITY INDEX ELEV (ft) € LIQUID MATERIAL DESCRIPTION **REMARKS** 0 Infiltration test TOPSOIL: Lean CLAY (CL), little organics, casing installed in 1/ . 11/ moderate brown, moist, soft 1-1-4-8 an adjacent SPT 54 GLACIOFLUVIAL: Silty SAND with gravel (SM), (5) borehole to a dark yellowish brown, moist, medium dense, fine to depth of GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C;USERS\JTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GP\ coarse grained gravel, fine grained sand approximately 11 feet. Silty GRAVEL with sand (GM), dark vellowish 20-13-19brown, moist, dense to very dense, fine to coarse SPT 71 25 grained gravel, fine grained sand (32)<u>1160</u> 26-29-32-The ESHWT is at SPT 79 an approximate 30 (61)depth of 6.5 feet. - wet from 6 to 11 feet Auger refusal was 21-39-50 encountered at 7.5 78 (89)feet. The borehole was offset 2 feet - cobbles and boulders encountered from 7.5 to 10 and redrilled. 1155 10 14-26-21

Bottom of Borehole at 14.0 feet

Silty SAND with gravel (SM), moderate to dark

gravel, fine to coarse grained sand

yellowish brown, wet, dense, fine to coarse grained

22.5

10.8

SPT

5

SPT

6

1150

63

96

30

(47)

21-15-20-

30

(35)

CLIE	En	gineer	AN SURF	truction	Quanta Su 4308 N Ba Spokane \ Telephone ntractors	rker R /alley, : 509-	D WA 9 -892-9	9027 409	PROJECT NAME Northern Pas					ER INF 102 PAGE 1 OF 1
	JECT N								PROJECT LOCATION Pittsburg				lation	# 1
DATE	STAR	TEC	11/	18/16		COME	PLETE	ED _11/18/16	GROUND ELEVATION _1162.7	ft	HO	LE SIZ	'E 6"	
1					SW Cole				LATITUDE 45.02200833		_			71.46522222
1					v Stem Aug				DRILLING EQUIPMENT CME 8	50	SPI	HAM	MER .	Automatic
1		<u>_S</u>	. Lain	g		CHEC	KED	BY J.T. McGinnis	_			05		
NOTE	:5	<u> </u>		l					$\overline{\lor}$ at time of drilling $\underline{}$	т —	A T T C I	RBERG		
	_		- फ ⊓	% >	ωû	Ä.	ပ			(% (%)	LIN	IITS	L L L	
ELEV (ft)	o DEPTH (ft)	L	SAMPLE ITE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATER	RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	FINES CONTENT (%)	REMARKS
	-	Y A	SPT 1	25	3-5-5-6 (10)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	organics, moderate grained sand GLACIOFLUVIAL Noderate yellowis	CLAY with sand (CL), little te brown, wet, medium stiff, fine : Silty SAND with gravel (SM), resh brown, moist, medium dense, f					Infiltration test casing installed in an adjacent borehole to a depth of approximately 11
1160		X	SPT 2	71	11-12-12- 19 (24)			brown, moist, med grained gravel, fin subangular	h sand (GM), dark yellowish dium dense, fine and coarse e and coarse grained sand,	_				A bulk sample was obtained from 1 to
NOKINETA PROPERTY PRO	5	X	SPT 3	58	12-7-10-11 (17)	I		dark yellowish bro	ND with silt and gravel (SP-SM), own, moist, medium dense, fine d gravel, fine to medium grained					10 feet.
1155	-	X	SPT 4	71	11-17-16- 18 (33)			brown, wet, dense fine to medium gr	h sand (GM), dark yellowish e, fine and coarse grained gravel, ained sand, subangular ND with gravel (SP), dark					The ESHWT is at an approximate depth of 7.5 feet.
	10	X	SPT 5	63	10-11-21- 30 (32)				wet, dense, fine and coarse e to medium grained sand,					
KAN I IMCGINING		X	SPT 6	79	8-14-31-34 (45)	1		brown, moist, den	with gravel (SM), dark yellowish se, fine and coarse grained d sand, subangular	10.4			20.2	
NO.5		X	SPT 7	0	50/3"									
00.20								Auge Bottom	er Refusal at 12.5 feet of Borehole at 12.5 feet					
1160 12 12 13 13 13 13 13 13														

	S S	QUAN UBSURF	ACE	Quanta Su 4308 N Ba Spokane \ Telephone	rker R /allev.	D WA 99	9027 409	В	ORING	S N	UMI	BER	R INF 102A PAGE 1 OF 1
	NT _P/	R Electri	cal Cor	ntractors								ation a	#1
PRO	JECT N	UMBER	16004	•				PROJECT LOCATION Pitts	sburg, New	Hamp	shire		
1				SW Cole	COM	PLETE	D 11/18/16	GROUND ELEVATION _116 LATITUDE 45.02200833					71.46522222
				v Stem Aug					ME 850	SP	Г НАМ	MER _	Automatic
1	GED B' ES	S. Lair	ng		CHEC	KED I	3Y J.T. McGinnis	GROUND WATER LEVEL:					
		111			Ι.					ATTE	RBERG	<u> </u>	
ELEV (ff)		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATER	RIAL DESCRIPTION	MOISTURE CONTENT (%)	LIQUID	PLASTICITY STINDEX	FINES CONTENT (%)	REMARKS
	0						Aug	er Probe to Refusal				ш	Boring was offset 5 feet from INF
-	_						No	Samples Obtained					102 location.
- GPJ	_												
1160)												
TRANS													
PASS	-												
HERN N	5	_											
NOR-	_												
N16004	_												
된 5 성 1155	5												
S/1600	_												
	_	_											
	10												
<u> </u>	_												Auger refusal condition was anticipated to be
OMTC/S	_												bedrock based on driller's
USER:	_	1											observations.
ပ် <u>1150</u>)						Auge	r Potunal at 12 0 foot					
3/16 09:							Bottom	r Refusal at 13.0 feet of Borehole at 13.0 feet					
- 12/16													
M.GDT													
AB E-I													
ISN QI													
-DFS													
SNMU													
GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:USERS\UTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ LT													
HOH													
GEOT													

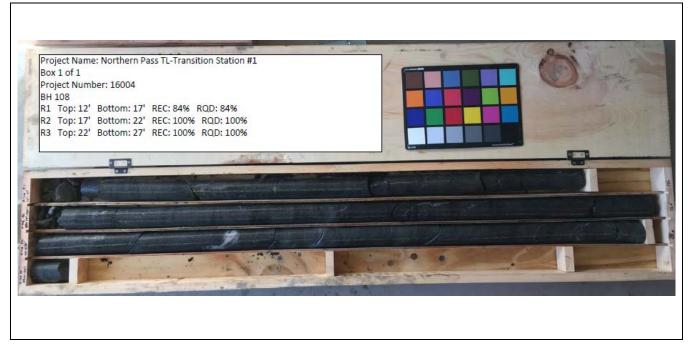
BORING NUMBER INF 103 PAGE 1 OF 1

CLIENT PAR Electrical Contractors	PROJECT NAME Northern Pass TL - 1	ransition Station #1
PROJECT NUMBER 16004	PROJECT LOCATION _Pittsburg, New !	Hampshire
DATE STARTED 11/14/16 COMPLETED 11/14/16	GROUND ELEVATION 1145.0 ft	HOLE SIZE 6"
DRILLING CONTRACTOR SW Cole	LATITUDE 45.02160833	LONGITUDE71.46511389
DRILLING METHOD Solid Stem Auger	DRILLING EQUIPMENT CME 850	SPT HAMMER _Automatic
LOGGED BY S. Laing CHECKED BY J.T. McGinnis	GROUND WATER LEVEL:	
NOTES	$\sqrt{2}$ AT TIME OF DRILLING $9.7 \mathrm{ft}$ / EI	ev 1135.3ft

\(\frac{\(\frac{1}{2}\)}{1145}	о ОЕРТН (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	GRAPHIC LOG	MATERIAL DESCRIPTION	MOISTURE CONTENT (%)	LIMIT	FINES CONTENT (%)	REMARKS
	_	SPT 1	88	1-1-2-3 (3)		7.77	TOPSOIL: Silty SAND (SM), trace organics, moderate brown, moist, soft GLACIOFLUVIAL: Silty SAND (SM), moderate to dark yellowish brown, moist, loose to medium dense, fine grained sand, subrounded				Infiltration test casing installed in an adjacent borehole to a depth of approximately 6
	_	SPT 2	88	9-8-9-9 (17)			derise, fille graffied sand, subjourned				feet.
1140	5	SPT 3	71	3-14-35-42 (49)			SILT (ML), little fine sand, dark yellowish brown, moist, hard	24.7		91.3	
		SPT 4	100	50/4"			Silty SAND with gravel (SM), dark yellowish brown, moist, very dense, fine to coarse grained gravel, fine to medium grained sand, subrounded, with cobbles				
1135	10	SPT 5	71	25-17-32- 16 (49)			- dense with no cobbles from 8 to 10 feet $\label{eq:cobbles} \underline{\nabla}$				The ESHWT is at an approximate depth of 9.5 feet.
							Bottom of Borehole at 10.0 feet				

Bottom of Borehole at 10.0 feet

GEOTECH BH COLUMNS - DF STD US LAB E-M.GDT - 12/16/16 09:35 - C:USERS\UTMCGINNIS\DOCUMENTS\16004 GINT\16004 NORTHERN PASS TRANSITION 1.GPJ


Appendix C QS Rock Core Photographs

BH 106 Rock Core Photos

BH 108 Rock Core Photos

BH 109 Rock Core Photos

BH 110 Rock Core Photos

Appendix D QS Laboratory Test Results

SUMMARY OF LAB TESTING RESULTS

NORTHERN PASS TRANSMISSION LINE PROJECT

TRANSITION STATION #1 PROJECT NO.: 16004

SAN	MPLE INFORMATION	N										LAB TEST	RESULTS						
BOREHOLE	FIELD SAMPLE		MOISTURE CONTENT	ORGANIC CONTENT OF SOIL	Si	eve Analysis	s (ASTM D42	22)	% PASSING NO. 200		ERBERG LII STM D431			PROCTOR D1557)	UNCONFINED COMPRESSIVE		SOIL CH	EMISTRY	
No.	ID	DEPTH (ft)	(ASTM D2216) (%)	(ASTM D2794) (%)	% Gravel	% Sand	% Silt	% Clay	SEIVE (ASTM D1140)	ш	PL	PI	Max. Dry Density (pcf)	Optimum Moisture Content (%)	STRENGTH OF ROCK (ASTM D7102) (psi)	SO ₄ (ASTM D516)	CHLORIDE (ASTM D512)	pH (ASTM G51)	RESISTIVITY (AASHTO T288) (Ohm-cm)
BH 102	S1	0-2	24.7																
BH 102	S3	4-6							18.1										
BH 103	S1	0-2	19.9																
BH 103	S2	2-4	13.8																
BH 103	S4	6-8							51.5										
BH 105	BULK	1-6	33.1						43.3	33	NP	NP	121.9 ^C	9.7 ^c		< 6.8 ^A	< 6.8 ^A	5.8 ^A	1,900
BH 105	S2	2-4	16.7																
BH 105	S4	6-8							53.6										
BH 106	S1	0-2	26.2																
BH 106	BULK	5-15'	16.1						36.6	18	NP	NP	132.2 ^C	8.7 ^c		< 5.9 ^A	12 ^A	5.4 ^A	6,900
BH 106	S3	4-6	10.5																
BH 106	S5	8-10	11.9																
BH 106	\$6	15-16	16.9																
BH 106	S8	25-27							89.6										
BH 106	R1	38.2-38.6													5,062 ^B				
BH 107	S2	2-4	16.3																
BH 107	S3	4-6	13.5																
BH 107	S4	6-8	13.1																
BH 108	S1	0-2	30.0																
BH 108	BULK	1-10	14.9						39.3	28	NP	NP	127.8 ^C	8.5 ^c					
BH 108	S2	2-4	8.8														-		
BH 108	S3	4-6	9.7														-		
BH 109	S1	0-2	21.3																
BH 109	S2	2-4	14.5														-		
BH 109	R1	21.8-22.1													3,107 ^B				
BH 110	S1	0-2	32.1														-		
BH 110	S2	2-4	16.2																
BH 110	R1	10.1-10.4													15,020 ^B				
INF 101	S5	10-12	10.8		15.8	61.7	16.7	5.8											
INF 102	S6	10-12	10.4		32.8	47.1	15.2	5.0											
INF 103	S3	4-6	24.7		0.0	8.7	68.4	22.9									-		

NOTES:

General - Testing performed by S.W. Cole unless otherwise noted.

- A Testing performed by Absolute Resource Associates as a subcontractor to S.W. Cole.
- B Testing performed by GeoTesting.
- C Reported maximum dry density and optimum moisture based on corrected values.

Report of Moisture Content of Soil and Rock

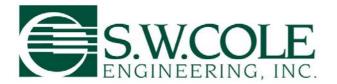
ASTM D2216-10

Project Name: Northern Pass Transmission Line

Project Location: Various, NH
Client: Quanta Subsurface

Material Description: Multiple

Material Source: Transition Station 1


Project Number: 16-0600
Lab ID: Multiple
Date Received: 11/22/16
Date Completed: 12/01/16
Tested By: BLG

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
15345S	3/8"	BH-103, 0-2'	19.9%
15346S	3/8"	BH-103, 2-4'	13.8%
15348S	3/8"	BH-105, BULK, 1-6'	33.1%
15349S	3/8"	BH-105, 2-4'	16.7%
15351S	3/8"	BH-106, 0-2'	26.2%
15352S	3/8"	BH-106, BULK, 5-15'	16.1%
15353S	3/8"	BH-106, 4-6'	10.5%
15354S	3/8"	BH-106, 8-10'	11.9%
15355S	3/8"	BH-106, 15-16'	16.9%
15357S	3/8"	BH-107, 2-4'	16.3%

Comments:

Reviewed By:

10 Centre Road, Somersworth, NH 03878-2926 ● P: (603) 692.0088 ● F: (603) 692.0044 ● E: infosomersworth@swcole.com

Report of Moisture Content of Soil and Rock

ASTM D2216-10

Project Name: Northern Pass Transmission Line

Project Location: Various, NH
Client: Quanta Subsurface

Material Description: Multiple

Material Source: Transition Station 1

Project Number: 16-0600
Lab ID: Multiple
Date Received: 11/22/16
Date Completed: 12/01/16
Tested By: BLG

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
15358S	3/8"	BH-107, 4-6'	13.5%
15359S	3/8"	BH-107, 6-8'	13.1%
15360S	3/8"	BH-108, 0-2'	30.0%
15361S	3/8"	BH-108, BULK, 1-10'	14.9%
15362S	3/8"	BH-108, 2-4'	8.8%
15363S	3/8"	BH-108, 4-6'	9.7%
15364S	3/8"	BH-109, 0-2'	21.3%
15365S	3/8"	BH-109, 2-4'	14.5%
15366S	3/8"	BH-110, 0-2'	32.1%
15367S	3/8"	BH-110, 2-4'	16.2%

Comments:

Reviewed By:	CBM	
--------------	-----	--

Report of Moisture Content of Soil and Rock

ASTM D2216-10

Project Name: Northern Pass Transmission Line

Project Location: Various, NH
Client: Quanta Subsurface

Material Description: Multiple

Material Source: Transition Station 1

Project Number: 16-0600
Lab ID: Multiple
Date Received: 11/22/16
Date Completed: 12/01/16

Tested By: BLG

Lab ID	Nominal Maximum Aggregate Size	Material Description	Moisture Content
15368S	3/8"	INF-101, 10-12'	10.8%
15369S	3/8"	INF-102, 10-12'	10.4%
15370S	3/8"	INF-103, 4-6'	24.7%
1658S	3/8"	BH-102, 0-2'	24.7%

Comments

Reviewed By:

Project Number:

Percent Finer than No. 200 ASTM D1140

Project Name:	Northern Pass - Tra	ansition Station #1
Sample ID:	15347S	
Sample Source:	BH-103, 6-8'	
Client Sample Description:		
% Pas	sing # 200:	51.5
Sample ID:	15348S	
Sample Source:	BH-105, BULK, 1-6	6'
Client Sample Description:	SM	
% Pas	sing # 200:	43 3
		13.3
Sample ID:	15350S	
Sample Source:	BH-105, 6-8'	
Client Sample Description:	ML	<u> </u>
% Pas	sing # 200:	53.6
Sample ID:	15352S	
_	BH-106, BULK, 5-1	
Client Sample Description:	SM	
% Pas	sing # 200:	36.6
Sample ID:	15356S	
Sample Source:	BH-106, 25-27'	
Client Sample Description:	ML	<u> </u>
% Pas	sing # 200:	89.6

16-0600

Percent Finer than No. 200 ASTM D1140

Project Number:	16-0600	
Project Name:	Northern Pass - Transition Station #	1
Sample ID	:15361S	
Sample Source	: BH-108, BULK, 1-10'	
Client Sample Description	: SM	
% Pa	assing # 200: 39.3	
Sample ID	:1659M	
Sample Source	: BH-102, 4-6'	
Client Sample Description	: SM	
% Pa	assing # 200:18.1	

Report of Hydrometer

ASTM D422-63 (07)

Project Name: Northern Pass Transmission Line

Project Location: Various, NH

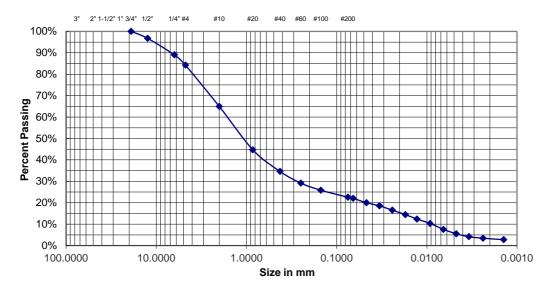
Client: SWCOLE Explorations, LLC

Material Description: SM

Material Source: INF-101, 10-12'

Kepon	l OI	пуш	OIII	etei
			(a=)	

 Project Number:
 16-0600


 Lab ID:
 15368S

 Date Received:
 11/22/2016

 Date Completed:
 12/1/2016

Tested By: BLG

	Sieve	Analysis			Hydrom	eter Analysis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)	F	Particle Size (mm)	Amount Passing (%)
3"	76	100			0.06551	22.1
2"	50	100			0.04673	20.0
1½"	38.1	100			0.03347	18.6
1"	25	100			0.03347	18.6
3/4"	19	100			0.02416	16.5
1/2"	12.5	97			0.01729	14.5
1/4"	6.3	89			0.01288	12.4
No. 4	4.75	84			0.00921	10.3
No. 10	2	65			0.00655	7.6
No. 20	0.85	45			0.00471	5.5
No. 40	0.425	35			0.00341	4.1
No. 60	0.25	29			0.00238	3.4
No. 100	0.15	26			0.00141	2.8
No. 200	0.075	22.6				
	0.02					

 Particle Distribution:
 Gravel (3" - No. 4)
 15.8%
 Fines (0.074 -0.005)
 16.7%

 Sand (No. 4 - No. 200)
 61.7%
 Clay (<0.005)</td>
 5.8%

CBM Comments:

10 Centre Road, Somersworth, NH 03878-2926 ● P: (603) 692.0088 ● F: (603) 692.0044 ● E: infosomersworth@swcole.com

Reviewed By

ASTM D422-63 (07)

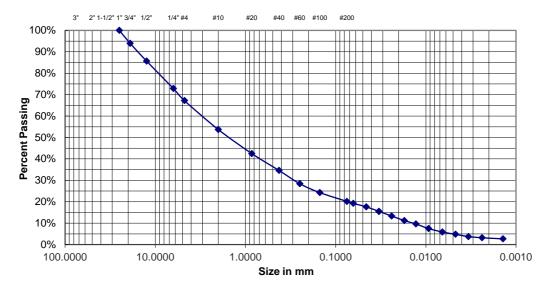
Project Name: Northern Pass Transmission Line

Project Location: Various, NH

SWCOLE Explorations, LLC Client:

Material Description: SM

Material Source: INF-102, 10-12'


Report of	Hydromete	r
-----------	-----------	---

Project Number: 16-0600 Lab ID: 15369S Date Received: 11/22/2016

Date Completed: 12/1/2016

Tested By: **BLG**

	Sieve	Analysis			Hydrom	eter Analy	/sis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)	Par	rticle Size (mm)	Amount (%	0
3"	76	100		0	0.06375	19	.2
2"	50	100		0	0.04570	17	.6
1½"	38.1	100		0	0.03304	15	.5
1"	25	100		0	0.03304	15	.5
3/4"	19	94		0	0.02397	13	.3
1/2"	12.5	86		0	0.01729	11	.2
1/4"	6.3	73		0	0.01288	9.	.6
No. 4	4.75	67		0	0.00931	7.	.5
No. 10	2	54		0	0.00655	5.	9
No. 20	0.85	42		0	0.00468	4.	.8
No. 40	0.425	35		0	0.00338	3.	.7
No. 60	0.25	28		0	0.00238	3.	2
No. 100	0.15	24		0	0.00139	2.	.7
No. 200	0.075	20.2					
	0.02						

Particle Distribution: Gravel (3" - No. 4) 32.8% Fines (0.074 -0.005) 15.2%

Sand (No. 4 - No. 200) Clay (<0.005) 47.1% 5.0%

Comments:

Reviewed By

CBM

ASTM D422-63 (07)

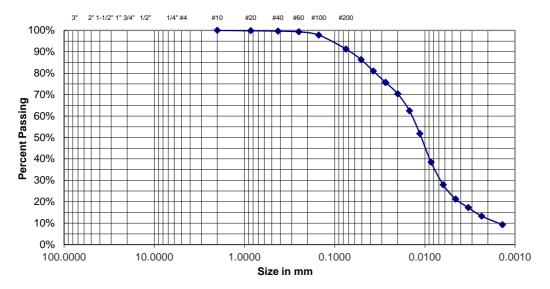
Project Name: Northern Pass Transmission Line

Project Location: Various, NH

SWCOLE Explorations, LLC Client:

Material Description: ML

Material Source: INF-103, 4-6'


Report of Hyd	rome	ter
---------------	------	-----

Project Number: 16-0600 Lab ID: 15370S Date Received: 11/22/2016

Date Completed: 12/1/2016

Tested By: **BLG**

	Sieve	Analysis		Hydrom	eter Analysis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)	Particle Size (mm)	Amount Passing (%)
3"	76	100		0.05082	86.3
2"	50	100		0.03723	81.0
1½"	38.1	100		0.02721	75.7
1"	25	100		0.02721	75.7
3/4"	19	100		0.01997	70.4
1/2"	12.5	100		0.01478	62.4
1/4"	6.3	100		0.01136	51.8
No. 4	4.75	100		0.00853	38.5
No. 10	2	100		0.00624	27.9
No. 20	0.85	100		0.00455	21.2
No. 40	0.425	100		0.00329	17.3
No. 60	0.25	99		0.00234	13.3
No. 100	0.15	98		0.00138	9.3
No. 200	0.075	91.3			
	0.02				

Particle Distribution: Gravel (3" - No. 4) 0.0% Fines (0.074 -0.005) 68.4% Sand (No. 4 - No. 200) Clay (<0.005) 8.7% 22.9%

CBM

Reviewed By

10 Centre Road, Somersworth, NH 03878-2926 ● P: (603) 692.0088 ● F: (603) 692.0044 ● E: infosomersworth@swcole.com

Comments:

Report of Atterberg Limits

ASTM D4318-10 - Method A

Project Name: Northern Pass Transmission Line

Project Location: Various, NH

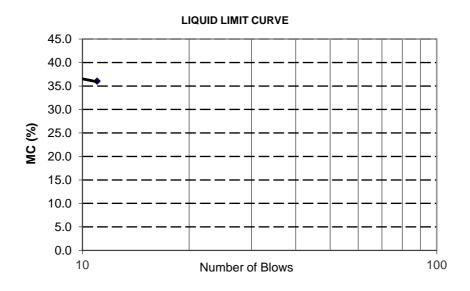
Client: SWCOLE Explorations, LLC

Material Description: SM

Material Source: BH-105, BULK, 1-6'

Project Number: 16-0600 **Lab ID:** 15348S

Lab ID: 15348S **Date Received:** 11/22/16


Date Completed: 12/13/16

Tested By: SLH

Liquid Limit 33

Plastic Limit 33

Plasticity Index

Material Retained On the No. 40 Sieve: 12%

As-received Moisture Content: 33%

Comments:

CBM Reviewed By:

Report of Atterberg Limits

ASTM D4318-10 - Method A

Project Name: Northern Pass Transmission Line

Project Location: Various, NH

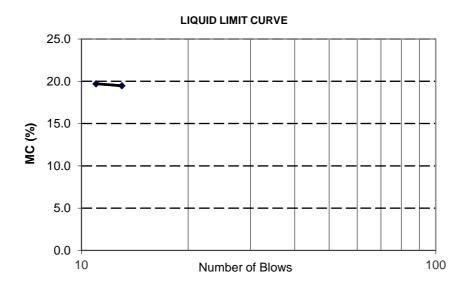
Client: SWCOLE Explorations, LLC

Material Description: SM

Material Source: BH-106, BULK, 5-15'

Project Number: 16-0600 **Lab ID:** 15352S

Lab ID: 15352S **Date Received:** 11/22/16


Date Completed: 12/13/16

Tested By: SLH

Liquid Limit 18

Plastic Limit

Plasticity Index Non-Plastic

Material Retained On the No. 40 Sieve: 14%

As-received Moisture Content: 16%

Comments:

Reviewed By:

Report of Atterberg Limits

ASTM D4318-10 - Method A

Project Name: Northern Pass Transmission Line

Project Location: Various, NH

Client: SWCOLE Explorations, LLC

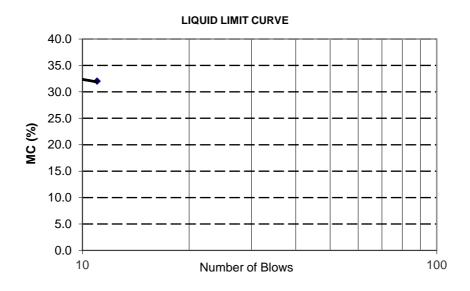
Material Description: SM

Material Source: BH-108, BULK, 1-10'

Project Number: 16-0600

Lab ID: 15361S

Date Received: 11/22/16


Date Completed: 12/13/16

Tested By: SLH

Liquid Limit 28

Plastic Limit

Plasticity Index Non-Plastic

Material Retained On the No. 40 Sieve: 11%

As-received Moisture Content: 15%

Comments:

Reviewed By:

Report of Moisture-Density

Method ASTM D-1557 MODIFIED

Procedure B

Project Name

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

LABORATORY TESTING SERVICES

Client

SWCOLE EXPLORATIONS, LLC

Material Type

SM

Material Source

BH-105, BULK, 1-6'

Project Number

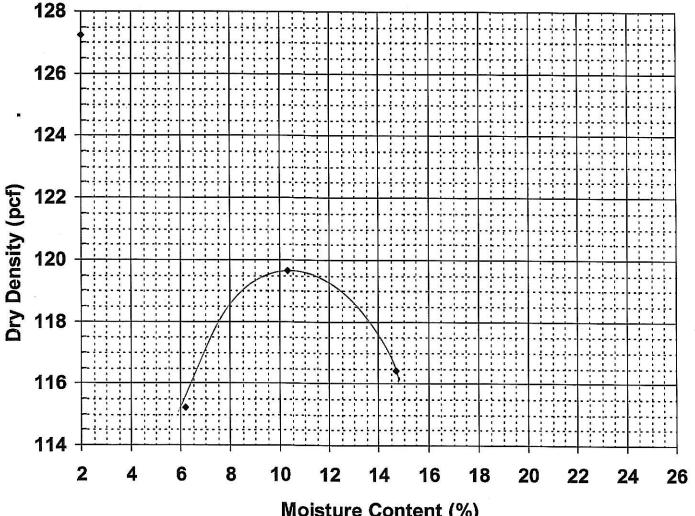
16-0600

Lab ID

15348S

Date Received

11/22/2016


Date Completed

12/13/2016

Tested By

BRADLEY GERSCHWILER

Moisture-Density Relationship Curve

Moisture Content (%)

Maximum Dry Density (pcf) Optimum Moisture Content (%) 119.7

Corrected Dry Density (pcf)

121.9

10.3

Corrected Moisture Content (%

9.7

Percent Oversized

7.5%

Comments

10 Centre Road, Somersworth, NH 03878-2926 • Tel (603) 692-0088 • Fax (603) 692-0044 • www.swcole.com

Report of Moisture-Density

Method ASTM D-1557 MODIFIED

Procedure B

Project Name

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

LABORATORY TESTING SERVICES

Client

SWCOLE EXPLORATIONS, LLC

Material Type

SM

Material Source

BH-106, BULK, 5-15'

Project Number

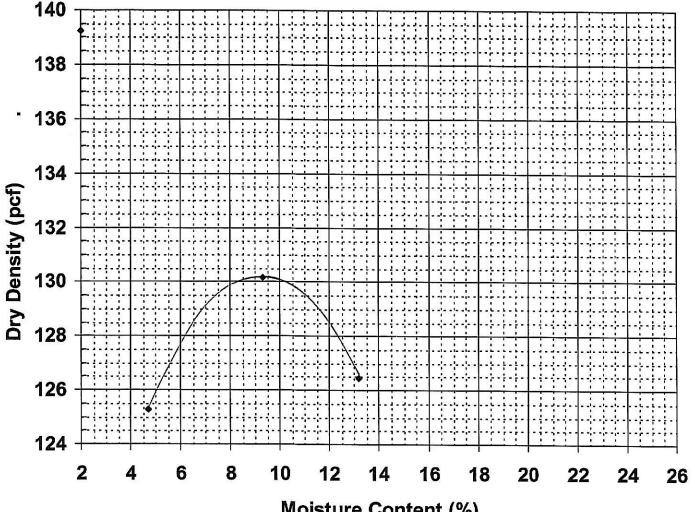
16-0600

Lab ID

15352S

Date Received

11/22/2016


Date Completed

12/13/2016

Tested By

BRADLEY GERSCHWILER

Moisture-Density Relationship Curve

Moisture Content (%)

Maximum Dry Density (pcf) 130.2 Optimum Moisture Content (%) 9.3 Percent Oversized 8.6%

Corrected Dry Density (pcf)

132.2

Corrected Moisture Content (%

8.7

Comments

10 Centre Road, Somersworth, NH 03878-2926 • Tel (603) 692-0088 • Fax (603) 692-0044 • www.swcole.com

Report of Moisture-Density

Method ASTM D-1557 MODIFIED

Procedure B

Project Name

VARIOUS NH - NORTHERN PASS TRANSMISSION LINE -

LABORATORY TESTING SERVICES

Client

SWCOLE EXPLORATIONS, LLC

Material Type

SM

Material Source BH-108, BULK, 1-10'

Project Number

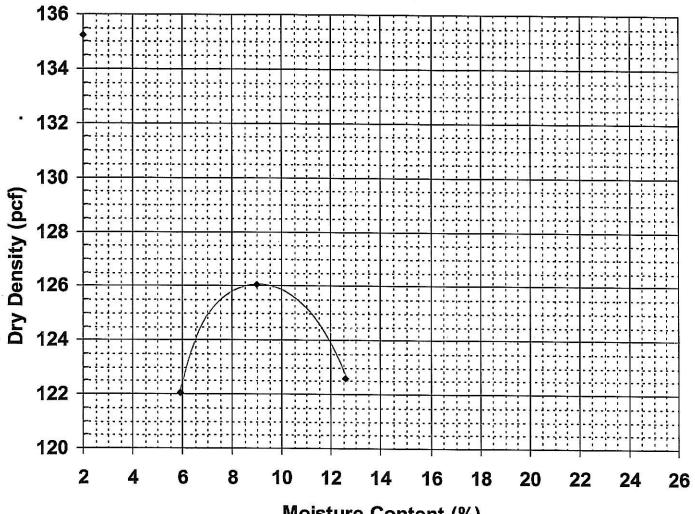
16-0600

Lab ID

15361\$

Date Received

11/22/2016


Date Completed

12/13/2016

Tested By

ANTONIO SANTIAGO

Moisture-Density Relationship Curve

Moisture Content (%)

Maximum Dry Density (pcf)

126.1 9

Corrected Dry Density (pcf)

127.8

Optimum Moisture Content (%)

Percent Oversized

6.9%

Corrected Moisture Content (%

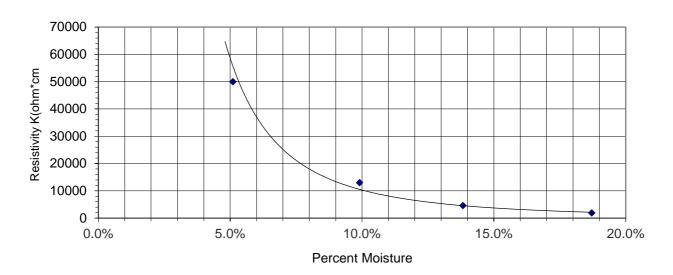
8.5

Comments

Report of Soil Resistivity

AASHTO T288

Project Name: Northern Pass Transmission Line Project Number: 16-0600


Project Location: Various, NH **Lab ID:** 15348S

Client:SWCOLE Explorations, LLCDate Received:11/22/16Material Description:SMDate Completed:12/12/16

Material Source: BH-105, BULK, 1-6' Tested By: BLG

Minimum Soil Resistivity 1,900 ohm-cm

Soil Temperature 20.5 °C

Comments:

Reviewed By:	CBM	
reviewed by.		

Report of Soil Resistivity

AASHTO T288

Project Name: Northern Pass Transmission Line

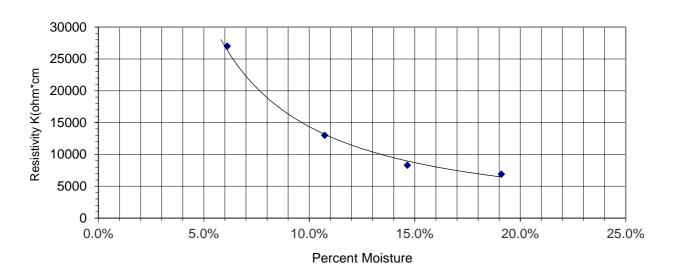
Project Location: Various, NH

Client: SWCOLE Explorations, LLC

Material Description: SM

Material Source: BH-106, BULK, 5-15'

Project Number: 16-0600 **Lab ID:** 15352S


Date Received: 11/22/16

Date Completed: 12/12/16

Tested By: BLG

Minimum Soil Resistivity 6,900 ohm-cm

Soil Temperature 20.5 °C

Comments:

Davidassa d Den	CBM	
Reviewed Bv:	CDIVI	

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Chad Michaud
S.W. Cole Engineering Inc.
10 Centre Road

Somersworth, NH 03878-2926

PO Number: None

Date Received: 11/22/16

Job ID: 38616

Project: None

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Maine

Principal, General Manager

Date of Approval: 12/8/2016

Total number of pages: 3

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

NH903

Project ID: None Job ID: 38616

Sample#: 38616-001

Sample ID: BH-105, Bulk, 1-6'

Matrix: Solid Percent Dry: 73.6% Results expressed on a dry weight basis.

Sampled: 11/22/16 9:30		Reporting		Instr Dil'n		Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Chloride	< 6.8	6.8	ug/g	1	JZL		1603363	12/2/16	18:13	E300.0A
Sulfate	< 6.8	6.8	ug/g	1	JZL		1603363	12/2/16	18:13	E300.0A
рН	5.8		рΗ	1	APA		1603274	11/29/16	4:35	SW9045C

OF ((C) etis	odwog	10 (D) ds1D					t hish	ES TAG	Time	Time	(7:00
PAGE 'O	91				1 □ -S	TCLP SV	CILVE CN	E9A 🗆	Unitrate U	×	×			OKO W CART	RECEIVED ON ICE TY	Date	Date	1/03te/16
	38616	SIS REQUEST		Cteria MPN	e8 🗆 AV	Sacteria P + Mitrite	TKN C	Sulfide	Total Metals Dissolved M. Total Metals Dissolved M. TPhosphoru						RECE		0	7
	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST	ANALYSIS		8	B Pest/PC Turbidity	2 C ED ED	N8AC Splitter Transport of Section 1686 SM Section of Section of Section 1686 SM SM SM SM SM SM SM SM SM SM SM SM SM	008 (I) 808 (I)	1 8082 PC8	×	×				CON		\$	y Laboratory
	CHAIN-OF-C	And in case of	fringra	1021VT iloxane	3868-∐st: □ 1,4-D	8E, only 8108 08 80 🗆 tsi	C 254.2 NH L	□ 00 □ W □ W □	☐ VOC 624.2 ☐ VPH MADEP						DC SWOOLE	ime Received by:	ne Received by:	ne Received by Laborator
	4 Heritage Avenue #16 ortsmouth, NH 03801 603-436-2001	associates.com		H MA ME Other	SDWA NPDES NHDES OTHER	GW-1 Other	NH Reimbursement Pricing	Sampling	DATE TIME RANPLER	9	22 4:30			SNOIL	SS) CMICHAD	1) Pate Tin Tin 123	Date	Date Time
	124 Heritage Avenu Portsmouth, NH 0: 603-436-2001	Project Name:	Droing #	Project Location: NH	Protocol: MCP	Reporting QAPP Limits: EPA DW	Quote #PO #	Preservation Method	H ₂ SO ₄ NeOH	-	=			SPECIAL INSTRUCTIONS	DDF (e-mail address)	(=22.)		
/						2088	MICHAUDE SUICOLE CA	Matrix Prese	SOLID SOLID OTHER HCI	×	×			See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.	NSTRUCTIONS	M. Aldunys		
	10	933061966		E RD	MICHADO	0	CAICH AUDIC		Field D	105 BULK 1-6	TUF-802, BULK, 1-6			- 12.01	REPORTING I	Re	Relinquished by	15 Relinquished by:
	Absolute Resour	Company Name:	SWOLF	Company Address:	Report To:	Phone #: 603	Invoice to Email: CMIC	Lab	Sample ID (Lab Use Only)	38616-011811-105	72 TUF			TAT REQUESTED Priority (24 hr)*	Standard (10 Business Days) *Date Needed	VOLSTODY	RECORD	QSD-01 Revision 10/14/15

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Chad Michaud PO Number: None S.W. Cole Engineering Inc. Job ID: 38757 10 Centre Road Date Received: 12/7/16

Somersworth, NH 03878-2926

Project: NPT 16-0600

Attached please find results for the analysis of the samples received on the date referenced above.

The following report has been reissued to report sulfate, as requested by the customer.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

lluer

Sue Sylvester Date of Approval: 12/15/2016

Principal, General Manager Total number of pages: 3

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Project ID: NPT 16-0600

Job ID: 38757

Sample#: 38757-001

Sample ID: B-106 BULK 5-15'

Matrix: Solid Percent Dry: 85.2% Results expressed on a dry weight basis.

Sampled: 12/5/16 9:00		Reporting		Instr Dil'n		Prep		Analy	sis		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference	
Chloride	< 5.9	5.9	ug/g	1	JZL		1603408	12/8/16	18:52	E300.0A	
Sulfate	12	5.9	ug/g	1	JZL		1603472	12/14/16	21:30	E300.0A	
рН	5.4		рΗ	1	APA		1603387	12/8/16	3:45	SW9045C	

Client: Quanta Subsurface

Northern Pass - Transition Station #1 Project: Location: Pittsburg, NH

Boring ID: ---Sample Type: ---Tested By:

rlc Sample ID: ---Test Date: 12/01/16 Checked By: jsc

GTX-305684

Project No:

Depth: Test Id: 399255

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

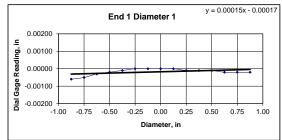
Boring ID	Sample Number	Depth, ft	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
BH 106	R2	38.20-38.55	169	5062	2	Yes	
BH 109	R1	21.75-22.10	172	3107	2	Yes	
BH 110	R1	10.05-10.37	176	15020	1	Yes	

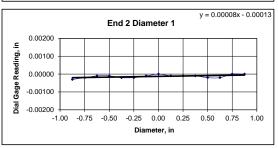
Density determined on core samples by measuring dimensions and weight and then calculating. Notes:

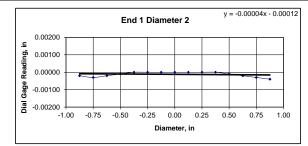
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

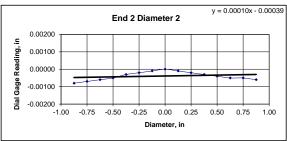
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)




Client:	Quanta Subsurface	Test Date:	12/1/2016
Project Name:	Northern Pass - Transition Station #1	Tested By:	rlc
Project Location:	Pittsburg, NH	Checked By:	jsc
GTX #:	305684		
Boring ID:	BH 106		
Sample ID:	R2		
Depth:	38.20-38.55 ft		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	3.96	3.96	3.96		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	548.39				
Bulk Density, lb/ft3	169	Minimum Diameter Tolerence	e Met?	/ES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.0	Length to Diameter Ratio Tole	erance Met?	/ES	Straightness Tolerance Met? YES
		•			

END FLATNESS AND PARALLI	ELISM (Proced	lure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00060	-0.00050	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00020	-0.00020	-0.00020
Diameter 2, in (rotated 90°)	-0.00020	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00040
											Difference between	een max and m	in readings, in:		
											0° =	0.00060	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00020	-0.00010	-0.00010	-0.00020	-0.00020	-0.00010	0.00000	-0.00010	-0.00010	-0.00010	-0.00020	-0.00020	0.00000	0.00000
Diameter 2, in (rotated 90°)	-0.00080	-0.00070	-0.00060	-0.00050	-0.00030	-0.00020	-0.00010	0.00000	-0.00010	-0.00020	-0.00030	-0.00040	-0.00050	-0.00050	-0.00060
											Difference between	een max and m	in readings, in:		
											0° =	0.0003	90° =	0.0008	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00040
												Flatness T	olerance Met?	YES	

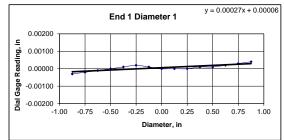
DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00015 0.00859	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00008 0.00458	
Maximum Angi	ular Difference:	0.00401	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00004 0.00229	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00229	

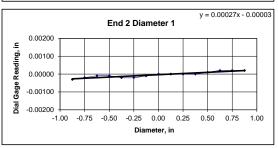
PERPENDICULARITY (Procedur	e P1) (Calculated from End Flatness	and Parallelism me	easurements a	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00060	1.990	0.00030	0.017	YES		
Diameter 2, in (rotated 90°)	0.00040	1.990	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES	
END 2							
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES		
Diameter 2, in (rotated 90°)	0.00080	1.990	0.00040	0.023	YES		

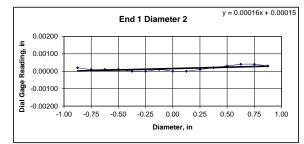
Client: Quanta Subsurface Project Name: Northern Pass - Transition Station #1 Project Location: Pittsburg, NH GTX #: 305684 Test Date: 12/1/2016 Tested By: rlc Checked By: jsc Boring ID: BH 106 Sample ID: R2 Depth, ft: 38.20-38.55

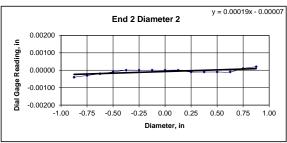
After cutting and grinding

After break




Client:	Quanta Subsurface	Test Date:	11/30/2016
Project Name:	Northern Pass - Transition Station #1	Tested By:	rlc
Project Location:	Pittsburg, NH	Checked By:	jsc
GTX #:	305684		
Boring ID:	BH 109		
Sample ID:	R1		
Depth:	21.75-22.10 ft		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.12	4.12	4.12		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.98	1.99		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	577.9				
Bulk Density, lb/ft3	172	Minimum Diameter Tolerence Me	et?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio Toleran	nce Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00020	-0.00010	0.00000	0.00010	0.00020	0.00010	0.00000	0.00000	0.00000	0.00010	0.00010	0.00020	0.00030	0.00040
Diameter 2, in (rotated 90°)	0.00020	0.00010	0.00010	0.00010	0.00000	0.00000	0.00010	0.00000	0.00000	0.00010	0.00020	0.00030	0.00040	0.00040	0.00030
	Difference between max and min readings, in:														
											0° =	0.00070	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00020	-0.00010	-0.00010	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.00020	0.00020	0.00020
Diameter 2, in (rotated 90°)	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	0.00010	0.00020
											Difference between	een max and m	in readings, in:		
											0° =	0.0005	90° =	0.0006	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00035

DIAMETER 1			
Fnd 1:			
Lina I.		0.00027	
	Angle of Best Fit Line:	0.01547	
End 2:			
	Slope of Best Fit Line	0.00027	
	Angle of Best Fit Line:	0.01547	
Maximum Angi	ular Difference:	0.00000	
	Parallelism Tolerance Met? Spherically Seated	YES	
		YES	
DIMETER 0		YES	
DIAMETER 2		YES	
DIAMETER 2 End 1:	Spherically Seated	YES	
	Spherically Seated	0.00016	
	Spherically Seated		
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00016	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00016	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00016 0.00917	
End 1: End 2:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00016 0.00917 0.00019	

Spherically Seated

Flatness Tolerance Met?

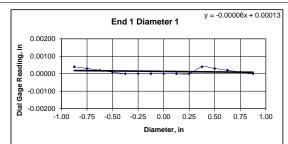
YES

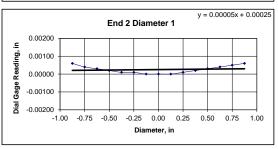
PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00070	1.985	0.00035	0.020	YES			
Diameter 2, in (rotated 90°)	0.00040	1.985	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES		
END 2								
Diameter 1, in	0.00050	1.985	0.00025	0.014	YES			
Diameter 2, in (rotated 90°)	0.00060	1.985	0.00030	0.017	YES			

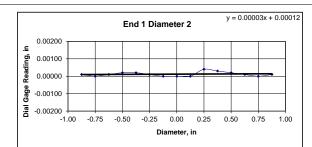
Client: Quanta Subsurface Project Name: Northern Pass - Transition Station #1 Project Location: Pittsburg, NH GTX #: 305684 Test Date: 12/1/2016 Tested By: rlc Checked By: jsc Boring ID: BH 109 Sample ID: R1 Depth, ft: 21.75-22.10

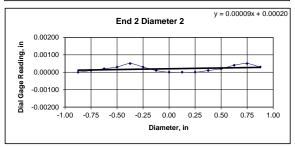
After cutting and grinding

After break




Client:	Quanta Subsurface	Test Date:	12/1/2016
Project Name:	Northern Pass - Transition Station #1	Tested By:	rlc
Project Location:	Pittsburg, NH	Checked By:	jsc
GTX #:	305684		
Boring ID:	BH 110		
Sample ID:	R1		
Depth:	10.05-10.37 ft		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.07	4.07	4.07		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.97	1.98		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	576.95				
Bulk Density, lb/ft ³	176	Minimum Diameter Tolerence	Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio Tole	erance Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Proced	dure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00040	0.00030	0.00020	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00040	0.00030	0.00020	0.00010	0.00000
Diameter 2, in (rotated 90°)	0.00010	0.00000	0.00010	0.00020	0.00020	0.00010	0.00000	0.00000	0.00000	0.00040	0.00030	0.00020	0.00010	0.00000	0.00010
	Difference between max and min readings, in:														
											0° =	0.00040	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00060	0.00040	0.00030	0.00020	0.00010	0.00010	0.00000	0.00000	0.00000	0.00010	0.00020	0.00030	0.00040	0.00050	0.00060
Diameter 2, in (rotated 90°)	0.00000	0.00010	0.00020	0.00030	0.00050	0.00030	0.00010	0.00000	0.00000	0.00000	0.00010	0.00020	0.00040	0.00050	0.00030
											Difference between	een max and m	in readings, in:		
											0° =	0.0006	90° =	0.0005	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00030
											1	Flatness T	olerance Met?	YES	

	Tidinoss reicranee met:	120	
DIAMETER 1			
End 1			
	Slope of Best Fit Line	0.00006	
	Angle of Best Fit Line:	0.00344	
End 2			
	Slope of Best Fit Line	0.00005	
	Angle of Best Fit Line:	0.00286	
Maximum Ang	ular Difference:	0.00057	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
End 1			
	Slope of Best Fit Line	0.00003	
	Angle of Best Fit Line:	0.00172	
End 2			
	Slope of Best Fit Line	0.00009	
	Angle of Best Fit Line:	0.00516	
Maximum Ang	ular Difference:	0.00344	
	Parallelism Tolerance Met? Spherically Seated	YES	

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00040	1.975	0.00020	0.012	YES			
Diameter 2, in (rotated 90°)	0.00040	1.975	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES		
END 2								
Diameter 1, in	0.00060	1.975	0.00030	0.017	YES			
Diameter 2, in (rotated 90°)	0.00050	1.975	0.00025	0.015	YES			

Client: Quanta Subsurface Project Name: Northern Pass - Transition Station #1 Project Location: Pittsburg, NH GTX #: 305684 Test Date: 12/1/2016 Tested By: rlc Checked By: jsc Boring ID: BH 110 Sample ID: R1 Depth, ft: 10.05-10.37

After cutting and grinding

After break

Appendix E Infiltration Field Test Results

FIELD INFILTRATION TEST RESULTS

Project Name:	Northern Pass TL - Transition Station #1	Test Date:	11/19-11/20/2016
Project Number:	16004	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INF 101		

FIELD TEST DATA

Run #1	Date: 11/19 Time: 13:35	Run #2	Date: 11/19 Time: 14:40	Run #3	Date: 11/20 Time: 08:15	Run #4	Date: 11/20 Time: 09:20
Time Elapsed (min)	Depth to Water (ft)	Time Elapsed (min)	Depth to Water (ft)	Time Elapsed (min)	Depth to Water (ft)	Time Elapsed (min)	Depth to Water (ft)
0	0.78	0	0.78	0	0.80	0	0.80
1	0.78	1	0.78	1	0.80	1	0.80
2	0.78	2	0.78	2	0.80	2	0.80
3	0.78	3	0.78	3	0.80	3	
4	0.78	4	0.78	4		4	
5	0.78	5	0.78	5		5	
6	0.78	6		6		6	
7	0.78	7		7		7	
8	0.78	8		8		8	
9	0.78	9		9		9	
10	0.78	10	0.78	10		10	
15	0.78	15	0.78	15		15	
20	0.78	20		20		20	
25	0.78	25		25		25	
30	0.78	30	0.78	30	0.80	30	0.80
45	0.78	45	0.78	45		45	
60	0.78	60	0.78	60	0.80	60	0.80
(ft/hr)	0.00	(ft/hr)	0.00	(ft/hr)	0.00	(ft/hr)	0.00
(in/hr)	0.00	(in/hr)	0.00	(in/hr)	0.00	(in/hr)	0.00

TEST SUMMARY

Average Infiltration Rate (in/hr)	0.00				
Pre-Soak Performed on 11/18/2016 at 12:28					
Hole Depth from Top of Casing (ft)	12.6				
Casing Stickup from Ground Surface (ft)	1.6				
Pre-Infiltration Test Water Depth from Top of Casing (ft)	1 7				

(See Note 3 below)

Notes

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.
- 3) The high water level measurement resulted from the drill crew flushing hole out immediately following casing installation; see the INF 101 boring log for the appropriate groundwater level.

FIELD INFILTRATION TEST RESULTS

Project Name:	Northern Pass TL - Transition Station #1	Test Date:	11/19-11/20/2016
Project Number:	16004	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INF 102		

FIELD TEST DATA

Run #1	Date: 11/19 Time: 14:10	Run #2	Date: 11/19 Time: 15:15	Run #3	Date: 11/20 Time: 08:22	Run #4	Date: 11/20 Time: 09:30
Time Elapsed (min)	Depth to Water (ft)	Time Elapsed (min)	Depth to Water (ft)	Time Elapsed (min)	Depth to Water (ft)	Time Elapsed (min)	Depth to Water (ft)
0	5.23	0	5.23	0	5.17	0	5.15
1	5.23	1	5.24	1	5.18	1	5.15
2	5.24	2	5.24	2	5.18	2	5.15
3	5.24	3	5.25	3	5.19	3	
4	5.26	4	5.26	4		4	
5	5.27	5	5.27	5		5	
6	5.27	6		6		6	
7	5.27	7		7		7	
8	5.28	8		8		8	
9	5.29	9		9		9	
10	5.30	10	5.30	10	5.24	10	5.21
15	5.32	15	5.33	15		15	
20	5.34	20		20		20	
25	5.38	25		25		25	
30	5.41	30	5.43	30	5.39	30	5.41
45	5.50	45	5.48	45	5.51	45	5.56
60	5.58	60	5.60	60	5.64	60	5.61
(ft/hr)	0.35	(ft/hr)	0.37	(ft/hr)	0.47	(ft/hr)	0.46
(in/hr)	4.20	(in/hr)	4.44	(in/hr)	5.64	(in/hr)	5.52

TEST SUMMARY

Average Infiltration Rate (in/hr)	4.95							
Pre-Soak Performed on 11/18/2016 at 12:42								
Hole Depth from Top of Casing (ft)	13.0							
Casing Stickup from Ground Surface (ft)	2.0							
Pre-Infiltration Test Water Depth from Top of Casing (ft)	6.9							

(See Note 3 below)

Notes:

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.
- 3) The high water level measurement resulted from the drill crew flushing hole out immediately following casing installation; see the INF 102 boring log for the appropriate groundwater level.

FIELD INFILTRATION TEST RESULTS

Project Name:	Northern Pass TL - Transition Station #1	Test Date:	11/19-11/20/2016
Project Number:	16004	Tested By:	L. Gschwind
Client:	PAR Electrical Contractors	Reviewed By:	J.T. McGinnis
Test Location:	Infiltration Boring INF 103		

FIELD TEST DATA

Run #1	Date: 11/19 Time: 13:05	Run #2	Date: 11/19 Time: 14:10	Run #3	Date: 11/19 Time: 15:15	Run #4	Date: 11/20 Time: 08:45
Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water	Time Elapsed	Depth to Water
(min)	(ft)	(min)	(ft)	(min)	(ft)	(min)	(ft)
0	5.51	0	5.51	0	5.51	0	5.42
1	5.54	1	5.56	1	5.54	1	5.46
2	5.55	2	5.58	2	5.57	2	5.48
3	5.56	3	5.60	3	5.58	3	
4	5.56	4	5.60	4		4	
5	5.57	5	5.60	5		5	
6	5.59	6		6		6	
7	5.59	7		7		7	
8	5.60	8		8		8	
9	5.60	9		9		9	
10	5.61	10	5.63	10	5.63	10	
15	5.65	15	5.66	15	5.66	15	5.57
20	5.69	20		20		20	
25	5.70	25		25		25	
30	5.71	30	5.73	30	5.73	30	5.66
45	5.78	45	5.80	45	5.79	45	5.72
60	5.86	60	5.85	60	5.85	60	5.78
(ft/hr)	0.35	(ft/hr)	0.34	(ft/hr)	0.34	(ft/hr)	0.36
(in/hr)	4.20	(in/hr)	4.08	(in/hr)	4.08	(in/hr)	4.32

TEST SUMMARY

1201 0011111111111								
Average Infiltration Rate (in/hr)	4.17							
Pre-Soak Performed on 11/18/2016 at 13:05								
Hole Depth from Top of Casing (ft)	7.9							
Casing Stickup from Ground Surface (ft)	1.9							
Pre-Infiltration Test Water Depth from Top of Casing (ft)	Dry							

Notes:

- 1) Testing was performed in accordance with guidelines presented in the New Hampshire Stormwater Manual (Vol 2; Table 2-3).
- 2) The Average Infiltration Rate (in/hr) presented is based on field measurements obtained; a safety factor has not been applied.

Appendix F Summary of Geotechnical Design Parameters

Summary of Geotechnical Design Parameters Transition Station #1

Boring BH 101

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)		
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)	
	0	1	I	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL						
Glaciofluvial	1	2	SM	9	110	29	-	-	-	
Deposits	2	6	SM	100+	140	43	-	-	-	
	6	10	SM	27	63	34	-	-	-	

Boring BH 102

Sublayer Description	De	layer pth ft) Bot.	Material Description	Average N ₆₀	Effective Unit Weight (pcf)	Soil Friction Angle (deg)	Soil Undrained Strength (psf)	(Rock Mas	drock ss Equivalent bulomb Fit) Cohesion (psf)		
Topsoil	0	1	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL								
	1	2	•	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL							
Glaciofluvial	2	4	SM	49	63	38	-	-	-		
Deposits	4	6	SM/GP-GM	19	58	32	-	-	-		
	6	8	GP-GM	39	68	36	-	-	-		
Till	8	13	SM	55	68	39	-	-	-		

Boring BH 103

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	2				: WITH COI	NTDOLLED 6:	FRIICTURAL E	11.1
Glaciofluvial	1	2	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL						
Deposits	2	6	SM	15	53	31	-	-	-
Till	6	15	SM/ML	63	73	39	-	-	-

Summary of Geotechnical Design Parameters (cont) Transition Station #1

Boring BH 104

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	1	I	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL					
	1	2	SM	9	48	29	-	-	-
Glaciofluvial	2	4	SM	29	58	34			
Deposits	4	8	GM	100+	78	43			
	8	15	SM	35	63	35	-	-	-

Boring BH 105

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	2	I	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL					
Glaciofluvial	2	8	SM/ML	18	53	31	-	-	-
Deposits	8	13	ML	8	53	27	-	-	-
Till	13	22	SM	66	73	41	-	-	-

Boring BH 106

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	1	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL						
	1	2	SM	10	110	29	-	-	-
Glaciofluvial	2	6	SM	39	125	35			
Deposits	6	8	SM	21	58	32	-	-	-
	8	13	SM	53	68	39	-	-	-
Till	13	33	SM/ML	84	73	40	-	-	-
Bedrock	33	48	F Phyllite ¹	100+	113	-	-	52.8	5,500

¹ Assumed UCS = 4,000 psi; GSI = 50 (excellent rock)

Summary of Geotechnical Design Parameters (cont) Transition Station #1

Boring BH 107

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)		
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)	
Topsoil	0	1	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL							
Glaciofluvial Deposits	1	2	REMOVE AND REPEACE WITH CONTROLLED STRUCTURAL FILE							
	2	9	SM	15	53	31	-	-	-	
Till	9	11	SM	66	73	41	-	-	-	
Bedrock	11	13.5	HW Phyllite	-	88	45	-	-	-	

Boring BH 108

Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	1	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL						
Glaciofluvial Deposits	1	2	SM	9	110	29	-	-	-
	2	8	SM	37	125	36	-	-	-
Bedrock	8	12	HW Phyllite	=	88	45	-	-	-
	12	27	F Phyllite ¹	-	113	-	-	52.8	5,500

¹ Assumed UCS = 4,000 psi; GSI = 50 (excellent rock)

Boring BH 109

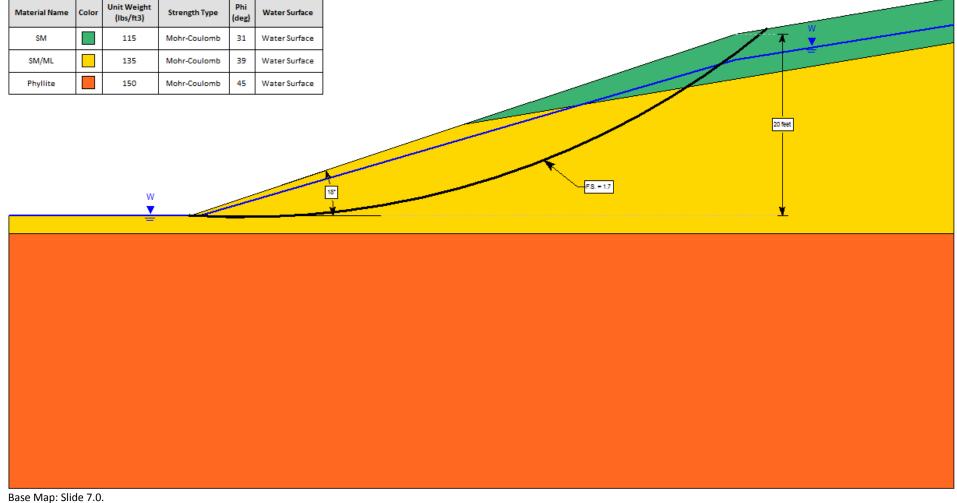
Sublayer Description	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)	
	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)
Topsoil	0	1	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL						
Glaciofluvial Deposits	1	8	SM	23	58	32	-	-	-
	8	20	GM/SM	39	63	35	-	-	-
Bedrock	20	21	HW Phyllite	100+	88	45	-	-	-
	33	48	F Phyllite ¹	-	113	-	-	52.8	5,500

¹ Assumed UCS = 4,000 psi; GSI = 50 (excellent rock)

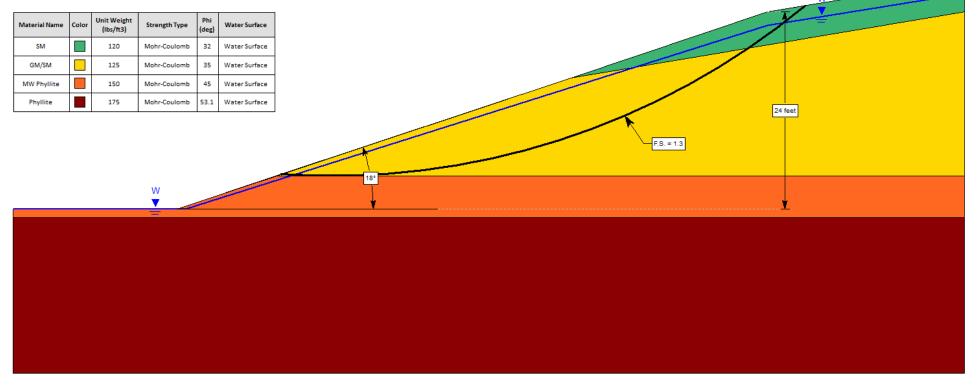
Summary of Geotechnical Design Parameters (cont) Transition Station #1

Boring BH 110

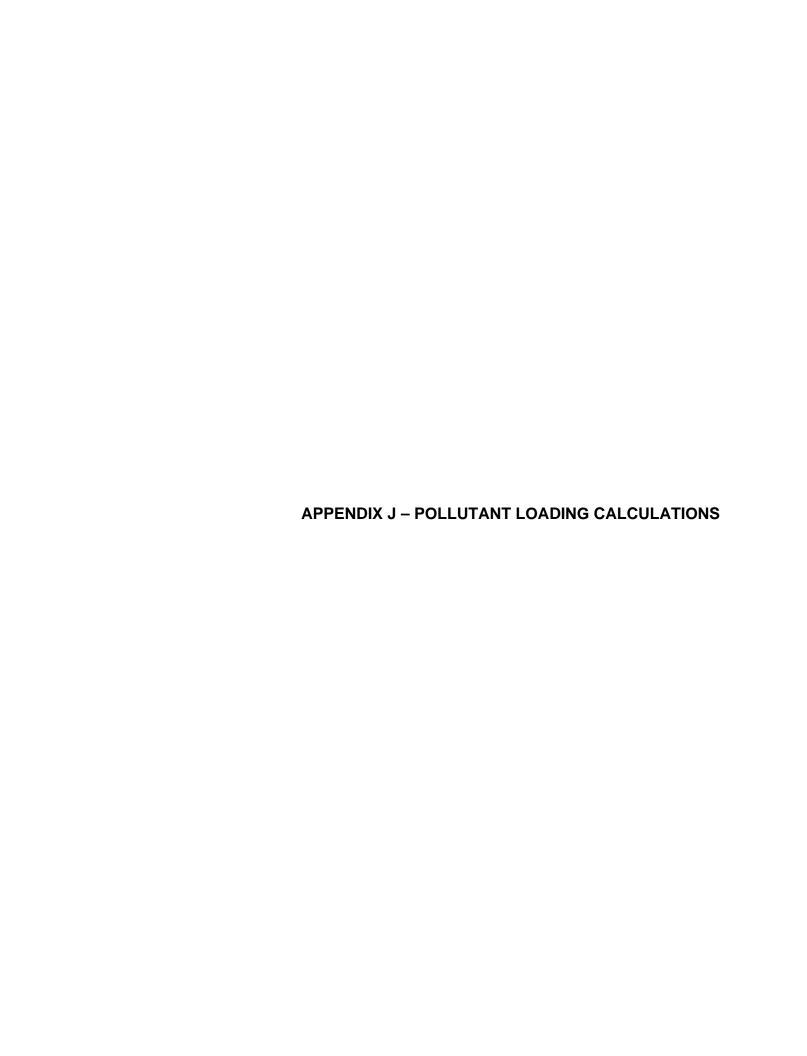
Sublayer	Sublayer Depth (ft)		Material	Average	Effective Unit	Soil Friction	Soil Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)			
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)		
Topsoil	0	1	F	REMOVE AND REPLACE WITH CONTROLLED STRUCTURAL FILL							
Glaciofluvial	1	2	SM	8	110	29	-	-	-		
Deposits	2	7.5	SM	39	125	35	-	-	-		
Padrook	7.5	10	HW Phyllite	100+	88	45	-	-	-		
Bedrock	10	25	F Phyllite ¹	-	113	-	-	52.8	5,500		


¹ Assumed UCS = 4,000 psi; GSI = 50 (excellent rock)

Controlled Structural Fill


Sublayer	Sublayer Depth (ft)		Material	Average	Effective Unit	Friction	Undrained	Bedrock (Rock Mass Equivalent Mohr-Coulomb Fit)		
Description	Тор	Bot.	Description	N ₆₀	Weight (pcf)	Angle (deg)	Strength (psf)	Friction Angle (deg)	Cohesion (psf)	
Structural Fill	-	-	SM/ML	-	125	30	-	-	-	

Appendix G SLIDE 7.0 Stability Outputs


Base Map: Slide 7.0.

Condition	Point of Analysis (PoA) Number	Sub-Area Number	Area Description	Land Use	Is the Impervious Area Disconnected in accordance with Chapter Volume 1 of the NH Stormwater Manual or is the BMP an Infiltration BM designed in accordance with Alteration of Terrain regulations (Env-Wq 1500)?	Pervious Undisturbed (i.e, forest, meadow, etc.)	Pervious Disturbed (i.e. lawn or other area that will be fertilized regularly)	Pervious Pavement that filters and infiltrates all stormwater (no underdrains)	Pervious Disturbed Other	d Pervious Disturbed Pervious of Other	stormwater (i underdrain	es Impervio	Road	Impervious Parking and Drives	Sidewalks	Impervious Surface Water	Impervious Other	Description of Impervious Other	or Infiltration BMP Credit)		Composite % Impervious (without disconnection or Infiltration credit)	Composite % Impervious (with disconnection or Infiltration credit)
Pre-Development	Pre-A	Pre-A	Pre-Dev Watershed Map Area A	Forest/Rural Open	NO NO	31.88	0.00	0.00	0.00	31.88	0.00	0.00	0.11	0.00	0.00	0.00	0.00		0.11	31.99	0.34%	0.34%
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00	0.00 0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00 0.00		
Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00 0.00	0.00 0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00		0.00	0.00	0.00	0.00 0.00		0.00	0.00 0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00		0.00	0.00 0.00		
Pre-Development Pre-Development					NO NO	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
Pre-Development					NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		

Post-Development Post-B Post-Be Post-B	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.17 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	Acres Acres 0.24 10.71 2.24% 2.24% 0.03 0.41 7.32% 7.32% 0.31 0.52 59.62% 0.00% 0.00 0.07 0.00% 0.00% 0.05 9.51 0.53% 0.53% 0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-B Post-B Post-B Post-B Post-Dev Watershed Map Area B Forest/Rural Open Detention Basin I NO 0.00 0	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.17 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.03 0.41 7.32% 7.32% 0.31 0.52 59.62% 0.00% 0.00 0.07 0.00% 0.00% 0.05 9.51 0.53% 0.53% 0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-Develo	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.17 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.31 0.52 59.62% 0.00% 0.00 0.07 0.00% 0.00% 0.05 9.51 0.53% 0.53% 0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-Develo	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.17 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.00 0.07 0.00% 0.00% 0.05 9.51 0.53% 0.53% 0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-D Post-D Post-D Post-D Post-Dev Watershed Map Area D Forest/Rural Open NO 0.00	0 0.00 0 0.00 0 0.00 0 0.17 0 0.00	0.05 9.51 0.53% 0.53% 0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-E Post-Dev Watershed Map Area E Forest/Rural Open NO 9.12 0.00 0.00 0.34 grassed open area, no fertilizer 10.44 0.00 0.00 0.05 0.00	0 0.00 0 0.00 0 0.00 0 0.17 0 0.00	0.05 9.51 0.53% 0.53% 0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-F Post-Development Post-Development Post-F Post-Development	0 0.00 0.00 0 0.17 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.06 10.50 0.57% 0.00% 0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development Post-G Post-G Post-G Post-G Post-G Post-G Post-Dev Watershed Map Area G Forest/Rural Open Detention Basin 1 NO 0.00	0 0.17 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.17 0.28 60.71% 60.71% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	0.00 0.00
Post-Development NO 0.00	0 0.00 0.00 0 0.00 0.00 0 0.00 0.00	
Post-Development NO 0.00	0 0.00 0.00	
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 00 000	0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00	3.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00		0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00 0.00 0.00
Post-Development NO 0.00	0 0.00 0.00	0.00 0.00

Date (MM/DD/YYYY):	1/4/2017									
Project Name:	Transition Station #1									
Town/City:	Pittsburg, Coos County									
Impacted Surface Waters:	Upper Connecticut River									
Applicant:	Northern Pass Transmission, LLC.									
DES File #:										
		_								
Average Annual Precipitation P	40.20	inches		ONLY INPUT VALUES IN	N BLUE SHADED CELLS					
Fraction of Annual Runoff events that produce runoff	0.90	(usually 0.9)								
Credit for Using Low Nutrient Fertilizer: If there are managed turf areas under post development conditions that are to be fertilized annually, reductions in post development nutrient (TP and TN) loadings can be realized by by providing enforceable documents (i.e., deed restrictions) requiring land owners to use low nutrient fertilizer. To get low nutrient fertilizer pollutant reductions input the proposed reduced fertilizer application rates for post development development for TP and TN in the table below. Low nutrient fertilizers must have application rates less than the standard fertilizer application rate shown in the table. Then input the percent of each land use in each post development sub-area that is managed turf that is fertilized annually.										
			Fertilizer Reduction Calci	ulator	1					
			TP	TN	1					
STANDARD FERTILIZER APPLICATION RATE (lbs/acre/year)			15.0	150.0	j					

STANDARD FERTILIZER APPLICATION RATE (lbs/acre/year)

PROPOSED REDUCED FERTILIZER APPLICATION RATES FOR POST-DEVELOPMENT (lbs/acre/year)

INITIAL PERCENT REDUCTION

PERCENT OF CITIZENS THAT WILL COMPLY WITH REDUCED APPLICATION RATES

PERCENT OF APPLIED FERTILIZER THAT IS LOST TO RUNOFF OR PERCOLATION

FINAL PERCENT FERTILIZER REDUCTION WITH COMPLIANCE AND RUNOFF RATES APPLIED (%FR)

MINIMUM ASSUMED EMC = EMC_{MIN} (mg/L)

PRE-DEVELOPMENT CONDITIONS

Water/Wetland

0.00

0.00%

Fertilizer Reduction Cale	culator
TP	TN
15.0	150.0
0.0	44.0
100.0%	70.7%
50%	50%
10%	10%
5.0%	3.5%
0.11	1.74

Water/Wetland

0.00

0.00%

0.0%

0.08

1.38

Used to reduce EMCs for Post TP and Post TN for each land use in each Sub Area depending on percen of area that is managed turf that is fertilized annually

POST-DEVELOPMENT CONDITIONS

Area Impervious Area

Impervious Area

Area Impervious Area

Annually

Total Area (All Sub-Areas) (acres)

31.99

0.11

Insert information for 1st sub-area below

Sub_Area_ID	Pre-A		Sub_Area_ID	Post-A				
Point of Analysis (PoA) Number	Pre-A		Point of Analysis (PoA) Number	Post-A				
Total Area for Sub-Area (acres)	31.99	0.11	Total Area in Sub-Area (acres)	10.71	0.24	0.00		
Land Use	Area	la	Land Use	Total Area for each Land Use	la	Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG			From HWG					
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns		0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway		0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)		0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM			From CDM					
Agriculture and Pasture		0.00%	Agriculture and Pasture		0.00%	0.0%	0.37	5.98
Commercial		0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open		0.34%	Forest/Rural Open	10.71	2.24%	0.0%	0.11	1.74
Highway		0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial		0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential		0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74

		Insert information for 2nd sub-area below						
Sub_Area_ID			Sub_Area_ID	Post-B				
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-B				
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.41	0.03	0.00		
	Land Use					Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
Land Use	Area	la .	Land Use	Area	la			
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG			From HWG					
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM		2.224	From CDM		2 222/	2.22/		
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open	0.00	0.00%	Forest/Rural Open	0.41	7.32%	0.0%	0.11	1.74
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 3rd sub-area below						
Sub_Area_ID			Sub_Area_ID	Post-C				
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-C				
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.52	0.00	0.00		
						Percent of Area that is managed turf (i.e.,	Post-TP EMC	Post-TN EMC

							is managed turf (i.e., fertilized annually)	Post-TP EMC	EMC
Land Use		Area	la	Land Use	Area	la			
		(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG				From HWG					
Res	idential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Com	mercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial	/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Resid	dential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Url	ban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
	Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
	Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residen	tial (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commerc	cial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
	rial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM				From CDM					
	and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
	Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Fores	t/Rural Open	0.00	0.00%	Forest/Rural Open	0.52	0.00%	0.0%	0.11	1.74
	Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
	Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density		0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
	Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Wa	ater/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38

		Insert information for 4th sub-area below						
Sub_Area_ID			Sub_Area_ID	Post-D				
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-D				
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.07	0.00	0.00		
` ,			` ,		L			
						Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
Land Use	Area	la	Land Use	Area	la			
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG			From HWG					
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM			From CDM					
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open	0.00	0.00%	Forest/Rural Open	0.07	0.00%	0.0%	0.11	1.74
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 5th sub-area below						
Sub_Area_ID			Sub_Area_ID	Post-E				
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-E				
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	9.51	0.05	0.00		
						Percent of Area that is managed turf (i.e.,	Post-TP EMC	Post-TN EMC

							fertilized annually)	POST-TP EMIC	EMC
	Land Use	Area	la	Land Use	Area	la			
		(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG				From HWG			_		
	Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
	Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
	Commercial/Res Parking		0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
	Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
	Urban Highway		0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
	Lawns		0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
	Driveway		0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
	Residential (general)		0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
	Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
	Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM				From CDM					
	Agriculture and Pasture		0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
	Commercial		0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
	Forest/Rural Open		0.00%	Forest/Rural Open	9.51	0.53%	0.0%	0.11	1.74
	Highway		0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
	Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
	Medium Density Residential		0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
	Urban Open		0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
	Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38

		Insert information for 6th sub-area below						
Sub_Area_ID			Sub_Area_ID	Post-F				
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-F				
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	10.50	0.00	0.00		
						Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
Land Use	Area	la	Land Use	Area	la			
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG			From HWG					
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	Driveway		0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	Residential (general)		0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM			From CDM					
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open	0.00	0.00%	Forest/Rural Open	10.50	0.00%	0.0%	0.11	1.74
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38
		Insert information for 7th sub-area below						
Sub_Area_ID			Sub Area ID	Post-G				
Point of Analysis (PoA) Number			Point of Analysis (PoA) Number	Post-G				
Total Area for Sub-Area (acres)	0.00	0.00	Total Area in Sub-Area (acres)	0.28	0.17	0.00		
	0.00	0.00		0.20	V	0.00		
						Percent of Area that is managed turf (i.e., fertilized annually)	Post-TP EMC	Post-TN EMC
Land Use	Area	la	Land Use	Area	la			
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG			From HWG					
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Commercial/Res Farking	0.00	0.0070	Commercial/Nes ranking	0.00	0.0070	0.070	0.10	

						rertilized annually)		
Land Use	Area	la	Land Use	Area	la			
	(acres)	(% Impervious)		(acres)	(% Impervious)	%	mg/L	mg/L
From HWG			From HWG					
Residential Roof	0.00	0.00%	Residential Roof	0.00	0.00%	0.0%	0.11	1.50
Commercial Roof	0.00	0.00%	Commercial Roof	0.00	0.00%	0.0%	0.14	2.10
Commercial/Res Parking	0.00	0.00%	Commercial/Res Parking	0.00	0.00%	0.0%	0.15	1.90
Residential Street	0.00	0.00%	Residential Street	0.00	0.00%	0.0%	0.55	1.40
Urban Highway	0.00	0.00%	Urban Highway	0.00	0.00%	0.0%	0.32	3.00
Lawns	0.00	0.00%	Lawns	0.00	0.00%	0.0%	2.10	9.10
Driveway	0.00	0.00%	Driveway	0.00	0.00%	0.0%	0.56	2.10
Residential (general)	0.00	0.00%	Residential (general)	0.00	0.00%	0.0%	0.40	2.20
Commercial (general)	0.00	0.00%	Commercial (general)	0.00	0.00%	0.0%	0.20	2.00
Industrial (general)	0.00	0.00%	Industrial (general)	0.00	0.00%	0.0%	0.40	2.50
From CDM			From CDM					
Agriculture and Pasture	0.00	0.00%	Agriculture and Pasture	0.00	0.00%	0.0%	0.37	5.98
Commercial	0.00	0.00%	Commercial	0.00	0.00%	0.0%	0.33	2.97
Forest/Rural Open	0.00	0.00%	Forest/Rural Open	0.28	60.71%	0.0%	0.11	1.74
Highway	0.00	0.00%	Highway	0.00	0.00%	0.0%	0.43	2.65
Industrial	0.00	0.00%	Industrial	0.00	0.00%	0.0%	0.32	3.97
Medium Density Residential	0.00	0.00%	Medium Density Residential	0.00	0.00%	0.0%	0.52	5.15
Urban Open	0.00	0.00%	Urban Open	0.00	0.00%	0.0%	0.11	1.74
Water/Wetland	0.00	0.00%	Water/Wetland	0.00	0.00%	0.0%	0.08	1.38

Tab 5 of 9

ONLY CHANGE VALUES SHADED IN BLUE

Date (MM/DD/YYYY): 1/4/2017

Sub-Area

Project Name: Transition Station #1

Town/City: Pittsburg, Coos County Impacted Surface Waters: **Upper Connecticut River**

Applicant: DES File #: Northern Pass Transmission, LLC.

2015-04-15

PRE DEVELOPMENT

INPUT BMP DESCRIPTIONS INPUT OVERALL REMOVAL EFFICIENCIES (%) FOR POLLUTANTS OF CONCERN

Pi	re-A		0%	0%	0%
	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%
0	0.00		0%	0%	
0	0.00		0%	0%	0%
0	0.00		0%	0%	0%

POST DEVELOPMENT	INPUT BMP DESCRIPTIONS	INPUT OVERA	LL REMOVA	L EFFICIEN
Sub-Area		TSS	TP	TN
Post-A	Detention Basin 1 (Wet Extended Detention Pond)	80%	68%	55%
Post-B	Detention Basin 1 (Wet Extended Detention Pond)	80%	68%	55%
Post-C		0%	0%	0%
Post-D		0%	0%	0%
Post-E		0%	0%	0%
Post-F		0%	0%	0%
Post-G	Detention Basin 1 (Wet Extended Detention Pond)	80%	68%	55%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%
0.00		0%	0%	0%

(603) 271-2304 PO Box 95, Concord, NH 03302-0095 www.des.nh.gov

TS1 Simple Method_01042017.xls OVERALL SUMMARY

Date (MM/DD/YYYY):

Project Name: Town/City:

Impacted Surface Waters:

Applicant:

DES File #:

1/4/2017

Transition Station #1 Pittsburg, Coos County **Upper Connecticut River**

Northern Pass Transmission, LLC.

TOTAL PRE -DEVELOPMENT (PRE-DEV) AREA (ACRES) =	31.99
TOTAL PRE-DEV EFFECTIVE IMPERVIOUS AREA (ACRES) =	0.11
TOTAL PRE-DEV PERCENT EFFECTIVE IMPERVIOUS (%) =	0.3%
TOTAL POST DEVELOPMENT (POST-DEV) AREA (ACRES) =	32.00
TOTAL POST-DEV EFFECTIVE IMPERVIOUS AREA (ACRES) =	0.49
TOTAL POST-DEV PERCENT EFFECTIVE IMPERVIOUS (%) =	1.5%
TOTAL POST-DEV AREA THAT IS FERTILIZED ANNUALLY (ACRES) =	0.00
TOTAL POST-DEV PERCENT OF AREA THAT IS FERTILIZED ANNUALLY (%) =	0.0%

	TSS	TP	TN
	(LBS/YR)	(LBS/YR)	(LBS/YR)
PRE DEVELOPMENT LOADS (NO BMPS)	708.3	1.5	24.2
PRE DEVELOPMENT LOADS (WITH BMPS)	708.3	1.5	24.2
PRE DEVELOPMENT LOAD REDUCTION DUE TO BMPS	708.3	0.0	0.0
PROPOSED PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	NA NA	5.0%	3.5%
POST DEVELOPMENT LOADS (NO BMPS)	851.1	1.8	29.0
POST DEVELOPMENT LOADS (WITH BMPS)	528.9	1.2	21.5
POST DEVELOPMENT LOAD REDUCTION DUE TO BMPS	322.3	0.6	7.6
POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE)	-179.4	-0.3	-2.7
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-25.3%	-18.5%	-11.1%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	16.8%	16.8%	16.8%

Date (MM/DD/YYYY): 1/4/2017

Project Name: Town/City: Transition Station #1 Pittsburg, Coos County Upper Connecticut River
Northern Pass Transmission, LLC. Impacted Surface Waters: Applicant: DES File #:

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-179.4
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-25.3%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	16.8%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	37.9%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-21.1%

PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	вмрѕ	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-A	Pre-A	31.99	0.11	NA	TSS	NA		708.3	708.3	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TSS	NA		0.0	0.0	0.0	0.0%
-		TOTAL	31.99	0.11				TOTAL	708.3	708.3	0.0	0.0%

Date (MM/DD/YYYY): 1/4/2017

Project Name: Town/City: Transition Station #1 Pittsburg, Coos County Upper Connecticut River
Northern Pass Transmission, LLC. Impacted Surface Waters: Applicant: DES File #:

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-179.4
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-25.3%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	16.8%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	37.9%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-21.1%

POST-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-A	Post-A	10.71	0.24	0.00	TSS	NA	Detention Basin 1 (Wet Extended Detention Pond)	313.4	62.7	250.7	80.0%
POST	Post-B	Post-B	0.41	0.03	0.00	TSS	NA	Detention Basin 1 (Wet Extended Detention Pond)	19.8	4.0	15.8	80.0%
POST	Post-C	Post-C	0.52	0.00	0.00	TSS	NA		10.8	10.8	0.0	0.0%
POST	Post-D	Post-D	0.07	0.00	0.00	TSS	NA		1.5	1.5	0.0	0.0%
POST	Post-E	Post-E	9.51	0.05	0.00	TSS	NA		217.1	217.1	0.0	0.0%
POST	Post-F	Post-F	10.50	0.00	0.00	TSS	NA		218.9	218.9	0.0	0.0%
POST	Post-G	Post-G	0.28	0.17	0.00	TSS	NA	Detention Basin 1 (Wet Extended Detention Pond)	69.6	13.9	55.7	80.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TSS	NA		0.0	0.0	0.0	0.0%
•		TOTAL	32.00	0.49	0.00			TOTAL	851.1	528.9	322.3	37.9%

Date (MM/DD/YYYY):

1/4/2017 Transition Station #1 Project Name: Town/City: Pittsburg, Coos County
Upper Connecticut River
Northern Pass Transmission, LLC. Impacted Surface Waters: Applicant: DES File #:

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-0.3
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-18.5%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	16.8%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	32.2%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-15.4%

PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-A	Pre-A	31.99	0.11	NA	TP	NA		1.5	1.5	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TP	NA		0.0	0.0	0.0	0.0%
		TOTAL	24.00	0.11				TOTAL	1 5	4.5	0.0	0.00/

TOTAL 31.99 0.11 TOTAL 1.5 1.5 0.0 0.0%

1/4/2017
Transition Station #1
Pittsburg, Coos County
Upper Connecticut River
Northern Pass Transmission, LLC. Date (MM/DD/YYYY): Project Name: Town/City: Impacted Surface Waters: Applicant: DES File #:

POST-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-A	Post-A	10.71	0.24	0.00	TP	5.0%	Detention Basin 1 (Wet Extended Detention Pond)	0.7	0.2	0.5	68.0%
POST	Post-B	Post-B	0.41	0.03	0.00	TP	5.0%	Detention Basin 1 (Wet Extended Detention Pond)	0.0	0.0	0.0	68.0%
POST	Post-C	Post-C	0.52	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	Post-D	Post-D	0.07	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	Post-E	Post-E	9.51	0.05	0.00	TP	5.0%		0.5	0.5	0.0	0.0%
POST	Post-F	Post-F	10.50	0.00	0.00	TP	5.0%		0.5	0.5	0.0	0.0%
POST	Post-G	Post-G	0.28	0.17	0.00	TP	5.0%	Detention Basin 1 (Wet Extended Detention Pond)	0.2	0.0	0.1	68.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TP	5.0%		0.0	0.0	0.0	0.0%
		TOTAL	32.00	0.49	0.00			TOTAL	1.8	1.2	0.6	32.2%

Date (MM/DD/YYYY): 1/4/2017

Transition Station #1
Pittsburg, Coos County
Upper Connecticut River Project Name: Town/City: Impacted Surface Waters:

Applicant: DES File #: Northern Pass Transmission, LLC.

TOTAL POST DEVELOPMENT - PRE DEVELOPMENT (SHOULD BE 0 OR NEGATIVE) (lbs/yr)	-2.7
% DIFFERENCE FROM PRE DEVELOMENT LOADS (SHOULD BE 0 OR NEGATIVE)	-11.1%
TOTAL REMOVAL EFFICIENCY NEEDED TO MEET PRE-DEVELOPMENT LOAD	16.8%
CURRENTLY PROPOSED REMOVAL EFFICIENCY	26.0%
REMAINING REMOVAL EFFICIENCY NECESSARY TO MEET PRE-DEVELOPMENT LOAD	-9.3%

PRE-DEVELOPMENT

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
PRE	Pre-A	Pre-A	31.99	0.11	NA	TN	NA		24.2	24.2	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
PRE	0.00		0.00	0.00	NA	TN	NA		0.0	0.0	0.0	0.0%
		TOTAL	31.99	0.11				TOTAL	24.2	24.2	0.0	0.0%

Date (MM/DD/YYYY): 1/4/2017

Project Name: Transition Station #1

Town/City: Pittsburg, Coos County

Impacted Surface Waters: Upper Connecticut River

Applicant: Northern Pass Transmission, LLC.

POST-DEVELOPMENT

DES File #:

PRE OR POST - DEV	SUB-AREA	POINT OF ANALYSIS NUMBER	AREA (acres)	Effective Impervious Area (acres)	Area Fertilized Annually (acres)	POLLUTANT	PERCENT REDUCTION IN FERTILIZER APPLICATION RATE	BMPS	LOAD (NO BMPS) (lbs/yr)	LOAD (WITH BMPS) (lbs/yr)	LOAD REDUCTION DUE TO BMPS (lbs/yr)	PERCENT REMOVAL
POST	Post-A	Post-A	10.71	0.24	0.00	TN	3.5%	Detention Basin 1 (Wet Extended Detention Pond)	10.7	4.8	5.9	55.0%
POST	Post-B	Post-B	0.41	0.03	0.00	TN	3.5%	Detention Basin 1 (Wet Extended Detention Pond)	0.7	0.3	0.4	55.0%
POST	Post-C	Post-C	0.52	0.00	0.00	TN	3.5%		0.4	0.4	0.0	0.0%
POST	Post-D	Post-D	0.07	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	Post-E	Post-E	9.51	0.05	0.00	TN	3.5%		7.4	7.4	0.0	0.0%
POST	Post-F	Post-F	10.50	0.00	0.00	TN	3.5%		7.5	7.5	0.0	0.0%
POST	Post-G	Post-G	0.28	0.17	0.00	TN	3.5%	Detention Basin 1 (Wet Extended Detention Pond)	2.4	1.1	1.3	55.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
POST	0.00		0.00	0.00	0.00	TN	3.5%		0.0	0.0	0.0	0.0%
		TOTAL	32.00	0.49	0.00		-	TOTAL	29.0	21.5	7.6	26.0%

http://gfu.pub.epa.gov/tmdl_waters10/attains_waterbody.control?p_list_id=&p_au_id=NHRIV801010203-D750 cycle 210&p state=NH

Last updated on Tuesday, June 02, 2015

Watershed Assessment, Tracking & Environmental ResultS

You are here: <u>EPA Home</u> <u>*Water</u> <u>*WATERS</u> <u>*Water Quality Assessment and TMDL Information</u> *Waterbody Quality Assessment Report

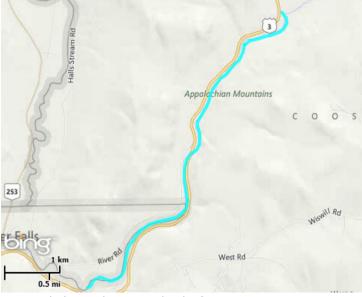
Return to home page

On This Page

- Water Quality Assessment Status
- <u>Causes of</u> <u>Impairment</u>
- <u>Probable</u>
 <u>Sources</u>
 <u>Contributing to</u>
 <u>Impairments</u>
- TMDLs That Apply to This Waterbody
- Previous Causes of Impairment Now Attaining All Uses

State: New Hampshire
Waterbody ID:
NHRIV801010203-07
Location:
010801010203,
Connecticut River,
Unknown Fishery
State Waterbody
Type: River
EPA Waterbody
Type: Rivers and

Streams


Water Size: 4.348

Units: miles
Watershed
Name: Upper
Connecticut

Waterbody History Report

Data are also available for these years: 2008 2006 2004 2002

2010 Waterbody Report for Connecticut River

Click on the waterbody for an interactive map

Features

- About This Database (Integrated Report)
- Assessing Water Quality (Questions and Answers)
- Integrated Reporting Guidance
- Previous National Water Quality Reports
- EnviroMapper for Water
- AskWATERS
- EPA WATERS Homepage
- Exchange Network
- Assessment Database
- Statewide Statistical Surveys
- How's My Waterway Local Search tool
- Pollution Categories
 Summary Document
- Nitrogen and Phosphorus Pollution Data Access Tool (NPDAT)

Water Quality Assessment Status for Reporting Year 2010

The overall status of this waterbody is Impaired.

Description of this table

Designated Use	<u>Designated Use Group</u>	<u>Status</u>
Aquatic Life	Fish, Shellfish, And Wildlife Protection And Propagation	Impaired

Drinking Water Supply	Public Water Supply	Good
Fish Consumption	Aquatic Life Harvesting	Impaired
Primary Contact Recreation	Recreation	Good
Secondary Contact Recreation	Recreation	Good
Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Not Assessed

Causes of Impairment for Reporting Year 2010

Description of this table

<u>Cause of</u> <u>Impairment</u>	Cause of Impairment Group	<u>Designated Use</u> <u>(s)</u>	State TMDL Development Status
Lead	Metals (other than Mercury)	Aquatic Life	TMDL needed
Mercury	Mercury	Fish Consumption	TMDL completed
рН	pH/Acidity/Caustic Conditions	Aquatic Life	TMDL needed

Probable Sources Contributing to Impairment for Reporting Year 2010

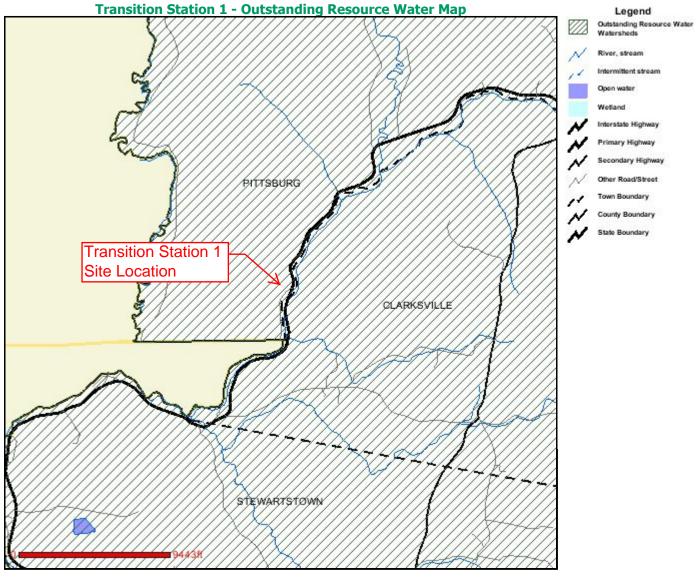
Description of this table

<u>Probable Source</u>	Probable Source Group	Cause(s) of Impairment
Atmospheric Deposition - Toxics	Atmospheric Deposition	Mercury
Source Unknown	Unknown	Lead; pH

TMDLs That Apply to this waterbody

Description of this table

TMDL Document Name	TMDL Date	TMDL Pollutant Description	TMDL Pollutant Source Type	Cause(s) of Impairment Addressed
Ne Regional Mercury Tmdl	Dec-20- 2007	Mercury	Nonpoint Source	Mercury


Previous Causes of Impairments Now Attaining All Uses

Description of this table

Cause of Impairment	Cycles Listed	WQS Attainment Date	WQS Attainment Reason	WQS Attainment Comments
II ,	2002, 2004, 2006	150n-311-711119	Applicable WQS attained, due to change in WQS.	

OneStop Program GIS

Map Scale = 1: 116047 (1" = 1.8 miles or 9671 feet)

The information contained in the OneStop Program GIS is the best available according to the procedures and standards of each of the contributing programs and of the GIS. The different programs are regularly maintaining the information in their databases. As a result, the GIS may not always provide access to all existing information, and it may occasionally contain unintentional inaccuracies. The Department can not be responsible for the misuse or misinterpretation of the information presented by this system.

Map prepared 7/15/2015 8:56:05 AM

Burns & McDonnell New England Office 108 Leigus Road Wallingford, CT 06492 Phone: 203-284-8590 Fax: 203-284-3693

www.burnsmcd.com

Burns & McDonnell: Making our clients successful for more than 100 years